• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include "compat.h"
30 #include "crc32c.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "volumes.h"
36 #include "print-tree.h"
37 #include "async-thread.h"
38 #include "locking.h"
39 #include "ref-cache.h"
40 #include "tree-log.h"
41 
42 static struct extent_io_ops btree_extent_io_ops;
43 static void end_workqueue_fn(struct btrfs_work *work);
44 
45 /*
46  * end_io_wq structs are used to do processing in task context when an IO is
47  * complete.  This is used during reads to verify checksums, and it is used
48  * by writes to insert metadata for new file extents after IO is complete.
49  */
50 struct end_io_wq {
51 	struct bio *bio;
52 	bio_end_io_t *end_io;
53 	void *private;
54 	struct btrfs_fs_info *info;
55 	int error;
56 	int metadata;
57 	struct list_head list;
58 	struct btrfs_work work;
59 };
60 
61 /*
62  * async submit bios are used to offload expensive checksumming
63  * onto the worker threads.  They checksum file and metadata bios
64  * just before they are sent down the IO stack.
65  */
66 struct async_submit_bio {
67 	struct inode *inode;
68 	struct bio *bio;
69 	struct list_head list;
70 	extent_submit_bio_hook_t *submit_bio_start;
71 	extent_submit_bio_hook_t *submit_bio_done;
72 	int rw;
73 	int mirror_num;
74 	unsigned long bio_flags;
75 	struct btrfs_work work;
76 };
77 
78 /* These are used to set the lockdep class on the extent buffer locks.
79  * The class is set by the readpage_end_io_hook after the buffer has
80  * passed csum validation but before the pages are unlocked.
81  *
82  * The lockdep class is also set by btrfs_init_new_buffer on freshly
83  * allocated blocks.
84  *
85  * The class is based on the level in the tree block, which allows lockdep
86  * to know that lower nodes nest inside the locks of higher nodes.
87  *
88  * We also add a check to make sure the highest level of the tree is
89  * the same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this
90  * code needs update as well.
91  */
92 #ifdef CONFIG_DEBUG_LOCK_ALLOC
93 # if BTRFS_MAX_LEVEL != 8
94 #  error
95 # endif
96 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
97 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
98 	/* leaf */
99 	"btrfs-extent-00",
100 	"btrfs-extent-01",
101 	"btrfs-extent-02",
102 	"btrfs-extent-03",
103 	"btrfs-extent-04",
104 	"btrfs-extent-05",
105 	"btrfs-extent-06",
106 	"btrfs-extent-07",
107 	/* highest possible level */
108 	"btrfs-extent-08",
109 };
110 #endif
111 
112 /*
113  * extents on the btree inode are pretty simple, there's one extent
114  * that covers the entire device
115  */
btree_get_extent(struct inode * inode,struct page * page,size_t page_offset,u64 start,u64 len,int create)116 static struct extent_map *btree_get_extent(struct inode *inode,
117 		struct page *page, size_t page_offset, u64 start, u64 len,
118 		int create)
119 {
120 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
121 	struct extent_map *em;
122 	int ret;
123 
124 	spin_lock(&em_tree->lock);
125 	em = lookup_extent_mapping(em_tree, start, len);
126 	if (em) {
127 		em->bdev =
128 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
129 		spin_unlock(&em_tree->lock);
130 		goto out;
131 	}
132 	spin_unlock(&em_tree->lock);
133 
134 	em = alloc_extent_map(GFP_NOFS);
135 	if (!em) {
136 		em = ERR_PTR(-ENOMEM);
137 		goto out;
138 	}
139 	em->start = 0;
140 	em->len = (u64)-1;
141 	em->block_len = (u64)-1;
142 	em->block_start = 0;
143 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
144 
145 	spin_lock(&em_tree->lock);
146 	ret = add_extent_mapping(em_tree, em);
147 	if (ret == -EEXIST) {
148 		u64 failed_start = em->start;
149 		u64 failed_len = em->len;
150 
151 		free_extent_map(em);
152 		em = lookup_extent_mapping(em_tree, start, len);
153 		if (em) {
154 			ret = 0;
155 		} else {
156 			em = lookup_extent_mapping(em_tree, failed_start,
157 						   failed_len);
158 			ret = -EIO;
159 		}
160 	} else if (ret) {
161 		free_extent_map(em);
162 		em = NULL;
163 	}
164 	spin_unlock(&em_tree->lock);
165 
166 	if (ret)
167 		em = ERR_PTR(ret);
168 out:
169 	return em;
170 }
171 
btrfs_csum_data(struct btrfs_root * root,char * data,u32 seed,size_t len)172 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
173 {
174 	return btrfs_crc32c(seed, data, len);
175 }
176 
btrfs_csum_final(u32 crc,char * result)177 void btrfs_csum_final(u32 crc, char *result)
178 {
179 	*(__le32 *)result = ~cpu_to_le32(crc);
180 }
181 
182 /*
183  * compute the csum for a btree block, and either verify it or write it
184  * into the csum field of the block.
185  */
csum_tree_block(struct btrfs_root * root,struct extent_buffer * buf,int verify)186 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
187 			   int verify)
188 {
189 	u16 csum_size =
190 		btrfs_super_csum_size(&root->fs_info->super_copy);
191 	char *result = NULL;
192 	unsigned long len;
193 	unsigned long cur_len;
194 	unsigned long offset = BTRFS_CSUM_SIZE;
195 	char *map_token = NULL;
196 	char *kaddr;
197 	unsigned long map_start;
198 	unsigned long map_len;
199 	int err;
200 	u32 crc = ~(u32)0;
201 	unsigned long inline_result;
202 
203 	len = buf->len - offset;
204 	while (len > 0) {
205 		err = map_private_extent_buffer(buf, offset, 32,
206 					&map_token, &kaddr,
207 					&map_start, &map_len, KM_USER0);
208 		if (err)
209 			return 1;
210 		cur_len = min(len, map_len - (offset - map_start));
211 		crc = btrfs_csum_data(root, kaddr + offset - map_start,
212 				      crc, cur_len);
213 		len -= cur_len;
214 		offset += cur_len;
215 		unmap_extent_buffer(buf, map_token, KM_USER0);
216 	}
217 	if (csum_size > sizeof(inline_result)) {
218 		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
219 		if (!result)
220 			return 1;
221 	} else {
222 		result = (char *)&inline_result;
223 	}
224 
225 	btrfs_csum_final(crc, result);
226 
227 	if (verify) {
228 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
229 			u32 val;
230 			u32 found = 0;
231 			memcpy(&found, result, csum_size);
232 
233 			read_extent_buffer(buf, &val, 0, csum_size);
234 			printk(KERN_INFO "btrfs: %s checksum verify failed "
235 			       "on %llu wanted %X found %X level %d\n",
236 			       root->fs_info->sb->s_id,
237 			       buf->start, val, found, btrfs_header_level(buf));
238 			if (result != (char *)&inline_result)
239 				kfree(result);
240 			return 1;
241 		}
242 	} else {
243 		write_extent_buffer(buf, result, 0, csum_size);
244 	}
245 	if (result != (char *)&inline_result)
246 		kfree(result);
247 	return 0;
248 }
249 
250 /*
251  * we can't consider a given block up to date unless the transid of the
252  * block matches the transid in the parent node's pointer.  This is how we
253  * detect blocks that either didn't get written at all or got written
254  * in the wrong place.
255  */
verify_parent_transid(struct extent_io_tree * io_tree,struct extent_buffer * eb,u64 parent_transid)256 static int verify_parent_transid(struct extent_io_tree *io_tree,
257 				 struct extent_buffer *eb, u64 parent_transid)
258 {
259 	int ret;
260 
261 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
262 		return 0;
263 
264 	lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
265 	if (extent_buffer_uptodate(io_tree, eb) &&
266 	    btrfs_header_generation(eb) == parent_transid) {
267 		ret = 0;
268 		goto out;
269 	}
270 	printk("parent transid verify failed on %llu wanted %llu found %llu\n",
271 	       (unsigned long long)eb->start,
272 	       (unsigned long long)parent_transid,
273 	       (unsigned long long)btrfs_header_generation(eb));
274 	ret = 1;
275 	clear_extent_buffer_uptodate(io_tree, eb);
276 out:
277 	unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
278 		      GFP_NOFS);
279 	return ret;
280 }
281 
282 /*
283  * helper to read a given tree block, doing retries as required when
284  * the checksums don't match and we have alternate mirrors to try.
285  */
btree_read_extent_buffer_pages(struct btrfs_root * root,struct extent_buffer * eb,u64 start,u64 parent_transid)286 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
287 					  struct extent_buffer *eb,
288 					  u64 start, u64 parent_transid)
289 {
290 	struct extent_io_tree *io_tree;
291 	int ret;
292 	int num_copies = 0;
293 	int mirror_num = 0;
294 
295 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
296 	while (1) {
297 		ret = read_extent_buffer_pages(io_tree, eb, start, 1,
298 					       btree_get_extent, mirror_num);
299 		if (!ret &&
300 		    !verify_parent_transid(io_tree, eb, parent_transid))
301 			return ret;
302 
303 		num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
304 					      eb->start, eb->len);
305 		if (num_copies == 1)
306 			return ret;
307 
308 		mirror_num++;
309 		if (mirror_num > num_copies)
310 			return ret;
311 	}
312 	return -EIO;
313 }
314 
315 /*
316  * checksum a dirty tree block before IO.  This has extra checks to make sure
317  * we only fill in the checksum field in the first page of a multi-page block
318  */
319 
csum_dirty_buffer(struct btrfs_root * root,struct page * page)320 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
321 {
322 	struct extent_io_tree *tree;
323 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
324 	u64 found_start;
325 	int found_level;
326 	unsigned long len;
327 	struct extent_buffer *eb;
328 	int ret;
329 
330 	tree = &BTRFS_I(page->mapping->host)->io_tree;
331 
332 	if (page->private == EXTENT_PAGE_PRIVATE)
333 		goto out;
334 	if (!page->private)
335 		goto out;
336 	len = page->private >> 2;
337 	WARN_ON(len == 0);
338 
339 	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
340 	ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
341 					     btrfs_header_generation(eb));
342 	BUG_ON(ret);
343 	found_start = btrfs_header_bytenr(eb);
344 	if (found_start != start) {
345 		WARN_ON(1);
346 		goto err;
347 	}
348 	if (eb->first_page != page) {
349 		WARN_ON(1);
350 		goto err;
351 	}
352 	if (!PageUptodate(page)) {
353 		WARN_ON(1);
354 		goto err;
355 	}
356 	found_level = btrfs_header_level(eb);
357 
358 	csum_tree_block(root, eb, 0);
359 err:
360 	free_extent_buffer(eb);
361 out:
362 	return 0;
363 }
364 
check_tree_block_fsid(struct btrfs_root * root,struct extent_buffer * eb)365 static int check_tree_block_fsid(struct btrfs_root *root,
366 				 struct extent_buffer *eb)
367 {
368 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
369 	u8 fsid[BTRFS_UUID_SIZE];
370 	int ret = 1;
371 
372 	read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
373 			   BTRFS_FSID_SIZE);
374 	while (fs_devices) {
375 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
376 			ret = 0;
377 			break;
378 		}
379 		fs_devices = fs_devices->seed;
380 	}
381 	return ret;
382 }
383 
384 #ifdef CONFIG_DEBUG_LOCK_ALLOC
btrfs_set_buffer_lockdep_class(struct extent_buffer * eb,int level)385 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
386 {
387 	lockdep_set_class_and_name(&eb->lock,
388 			   &btrfs_eb_class[level],
389 			   btrfs_eb_name[level]);
390 }
391 #endif
392 
btree_readpage_end_io_hook(struct page * page,u64 start,u64 end,struct extent_state * state)393 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
394 			       struct extent_state *state)
395 {
396 	struct extent_io_tree *tree;
397 	u64 found_start;
398 	int found_level;
399 	unsigned long len;
400 	struct extent_buffer *eb;
401 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
402 	int ret = 0;
403 
404 	tree = &BTRFS_I(page->mapping->host)->io_tree;
405 	if (page->private == EXTENT_PAGE_PRIVATE)
406 		goto out;
407 	if (!page->private)
408 		goto out;
409 
410 	len = page->private >> 2;
411 	WARN_ON(len == 0);
412 
413 	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
414 
415 	found_start = btrfs_header_bytenr(eb);
416 	if (found_start != start) {
417 		printk(KERN_INFO "btrfs bad tree block start %llu %llu\n",
418 		       (unsigned long long)found_start,
419 		       (unsigned long long)eb->start);
420 		ret = -EIO;
421 		goto err;
422 	}
423 	if (eb->first_page != page) {
424 		printk(KERN_INFO "btrfs bad first page %lu %lu\n",
425 		       eb->first_page->index, page->index);
426 		WARN_ON(1);
427 		ret = -EIO;
428 		goto err;
429 	}
430 	if (check_tree_block_fsid(root, eb)) {
431 		printk(KERN_INFO "btrfs bad fsid on block %llu\n",
432 		       (unsigned long long)eb->start);
433 		ret = -EIO;
434 		goto err;
435 	}
436 	found_level = btrfs_header_level(eb);
437 
438 	btrfs_set_buffer_lockdep_class(eb, found_level);
439 
440 	ret = csum_tree_block(root, eb, 1);
441 	if (ret)
442 		ret = -EIO;
443 
444 	end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
445 	end = eb->start + end - 1;
446 err:
447 	free_extent_buffer(eb);
448 out:
449 	return ret;
450 }
451 
end_workqueue_bio(struct bio * bio,int err)452 static void end_workqueue_bio(struct bio *bio, int err)
453 {
454 	struct end_io_wq *end_io_wq = bio->bi_private;
455 	struct btrfs_fs_info *fs_info;
456 
457 	fs_info = end_io_wq->info;
458 	end_io_wq->error = err;
459 	end_io_wq->work.func = end_workqueue_fn;
460 	end_io_wq->work.flags = 0;
461 
462 	if (bio->bi_rw & (1 << BIO_RW)) {
463 		if (end_io_wq->metadata)
464 			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
465 					   &end_io_wq->work);
466 		else
467 			btrfs_queue_worker(&fs_info->endio_write_workers,
468 					   &end_io_wq->work);
469 	} else {
470 		if (end_io_wq->metadata)
471 			btrfs_queue_worker(&fs_info->endio_meta_workers,
472 					   &end_io_wq->work);
473 		else
474 			btrfs_queue_worker(&fs_info->endio_workers,
475 					   &end_io_wq->work);
476 	}
477 }
478 
btrfs_bio_wq_end_io(struct btrfs_fs_info * info,struct bio * bio,int metadata)479 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
480 			int metadata)
481 {
482 	struct end_io_wq *end_io_wq;
483 	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
484 	if (!end_io_wq)
485 		return -ENOMEM;
486 
487 	end_io_wq->private = bio->bi_private;
488 	end_io_wq->end_io = bio->bi_end_io;
489 	end_io_wq->info = info;
490 	end_io_wq->error = 0;
491 	end_io_wq->bio = bio;
492 	end_io_wq->metadata = metadata;
493 
494 	bio->bi_private = end_io_wq;
495 	bio->bi_end_io = end_workqueue_bio;
496 	return 0;
497 }
498 
btrfs_async_submit_limit(struct btrfs_fs_info * info)499 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
500 {
501 	unsigned long limit = min_t(unsigned long,
502 				    info->workers.max_workers,
503 				    info->fs_devices->open_devices);
504 	return 256 * limit;
505 }
506 
btrfs_congested_async(struct btrfs_fs_info * info,int iodone)507 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
508 {
509 	return atomic_read(&info->nr_async_bios) >
510 		btrfs_async_submit_limit(info);
511 }
512 
run_one_async_start(struct btrfs_work * work)513 static void run_one_async_start(struct btrfs_work *work)
514 {
515 	struct btrfs_fs_info *fs_info;
516 	struct async_submit_bio *async;
517 
518 	async = container_of(work, struct  async_submit_bio, work);
519 	fs_info = BTRFS_I(async->inode)->root->fs_info;
520 	async->submit_bio_start(async->inode, async->rw, async->bio,
521 			       async->mirror_num, async->bio_flags);
522 }
523 
run_one_async_done(struct btrfs_work * work)524 static void run_one_async_done(struct btrfs_work *work)
525 {
526 	struct btrfs_fs_info *fs_info;
527 	struct async_submit_bio *async;
528 	int limit;
529 
530 	async = container_of(work, struct  async_submit_bio, work);
531 	fs_info = BTRFS_I(async->inode)->root->fs_info;
532 
533 	limit = btrfs_async_submit_limit(fs_info);
534 	limit = limit * 2 / 3;
535 
536 	atomic_dec(&fs_info->nr_async_submits);
537 
538 	if (atomic_read(&fs_info->nr_async_submits) < limit &&
539 	    waitqueue_active(&fs_info->async_submit_wait))
540 		wake_up(&fs_info->async_submit_wait);
541 
542 	async->submit_bio_done(async->inode, async->rw, async->bio,
543 			       async->mirror_num, async->bio_flags);
544 }
545 
run_one_async_free(struct btrfs_work * work)546 static void run_one_async_free(struct btrfs_work *work)
547 {
548 	struct async_submit_bio *async;
549 
550 	async = container_of(work, struct  async_submit_bio, work);
551 	kfree(async);
552 }
553 
btrfs_wq_submit_bio(struct btrfs_fs_info * fs_info,struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags,extent_submit_bio_hook_t * submit_bio_start,extent_submit_bio_hook_t * submit_bio_done)554 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
555 			int rw, struct bio *bio, int mirror_num,
556 			unsigned long bio_flags,
557 			extent_submit_bio_hook_t *submit_bio_start,
558 			extent_submit_bio_hook_t *submit_bio_done)
559 {
560 	struct async_submit_bio *async;
561 
562 	async = kmalloc(sizeof(*async), GFP_NOFS);
563 	if (!async)
564 		return -ENOMEM;
565 
566 	async->inode = inode;
567 	async->rw = rw;
568 	async->bio = bio;
569 	async->mirror_num = mirror_num;
570 	async->submit_bio_start = submit_bio_start;
571 	async->submit_bio_done = submit_bio_done;
572 
573 	async->work.func = run_one_async_start;
574 	async->work.ordered_func = run_one_async_done;
575 	async->work.ordered_free = run_one_async_free;
576 
577 	async->work.flags = 0;
578 	async->bio_flags = bio_flags;
579 
580 	atomic_inc(&fs_info->nr_async_submits);
581 	btrfs_queue_worker(&fs_info->workers, &async->work);
582 #if 0
583 	int limit = btrfs_async_submit_limit(fs_info);
584 	if (atomic_read(&fs_info->nr_async_submits) > limit) {
585 		wait_event_timeout(fs_info->async_submit_wait,
586 			   (atomic_read(&fs_info->nr_async_submits) < limit),
587 			   HZ/10);
588 
589 		wait_event_timeout(fs_info->async_submit_wait,
590 			   (atomic_read(&fs_info->nr_async_bios) < limit),
591 			   HZ/10);
592 	}
593 #endif
594 	while (atomic_read(&fs_info->async_submit_draining) &&
595 	      atomic_read(&fs_info->nr_async_submits)) {
596 		wait_event(fs_info->async_submit_wait,
597 			   (atomic_read(&fs_info->nr_async_submits) == 0));
598 	}
599 
600 	return 0;
601 }
602 
btree_csum_one_bio(struct bio * bio)603 static int btree_csum_one_bio(struct bio *bio)
604 {
605 	struct bio_vec *bvec = bio->bi_io_vec;
606 	int bio_index = 0;
607 	struct btrfs_root *root;
608 
609 	WARN_ON(bio->bi_vcnt <= 0);
610 	while (bio_index < bio->bi_vcnt) {
611 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
612 		csum_dirty_buffer(root, bvec->bv_page);
613 		bio_index++;
614 		bvec++;
615 	}
616 	return 0;
617 }
618 
__btree_submit_bio_start(struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags)619 static int __btree_submit_bio_start(struct inode *inode, int rw,
620 				    struct bio *bio, int mirror_num,
621 				    unsigned long bio_flags)
622 {
623 	/*
624 	 * when we're called for a write, we're already in the async
625 	 * submission context.  Just jump into btrfs_map_bio
626 	 */
627 	btree_csum_one_bio(bio);
628 	return 0;
629 }
630 
__btree_submit_bio_done(struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags)631 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
632 				 int mirror_num, unsigned long bio_flags)
633 {
634 	/*
635 	 * when we're called for a write, we're already in the async
636 	 * submission context.  Just jump into btrfs_map_bio
637 	 */
638 	return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
639 }
640 
btree_submit_bio_hook(struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags)641 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
642 				 int mirror_num, unsigned long bio_flags)
643 {
644 	int ret;
645 
646 	ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
647 					  bio, 1);
648 	BUG_ON(ret);
649 
650 	if (!(rw & (1 << BIO_RW))) {
651 		/*
652 		 * called for a read, do the setup so that checksum validation
653 		 * can happen in the async kernel threads
654 		 */
655 		return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
656 				     mirror_num, 0);
657 	}
658 	/*
659 	 * kthread helpers are used to submit writes so that checksumming
660 	 * can happen in parallel across all CPUs
661 	 */
662 	return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
663 				   inode, rw, bio, mirror_num, 0,
664 				   __btree_submit_bio_start,
665 				   __btree_submit_bio_done);
666 }
667 
btree_writepage(struct page * page,struct writeback_control * wbc)668 static int btree_writepage(struct page *page, struct writeback_control *wbc)
669 {
670 	struct extent_io_tree *tree;
671 	tree = &BTRFS_I(page->mapping->host)->io_tree;
672 
673 	if (current->flags & PF_MEMALLOC) {
674 		redirty_page_for_writepage(wbc, page);
675 		unlock_page(page);
676 		return 0;
677 	}
678 	return extent_write_full_page(tree, page, btree_get_extent, wbc);
679 }
680 
btree_writepages(struct address_space * mapping,struct writeback_control * wbc)681 static int btree_writepages(struct address_space *mapping,
682 			    struct writeback_control *wbc)
683 {
684 	struct extent_io_tree *tree;
685 	tree = &BTRFS_I(mapping->host)->io_tree;
686 	if (wbc->sync_mode == WB_SYNC_NONE) {
687 		u64 num_dirty;
688 		u64 start = 0;
689 		unsigned long thresh = 32 * 1024 * 1024;
690 
691 		if (wbc->for_kupdate)
692 			return 0;
693 
694 		num_dirty = count_range_bits(tree, &start, (u64)-1,
695 					     thresh, EXTENT_DIRTY);
696 		if (num_dirty < thresh)
697 			return 0;
698 	}
699 	return extent_writepages(tree, mapping, btree_get_extent, wbc);
700 }
701 
btree_readpage(struct file * file,struct page * page)702 static int btree_readpage(struct file *file, struct page *page)
703 {
704 	struct extent_io_tree *tree;
705 	tree = &BTRFS_I(page->mapping->host)->io_tree;
706 	return extent_read_full_page(tree, page, btree_get_extent);
707 }
708 
btree_releasepage(struct page * page,gfp_t gfp_flags)709 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
710 {
711 	struct extent_io_tree *tree;
712 	struct extent_map_tree *map;
713 	int ret;
714 
715 	if (PageWriteback(page) || PageDirty(page))
716 		return 0;
717 
718 	tree = &BTRFS_I(page->mapping->host)->io_tree;
719 	map = &BTRFS_I(page->mapping->host)->extent_tree;
720 
721 	ret = try_release_extent_state(map, tree, page, gfp_flags);
722 	if (!ret)
723 		return 0;
724 
725 	ret = try_release_extent_buffer(tree, page);
726 	if (ret == 1) {
727 		ClearPagePrivate(page);
728 		set_page_private(page, 0);
729 		page_cache_release(page);
730 	}
731 
732 	return ret;
733 }
734 
btree_invalidatepage(struct page * page,unsigned long offset)735 static void btree_invalidatepage(struct page *page, unsigned long offset)
736 {
737 	struct extent_io_tree *tree;
738 	tree = &BTRFS_I(page->mapping->host)->io_tree;
739 	extent_invalidatepage(tree, page, offset);
740 	btree_releasepage(page, GFP_NOFS);
741 	if (PagePrivate(page)) {
742 		printk(KERN_WARNING "btrfs warning page private not zero "
743 		       "on page %llu\n", (unsigned long long)page_offset(page));
744 		ClearPagePrivate(page);
745 		set_page_private(page, 0);
746 		page_cache_release(page);
747 	}
748 }
749 
750 #if 0
751 static int btree_writepage(struct page *page, struct writeback_control *wbc)
752 {
753 	struct buffer_head *bh;
754 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
755 	struct buffer_head *head;
756 	if (!page_has_buffers(page)) {
757 		create_empty_buffers(page, root->fs_info->sb->s_blocksize,
758 					(1 << BH_Dirty)|(1 << BH_Uptodate));
759 	}
760 	head = page_buffers(page);
761 	bh = head;
762 	do {
763 		if (buffer_dirty(bh))
764 			csum_tree_block(root, bh, 0);
765 		bh = bh->b_this_page;
766 	} while (bh != head);
767 	return block_write_full_page(page, btree_get_block, wbc);
768 }
769 #endif
770 
771 static struct address_space_operations btree_aops = {
772 	.readpage	= btree_readpage,
773 	.writepage	= btree_writepage,
774 	.writepages	= btree_writepages,
775 	.releasepage	= btree_releasepage,
776 	.invalidatepage = btree_invalidatepage,
777 	.sync_page	= block_sync_page,
778 };
779 
readahead_tree_block(struct btrfs_root * root,u64 bytenr,u32 blocksize,u64 parent_transid)780 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
781 			 u64 parent_transid)
782 {
783 	struct extent_buffer *buf = NULL;
784 	struct inode *btree_inode = root->fs_info->btree_inode;
785 	int ret = 0;
786 
787 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
788 	if (!buf)
789 		return 0;
790 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
791 				 buf, 0, 0, btree_get_extent, 0);
792 	free_extent_buffer(buf);
793 	return ret;
794 }
795 
btrfs_find_tree_block(struct btrfs_root * root,u64 bytenr,u32 blocksize)796 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
797 					    u64 bytenr, u32 blocksize)
798 {
799 	struct inode *btree_inode = root->fs_info->btree_inode;
800 	struct extent_buffer *eb;
801 	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
802 				bytenr, blocksize, GFP_NOFS);
803 	return eb;
804 }
805 
btrfs_find_create_tree_block(struct btrfs_root * root,u64 bytenr,u32 blocksize)806 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
807 						 u64 bytenr, u32 blocksize)
808 {
809 	struct inode *btree_inode = root->fs_info->btree_inode;
810 	struct extent_buffer *eb;
811 
812 	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
813 				 bytenr, blocksize, NULL, GFP_NOFS);
814 	return eb;
815 }
816 
817 
btrfs_write_tree_block(struct extent_buffer * buf)818 int btrfs_write_tree_block(struct extent_buffer *buf)
819 {
820 	return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
821 				      buf->start + buf->len - 1, WB_SYNC_ALL);
822 }
823 
btrfs_wait_tree_block_writeback(struct extent_buffer * buf)824 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
825 {
826 	return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
827 				  buf->start, buf->start + buf->len - 1);
828 }
829 
read_tree_block(struct btrfs_root * root,u64 bytenr,u32 blocksize,u64 parent_transid)830 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
831 				      u32 blocksize, u64 parent_transid)
832 {
833 	struct extent_buffer *buf = NULL;
834 	struct inode *btree_inode = root->fs_info->btree_inode;
835 	struct extent_io_tree *io_tree;
836 	int ret;
837 
838 	io_tree = &BTRFS_I(btree_inode)->io_tree;
839 
840 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
841 	if (!buf)
842 		return NULL;
843 
844 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
845 
846 	if (ret == 0)
847 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
848 	else
849 		WARN_ON(1);
850 	return buf;
851 
852 }
853 
clean_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf)854 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
855 		     struct extent_buffer *buf)
856 {
857 	struct inode *btree_inode = root->fs_info->btree_inode;
858 	if (btrfs_header_generation(buf) ==
859 	    root->fs_info->running_transaction->transid) {
860 		btrfs_assert_tree_locked(buf);
861 
862 		/* ugh, clear_extent_buffer_dirty can be expensive */
863 		btrfs_set_lock_blocking(buf);
864 
865 		clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
866 					  buf);
867 	}
868 	return 0;
869 }
870 
__setup_root(u32 nodesize,u32 leafsize,u32 sectorsize,u32 stripesize,struct btrfs_root * root,struct btrfs_fs_info * fs_info,u64 objectid)871 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
872 			u32 stripesize, struct btrfs_root *root,
873 			struct btrfs_fs_info *fs_info,
874 			u64 objectid)
875 {
876 	root->node = NULL;
877 	root->commit_root = NULL;
878 	root->ref_tree = NULL;
879 	root->sectorsize = sectorsize;
880 	root->nodesize = nodesize;
881 	root->leafsize = leafsize;
882 	root->stripesize = stripesize;
883 	root->ref_cows = 0;
884 	root->track_dirty = 0;
885 
886 	root->fs_info = fs_info;
887 	root->objectid = objectid;
888 	root->last_trans = 0;
889 	root->highest_inode = 0;
890 	root->last_inode_alloc = 0;
891 	root->name = NULL;
892 	root->in_sysfs = 0;
893 
894 	INIT_LIST_HEAD(&root->dirty_list);
895 	INIT_LIST_HEAD(&root->orphan_list);
896 	INIT_LIST_HEAD(&root->dead_list);
897 	spin_lock_init(&root->node_lock);
898 	spin_lock_init(&root->list_lock);
899 	mutex_init(&root->objectid_mutex);
900 	mutex_init(&root->log_mutex);
901 	init_waitqueue_head(&root->log_writer_wait);
902 	init_waitqueue_head(&root->log_commit_wait[0]);
903 	init_waitqueue_head(&root->log_commit_wait[1]);
904 	atomic_set(&root->log_commit[0], 0);
905 	atomic_set(&root->log_commit[1], 0);
906 	atomic_set(&root->log_writers, 0);
907 	root->log_batch = 0;
908 	root->log_transid = 0;
909 	extent_io_tree_init(&root->dirty_log_pages,
910 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
911 
912 	btrfs_leaf_ref_tree_init(&root->ref_tree_struct);
913 	root->ref_tree = &root->ref_tree_struct;
914 
915 	memset(&root->root_key, 0, sizeof(root->root_key));
916 	memset(&root->root_item, 0, sizeof(root->root_item));
917 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
918 	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
919 	root->defrag_trans_start = fs_info->generation;
920 	init_completion(&root->kobj_unregister);
921 	root->defrag_running = 0;
922 	root->defrag_level = 0;
923 	root->root_key.objectid = objectid;
924 	root->anon_super.s_root = NULL;
925 	root->anon_super.s_dev = 0;
926 	INIT_LIST_HEAD(&root->anon_super.s_list);
927 	INIT_LIST_HEAD(&root->anon_super.s_instances);
928 	init_rwsem(&root->anon_super.s_umount);
929 
930 	return 0;
931 }
932 
find_and_setup_root(struct btrfs_root * tree_root,struct btrfs_fs_info * fs_info,u64 objectid,struct btrfs_root * root)933 static int find_and_setup_root(struct btrfs_root *tree_root,
934 			       struct btrfs_fs_info *fs_info,
935 			       u64 objectid,
936 			       struct btrfs_root *root)
937 {
938 	int ret;
939 	u32 blocksize;
940 	u64 generation;
941 
942 	__setup_root(tree_root->nodesize, tree_root->leafsize,
943 		     tree_root->sectorsize, tree_root->stripesize,
944 		     root, fs_info, objectid);
945 	ret = btrfs_find_last_root(tree_root, objectid,
946 				   &root->root_item, &root->root_key);
947 	BUG_ON(ret);
948 
949 	generation = btrfs_root_generation(&root->root_item);
950 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
951 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
952 				     blocksize, generation);
953 	BUG_ON(!root->node);
954 	return 0;
955 }
956 
btrfs_free_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)957 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
958 			     struct btrfs_fs_info *fs_info)
959 {
960 	struct extent_buffer *eb;
961 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
962 	u64 start = 0;
963 	u64 end = 0;
964 	int ret;
965 
966 	if (!log_root_tree)
967 		return 0;
968 
969 	while (1) {
970 		ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
971 				    0, &start, &end, EXTENT_DIRTY);
972 		if (ret)
973 			break;
974 
975 		clear_extent_dirty(&log_root_tree->dirty_log_pages,
976 				   start, end, GFP_NOFS);
977 	}
978 	eb = fs_info->log_root_tree->node;
979 
980 	WARN_ON(btrfs_header_level(eb) != 0);
981 	WARN_ON(btrfs_header_nritems(eb) != 0);
982 
983 	ret = btrfs_free_reserved_extent(fs_info->tree_root,
984 				eb->start, eb->len);
985 	BUG_ON(ret);
986 
987 	free_extent_buffer(eb);
988 	kfree(fs_info->log_root_tree);
989 	fs_info->log_root_tree = NULL;
990 	return 0;
991 }
992 
alloc_log_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)993 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
994 					 struct btrfs_fs_info *fs_info)
995 {
996 	struct btrfs_root *root;
997 	struct btrfs_root *tree_root = fs_info->tree_root;
998 	struct extent_buffer *leaf;
999 
1000 	root = kzalloc(sizeof(*root), GFP_NOFS);
1001 	if (!root)
1002 		return ERR_PTR(-ENOMEM);
1003 
1004 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1005 		     tree_root->sectorsize, tree_root->stripesize,
1006 		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1007 
1008 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1009 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1010 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1011 	/*
1012 	 * log trees do not get reference counted because they go away
1013 	 * before a real commit is actually done.  They do store pointers
1014 	 * to file data extents, and those reference counts still get
1015 	 * updated (along with back refs to the log tree).
1016 	 */
1017 	root->ref_cows = 0;
1018 
1019 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1020 				      0, BTRFS_TREE_LOG_OBJECTID,
1021 				      trans->transid, 0, 0, 0);
1022 	if (IS_ERR(leaf)) {
1023 		kfree(root);
1024 		return ERR_CAST(leaf);
1025 	}
1026 
1027 	root->node = leaf;
1028 	btrfs_set_header_nritems(root->node, 0);
1029 	btrfs_set_header_level(root->node, 0);
1030 	btrfs_set_header_bytenr(root->node, root->node->start);
1031 	btrfs_set_header_generation(root->node, trans->transid);
1032 	btrfs_set_header_owner(root->node, BTRFS_TREE_LOG_OBJECTID);
1033 
1034 	write_extent_buffer(root->node, root->fs_info->fsid,
1035 			    (unsigned long)btrfs_header_fsid(root->node),
1036 			    BTRFS_FSID_SIZE);
1037 	btrfs_mark_buffer_dirty(root->node);
1038 	btrfs_tree_unlock(root->node);
1039 	return root;
1040 }
1041 
btrfs_init_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1042 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1043 			     struct btrfs_fs_info *fs_info)
1044 {
1045 	struct btrfs_root *log_root;
1046 
1047 	log_root = alloc_log_tree(trans, fs_info);
1048 	if (IS_ERR(log_root))
1049 		return PTR_ERR(log_root);
1050 	WARN_ON(fs_info->log_root_tree);
1051 	fs_info->log_root_tree = log_root;
1052 	return 0;
1053 }
1054 
btrfs_add_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root)1055 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1056 		       struct btrfs_root *root)
1057 {
1058 	struct btrfs_root *log_root;
1059 	struct btrfs_inode_item *inode_item;
1060 
1061 	log_root = alloc_log_tree(trans, root->fs_info);
1062 	if (IS_ERR(log_root))
1063 		return PTR_ERR(log_root);
1064 
1065 	log_root->last_trans = trans->transid;
1066 	log_root->root_key.offset = root->root_key.objectid;
1067 
1068 	inode_item = &log_root->root_item.inode;
1069 	inode_item->generation = cpu_to_le64(1);
1070 	inode_item->size = cpu_to_le64(3);
1071 	inode_item->nlink = cpu_to_le32(1);
1072 	inode_item->nbytes = cpu_to_le64(root->leafsize);
1073 	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1074 
1075 	btrfs_set_root_bytenr(&log_root->root_item, log_root->node->start);
1076 	btrfs_set_root_generation(&log_root->root_item, trans->transid);
1077 
1078 	WARN_ON(root->log_root);
1079 	root->log_root = log_root;
1080 	root->log_transid = 0;
1081 	return 0;
1082 }
1083 
btrfs_read_fs_root_no_radix(struct btrfs_root * tree_root,struct btrfs_key * location)1084 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1085 					       struct btrfs_key *location)
1086 {
1087 	struct btrfs_root *root;
1088 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1089 	struct btrfs_path *path;
1090 	struct extent_buffer *l;
1091 	u64 highest_inode;
1092 	u64 generation;
1093 	u32 blocksize;
1094 	int ret = 0;
1095 
1096 	root = kzalloc(sizeof(*root), GFP_NOFS);
1097 	if (!root)
1098 		return ERR_PTR(-ENOMEM);
1099 	if (location->offset == (u64)-1) {
1100 		ret = find_and_setup_root(tree_root, fs_info,
1101 					  location->objectid, root);
1102 		if (ret) {
1103 			kfree(root);
1104 			return ERR_PTR(ret);
1105 		}
1106 		goto insert;
1107 	}
1108 
1109 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1110 		     tree_root->sectorsize, tree_root->stripesize,
1111 		     root, fs_info, location->objectid);
1112 
1113 	path = btrfs_alloc_path();
1114 	BUG_ON(!path);
1115 	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1116 	if (ret != 0) {
1117 		if (ret > 0)
1118 			ret = -ENOENT;
1119 		goto out;
1120 	}
1121 	l = path->nodes[0];
1122 	read_extent_buffer(l, &root->root_item,
1123 	       btrfs_item_ptr_offset(l, path->slots[0]),
1124 	       sizeof(root->root_item));
1125 	memcpy(&root->root_key, location, sizeof(*location));
1126 	ret = 0;
1127 out:
1128 	btrfs_release_path(root, path);
1129 	btrfs_free_path(path);
1130 	if (ret) {
1131 		kfree(root);
1132 		return ERR_PTR(ret);
1133 	}
1134 	generation = btrfs_root_generation(&root->root_item);
1135 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1136 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1137 				     blocksize, generation);
1138 	BUG_ON(!root->node);
1139 insert:
1140 	if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1141 		root->ref_cows = 1;
1142 		ret = btrfs_find_highest_inode(root, &highest_inode);
1143 		if (ret == 0) {
1144 			root->highest_inode = highest_inode;
1145 			root->last_inode_alloc = highest_inode;
1146 		}
1147 	}
1148 	return root;
1149 }
1150 
btrfs_lookup_fs_root(struct btrfs_fs_info * fs_info,u64 root_objectid)1151 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1152 					u64 root_objectid)
1153 {
1154 	struct btrfs_root *root;
1155 
1156 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1157 		return fs_info->tree_root;
1158 	if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1159 		return fs_info->extent_root;
1160 
1161 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1162 				 (unsigned long)root_objectid);
1163 	return root;
1164 }
1165 
btrfs_read_fs_root_no_name(struct btrfs_fs_info * fs_info,struct btrfs_key * location)1166 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1167 					      struct btrfs_key *location)
1168 {
1169 	struct btrfs_root *root;
1170 	int ret;
1171 
1172 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1173 		return fs_info->tree_root;
1174 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1175 		return fs_info->extent_root;
1176 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1177 		return fs_info->chunk_root;
1178 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1179 		return fs_info->dev_root;
1180 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1181 		return fs_info->csum_root;
1182 
1183 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1184 				 (unsigned long)location->objectid);
1185 	if (root)
1186 		return root;
1187 
1188 	root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1189 	if (IS_ERR(root))
1190 		return root;
1191 
1192 	set_anon_super(&root->anon_super, NULL);
1193 
1194 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1195 				(unsigned long)root->root_key.objectid,
1196 				root);
1197 	if (ret) {
1198 		free_extent_buffer(root->node);
1199 		kfree(root);
1200 		return ERR_PTR(ret);
1201 	}
1202 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
1203 		ret = btrfs_find_dead_roots(fs_info->tree_root,
1204 					    root->root_key.objectid, root);
1205 		BUG_ON(ret);
1206 		btrfs_orphan_cleanup(root);
1207 	}
1208 	return root;
1209 }
1210 
btrfs_read_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_key * location,const char * name,int namelen)1211 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1212 				      struct btrfs_key *location,
1213 				      const char *name, int namelen)
1214 {
1215 	struct btrfs_root *root;
1216 	int ret;
1217 
1218 	root = btrfs_read_fs_root_no_name(fs_info, location);
1219 	if (!root)
1220 		return NULL;
1221 
1222 	if (root->in_sysfs)
1223 		return root;
1224 
1225 	ret = btrfs_set_root_name(root, name, namelen);
1226 	if (ret) {
1227 		free_extent_buffer(root->node);
1228 		kfree(root);
1229 		return ERR_PTR(ret);
1230 	}
1231 #if 0
1232 	ret = btrfs_sysfs_add_root(root);
1233 	if (ret) {
1234 		free_extent_buffer(root->node);
1235 		kfree(root->name);
1236 		kfree(root);
1237 		return ERR_PTR(ret);
1238 	}
1239 #endif
1240 	root->in_sysfs = 1;
1241 	return root;
1242 }
1243 
btrfs_congested_fn(void * congested_data,int bdi_bits)1244 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1245 {
1246 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1247 	int ret = 0;
1248 	struct btrfs_device *device;
1249 	struct backing_dev_info *bdi;
1250 #if 0
1251 	if ((bdi_bits & (1 << BDI_write_congested)) &&
1252 	    btrfs_congested_async(info, 0))
1253 		return 1;
1254 #endif
1255 	list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1256 		if (!device->bdev)
1257 			continue;
1258 		bdi = blk_get_backing_dev_info(device->bdev);
1259 		if (bdi && bdi_congested(bdi, bdi_bits)) {
1260 			ret = 1;
1261 			break;
1262 		}
1263 	}
1264 	return ret;
1265 }
1266 
1267 /*
1268  * this unplugs every device on the box, and it is only used when page
1269  * is null
1270  */
__unplug_io_fn(struct backing_dev_info * bdi,struct page * page)1271 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1272 {
1273 	struct btrfs_device *device;
1274 	struct btrfs_fs_info *info;
1275 
1276 	info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1277 	list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1278 		if (!device->bdev)
1279 			continue;
1280 
1281 		bdi = blk_get_backing_dev_info(device->bdev);
1282 		if (bdi->unplug_io_fn)
1283 			bdi->unplug_io_fn(bdi, page);
1284 	}
1285 }
1286 
btrfs_unplug_io_fn(struct backing_dev_info * bdi,struct page * page)1287 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1288 {
1289 	struct inode *inode;
1290 	struct extent_map_tree *em_tree;
1291 	struct extent_map *em;
1292 	struct address_space *mapping;
1293 	u64 offset;
1294 
1295 	/* the generic O_DIRECT read code does this */
1296 	if (1 || !page) {
1297 		__unplug_io_fn(bdi, page);
1298 		return;
1299 	}
1300 
1301 	/*
1302 	 * page->mapping may change at any time.  Get a consistent copy
1303 	 * and use that for everything below
1304 	 */
1305 	smp_mb();
1306 	mapping = page->mapping;
1307 	if (!mapping)
1308 		return;
1309 
1310 	inode = mapping->host;
1311 
1312 	/*
1313 	 * don't do the expensive searching for a small number of
1314 	 * devices
1315 	 */
1316 	if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1317 		__unplug_io_fn(bdi, page);
1318 		return;
1319 	}
1320 
1321 	offset = page_offset(page);
1322 
1323 	em_tree = &BTRFS_I(inode)->extent_tree;
1324 	spin_lock(&em_tree->lock);
1325 	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1326 	spin_unlock(&em_tree->lock);
1327 	if (!em) {
1328 		__unplug_io_fn(bdi, page);
1329 		return;
1330 	}
1331 
1332 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1333 		free_extent_map(em);
1334 		__unplug_io_fn(bdi, page);
1335 		return;
1336 	}
1337 	offset = offset - em->start;
1338 	btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1339 			  em->block_start + offset, page);
1340 	free_extent_map(em);
1341 }
1342 
setup_bdi(struct btrfs_fs_info * info,struct backing_dev_info * bdi)1343 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1344 {
1345 	bdi_init(bdi);
1346 	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1347 	bdi->state		= 0;
1348 	bdi->capabilities	= default_backing_dev_info.capabilities;
1349 	bdi->unplug_io_fn	= btrfs_unplug_io_fn;
1350 	bdi->unplug_io_data	= info;
1351 	bdi->congested_fn	= btrfs_congested_fn;
1352 	bdi->congested_data	= info;
1353 	return 0;
1354 }
1355 
bio_ready_for_csum(struct bio * bio)1356 static int bio_ready_for_csum(struct bio *bio)
1357 {
1358 	u64 length = 0;
1359 	u64 buf_len = 0;
1360 	u64 start = 0;
1361 	struct page *page;
1362 	struct extent_io_tree *io_tree = NULL;
1363 	struct btrfs_fs_info *info = NULL;
1364 	struct bio_vec *bvec;
1365 	int i;
1366 	int ret;
1367 
1368 	bio_for_each_segment(bvec, bio, i) {
1369 		page = bvec->bv_page;
1370 		if (page->private == EXTENT_PAGE_PRIVATE) {
1371 			length += bvec->bv_len;
1372 			continue;
1373 		}
1374 		if (!page->private) {
1375 			length += bvec->bv_len;
1376 			continue;
1377 		}
1378 		length = bvec->bv_len;
1379 		buf_len = page->private >> 2;
1380 		start = page_offset(page) + bvec->bv_offset;
1381 		io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1382 		info = BTRFS_I(page->mapping->host)->root->fs_info;
1383 	}
1384 	/* are we fully contained in this bio? */
1385 	if (buf_len <= length)
1386 		return 1;
1387 
1388 	ret = extent_range_uptodate(io_tree, start + length,
1389 				    start + buf_len - 1);
1390 	if (ret == 1)
1391 		return ret;
1392 	return ret;
1393 }
1394 
1395 /*
1396  * called by the kthread helper functions to finally call the bio end_io
1397  * functions.  This is where read checksum verification actually happens
1398  */
end_workqueue_fn(struct btrfs_work * work)1399 static void end_workqueue_fn(struct btrfs_work *work)
1400 {
1401 	struct bio *bio;
1402 	struct end_io_wq *end_io_wq;
1403 	struct btrfs_fs_info *fs_info;
1404 	int error;
1405 
1406 	end_io_wq = container_of(work, struct end_io_wq, work);
1407 	bio = end_io_wq->bio;
1408 	fs_info = end_io_wq->info;
1409 
1410 	/* metadata bio reads are special because the whole tree block must
1411 	 * be checksummed at once.  This makes sure the entire block is in
1412 	 * ram and up to date before trying to verify things.  For
1413 	 * blocksize <= pagesize, it is basically a noop
1414 	 */
1415 	if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
1416 	    !bio_ready_for_csum(bio)) {
1417 		btrfs_queue_worker(&fs_info->endio_meta_workers,
1418 				   &end_io_wq->work);
1419 		return;
1420 	}
1421 	error = end_io_wq->error;
1422 	bio->bi_private = end_io_wq->private;
1423 	bio->bi_end_io = end_io_wq->end_io;
1424 	kfree(end_io_wq);
1425 	bio_endio(bio, error);
1426 }
1427 
cleaner_kthread(void * arg)1428 static int cleaner_kthread(void *arg)
1429 {
1430 	struct btrfs_root *root = arg;
1431 
1432 	do {
1433 		smp_mb();
1434 		if (root->fs_info->closing)
1435 			break;
1436 
1437 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1438 		mutex_lock(&root->fs_info->cleaner_mutex);
1439 		btrfs_clean_old_snapshots(root);
1440 		mutex_unlock(&root->fs_info->cleaner_mutex);
1441 
1442 		if (freezing(current)) {
1443 			refrigerator();
1444 		} else {
1445 			smp_mb();
1446 			if (root->fs_info->closing)
1447 				break;
1448 			set_current_state(TASK_INTERRUPTIBLE);
1449 			schedule();
1450 			__set_current_state(TASK_RUNNING);
1451 		}
1452 	} while (!kthread_should_stop());
1453 	return 0;
1454 }
1455 
transaction_kthread(void * arg)1456 static int transaction_kthread(void *arg)
1457 {
1458 	struct btrfs_root *root = arg;
1459 	struct btrfs_trans_handle *trans;
1460 	struct btrfs_transaction *cur;
1461 	unsigned long now;
1462 	unsigned long delay;
1463 	int ret;
1464 
1465 	do {
1466 		smp_mb();
1467 		if (root->fs_info->closing)
1468 			break;
1469 
1470 		delay = HZ * 30;
1471 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1472 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1473 
1474 		if (root->fs_info->total_ref_cache_size > 20 * 1024 * 1024) {
1475 			printk(KERN_INFO "btrfs: total reference cache "
1476 			       "size %llu\n",
1477 			       root->fs_info->total_ref_cache_size);
1478 		}
1479 
1480 		mutex_lock(&root->fs_info->trans_mutex);
1481 		cur = root->fs_info->running_transaction;
1482 		if (!cur) {
1483 			mutex_unlock(&root->fs_info->trans_mutex);
1484 			goto sleep;
1485 		}
1486 
1487 		now = get_seconds();
1488 		if (now < cur->start_time || now - cur->start_time < 30) {
1489 			mutex_unlock(&root->fs_info->trans_mutex);
1490 			delay = HZ * 5;
1491 			goto sleep;
1492 		}
1493 		mutex_unlock(&root->fs_info->trans_mutex);
1494 		trans = btrfs_start_transaction(root, 1);
1495 		ret = btrfs_commit_transaction(trans, root);
1496 sleep:
1497 		wake_up_process(root->fs_info->cleaner_kthread);
1498 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1499 
1500 		if (freezing(current)) {
1501 			refrigerator();
1502 		} else {
1503 			if (root->fs_info->closing)
1504 				break;
1505 			set_current_state(TASK_INTERRUPTIBLE);
1506 			schedule_timeout(delay);
1507 			__set_current_state(TASK_RUNNING);
1508 		}
1509 	} while (!kthread_should_stop());
1510 	return 0;
1511 }
1512 
open_ctree(struct super_block * sb,struct btrfs_fs_devices * fs_devices,char * options)1513 struct btrfs_root *open_ctree(struct super_block *sb,
1514 			      struct btrfs_fs_devices *fs_devices,
1515 			      char *options)
1516 {
1517 	u32 sectorsize;
1518 	u32 nodesize;
1519 	u32 leafsize;
1520 	u32 blocksize;
1521 	u32 stripesize;
1522 	u64 generation;
1523 	u64 features;
1524 	struct btrfs_key location;
1525 	struct buffer_head *bh;
1526 	struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1527 						 GFP_NOFS);
1528 	struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1529 						 GFP_NOFS);
1530 	struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
1531 					       GFP_NOFS);
1532 	struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1533 						GFP_NOFS);
1534 	struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1535 						GFP_NOFS);
1536 	struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1537 					      GFP_NOFS);
1538 	struct btrfs_root *log_tree_root;
1539 
1540 	int ret;
1541 	int err = -EINVAL;
1542 
1543 	struct btrfs_super_block *disk_super;
1544 
1545 	if (!extent_root || !tree_root || !fs_info ||
1546 	    !chunk_root || !dev_root || !csum_root) {
1547 		err = -ENOMEM;
1548 		goto fail;
1549 	}
1550 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1551 	INIT_LIST_HEAD(&fs_info->trans_list);
1552 	INIT_LIST_HEAD(&fs_info->dead_roots);
1553 	INIT_LIST_HEAD(&fs_info->hashers);
1554 	INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1555 	spin_lock_init(&fs_info->delalloc_lock);
1556 	spin_lock_init(&fs_info->new_trans_lock);
1557 	spin_lock_init(&fs_info->ref_cache_lock);
1558 
1559 	init_completion(&fs_info->kobj_unregister);
1560 	fs_info->tree_root = tree_root;
1561 	fs_info->extent_root = extent_root;
1562 	fs_info->csum_root = csum_root;
1563 	fs_info->chunk_root = chunk_root;
1564 	fs_info->dev_root = dev_root;
1565 	fs_info->fs_devices = fs_devices;
1566 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1567 	INIT_LIST_HEAD(&fs_info->space_info);
1568 	btrfs_mapping_init(&fs_info->mapping_tree);
1569 	atomic_set(&fs_info->nr_async_submits, 0);
1570 	atomic_set(&fs_info->async_delalloc_pages, 0);
1571 	atomic_set(&fs_info->async_submit_draining, 0);
1572 	atomic_set(&fs_info->nr_async_bios, 0);
1573 	atomic_set(&fs_info->throttles, 0);
1574 	atomic_set(&fs_info->throttle_gen, 0);
1575 	fs_info->sb = sb;
1576 	fs_info->max_extent = (u64)-1;
1577 	fs_info->max_inline = 8192 * 1024;
1578 	setup_bdi(fs_info, &fs_info->bdi);
1579 	fs_info->btree_inode = new_inode(sb);
1580 	fs_info->btree_inode->i_ino = 1;
1581 	fs_info->btree_inode->i_nlink = 1;
1582 
1583 	fs_info->thread_pool_size = min_t(unsigned long,
1584 					  num_online_cpus() + 2, 8);
1585 
1586 	INIT_LIST_HEAD(&fs_info->ordered_extents);
1587 	spin_lock_init(&fs_info->ordered_extent_lock);
1588 
1589 	sb->s_blocksize = 4096;
1590 	sb->s_blocksize_bits = blksize_bits(4096);
1591 
1592 	/*
1593 	 * we set the i_size on the btree inode to the max possible int.
1594 	 * the real end of the address space is determined by all of
1595 	 * the devices in the system
1596 	 */
1597 	fs_info->btree_inode->i_size = OFFSET_MAX;
1598 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1599 	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1600 
1601 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1602 			     fs_info->btree_inode->i_mapping,
1603 			     GFP_NOFS);
1604 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1605 			     GFP_NOFS);
1606 
1607 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1608 
1609 	spin_lock_init(&fs_info->block_group_cache_lock);
1610 	fs_info->block_group_cache_tree.rb_node = NULL;
1611 
1612 	extent_io_tree_init(&fs_info->pinned_extents,
1613 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1614 	extent_io_tree_init(&fs_info->pending_del,
1615 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1616 	extent_io_tree_init(&fs_info->extent_ins,
1617 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1618 	fs_info->do_barriers = 1;
1619 
1620 	INIT_LIST_HEAD(&fs_info->dead_reloc_roots);
1621 	btrfs_leaf_ref_tree_init(&fs_info->reloc_ref_tree);
1622 	btrfs_leaf_ref_tree_init(&fs_info->shared_ref_tree);
1623 
1624 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
1625 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1626 	       sizeof(struct btrfs_key));
1627 	insert_inode_hash(fs_info->btree_inode);
1628 
1629 	mutex_init(&fs_info->trans_mutex);
1630 	mutex_init(&fs_info->tree_log_mutex);
1631 	mutex_init(&fs_info->drop_mutex);
1632 	mutex_init(&fs_info->extent_ins_mutex);
1633 	mutex_init(&fs_info->pinned_mutex);
1634 	mutex_init(&fs_info->chunk_mutex);
1635 	mutex_init(&fs_info->transaction_kthread_mutex);
1636 	mutex_init(&fs_info->cleaner_mutex);
1637 	mutex_init(&fs_info->volume_mutex);
1638 	mutex_init(&fs_info->tree_reloc_mutex);
1639 	init_waitqueue_head(&fs_info->transaction_throttle);
1640 	init_waitqueue_head(&fs_info->transaction_wait);
1641 	init_waitqueue_head(&fs_info->async_submit_wait);
1642 
1643 	__setup_root(4096, 4096, 4096, 4096, tree_root,
1644 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
1645 
1646 
1647 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1648 	if (!bh)
1649 		goto fail_iput;
1650 
1651 	memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1652 	memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1653 	       sizeof(fs_info->super_for_commit));
1654 	brelse(bh);
1655 
1656 	memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1657 
1658 	disk_super = &fs_info->super_copy;
1659 	if (!btrfs_super_root(disk_super))
1660 		goto fail_iput;
1661 
1662 	ret = btrfs_parse_options(tree_root, options);
1663 	if (ret) {
1664 		err = ret;
1665 		goto fail_iput;
1666 	}
1667 
1668 	features = btrfs_super_incompat_flags(disk_super) &
1669 		~BTRFS_FEATURE_INCOMPAT_SUPP;
1670 	if (features) {
1671 		printk(KERN_ERR "BTRFS: couldn't mount because of "
1672 		       "unsupported optional features (%Lx).\n",
1673 		       features);
1674 		err = -EINVAL;
1675 		goto fail_iput;
1676 	}
1677 
1678 	features = btrfs_super_compat_ro_flags(disk_super) &
1679 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
1680 	if (!(sb->s_flags & MS_RDONLY) && features) {
1681 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1682 		       "unsupported option features (%Lx).\n",
1683 		       features);
1684 		err = -EINVAL;
1685 		goto fail_iput;
1686 	}
1687 
1688 	/*
1689 	 * we need to start all the end_io workers up front because the
1690 	 * queue work function gets called at interrupt time, and so it
1691 	 * cannot dynamically grow.
1692 	 */
1693 	btrfs_init_workers(&fs_info->workers, "worker",
1694 			   fs_info->thread_pool_size);
1695 
1696 	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1697 			   fs_info->thread_pool_size);
1698 
1699 	btrfs_init_workers(&fs_info->submit_workers, "submit",
1700 			   min_t(u64, fs_devices->num_devices,
1701 			   fs_info->thread_pool_size));
1702 
1703 	/* a higher idle thresh on the submit workers makes it much more
1704 	 * likely that bios will be send down in a sane order to the
1705 	 * devices
1706 	 */
1707 	fs_info->submit_workers.idle_thresh = 64;
1708 
1709 	fs_info->workers.idle_thresh = 16;
1710 	fs_info->workers.ordered = 1;
1711 
1712 	fs_info->delalloc_workers.idle_thresh = 2;
1713 	fs_info->delalloc_workers.ordered = 1;
1714 
1715 	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
1716 	btrfs_init_workers(&fs_info->endio_workers, "endio",
1717 			   fs_info->thread_pool_size);
1718 	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1719 			   fs_info->thread_pool_size);
1720 	btrfs_init_workers(&fs_info->endio_meta_write_workers,
1721 			   "endio-meta-write", fs_info->thread_pool_size);
1722 	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1723 			   fs_info->thread_pool_size);
1724 
1725 	/*
1726 	 * endios are largely parallel and should have a very
1727 	 * low idle thresh
1728 	 */
1729 	fs_info->endio_workers.idle_thresh = 4;
1730 	fs_info->endio_meta_workers.idle_thresh = 4;
1731 
1732 	fs_info->endio_write_workers.idle_thresh = 64;
1733 	fs_info->endio_meta_write_workers.idle_thresh = 64;
1734 
1735 	btrfs_start_workers(&fs_info->workers, 1);
1736 	btrfs_start_workers(&fs_info->submit_workers, 1);
1737 	btrfs_start_workers(&fs_info->delalloc_workers, 1);
1738 	btrfs_start_workers(&fs_info->fixup_workers, 1);
1739 	btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
1740 	btrfs_start_workers(&fs_info->endio_meta_workers,
1741 			    fs_info->thread_pool_size);
1742 	btrfs_start_workers(&fs_info->endio_meta_write_workers,
1743 			    fs_info->thread_pool_size);
1744 	btrfs_start_workers(&fs_info->endio_write_workers,
1745 			    fs_info->thread_pool_size);
1746 
1747 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1748 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1749 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1750 
1751 	nodesize = btrfs_super_nodesize(disk_super);
1752 	leafsize = btrfs_super_leafsize(disk_super);
1753 	sectorsize = btrfs_super_sectorsize(disk_super);
1754 	stripesize = btrfs_super_stripesize(disk_super);
1755 	tree_root->nodesize = nodesize;
1756 	tree_root->leafsize = leafsize;
1757 	tree_root->sectorsize = sectorsize;
1758 	tree_root->stripesize = stripesize;
1759 
1760 	sb->s_blocksize = sectorsize;
1761 	sb->s_blocksize_bits = blksize_bits(sectorsize);
1762 
1763 	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1764 		    sizeof(disk_super->magic))) {
1765 		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1766 		goto fail_sb_buffer;
1767 	}
1768 
1769 	mutex_lock(&fs_info->chunk_mutex);
1770 	ret = btrfs_read_sys_array(tree_root);
1771 	mutex_unlock(&fs_info->chunk_mutex);
1772 	if (ret) {
1773 		printk(KERN_WARNING "btrfs: failed to read the system "
1774 		       "array on %s\n", sb->s_id);
1775 		goto fail_sys_array;
1776 	}
1777 
1778 	blocksize = btrfs_level_size(tree_root,
1779 				     btrfs_super_chunk_root_level(disk_super));
1780 	generation = btrfs_super_chunk_root_generation(disk_super);
1781 
1782 	__setup_root(nodesize, leafsize, sectorsize, stripesize,
1783 		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1784 
1785 	chunk_root->node = read_tree_block(chunk_root,
1786 					   btrfs_super_chunk_root(disk_super),
1787 					   blocksize, generation);
1788 	BUG_ON(!chunk_root->node);
1789 
1790 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1791 	   (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1792 	   BTRFS_UUID_SIZE);
1793 
1794 	mutex_lock(&fs_info->chunk_mutex);
1795 	ret = btrfs_read_chunk_tree(chunk_root);
1796 	mutex_unlock(&fs_info->chunk_mutex);
1797 	if (ret) {
1798 		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1799 		       sb->s_id);
1800 		goto fail_chunk_root;
1801 	}
1802 
1803 	btrfs_close_extra_devices(fs_devices);
1804 
1805 	blocksize = btrfs_level_size(tree_root,
1806 				     btrfs_super_root_level(disk_super));
1807 	generation = btrfs_super_generation(disk_super);
1808 
1809 	tree_root->node = read_tree_block(tree_root,
1810 					  btrfs_super_root(disk_super),
1811 					  blocksize, generation);
1812 	if (!tree_root->node)
1813 		goto fail_chunk_root;
1814 
1815 
1816 	ret = find_and_setup_root(tree_root, fs_info,
1817 				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1818 	if (ret)
1819 		goto fail_tree_root;
1820 	extent_root->track_dirty = 1;
1821 
1822 	ret = find_and_setup_root(tree_root, fs_info,
1823 				  BTRFS_DEV_TREE_OBJECTID, dev_root);
1824 	dev_root->track_dirty = 1;
1825 	if (ret)
1826 		goto fail_extent_root;
1827 
1828 	ret = find_and_setup_root(tree_root, fs_info,
1829 				  BTRFS_CSUM_TREE_OBJECTID, csum_root);
1830 	if (ret)
1831 		goto fail_extent_root;
1832 
1833 	csum_root->track_dirty = 1;
1834 
1835 	btrfs_read_block_groups(extent_root);
1836 
1837 	fs_info->generation = generation;
1838 	fs_info->last_trans_committed = generation;
1839 	fs_info->data_alloc_profile = (u64)-1;
1840 	fs_info->metadata_alloc_profile = (u64)-1;
1841 	fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1842 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1843 					       "btrfs-cleaner");
1844 	if (IS_ERR(fs_info->cleaner_kthread))
1845 		goto fail_csum_root;
1846 
1847 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
1848 						   tree_root,
1849 						   "btrfs-transaction");
1850 	if (IS_ERR(fs_info->transaction_kthread))
1851 		goto fail_cleaner;
1852 
1853 	if (btrfs_super_log_root(disk_super) != 0) {
1854 		u64 bytenr = btrfs_super_log_root(disk_super);
1855 
1856 		if (fs_devices->rw_devices == 0) {
1857 			printk(KERN_WARNING "Btrfs log replay required "
1858 			       "on RO media\n");
1859 			err = -EIO;
1860 			goto fail_trans_kthread;
1861 		}
1862 		blocksize =
1863 		     btrfs_level_size(tree_root,
1864 				      btrfs_super_log_root_level(disk_super));
1865 
1866 		log_tree_root = kzalloc(sizeof(struct btrfs_root),
1867 						      GFP_NOFS);
1868 
1869 		__setup_root(nodesize, leafsize, sectorsize, stripesize,
1870 			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1871 
1872 		log_tree_root->node = read_tree_block(tree_root, bytenr,
1873 						      blocksize,
1874 						      generation + 1);
1875 		ret = btrfs_recover_log_trees(log_tree_root);
1876 		BUG_ON(ret);
1877 
1878 		if (sb->s_flags & MS_RDONLY) {
1879 			ret =  btrfs_commit_super(tree_root);
1880 			BUG_ON(ret);
1881 		}
1882 	}
1883 
1884 	if (!(sb->s_flags & MS_RDONLY)) {
1885 		ret = btrfs_cleanup_reloc_trees(tree_root);
1886 		BUG_ON(ret);
1887 	}
1888 
1889 	location.objectid = BTRFS_FS_TREE_OBJECTID;
1890 	location.type = BTRFS_ROOT_ITEM_KEY;
1891 	location.offset = (u64)-1;
1892 
1893 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
1894 	if (!fs_info->fs_root)
1895 		goto fail_trans_kthread;
1896 	return tree_root;
1897 
1898 fail_trans_kthread:
1899 	kthread_stop(fs_info->transaction_kthread);
1900 fail_cleaner:
1901 	kthread_stop(fs_info->cleaner_kthread);
1902 
1903 	/*
1904 	 * make sure we're done with the btree inode before we stop our
1905 	 * kthreads
1906 	 */
1907 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1908 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1909 
1910 fail_csum_root:
1911 	free_extent_buffer(csum_root->node);
1912 fail_extent_root:
1913 	free_extent_buffer(extent_root->node);
1914 fail_tree_root:
1915 	free_extent_buffer(tree_root->node);
1916 fail_chunk_root:
1917 	free_extent_buffer(chunk_root->node);
1918 fail_sys_array:
1919 	free_extent_buffer(dev_root->node);
1920 fail_sb_buffer:
1921 	btrfs_stop_workers(&fs_info->fixup_workers);
1922 	btrfs_stop_workers(&fs_info->delalloc_workers);
1923 	btrfs_stop_workers(&fs_info->workers);
1924 	btrfs_stop_workers(&fs_info->endio_workers);
1925 	btrfs_stop_workers(&fs_info->endio_meta_workers);
1926 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
1927 	btrfs_stop_workers(&fs_info->endio_write_workers);
1928 	btrfs_stop_workers(&fs_info->submit_workers);
1929 fail_iput:
1930 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1931 	iput(fs_info->btree_inode);
1932 
1933 	btrfs_close_devices(fs_info->fs_devices);
1934 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
1935 	bdi_destroy(&fs_info->bdi);
1936 
1937 fail:
1938 	kfree(extent_root);
1939 	kfree(tree_root);
1940 	kfree(fs_info);
1941 	kfree(chunk_root);
1942 	kfree(dev_root);
1943 	kfree(csum_root);
1944 	return ERR_PTR(err);
1945 }
1946 
btrfs_end_buffer_write_sync(struct buffer_head * bh,int uptodate)1947 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1948 {
1949 	char b[BDEVNAME_SIZE];
1950 
1951 	if (uptodate) {
1952 		set_buffer_uptodate(bh);
1953 	} else {
1954 		if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1955 			printk(KERN_WARNING "lost page write due to "
1956 					"I/O error on %s\n",
1957 				       bdevname(bh->b_bdev, b));
1958 		}
1959 		/* note, we dont' set_buffer_write_io_error because we have
1960 		 * our own ways of dealing with the IO errors
1961 		 */
1962 		clear_buffer_uptodate(bh);
1963 	}
1964 	unlock_buffer(bh);
1965 	put_bh(bh);
1966 }
1967 
btrfs_read_dev_super(struct block_device * bdev)1968 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
1969 {
1970 	struct buffer_head *bh;
1971 	struct buffer_head *latest = NULL;
1972 	struct btrfs_super_block *super;
1973 	int i;
1974 	u64 transid = 0;
1975 	u64 bytenr;
1976 
1977 	/* we would like to check all the supers, but that would make
1978 	 * a btrfs mount succeed after a mkfs from a different FS.
1979 	 * So, we need to add a special mount option to scan for
1980 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1981 	 */
1982 	for (i = 0; i < 1; i++) {
1983 		bytenr = btrfs_sb_offset(i);
1984 		if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
1985 			break;
1986 		bh = __bread(bdev, bytenr / 4096, 4096);
1987 		if (!bh)
1988 			continue;
1989 
1990 		super = (struct btrfs_super_block *)bh->b_data;
1991 		if (btrfs_super_bytenr(super) != bytenr ||
1992 		    strncmp((char *)(&super->magic), BTRFS_MAGIC,
1993 			    sizeof(super->magic))) {
1994 			brelse(bh);
1995 			continue;
1996 		}
1997 
1998 		if (!latest || btrfs_super_generation(super) > transid) {
1999 			brelse(latest);
2000 			latest = bh;
2001 			transid = btrfs_super_generation(super);
2002 		} else {
2003 			brelse(bh);
2004 		}
2005 	}
2006 	return latest;
2007 }
2008 
write_dev_supers(struct btrfs_device * device,struct btrfs_super_block * sb,int do_barriers,int wait,int max_mirrors)2009 static int write_dev_supers(struct btrfs_device *device,
2010 			    struct btrfs_super_block *sb,
2011 			    int do_barriers, int wait, int max_mirrors)
2012 {
2013 	struct buffer_head *bh;
2014 	int i;
2015 	int ret;
2016 	int errors = 0;
2017 	u32 crc;
2018 	u64 bytenr;
2019 	int last_barrier = 0;
2020 
2021 	if (max_mirrors == 0)
2022 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2023 
2024 	/* make sure only the last submit_bh does a barrier */
2025 	if (do_barriers) {
2026 		for (i = 0; i < max_mirrors; i++) {
2027 			bytenr = btrfs_sb_offset(i);
2028 			if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2029 			    device->total_bytes)
2030 				break;
2031 			last_barrier = i;
2032 		}
2033 	}
2034 
2035 	for (i = 0; i < max_mirrors; i++) {
2036 		bytenr = btrfs_sb_offset(i);
2037 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2038 			break;
2039 
2040 		if (wait) {
2041 			bh = __find_get_block(device->bdev, bytenr / 4096,
2042 					      BTRFS_SUPER_INFO_SIZE);
2043 			BUG_ON(!bh);
2044 			brelse(bh);
2045 			wait_on_buffer(bh);
2046 			if (buffer_uptodate(bh)) {
2047 				brelse(bh);
2048 				continue;
2049 			}
2050 		} else {
2051 			btrfs_set_super_bytenr(sb, bytenr);
2052 
2053 			crc = ~(u32)0;
2054 			crc = btrfs_csum_data(NULL, (char *)sb +
2055 					      BTRFS_CSUM_SIZE, crc,
2056 					      BTRFS_SUPER_INFO_SIZE -
2057 					      BTRFS_CSUM_SIZE);
2058 			btrfs_csum_final(crc, sb->csum);
2059 
2060 			bh = __getblk(device->bdev, bytenr / 4096,
2061 				      BTRFS_SUPER_INFO_SIZE);
2062 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2063 
2064 			set_buffer_uptodate(bh);
2065 			get_bh(bh);
2066 			lock_buffer(bh);
2067 			bh->b_end_io = btrfs_end_buffer_write_sync;
2068 		}
2069 
2070 		if (i == last_barrier && do_barriers && device->barriers) {
2071 			ret = submit_bh(WRITE_BARRIER, bh);
2072 			if (ret == -EOPNOTSUPP) {
2073 				printk("btrfs: disabling barriers on dev %s\n",
2074 				       device->name);
2075 				set_buffer_uptodate(bh);
2076 				device->barriers = 0;
2077 				get_bh(bh);
2078 				lock_buffer(bh);
2079 				ret = submit_bh(WRITE, bh);
2080 			}
2081 		} else {
2082 			ret = submit_bh(WRITE, bh);
2083 		}
2084 
2085 		if (!ret && wait) {
2086 			wait_on_buffer(bh);
2087 			if (!buffer_uptodate(bh))
2088 				errors++;
2089 		} else if (ret) {
2090 			errors++;
2091 		}
2092 		if (wait)
2093 			brelse(bh);
2094 	}
2095 	return errors < i ? 0 : -1;
2096 }
2097 
write_all_supers(struct btrfs_root * root,int max_mirrors)2098 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2099 {
2100 	struct list_head *head = &root->fs_info->fs_devices->devices;
2101 	struct btrfs_device *dev;
2102 	struct btrfs_super_block *sb;
2103 	struct btrfs_dev_item *dev_item;
2104 	int ret;
2105 	int do_barriers;
2106 	int max_errors;
2107 	int total_errors = 0;
2108 	u64 flags;
2109 
2110 	max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2111 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
2112 
2113 	sb = &root->fs_info->super_for_commit;
2114 	dev_item = &sb->dev_item;
2115 	list_for_each_entry(dev, head, dev_list) {
2116 		if (!dev->bdev) {
2117 			total_errors++;
2118 			continue;
2119 		}
2120 		if (!dev->in_fs_metadata || !dev->writeable)
2121 			continue;
2122 
2123 		btrfs_set_stack_device_generation(dev_item, 0);
2124 		btrfs_set_stack_device_type(dev_item, dev->type);
2125 		btrfs_set_stack_device_id(dev_item, dev->devid);
2126 		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2127 		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2128 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2129 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2130 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2131 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2132 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2133 
2134 		flags = btrfs_super_flags(sb);
2135 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2136 
2137 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2138 		if (ret)
2139 			total_errors++;
2140 	}
2141 	if (total_errors > max_errors) {
2142 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2143 		       total_errors);
2144 		BUG();
2145 	}
2146 
2147 	total_errors = 0;
2148 	list_for_each_entry(dev, head, dev_list) {
2149 		if (!dev->bdev)
2150 			continue;
2151 		if (!dev->in_fs_metadata || !dev->writeable)
2152 			continue;
2153 
2154 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2155 		if (ret)
2156 			total_errors++;
2157 	}
2158 	if (total_errors > max_errors) {
2159 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2160 		       total_errors);
2161 		BUG();
2162 	}
2163 	return 0;
2164 }
2165 
write_ctree_super(struct btrfs_trans_handle * trans,struct btrfs_root * root,int max_mirrors)2166 int write_ctree_super(struct btrfs_trans_handle *trans,
2167 		      struct btrfs_root *root, int max_mirrors)
2168 {
2169 	int ret;
2170 
2171 	ret = write_all_supers(root, max_mirrors);
2172 	return ret;
2173 }
2174 
btrfs_free_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)2175 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2176 {
2177 	radix_tree_delete(&fs_info->fs_roots_radix,
2178 			  (unsigned long)root->root_key.objectid);
2179 	if (root->anon_super.s_dev) {
2180 		down_write(&root->anon_super.s_umount);
2181 		kill_anon_super(&root->anon_super);
2182 	}
2183 	if (root->node)
2184 		free_extent_buffer(root->node);
2185 	if (root->commit_root)
2186 		free_extent_buffer(root->commit_root);
2187 	kfree(root->name);
2188 	kfree(root);
2189 	return 0;
2190 }
2191 
del_fs_roots(struct btrfs_fs_info * fs_info)2192 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2193 {
2194 	int ret;
2195 	struct btrfs_root *gang[8];
2196 	int i;
2197 
2198 	while (1) {
2199 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2200 					     (void **)gang, 0,
2201 					     ARRAY_SIZE(gang));
2202 		if (!ret)
2203 			break;
2204 		for (i = 0; i < ret; i++)
2205 			btrfs_free_fs_root(fs_info, gang[i]);
2206 	}
2207 	return 0;
2208 }
2209 
btrfs_cleanup_fs_roots(struct btrfs_fs_info * fs_info)2210 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2211 {
2212 	u64 root_objectid = 0;
2213 	struct btrfs_root *gang[8];
2214 	int i;
2215 	int ret;
2216 
2217 	while (1) {
2218 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2219 					     (void **)gang, root_objectid,
2220 					     ARRAY_SIZE(gang));
2221 		if (!ret)
2222 			break;
2223 		for (i = 0; i < ret; i++) {
2224 			root_objectid = gang[i]->root_key.objectid;
2225 			ret = btrfs_find_dead_roots(fs_info->tree_root,
2226 						    root_objectid, gang[i]);
2227 			BUG_ON(ret);
2228 			btrfs_orphan_cleanup(gang[i]);
2229 		}
2230 		root_objectid++;
2231 	}
2232 	return 0;
2233 }
2234 
btrfs_commit_super(struct btrfs_root * root)2235 int btrfs_commit_super(struct btrfs_root *root)
2236 {
2237 	struct btrfs_trans_handle *trans;
2238 	int ret;
2239 
2240 	mutex_lock(&root->fs_info->cleaner_mutex);
2241 	btrfs_clean_old_snapshots(root);
2242 	mutex_unlock(&root->fs_info->cleaner_mutex);
2243 	trans = btrfs_start_transaction(root, 1);
2244 	ret = btrfs_commit_transaction(trans, root);
2245 	BUG_ON(ret);
2246 	/* run commit again to drop the original snapshot */
2247 	trans = btrfs_start_transaction(root, 1);
2248 	btrfs_commit_transaction(trans, root);
2249 	ret = btrfs_write_and_wait_transaction(NULL, root);
2250 	BUG_ON(ret);
2251 
2252 	ret = write_ctree_super(NULL, root, 0);
2253 	return ret;
2254 }
2255 
close_ctree(struct btrfs_root * root)2256 int close_ctree(struct btrfs_root *root)
2257 {
2258 	struct btrfs_fs_info *fs_info = root->fs_info;
2259 	int ret;
2260 
2261 	fs_info->closing = 1;
2262 	smp_mb();
2263 
2264 	kthread_stop(root->fs_info->transaction_kthread);
2265 	kthread_stop(root->fs_info->cleaner_kthread);
2266 
2267 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2268 		ret =  btrfs_commit_super(root);
2269 		if (ret)
2270 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2271 	}
2272 
2273 	if (fs_info->delalloc_bytes) {
2274 		printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2275 		       fs_info->delalloc_bytes);
2276 	}
2277 	if (fs_info->total_ref_cache_size) {
2278 		printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2279 		       (unsigned long long)fs_info->total_ref_cache_size);
2280 	}
2281 
2282 	if (fs_info->extent_root->node)
2283 		free_extent_buffer(fs_info->extent_root->node);
2284 
2285 	if (fs_info->tree_root->node)
2286 		free_extent_buffer(fs_info->tree_root->node);
2287 
2288 	if (root->fs_info->chunk_root->node)
2289 		free_extent_buffer(root->fs_info->chunk_root->node);
2290 
2291 	if (root->fs_info->dev_root->node)
2292 		free_extent_buffer(root->fs_info->dev_root->node);
2293 
2294 	if (root->fs_info->csum_root->node)
2295 		free_extent_buffer(root->fs_info->csum_root->node);
2296 
2297 	btrfs_free_block_groups(root->fs_info);
2298 
2299 	del_fs_roots(fs_info);
2300 
2301 	iput(fs_info->btree_inode);
2302 
2303 	btrfs_stop_workers(&fs_info->fixup_workers);
2304 	btrfs_stop_workers(&fs_info->delalloc_workers);
2305 	btrfs_stop_workers(&fs_info->workers);
2306 	btrfs_stop_workers(&fs_info->endio_workers);
2307 	btrfs_stop_workers(&fs_info->endio_meta_workers);
2308 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2309 	btrfs_stop_workers(&fs_info->endio_write_workers);
2310 	btrfs_stop_workers(&fs_info->submit_workers);
2311 
2312 #if 0
2313 	while (!list_empty(&fs_info->hashers)) {
2314 		struct btrfs_hasher *hasher;
2315 		hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
2316 				    hashers);
2317 		list_del(&hasher->hashers);
2318 		crypto_free_hash(&fs_info->hash_tfm);
2319 		kfree(hasher);
2320 	}
2321 #endif
2322 	btrfs_close_devices(fs_info->fs_devices);
2323 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2324 
2325 	bdi_destroy(&fs_info->bdi);
2326 
2327 	kfree(fs_info->extent_root);
2328 	kfree(fs_info->tree_root);
2329 	kfree(fs_info->chunk_root);
2330 	kfree(fs_info->dev_root);
2331 	kfree(fs_info->csum_root);
2332 	return 0;
2333 }
2334 
btrfs_buffer_uptodate(struct extent_buffer * buf,u64 parent_transid)2335 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2336 {
2337 	int ret;
2338 	struct inode *btree_inode = buf->first_page->mapping->host;
2339 
2340 	ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
2341 	if (!ret)
2342 		return ret;
2343 
2344 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2345 				    parent_transid);
2346 	return !ret;
2347 }
2348 
btrfs_set_buffer_uptodate(struct extent_buffer * buf)2349 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2350 {
2351 	struct inode *btree_inode = buf->first_page->mapping->host;
2352 	return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2353 					  buf);
2354 }
2355 
btrfs_mark_buffer_dirty(struct extent_buffer * buf)2356 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2357 {
2358 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2359 	u64 transid = btrfs_header_generation(buf);
2360 	struct inode *btree_inode = root->fs_info->btree_inode;
2361 
2362 	btrfs_set_lock_blocking(buf);
2363 
2364 	btrfs_assert_tree_locked(buf);
2365 	if (transid != root->fs_info->generation) {
2366 		printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2367 		       "found %llu running %llu\n",
2368 			(unsigned long long)buf->start,
2369 			(unsigned long long)transid,
2370 			(unsigned long long)root->fs_info->generation);
2371 		WARN_ON(1);
2372 	}
2373 	set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
2374 }
2375 
btrfs_btree_balance_dirty(struct btrfs_root * root,unsigned long nr)2376 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2377 {
2378 	/*
2379 	 * looks as though older kernels can get into trouble with
2380 	 * this code, they end up stuck in balance_dirty_pages forever
2381 	 */
2382 	struct extent_io_tree *tree;
2383 	u64 num_dirty;
2384 	u64 start = 0;
2385 	unsigned long thresh = 32 * 1024 * 1024;
2386 	tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
2387 
2388 	if (current_is_pdflush() || current->flags & PF_MEMALLOC)
2389 		return;
2390 
2391 	num_dirty = count_range_bits(tree, &start, (u64)-1,
2392 				     thresh, EXTENT_DIRTY);
2393 	if (num_dirty > thresh) {
2394 		balance_dirty_pages_ratelimited_nr(
2395 				   root->fs_info->btree_inode->i_mapping, 1);
2396 	}
2397 	return;
2398 }
2399 
btrfs_read_buffer(struct extent_buffer * buf,u64 parent_transid)2400 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2401 {
2402 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2403 	int ret;
2404 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2405 	if (ret == 0)
2406 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2407 	return ret;
2408 }
2409 
btree_lock_page_hook(struct page * page)2410 int btree_lock_page_hook(struct page *page)
2411 {
2412 	struct inode *inode = page->mapping->host;
2413 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2414 	struct extent_buffer *eb;
2415 	unsigned long len;
2416 	u64 bytenr = page_offset(page);
2417 
2418 	if (page->private == EXTENT_PAGE_PRIVATE)
2419 		goto out;
2420 
2421 	len = page->private >> 2;
2422 	eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2423 	if (!eb)
2424 		goto out;
2425 
2426 	btrfs_tree_lock(eb);
2427 	btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2428 	btrfs_tree_unlock(eb);
2429 	free_extent_buffer(eb);
2430 out:
2431 	lock_page(page);
2432 	return 0;
2433 }
2434 
2435 static struct extent_io_ops btree_extent_io_ops = {
2436 	.write_cache_pages_lock_hook = btree_lock_page_hook,
2437 	.readpage_end_io_hook = btree_readpage_end_io_hook,
2438 	.submit_bio_hook = btree_submit_bio_hook,
2439 	/* note we're sharing with inode.c for the merge bio hook */
2440 	.merge_bio_hook = btrfs_merge_bio_hook,
2441 };
2442