1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "ref-cache.h"
52 #include "compression.h"
53 #include "locking.h"
54
55 struct btrfs_iget_args {
56 u64 ino;
57 struct btrfs_root *root;
58 };
59
60 static struct inode_operations btrfs_dir_inode_operations;
61 static struct inode_operations btrfs_symlink_inode_operations;
62 static struct inode_operations btrfs_dir_ro_inode_operations;
63 static struct inode_operations btrfs_special_inode_operations;
64 static struct inode_operations btrfs_file_inode_operations;
65 static struct address_space_operations btrfs_aops;
66 static struct address_space_operations btrfs_symlink_aops;
67 static struct file_operations btrfs_dir_file_operations;
68 static struct extent_io_ops btrfs_extent_io_ops;
69
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_transaction_cachep;
73 struct kmem_cache *btrfs_bit_radix_cachep;
74 struct kmem_cache *btrfs_path_cachep;
75
76 #define S_SHIFT 12
77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
79 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
80 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
81 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
82 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
83 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
84 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
85 };
86
87 static void btrfs_truncate(struct inode *inode);
88 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
89 static noinline int cow_file_range(struct inode *inode,
90 struct page *locked_page,
91 u64 start, u64 end, int *page_started,
92 unsigned long *nr_written, int unlock);
93
btrfs_init_inode_security(struct inode * inode,struct inode * dir)94 static int btrfs_init_inode_security(struct inode *inode, struct inode *dir)
95 {
96 int err;
97
98 err = btrfs_init_acl(inode, dir);
99 if (!err)
100 err = btrfs_xattr_security_init(inode, dir);
101 return err;
102 }
103
104 /*
105 * this does all the hard work for inserting an inline extent into
106 * the btree. The caller should have done a btrfs_drop_extents so that
107 * no overlapping inline items exist in the btree
108 */
insert_inline_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,u64 start,size_t size,size_t compressed_size,struct page ** compressed_pages)109 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
110 struct btrfs_root *root, struct inode *inode,
111 u64 start, size_t size, size_t compressed_size,
112 struct page **compressed_pages)
113 {
114 struct btrfs_key key;
115 struct btrfs_path *path;
116 struct extent_buffer *leaf;
117 struct page *page = NULL;
118 char *kaddr;
119 unsigned long ptr;
120 struct btrfs_file_extent_item *ei;
121 int err = 0;
122 int ret;
123 size_t cur_size = size;
124 size_t datasize;
125 unsigned long offset;
126 int use_compress = 0;
127
128 if (compressed_size && compressed_pages) {
129 use_compress = 1;
130 cur_size = compressed_size;
131 }
132
133 path = btrfs_alloc_path();
134 if (!path)
135 return -ENOMEM;
136
137 btrfs_set_trans_block_group(trans, inode);
138
139 key.objectid = inode->i_ino;
140 key.offset = start;
141 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
142 datasize = btrfs_file_extent_calc_inline_size(cur_size);
143
144 inode_add_bytes(inode, size);
145 ret = btrfs_insert_empty_item(trans, root, path, &key,
146 datasize);
147 BUG_ON(ret);
148 if (ret) {
149 err = ret;
150 goto fail;
151 }
152 leaf = path->nodes[0];
153 ei = btrfs_item_ptr(leaf, path->slots[0],
154 struct btrfs_file_extent_item);
155 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
156 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
157 btrfs_set_file_extent_encryption(leaf, ei, 0);
158 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
159 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
160 ptr = btrfs_file_extent_inline_start(ei);
161
162 if (use_compress) {
163 struct page *cpage;
164 int i = 0;
165 while (compressed_size > 0) {
166 cpage = compressed_pages[i];
167 cur_size = min_t(unsigned long, compressed_size,
168 PAGE_CACHE_SIZE);
169
170 kaddr = kmap(cpage);
171 write_extent_buffer(leaf, kaddr, ptr, cur_size);
172 kunmap(cpage);
173
174 i++;
175 ptr += cur_size;
176 compressed_size -= cur_size;
177 }
178 btrfs_set_file_extent_compression(leaf, ei,
179 BTRFS_COMPRESS_ZLIB);
180 } else {
181 page = find_get_page(inode->i_mapping,
182 start >> PAGE_CACHE_SHIFT);
183 btrfs_set_file_extent_compression(leaf, ei, 0);
184 kaddr = kmap_atomic(page, KM_USER0);
185 offset = start & (PAGE_CACHE_SIZE - 1);
186 write_extent_buffer(leaf, kaddr + offset, ptr, size);
187 kunmap_atomic(kaddr, KM_USER0);
188 page_cache_release(page);
189 }
190 btrfs_mark_buffer_dirty(leaf);
191 btrfs_free_path(path);
192
193 BTRFS_I(inode)->disk_i_size = inode->i_size;
194 btrfs_update_inode(trans, root, inode);
195 return 0;
196 fail:
197 btrfs_free_path(path);
198 return err;
199 }
200
201
202 /*
203 * conditionally insert an inline extent into the file. This
204 * does the checks required to make sure the data is small enough
205 * to fit as an inline extent.
206 */
cow_file_range_inline(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,u64 start,u64 end,size_t compressed_size,struct page ** compressed_pages)207 static int cow_file_range_inline(struct btrfs_trans_handle *trans,
208 struct btrfs_root *root,
209 struct inode *inode, u64 start, u64 end,
210 size_t compressed_size,
211 struct page **compressed_pages)
212 {
213 u64 isize = i_size_read(inode);
214 u64 actual_end = min(end + 1, isize);
215 u64 inline_len = actual_end - start;
216 u64 aligned_end = (end + root->sectorsize - 1) &
217 ~((u64)root->sectorsize - 1);
218 u64 hint_byte;
219 u64 data_len = inline_len;
220 int ret;
221
222 if (compressed_size)
223 data_len = compressed_size;
224
225 if (start > 0 ||
226 actual_end >= PAGE_CACHE_SIZE ||
227 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
228 (!compressed_size &&
229 (actual_end & (root->sectorsize - 1)) == 0) ||
230 end + 1 < isize ||
231 data_len > root->fs_info->max_inline) {
232 return 1;
233 }
234
235 ret = btrfs_drop_extents(trans, root, inode, start,
236 aligned_end, start, &hint_byte);
237 BUG_ON(ret);
238
239 if (isize > actual_end)
240 inline_len = min_t(u64, isize, actual_end);
241 ret = insert_inline_extent(trans, root, inode, start,
242 inline_len, compressed_size,
243 compressed_pages);
244 BUG_ON(ret);
245 btrfs_drop_extent_cache(inode, start, aligned_end, 0);
246 return 0;
247 }
248
249 struct async_extent {
250 u64 start;
251 u64 ram_size;
252 u64 compressed_size;
253 struct page **pages;
254 unsigned long nr_pages;
255 struct list_head list;
256 };
257
258 struct async_cow {
259 struct inode *inode;
260 struct btrfs_root *root;
261 struct page *locked_page;
262 u64 start;
263 u64 end;
264 struct list_head extents;
265 struct btrfs_work work;
266 };
267
add_async_extent(struct async_cow * cow,u64 start,u64 ram_size,u64 compressed_size,struct page ** pages,unsigned long nr_pages)268 static noinline int add_async_extent(struct async_cow *cow,
269 u64 start, u64 ram_size,
270 u64 compressed_size,
271 struct page **pages,
272 unsigned long nr_pages)
273 {
274 struct async_extent *async_extent;
275
276 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
277 async_extent->start = start;
278 async_extent->ram_size = ram_size;
279 async_extent->compressed_size = compressed_size;
280 async_extent->pages = pages;
281 async_extent->nr_pages = nr_pages;
282 list_add_tail(&async_extent->list, &cow->extents);
283 return 0;
284 }
285
286 /*
287 * we create compressed extents in two phases. The first
288 * phase compresses a range of pages that have already been
289 * locked (both pages and state bits are locked).
290 *
291 * This is done inside an ordered work queue, and the compression
292 * is spread across many cpus. The actual IO submission is step
293 * two, and the ordered work queue takes care of making sure that
294 * happens in the same order things were put onto the queue by
295 * writepages and friends.
296 *
297 * If this code finds it can't get good compression, it puts an
298 * entry onto the work queue to write the uncompressed bytes. This
299 * makes sure that both compressed inodes and uncompressed inodes
300 * are written in the same order that pdflush sent them down.
301 */
compress_file_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,struct async_cow * async_cow,int * num_added)302 static noinline int compress_file_range(struct inode *inode,
303 struct page *locked_page,
304 u64 start, u64 end,
305 struct async_cow *async_cow,
306 int *num_added)
307 {
308 struct btrfs_root *root = BTRFS_I(inode)->root;
309 struct btrfs_trans_handle *trans;
310 u64 num_bytes;
311 u64 orig_start;
312 u64 disk_num_bytes;
313 u64 blocksize = root->sectorsize;
314 u64 actual_end;
315 u64 isize = i_size_read(inode);
316 int ret = 0;
317 struct page **pages = NULL;
318 unsigned long nr_pages;
319 unsigned long nr_pages_ret = 0;
320 unsigned long total_compressed = 0;
321 unsigned long total_in = 0;
322 unsigned long max_compressed = 128 * 1024;
323 unsigned long max_uncompressed = 128 * 1024;
324 int i;
325 int will_compress;
326
327 orig_start = start;
328
329 actual_end = min_t(u64, isize, end + 1);
330 again:
331 will_compress = 0;
332 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
333 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
334
335 /*
336 * we don't want to send crud past the end of i_size through
337 * compression, that's just a waste of CPU time. So, if the
338 * end of the file is before the start of our current
339 * requested range of bytes, we bail out to the uncompressed
340 * cleanup code that can deal with all of this.
341 *
342 * It isn't really the fastest way to fix things, but this is a
343 * very uncommon corner.
344 */
345 if (actual_end <= start)
346 goto cleanup_and_bail_uncompressed;
347
348 total_compressed = actual_end - start;
349
350 /* we want to make sure that amount of ram required to uncompress
351 * an extent is reasonable, so we limit the total size in ram
352 * of a compressed extent to 128k. This is a crucial number
353 * because it also controls how easily we can spread reads across
354 * cpus for decompression.
355 *
356 * We also want to make sure the amount of IO required to do
357 * a random read is reasonably small, so we limit the size of
358 * a compressed extent to 128k.
359 */
360 total_compressed = min(total_compressed, max_uncompressed);
361 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
362 num_bytes = max(blocksize, num_bytes);
363 disk_num_bytes = num_bytes;
364 total_in = 0;
365 ret = 0;
366
367 /*
368 * we do compression for mount -o compress and when the
369 * inode has not been flagged as nocompress. This flag can
370 * change at any time if we discover bad compression ratios.
371 */
372 if (!btrfs_test_flag(inode, NOCOMPRESS) &&
373 btrfs_test_opt(root, COMPRESS)) {
374 WARN_ON(pages);
375 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
376
377 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
378 total_compressed, pages,
379 nr_pages, &nr_pages_ret,
380 &total_in,
381 &total_compressed,
382 max_compressed);
383
384 if (!ret) {
385 unsigned long offset = total_compressed &
386 (PAGE_CACHE_SIZE - 1);
387 struct page *page = pages[nr_pages_ret - 1];
388 char *kaddr;
389
390 /* zero the tail end of the last page, we might be
391 * sending it down to disk
392 */
393 if (offset) {
394 kaddr = kmap_atomic(page, KM_USER0);
395 memset(kaddr + offset, 0,
396 PAGE_CACHE_SIZE - offset);
397 kunmap_atomic(kaddr, KM_USER0);
398 }
399 will_compress = 1;
400 }
401 }
402 if (start == 0) {
403 trans = btrfs_join_transaction(root, 1);
404 BUG_ON(!trans);
405 btrfs_set_trans_block_group(trans, inode);
406
407 /* lets try to make an inline extent */
408 if (ret || total_in < (actual_end - start)) {
409 /* we didn't compress the entire range, try
410 * to make an uncompressed inline extent.
411 */
412 ret = cow_file_range_inline(trans, root, inode,
413 start, end, 0, NULL);
414 } else {
415 /* try making a compressed inline extent */
416 ret = cow_file_range_inline(trans, root, inode,
417 start, end,
418 total_compressed, pages);
419 }
420 btrfs_end_transaction(trans, root);
421 if (ret == 0) {
422 /*
423 * inline extent creation worked, we don't need
424 * to create any more async work items. Unlock
425 * and free up our temp pages.
426 */
427 extent_clear_unlock_delalloc(inode,
428 &BTRFS_I(inode)->io_tree,
429 start, end, NULL, 1, 0,
430 0, 1, 1, 1);
431 ret = 0;
432 goto free_pages_out;
433 }
434 }
435
436 if (will_compress) {
437 /*
438 * we aren't doing an inline extent round the compressed size
439 * up to a block size boundary so the allocator does sane
440 * things
441 */
442 total_compressed = (total_compressed + blocksize - 1) &
443 ~(blocksize - 1);
444
445 /*
446 * one last check to make sure the compression is really a
447 * win, compare the page count read with the blocks on disk
448 */
449 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
450 ~(PAGE_CACHE_SIZE - 1);
451 if (total_compressed >= total_in) {
452 will_compress = 0;
453 } else {
454 disk_num_bytes = total_compressed;
455 num_bytes = total_in;
456 }
457 }
458 if (!will_compress && pages) {
459 /*
460 * the compression code ran but failed to make things smaller,
461 * free any pages it allocated and our page pointer array
462 */
463 for (i = 0; i < nr_pages_ret; i++) {
464 WARN_ON(pages[i]->mapping);
465 page_cache_release(pages[i]);
466 }
467 kfree(pages);
468 pages = NULL;
469 total_compressed = 0;
470 nr_pages_ret = 0;
471
472 /* flag the file so we don't compress in the future */
473 btrfs_set_flag(inode, NOCOMPRESS);
474 }
475 if (will_compress) {
476 *num_added += 1;
477
478 /* the async work queues will take care of doing actual
479 * allocation on disk for these compressed pages,
480 * and will submit them to the elevator.
481 */
482 add_async_extent(async_cow, start, num_bytes,
483 total_compressed, pages, nr_pages_ret);
484
485 if (start + num_bytes < end && start + num_bytes < actual_end) {
486 start += num_bytes;
487 pages = NULL;
488 cond_resched();
489 goto again;
490 }
491 } else {
492 cleanup_and_bail_uncompressed:
493 /*
494 * No compression, but we still need to write the pages in
495 * the file we've been given so far. redirty the locked
496 * page if it corresponds to our extent and set things up
497 * for the async work queue to run cow_file_range to do
498 * the normal delalloc dance
499 */
500 if (page_offset(locked_page) >= start &&
501 page_offset(locked_page) <= end) {
502 __set_page_dirty_nobuffers(locked_page);
503 /* unlocked later on in the async handlers */
504 }
505 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
506 *num_added += 1;
507 }
508
509 out:
510 return 0;
511
512 free_pages_out:
513 for (i = 0; i < nr_pages_ret; i++) {
514 WARN_ON(pages[i]->mapping);
515 page_cache_release(pages[i]);
516 }
517 kfree(pages);
518
519 goto out;
520 }
521
522 /*
523 * phase two of compressed writeback. This is the ordered portion
524 * of the code, which only gets called in the order the work was
525 * queued. We walk all the async extents created by compress_file_range
526 * and send them down to the disk.
527 */
submit_compressed_extents(struct inode * inode,struct async_cow * async_cow)528 static noinline int submit_compressed_extents(struct inode *inode,
529 struct async_cow *async_cow)
530 {
531 struct async_extent *async_extent;
532 u64 alloc_hint = 0;
533 struct btrfs_trans_handle *trans;
534 struct btrfs_key ins;
535 struct extent_map *em;
536 struct btrfs_root *root = BTRFS_I(inode)->root;
537 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
538 struct extent_io_tree *io_tree;
539 int ret;
540
541 if (list_empty(&async_cow->extents))
542 return 0;
543
544 trans = btrfs_join_transaction(root, 1);
545
546 while (!list_empty(&async_cow->extents)) {
547 async_extent = list_entry(async_cow->extents.next,
548 struct async_extent, list);
549 list_del(&async_extent->list);
550
551 io_tree = &BTRFS_I(inode)->io_tree;
552
553 /* did the compression code fall back to uncompressed IO? */
554 if (!async_extent->pages) {
555 int page_started = 0;
556 unsigned long nr_written = 0;
557
558 lock_extent(io_tree, async_extent->start,
559 async_extent->start +
560 async_extent->ram_size - 1, GFP_NOFS);
561
562 /* allocate blocks */
563 cow_file_range(inode, async_cow->locked_page,
564 async_extent->start,
565 async_extent->start +
566 async_extent->ram_size - 1,
567 &page_started, &nr_written, 0);
568
569 /*
570 * if page_started, cow_file_range inserted an
571 * inline extent and took care of all the unlocking
572 * and IO for us. Otherwise, we need to submit
573 * all those pages down to the drive.
574 */
575 if (!page_started)
576 extent_write_locked_range(io_tree,
577 inode, async_extent->start,
578 async_extent->start +
579 async_extent->ram_size - 1,
580 btrfs_get_extent,
581 WB_SYNC_ALL);
582 kfree(async_extent);
583 cond_resched();
584 continue;
585 }
586
587 lock_extent(io_tree, async_extent->start,
588 async_extent->start + async_extent->ram_size - 1,
589 GFP_NOFS);
590 /*
591 * here we're doing allocation and writeback of the
592 * compressed pages
593 */
594 btrfs_drop_extent_cache(inode, async_extent->start,
595 async_extent->start +
596 async_extent->ram_size - 1, 0);
597
598 ret = btrfs_reserve_extent(trans, root,
599 async_extent->compressed_size,
600 async_extent->compressed_size,
601 0, alloc_hint,
602 (u64)-1, &ins, 1);
603 BUG_ON(ret);
604 em = alloc_extent_map(GFP_NOFS);
605 em->start = async_extent->start;
606 em->len = async_extent->ram_size;
607 em->orig_start = em->start;
608
609 em->block_start = ins.objectid;
610 em->block_len = ins.offset;
611 em->bdev = root->fs_info->fs_devices->latest_bdev;
612 set_bit(EXTENT_FLAG_PINNED, &em->flags);
613 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
614
615 while (1) {
616 spin_lock(&em_tree->lock);
617 ret = add_extent_mapping(em_tree, em);
618 spin_unlock(&em_tree->lock);
619 if (ret != -EEXIST) {
620 free_extent_map(em);
621 break;
622 }
623 btrfs_drop_extent_cache(inode, async_extent->start,
624 async_extent->start +
625 async_extent->ram_size - 1, 0);
626 }
627
628 ret = btrfs_add_ordered_extent(inode, async_extent->start,
629 ins.objectid,
630 async_extent->ram_size,
631 ins.offset,
632 BTRFS_ORDERED_COMPRESSED);
633 BUG_ON(ret);
634
635 btrfs_end_transaction(trans, root);
636
637 /*
638 * clear dirty, set writeback and unlock the pages.
639 */
640 extent_clear_unlock_delalloc(inode,
641 &BTRFS_I(inode)->io_tree,
642 async_extent->start,
643 async_extent->start +
644 async_extent->ram_size - 1,
645 NULL, 1, 1, 0, 1, 1, 0);
646
647 ret = btrfs_submit_compressed_write(inode,
648 async_extent->start,
649 async_extent->ram_size,
650 ins.objectid,
651 ins.offset, async_extent->pages,
652 async_extent->nr_pages);
653
654 BUG_ON(ret);
655 trans = btrfs_join_transaction(root, 1);
656 alloc_hint = ins.objectid + ins.offset;
657 kfree(async_extent);
658 cond_resched();
659 }
660
661 btrfs_end_transaction(trans, root);
662 return 0;
663 }
664
665 /*
666 * when extent_io.c finds a delayed allocation range in the file,
667 * the call backs end up in this code. The basic idea is to
668 * allocate extents on disk for the range, and create ordered data structs
669 * in ram to track those extents.
670 *
671 * locked_page is the page that writepage had locked already. We use
672 * it to make sure we don't do extra locks or unlocks.
673 *
674 * *page_started is set to one if we unlock locked_page and do everything
675 * required to start IO on it. It may be clean and already done with
676 * IO when we return.
677 */
cow_file_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,int unlock)678 static noinline int cow_file_range(struct inode *inode,
679 struct page *locked_page,
680 u64 start, u64 end, int *page_started,
681 unsigned long *nr_written,
682 int unlock)
683 {
684 struct btrfs_root *root = BTRFS_I(inode)->root;
685 struct btrfs_trans_handle *trans;
686 u64 alloc_hint = 0;
687 u64 num_bytes;
688 unsigned long ram_size;
689 u64 disk_num_bytes;
690 u64 cur_alloc_size;
691 u64 blocksize = root->sectorsize;
692 u64 actual_end;
693 u64 isize = i_size_read(inode);
694 struct btrfs_key ins;
695 struct extent_map *em;
696 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
697 int ret = 0;
698
699 trans = btrfs_join_transaction(root, 1);
700 BUG_ON(!trans);
701 btrfs_set_trans_block_group(trans, inode);
702
703 actual_end = min_t(u64, isize, end + 1);
704
705 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
706 num_bytes = max(blocksize, num_bytes);
707 disk_num_bytes = num_bytes;
708 ret = 0;
709
710 if (start == 0) {
711 /* lets try to make an inline extent */
712 ret = cow_file_range_inline(trans, root, inode,
713 start, end, 0, NULL);
714 if (ret == 0) {
715 extent_clear_unlock_delalloc(inode,
716 &BTRFS_I(inode)->io_tree,
717 start, end, NULL, 1, 1,
718 1, 1, 1, 1);
719 *nr_written = *nr_written +
720 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
721 *page_started = 1;
722 ret = 0;
723 goto out;
724 }
725 }
726
727 BUG_ON(disk_num_bytes >
728 btrfs_super_total_bytes(&root->fs_info->super_copy));
729
730 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
731
732 while (disk_num_bytes > 0) {
733 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
734 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
735 root->sectorsize, 0, alloc_hint,
736 (u64)-1, &ins, 1);
737 BUG_ON(ret);
738
739 em = alloc_extent_map(GFP_NOFS);
740 em->start = start;
741 em->orig_start = em->start;
742
743 ram_size = ins.offset;
744 em->len = ins.offset;
745
746 em->block_start = ins.objectid;
747 em->block_len = ins.offset;
748 em->bdev = root->fs_info->fs_devices->latest_bdev;
749 set_bit(EXTENT_FLAG_PINNED, &em->flags);
750
751 while (1) {
752 spin_lock(&em_tree->lock);
753 ret = add_extent_mapping(em_tree, em);
754 spin_unlock(&em_tree->lock);
755 if (ret != -EEXIST) {
756 free_extent_map(em);
757 break;
758 }
759 btrfs_drop_extent_cache(inode, start,
760 start + ram_size - 1, 0);
761 }
762
763 cur_alloc_size = ins.offset;
764 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
765 ram_size, cur_alloc_size, 0);
766 BUG_ON(ret);
767
768 if (root->root_key.objectid ==
769 BTRFS_DATA_RELOC_TREE_OBJECTID) {
770 ret = btrfs_reloc_clone_csums(inode, start,
771 cur_alloc_size);
772 BUG_ON(ret);
773 }
774
775 if (disk_num_bytes < cur_alloc_size)
776 break;
777
778 /* we're not doing compressed IO, don't unlock the first
779 * page (which the caller expects to stay locked), don't
780 * clear any dirty bits and don't set any writeback bits
781 */
782 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
783 start, start + ram_size - 1,
784 locked_page, unlock, 1,
785 1, 0, 0, 0);
786 disk_num_bytes -= cur_alloc_size;
787 num_bytes -= cur_alloc_size;
788 alloc_hint = ins.objectid + ins.offset;
789 start += cur_alloc_size;
790 }
791 out:
792 ret = 0;
793 btrfs_end_transaction(trans, root);
794
795 return ret;
796 }
797
798 /*
799 * work queue call back to started compression on a file and pages
800 */
async_cow_start(struct btrfs_work * work)801 static noinline void async_cow_start(struct btrfs_work *work)
802 {
803 struct async_cow *async_cow;
804 int num_added = 0;
805 async_cow = container_of(work, struct async_cow, work);
806
807 compress_file_range(async_cow->inode, async_cow->locked_page,
808 async_cow->start, async_cow->end, async_cow,
809 &num_added);
810 if (num_added == 0)
811 async_cow->inode = NULL;
812 }
813
814 /*
815 * work queue call back to submit previously compressed pages
816 */
async_cow_submit(struct btrfs_work * work)817 static noinline void async_cow_submit(struct btrfs_work *work)
818 {
819 struct async_cow *async_cow;
820 struct btrfs_root *root;
821 unsigned long nr_pages;
822
823 async_cow = container_of(work, struct async_cow, work);
824
825 root = async_cow->root;
826 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
827 PAGE_CACHE_SHIFT;
828
829 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
830
831 if (atomic_read(&root->fs_info->async_delalloc_pages) <
832 5 * 1042 * 1024 &&
833 waitqueue_active(&root->fs_info->async_submit_wait))
834 wake_up(&root->fs_info->async_submit_wait);
835
836 if (async_cow->inode)
837 submit_compressed_extents(async_cow->inode, async_cow);
838 }
839
async_cow_free(struct btrfs_work * work)840 static noinline void async_cow_free(struct btrfs_work *work)
841 {
842 struct async_cow *async_cow;
843 async_cow = container_of(work, struct async_cow, work);
844 kfree(async_cow);
845 }
846
cow_file_range_async(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written)847 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
848 u64 start, u64 end, int *page_started,
849 unsigned long *nr_written)
850 {
851 struct async_cow *async_cow;
852 struct btrfs_root *root = BTRFS_I(inode)->root;
853 unsigned long nr_pages;
854 u64 cur_end;
855 int limit = 10 * 1024 * 1042;
856
857 if (!btrfs_test_opt(root, COMPRESS)) {
858 return cow_file_range(inode, locked_page, start, end,
859 page_started, nr_written, 1);
860 }
861
862 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
863 EXTENT_DELALLOC, 1, 0, GFP_NOFS);
864 while (start < end) {
865 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
866 async_cow->inode = inode;
867 async_cow->root = root;
868 async_cow->locked_page = locked_page;
869 async_cow->start = start;
870
871 if (btrfs_test_flag(inode, NOCOMPRESS))
872 cur_end = end;
873 else
874 cur_end = min(end, start + 512 * 1024 - 1);
875
876 async_cow->end = cur_end;
877 INIT_LIST_HEAD(&async_cow->extents);
878
879 async_cow->work.func = async_cow_start;
880 async_cow->work.ordered_func = async_cow_submit;
881 async_cow->work.ordered_free = async_cow_free;
882 async_cow->work.flags = 0;
883
884 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
885 PAGE_CACHE_SHIFT;
886 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
887
888 btrfs_queue_worker(&root->fs_info->delalloc_workers,
889 &async_cow->work);
890
891 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
892 wait_event(root->fs_info->async_submit_wait,
893 (atomic_read(&root->fs_info->async_delalloc_pages) <
894 limit));
895 }
896
897 while (atomic_read(&root->fs_info->async_submit_draining) &&
898 atomic_read(&root->fs_info->async_delalloc_pages)) {
899 wait_event(root->fs_info->async_submit_wait,
900 (atomic_read(&root->fs_info->async_delalloc_pages) ==
901 0));
902 }
903
904 *nr_written += nr_pages;
905 start = cur_end + 1;
906 }
907 *page_started = 1;
908 return 0;
909 }
910
csum_exist_in_range(struct btrfs_root * root,u64 bytenr,u64 num_bytes)911 static noinline int csum_exist_in_range(struct btrfs_root *root,
912 u64 bytenr, u64 num_bytes)
913 {
914 int ret;
915 struct btrfs_ordered_sum *sums;
916 LIST_HEAD(list);
917
918 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
919 bytenr + num_bytes - 1, &list);
920 if (ret == 0 && list_empty(&list))
921 return 0;
922
923 while (!list_empty(&list)) {
924 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
925 list_del(&sums->list);
926 kfree(sums);
927 }
928 return 1;
929 }
930
931 /*
932 * when nowcow writeback call back. This checks for snapshots or COW copies
933 * of the extents that exist in the file, and COWs the file as required.
934 *
935 * If no cow copies or snapshots exist, we write directly to the existing
936 * blocks on disk
937 */
run_delalloc_nocow(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,int force,unsigned long * nr_written)938 static int run_delalloc_nocow(struct inode *inode, struct page *locked_page,
939 u64 start, u64 end, int *page_started, int force,
940 unsigned long *nr_written)
941 {
942 struct btrfs_root *root = BTRFS_I(inode)->root;
943 struct btrfs_trans_handle *trans;
944 struct extent_buffer *leaf;
945 struct btrfs_path *path;
946 struct btrfs_file_extent_item *fi;
947 struct btrfs_key found_key;
948 u64 cow_start;
949 u64 cur_offset;
950 u64 extent_end;
951 u64 disk_bytenr;
952 u64 num_bytes;
953 int extent_type;
954 int ret;
955 int type;
956 int nocow;
957 int check_prev = 1;
958
959 path = btrfs_alloc_path();
960 BUG_ON(!path);
961 trans = btrfs_join_transaction(root, 1);
962 BUG_ON(!trans);
963
964 cow_start = (u64)-1;
965 cur_offset = start;
966 while (1) {
967 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
968 cur_offset, 0);
969 BUG_ON(ret < 0);
970 if (ret > 0 && path->slots[0] > 0 && check_prev) {
971 leaf = path->nodes[0];
972 btrfs_item_key_to_cpu(leaf, &found_key,
973 path->slots[0] - 1);
974 if (found_key.objectid == inode->i_ino &&
975 found_key.type == BTRFS_EXTENT_DATA_KEY)
976 path->slots[0]--;
977 }
978 check_prev = 0;
979 next_slot:
980 leaf = path->nodes[0];
981 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
982 ret = btrfs_next_leaf(root, path);
983 if (ret < 0)
984 BUG_ON(1);
985 if (ret > 0)
986 break;
987 leaf = path->nodes[0];
988 }
989
990 nocow = 0;
991 disk_bytenr = 0;
992 num_bytes = 0;
993 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
994
995 if (found_key.objectid > inode->i_ino ||
996 found_key.type > BTRFS_EXTENT_DATA_KEY ||
997 found_key.offset > end)
998 break;
999
1000 if (found_key.offset > cur_offset) {
1001 extent_end = found_key.offset;
1002 goto out_check;
1003 }
1004
1005 fi = btrfs_item_ptr(leaf, path->slots[0],
1006 struct btrfs_file_extent_item);
1007 extent_type = btrfs_file_extent_type(leaf, fi);
1008
1009 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1010 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1011 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1012 extent_end = found_key.offset +
1013 btrfs_file_extent_num_bytes(leaf, fi);
1014 if (extent_end <= start) {
1015 path->slots[0]++;
1016 goto next_slot;
1017 }
1018 if (disk_bytenr == 0)
1019 goto out_check;
1020 if (btrfs_file_extent_compression(leaf, fi) ||
1021 btrfs_file_extent_encryption(leaf, fi) ||
1022 btrfs_file_extent_other_encoding(leaf, fi))
1023 goto out_check;
1024 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1025 goto out_check;
1026 if (btrfs_extent_readonly(root, disk_bytenr))
1027 goto out_check;
1028 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1029 disk_bytenr))
1030 goto out_check;
1031 disk_bytenr += btrfs_file_extent_offset(leaf, fi);
1032 disk_bytenr += cur_offset - found_key.offset;
1033 num_bytes = min(end + 1, extent_end) - cur_offset;
1034 /*
1035 * force cow if csum exists in the range.
1036 * this ensure that csum for a given extent are
1037 * either valid or do not exist.
1038 */
1039 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1040 goto out_check;
1041 nocow = 1;
1042 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1043 extent_end = found_key.offset +
1044 btrfs_file_extent_inline_len(leaf, fi);
1045 extent_end = ALIGN(extent_end, root->sectorsize);
1046 } else {
1047 BUG_ON(1);
1048 }
1049 out_check:
1050 if (extent_end <= start) {
1051 path->slots[0]++;
1052 goto next_slot;
1053 }
1054 if (!nocow) {
1055 if (cow_start == (u64)-1)
1056 cow_start = cur_offset;
1057 cur_offset = extent_end;
1058 if (cur_offset > end)
1059 break;
1060 path->slots[0]++;
1061 goto next_slot;
1062 }
1063
1064 btrfs_release_path(root, path);
1065 if (cow_start != (u64)-1) {
1066 ret = cow_file_range(inode, locked_page, cow_start,
1067 found_key.offset - 1, page_started,
1068 nr_written, 1);
1069 BUG_ON(ret);
1070 cow_start = (u64)-1;
1071 }
1072
1073 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1074 struct extent_map *em;
1075 struct extent_map_tree *em_tree;
1076 em_tree = &BTRFS_I(inode)->extent_tree;
1077 em = alloc_extent_map(GFP_NOFS);
1078 em->start = cur_offset;
1079 em->orig_start = em->start;
1080 em->len = num_bytes;
1081 em->block_len = num_bytes;
1082 em->block_start = disk_bytenr;
1083 em->bdev = root->fs_info->fs_devices->latest_bdev;
1084 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1085 while (1) {
1086 spin_lock(&em_tree->lock);
1087 ret = add_extent_mapping(em_tree, em);
1088 spin_unlock(&em_tree->lock);
1089 if (ret != -EEXIST) {
1090 free_extent_map(em);
1091 break;
1092 }
1093 btrfs_drop_extent_cache(inode, em->start,
1094 em->start + em->len - 1, 0);
1095 }
1096 type = BTRFS_ORDERED_PREALLOC;
1097 } else {
1098 type = BTRFS_ORDERED_NOCOW;
1099 }
1100
1101 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1102 num_bytes, num_bytes, type);
1103 BUG_ON(ret);
1104
1105 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1106 cur_offset, cur_offset + num_bytes - 1,
1107 locked_page, 1, 1, 1, 0, 0, 0);
1108 cur_offset = extent_end;
1109 if (cur_offset > end)
1110 break;
1111 }
1112 btrfs_release_path(root, path);
1113
1114 if (cur_offset <= end && cow_start == (u64)-1)
1115 cow_start = cur_offset;
1116 if (cow_start != (u64)-1) {
1117 ret = cow_file_range(inode, locked_page, cow_start, end,
1118 page_started, nr_written, 1);
1119 BUG_ON(ret);
1120 }
1121
1122 ret = btrfs_end_transaction(trans, root);
1123 BUG_ON(ret);
1124 btrfs_free_path(path);
1125 return 0;
1126 }
1127
1128 /*
1129 * extent_io.c call back to do delayed allocation processing
1130 */
run_delalloc_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written)1131 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1132 u64 start, u64 end, int *page_started,
1133 unsigned long *nr_written)
1134 {
1135 int ret;
1136
1137 if (btrfs_test_flag(inode, NODATACOW))
1138 ret = run_delalloc_nocow(inode, locked_page, start, end,
1139 page_started, 1, nr_written);
1140 else if (btrfs_test_flag(inode, PREALLOC))
1141 ret = run_delalloc_nocow(inode, locked_page, start, end,
1142 page_started, 0, nr_written);
1143 else
1144 ret = cow_file_range_async(inode, locked_page, start, end,
1145 page_started, nr_written);
1146
1147 return ret;
1148 }
1149
1150 /*
1151 * extent_io.c set_bit_hook, used to track delayed allocation
1152 * bytes in this file, and to maintain the list of inodes that
1153 * have pending delalloc work to be done.
1154 */
btrfs_set_bit_hook(struct inode * inode,u64 start,u64 end,unsigned long old,unsigned long bits)1155 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1156 unsigned long old, unsigned long bits)
1157 {
1158 /*
1159 * set_bit and clear bit hooks normally require _irqsave/restore
1160 * but in this case, we are only testeing for the DELALLOC
1161 * bit, which is only set or cleared with irqs on
1162 */
1163 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1164 struct btrfs_root *root = BTRFS_I(inode)->root;
1165 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
1166 spin_lock(&root->fs_info->delalloc_lock);
1167 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1168 root->fs_info->delalloc_bytes += end - start + 1;
1169 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1170 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1171 &root->fs_info->delalloc_inodes);
1172 }
1173 spin_unlock(&root->fs_info->delalloc_lock);
1174 }
1175 return 0;
1176 }
1177
1178 /*
1179 * extent_io.c clear_bit_hook, see set_bit_hook for why
1180 */
btrfs_clear_bit_hook(struct inode * inode,u64 start,u64 end,unsigned long old,unsigned long bits)1181 static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
1182 unsigned long old, unsigned long bits)
1183 {
1184 /*
1185 * set_bit and clear bit hooks normally require _irqsave/restore
1186 * but in this case, we are only testeing for the DELALLOC
1187 * bit, which is only set or cleared with irqs on
1188 */
1189 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1190 struct btrfs_root *root = BTRFS_I(inode)->root;
1191
1192 spin_lock(&root->fs_info->delalloc_lock);
1193 if (end - start + 1 > root->fs_info->delalloc_bytes) {
1194 printk(KERN_INFO "btrfs warning: delalloc account "
1195 "%llu %llu\n",
1196 (unsigned long long)end - start + 1,
1197 (unsigned long long)
1198 root->fs_info->delalloc_bytes);
1199 btrfs_delalloc_free_space(root, inode, (u64)-1);
1200 root->fs_info->delalloc_bytes = 0;
1201 BTRFS_I(inode)->delalloc_bytes = 0;
1202 } else {
1203 btrfs_delalloc_free_space(root, inode,
1204 end - start + 1);
1205 root->fs_info->delalloc_bytes -= end - start + 1;
1206 BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
1207 }
1208 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1209 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1210 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1211 }
1212 spin_unlock(&root->fs_info->delalloc_lock);
1213 }
1214 return 0;
1215 }
1216
1217 /*
1218 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1219 * we don't create bios that span stripes or chunks
1220 */
btrfs_merge_bio_hook(struct page * page,unsigned long offset,size_t size,struct bio * bio,unsigned long bio_flags)1221 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1222 size_t size, struct bio *bio,
1223 unsigned long bio_flags)
1224 {
1225 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1226 struct btrfs_mapping_tree *map_tree;
1227 u64 logical = (u64)bio->bi_sector << 9;
1228 u64 length = 0;
1229 u64 map_length;
1230 int ret;
1231
1232 if (bio_flags & EXTENT_BIO_COMPRESSED)
1233 return 0;
1234
1235 length = bio->bi_size;
1236 map_tree = &root->fs_info->mapping_tree;
1237 map_length = length;
1238 ret = btrfs_map_block(map_tree, READ, logical,
1239 &map_length, NULL, 0);
1240
1241 if (map_length < length + size)
1242 return 1;
1243 return 0;
1244 }
1245
1246 /*
1247 * in order to insert checksums into the metadata in large chunks,
1248 * we wait until bio submission time. All the pages in the bio are
1249 * checksummed and sums are attached onto the ordered extent record.
1250 *
1251 * At IO completion time the cums attached on the ordered extent record
1252 * are inserted into the btree
1253 */
__btrfs_submit_bio_start(struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags)1254 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1255 struct bio *bio, int mirror_num,
1256 unsigned long bio_flags)
1257 {
1258 struct btrfs_root *root = BTRFS_I(inode)->root;
1259 int ret = 0;
1260
1261 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1262 BUG_ON(ret);
1263 return 0;
1264 }
1265
1266 /*
1267 * in order to insert checksums into the metadata in large chunks,
1268 * we wait until bio submission time. All the pages in the bio are
1269 * checksummed and sums are attached onto the ordered extent record.
1270 *
1271 * At IO completion time the cums attached on the ordered extent record
1272 * are inserted into the btree
1273 */
__btrfs_submit_bio_done(struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags)1274 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1275 int mirror_num, unsigned long bio_flags)
1276 {
1277 struct btrfs_root *root = BTRFS_I(inode)->root;
1278 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1279 }
1280
1281 /*
1282 * extent_io.c submission hook. This does the right thing for csum calculation
1283 * on write, or reading the csums from the tree before a read
1284 */
btrfs_submit_bio_hook(struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags)1285 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1286 int mirror_num, unsigned long bio_flags)
1287 {
1288 struct btrfs_root *root = BTRFS_I(inode)->root;
1289 int ret = 0;
1290 int skip_sum;
1291
1292 skip_sum = btrfs_test_flag(inode, NODATASUM);
1293
1294 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1295 BUG_ON(ret);
1296
1297 if (!(rw & (1 << BIO_RW))) {
1298 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1299 return btrfs_submit_compressed_read(inode, bio,
1300 mirror_num, bio_flags);
1301 } else if (!skip_sum)
1302 btrfs_lookup_bio_sums(root, inode, bio, NULL);
1303 goto mapit;
1304 } else if (!skip_sum) {
1305 /* csum items have already been cloned */
1306 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1307 goto mapit;
1308 /* we're doing a write, do the async checksumming */
1309 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1310 inode, rw, bio, mirror_num,
1311 bio_flags, __btrfs_submit_bio_start,
1312 __btrfs_submit_bio_done);
1313 }
1314
1315 mapit:
1316 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1317 }
1318
1319 /*
1320 * given a list of ordered sums record them in the inode. This happens
1321 * at IO completion time based on sums calculated at bio submission time.
1322 */
add_pending_csums(struct btrfs_trans_handle * trans,struct inode * inode,u64 file_offset,struct list_head * list)1323 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1324 struct inode *inode, u64 file_offset,
1325 struct list_head *list)
1326 {
1327 struct btrfs_ordered_sum *sum;
1328
1329 btrfs_set_trans_block_group(trans, inode);
1330
1331 list_for_each_entry(sum, list, list) {
1332 btrfs_csum_file_blocks(trans,
1333 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1334 }
1335 return 0;
1336 }
1337
btrfs_set_extent_delalloc(struct inode * inode,u64 start,u64 end)1338 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1339 {
1340 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1341 WARN_ON(1);
1342 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1343 GFP_NOFS);
1344 }
1345
1346 /* see btrfs_writepage_start_hook for details on why this is required */
1347 struct btrfs_writepage_fixup {
1348 struct page *page;
1349 struct btrfs_work work;
1350 };
1351
btrfs_writepage_fixup_worker(struct btrfs_work * work)1352 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1353 {
1354 struct btrfs_writepage_fixup *fixup;
1355 struct btrfs_ordered_extent *ordered;
1356 struct page *page;
1357 struct inode *inode;
1358 u64 page_start;
1359 u64 page_end;
1360
1361 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1362 page = fixup->page;
1363 again:
1364 lock_page(page);
1365 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1366 ClearPageChecked(page);
1367 goto out_page;
1368 }
1369
1370 inode = page->mapping->host;
1371 page_start = page_offset(page);
1372 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1373
1374 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1375
1376 /* already ordered? We're done */
1377 if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
1378 EXTENT_ORDERED, 0)) {
1379 goto out;
1380 }
1381
1382 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1383 if (ordered) {
1384 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1385 page_end, GFP_NOFS);
1386 unlock_page(page);
1387 btrfs_start_ordered_extent(inode, ordered, 1);
1388 goto again;
1389 }
1390
1391 btrfs_set_extent_delalloc(inode, page_start, page_end);
1392 ClearPageChecked(page);
1393 out:
1394 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1395 out_page:
1396 unlock_page(page);
1397 page_cache_release(page);
1398 }
1399
1400 /*
1401 * There are a few paths in the higher layers of the kernel that directly
1402 * set the page dirty bit without asking the filesystem if it is a
1403 * good idea. This causes problems because we want to make sure COW
1404 * properly happens and the data=ordered rules are followed.
1405 *
1406 * In our case any range that doesn't have the ORDERED bit set
1407 * hasn't been properly setup for IO. We kick off an async process
1408 * to fix it up. The async helper will wait for ordered extents, set
1409 * the delalloc bit and make it safe to write the page.
1410 */
btrfs_writepage_start_hook(struct page * page,u64 start,u64 end)1411 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1412 {
1413 struct inode *inode = page->mapping->host;
1414 struct btrfs_writepage_fixup *fixup;
1415 struct btrfs_root *root = BTRFS_I(inode)->root;
1416 int ret;
1417
1418 ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1419 EXTENT_ORDERED, 0);
1420 if (ret)
1421 return 0;
1422
1423 if (PageChecked(page))
1424 return -EAGAIN;
1425
1426 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1427 if (!fixup)
1428 return -EAGAIN;
1429
1430 SetPageChecked(page);
1431 page_cache_get(page);
1432 fixup->work.func = btrfs_writepage_fixup_worker;
1433 fixup->page = page;
1434 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1435 return -EAGAIN;
1436 }
1437
insert_reserved_file_extent(struct btrfs_trans_handle * trans,struct inode * inode,u64 file_pos,u64 disk_bytenr,u64 disk_num_bytes,u64 num_bytes,u64 ram_bytes,u8 compression,u8 encryption,u16 other_encoding,int extent_type)1438 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1439 struct inode *inode, u64 file_pos,
1440 u64 disk_bytenr, u64 disk_num_bytes,
1441 u64 num_bytes, u64 ram_bytes,
1442 u8 compression, u8 encryption,
1443 u16 other_encoding, int extent_type)
1444 {
1445 struct btrfs_root *root = BTRFS_I(inode)->root;
1446 struct btrfs_file_extent_item *fi;
1447 struct btrfs_path *path;
1448 struct extent_buffer *leaf;
1449 struct btrfs_key ins;
1450 u64 hint;
1451 int ret;
1452
1453 path = btrfs_alloc_path();
1454 BUG_ON(!path);
1455
1456 ret = btrfs_drop_extents(trans, root, inode, file_pos,
1457 file_pos + num_bytes, file_pos, &hint);
1458 BUG_ON(ret);
1459
1460 ins.objectid = inode->i_ino;
1461 ins.offset = file_pos;
1462 ins.type = BTRFS_EXTENT_DATA_KEY;
1463 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1464 BUG_ON(ret);
1465 leaf = path->nodes[0];
1466 fi = btrfs_item_ptr(leaf, path->slots[0],
1467 struct btrfs_file_extent_item);
1468 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1469 btrfs_set_file_extent_type(leaf, fi, extent_type);
1470 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1471 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1472 btrfs_set_file_extent_offset(leaf, fi, 0);
1473 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1474 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1475 btrfs_set_file_extent_compression(leaf, fi, compression);
1476 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1477 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1478 btrfs_mark_buffer_dirty(leaf);
1479
1480 inode_add_bytes(inode, num_bytes);
1481 btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0);
1482
1483 ins.objectid = disk_bytenr;
1484 ins.offset = disk_num_bytes;
1485 ins.type = BTRFS_EXTENT_ITEM_KEY;
1486 ret = btrfs_alloc_reserved_extent(trans, root, leaf->start,
1487 root->root_key.objectid,
1488 trans->transid, inode->i_ino, &ins);
1489 BUG_ON(ret);
1490
1491 btrfs_free_path(path);
1492 return 0;
1493 }
1494
1495 /* as ordered data IO finishes, this gets called so we can finish
1496 * an ordered extent if the range of bytes in the file it covers are
1497 * fully written.
1498 */
btrfs_finish_ordered_io(struct inode * inode,u64 start,u64 end)1499 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1500 {
1501 struct btrfs_root *root = BTRFS_I(inode)->root;
1502 struct btrfs_trans_handle *trans;
1503 struct btrfs_ordered_extent *ordered_extent;
1504 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1505 int compressed = 0;
1506 int ret;
1507
1508 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1509 if (!ret)
1510 return 0;
1511
1512 trans = btrfs_join_transaction(root, 1);
1513
1514 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1515 BUG_ON(!ordered_extent);
1516 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1517 goto nocow;
1518
1519 lock_extent(io_tree, ordered_extent->file_offset,
1520 ordered_extent->file_offset + ordered_extent->len - 1,
1521 GFP_NOFS);
1522
1523 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1524 compressed = 1;
1525 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1526 BUG_ON(compressed);
1527 ret = btrfs_mark_extent_written(trans, root, inode,
1528 ordered_extent->file_offset,
1529 ordered_extent->file_offset +
1530 ordered_extent->len);
1531 BUG_ON(ret);
1532 } else {
1533 ret = insert_reserved_file_extent(trans, inode,
1534 ordered_extent->file_offset,
1535 ordered_extent->start,
1536 ordered_extent->disk_len,
1537 ordered_extent->len,
1538 ordered_extent->len,
1539 compressed, 0, 0,
1540 BTRFS_FILE_EXTENT_REG);
1541 BUG_ON(ret);
1542 }
1543 unlock_extent(io_tree, ordered_extent->file_offset,
1544 ordered_extent->file_offset + ordered_extent->len - 1,
1545 GFP_NOFS);
1546 nocow:
1547 add_pending_csums(trans, inode, ordered_extent->file_offset,
1548 &ordered_extent->list);
1549
1550 mutex_lock(&BTRFS_I(inode)->extent_mutex);
1551 btrfs_ordered_update_i_size(inode, ordered_extent);
1552 btrfs_update_inode(trans, root, inode);
1553 btrfs_remove_ordered_extent(inode, ordered_extent);
1554 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1555
1556 /* once for us */
1557 btrfs_put_ordered_extent(ordered_extent);
1558 /* once for the tree */
1559 btrfs_put_ordered_extent(ordered_extent);
1560
1561 btrfs_end_transaction(trans, root);
1562 return 0;
1563 }
1564
btrfs_writepage_end_io_hook(struct page * page,u64 start,u64 end,struct extent_state * state,int uptodate)1565 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1566 struct extent_state *state, int uptodate)
1567 {
1568 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1569 }
1570
1571 /*
1572 * When IO fails, either with EIO or csum verification fails, we
1573 * try other mirrors that might have a good copy of the data. This
1574 * io_failure_record is used to record state as we go through all the
1575 * mirrors. If another mirror has good data, the page is set up to date
1576 * and things continue. If a good mirror can't be found, the original
1577 * bio end_io callback is called to indicate things have failed.
1578 */
1579 struct io_failure_record {
1580 struct page *page;
1581 u64 start;
1582 u64 len;
1583 u64 logical;
1584 unsigned long bio_flags;
1585 int last_mirror;
1586 };
1587
btrfs_io_failed_hook(struct bio * failed_bio,struct page * page,u64 start,u64 end,struct extent_state * state)1588 static int btrfs_io_failed_hook(struct bio *failed_bio,
1589 struct page *page, u64 start, u64 end,
1590 struct extent_state *state)
1591 {
1592 struct io_failure_record *failrec = NULL;
1593 u64 private;
1594 struct extent_map *em;
1595 struct inode *inode = page->mapping->host;
1596 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1597 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1598 struct bio *bio;
1599 int num_copies;
1600 int ret;
1601 int rw;
1602 u64 logical;
1603
1604 ret = get_state_private(failure_tree, start, &private);
1605 if (ret) {
1606 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1607 if (!failrec)
1608 return -ENOMEM;
1609 failrec->start = start;
1610 failrec->len = end - start + 1;
1611 failrec->last_mirror = 0;
1612 failrec->bio_flags = 0;
1613
1614 spin_lock(&em_tree->lock);
1615 em = lookup_extent_mapping(em_tree, start, failrec->len);
1616 if (em->start > start || em->start + em->len < start) {
1617 free_extent_map(em);
1618 em = NULL;
1619 }
1620 spin_unlock(&em_tree->lock);
1621
1622 if (!em || IS_ERR(em)) {
1623 kfree(failrec);
1624 return -EIO;
1625 }
1626 logical = start - em->start;
1627 logical = em->block_start + logical;
1628 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1629 logical = em->block_start;
1630 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1631 }
1632 failrec->logical = logical;
1633 free_extent_map(em);
1634 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1635 EXTENT_DIRTY, GFP_NOFS);
1636 set_state_private(failure_tree, start,
1637 (u64)(unsigned long)failrec);
1638 } else {
1639 failrec = (struct io_failure_record *)(unsigned long)private;
1640 }
1641 num_copies = btrfs_num_copies(
1642 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1643 failrec->logical, failrec->len);
1644 failrec->last_mirror++;
1645 if (!state) {
1646 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1647 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1648 failrec->start,
1649 EXTENT_LOCKED);
1650 if (state && state->start != failrec->start)
1651 state = NULL;
1652 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1653 }
1654 if (!state || failrec->last_mirror > num_copies) {
1655 set_state_private(failure_tree, failrec->start, 0);
1656 clear_extent_bits(failure_tree, failrec->start,
1657 failrec->start + failrec->len - 1,
1658 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1659 kfree(failrec);
1660 return -EIO;
1661 }
1662 bio = bio_alloc(GFP_NOFS, 1);
1663 bio->bi_private = state;
1664 bio->bi_end_io = failed_bio->bi_end_io;
1665 bio->bi_sector = failrec->logical >> 9;
1666 bio->bi_bdev = failed_bio->bi_bdev;
1667 bio->bi_size = 0;
1668
1669 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1670 if (failed_bio->bi_rw & (1 << BIO_RW))
1671 rw = WRITE;
1672 else
1673 rw = READ;
1674
1675 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1676 failrec->last_mirror,
1677 failrec->bio_flags);
1678 return 0;
1679 }
1680
1681 /*
1682 * each time an IO finishes, we do a fast check in the IO failure tree
1683 * to see if we need to process or clean up an io_failure_record
1684 */
btrfs_clean_io_failures(struct inode * inode,u64 start)1685 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1686 {
1687 u64 private;
1688 u64 private_failure;
1689 struct io_failure_record *failure;
1690 int ret;
1691
1692 private = 0;
1693 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1694 (u64)-1, 1, EXTENT_DIRTY)) {
1695 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1696 start, &private_failure);
1697 if (ret == 0) {
1698 failure = (struct io_failure_record *)(unsigned long)
1699 private_failure;
1700 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1701 failure->start, 0);
1702 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1703 failure->start,
1704 failure->start + failure->len - 1,
1705 EXTENT_DIRTY | EXTENT_LOCKED,
1706 GFP_NOFS);
1707 kfree(failure);
1708 }
1709 }
1710 return 0;
1711 }
1712
1713 /*
1714 * when reads are done, we need to check csums to verify the data is correct
1715 * if there's a match, we allow the bio to finish. If not, we go through
1716 * the io_failure_record routines to find good copies
1717 */
btrfs_readpage_end_io_hook(struct page * page,u64 start,u64 end,struct extent_state * state)1718 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1719 struct extent_state *state)
1720 {
1721 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1722 struct inode *inode = page->mapping->host;
1723 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1724 char *kaddr;
1725 u64 private = ~(u32)0;
1726 int ret;
1727 struct btrfs_root *root = BTRFS_I(inode)->root;
1728 u32 csum = ~(u32)0;
1729
1730 if (PageChecked(page)) {
1731 ClearPageChecked(page);
1732 goto good;
1733 }
1734 if (btrfs_test_flag(inode, NODATASUM))
1735 return 0;
1736
1737 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1738 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1)) {
1739 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1740 GFP_NOFS);
1741 return 0;
1742 }
1743
1744 if (state && state->start == start) {
1745 private = state->private;
1746 ret = 0;
1747 } else {
1748 ret = get_state_private(io_tree, start, &private);
1749 }
1750 kaddr = kmap_atomic(page, KM_USER0);
1751 if (ret)
1752 goto zeroit;
1753
1754 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1755 btrfs_csum_final(csum, (char *)&csum);
1756 if (csum != private)
1757 goto zeroit;
1758
1759 kunmap_atomic(kaddr, KM_USER0);
1760 good:
1761 /* if the io failure tree for this inode is non-empty,
1762 * check to see if we've recovered from a failed IO
1763 */
1764 btrfs_clean_io_failures(inode, start);
1765 return 0;
1766
1767 zeroit:
1768 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1769 "private %llu\n", page->mapping->host->i_ino,
1770 (unsigned long long)start, csum,
1771 (unsigned long long)private);
1772 memset(kaddr + offset, 1, end - start + 1);
1773 flush_dcache_page(page);
1774 kunmap_atomic(kaddr, KM_USER0);
1775 if (private == 0)
1776 return 0;
1777 return -EIO;
1778 }
1779
1780 /*
1781 * This creates an orphan entry for the given inode in case something goes
1782 * wrong in the middle of an unlink/truncate.
1783 */
btrfs_orphan_add(struct btrfs_trans_handle * trans,struct inode * inode)1784 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1785 {
1786 struct btrfs_root *root = BTRFS_I(inode)->root;
1787 int ret = 0;
1788
1789 spin_lock(&root->list_lock);
1790
1791 /* already on the orphan list, we're good */
1792 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1793 spin_unlock(&root->list_lock);
1794 return 0;
1795 }
1796
1797 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1798
1799 spin_unlock(&root->list_lock);
1800
1801 /*
1802 * insert an orphan item to track this unlinked/truncated file
1803 */
1804 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1805
1806 return ret;
1807 }
1808
1809 /*
1810 * We have done the truncate/delete so we can go ahead and remove the orphan
1811 * item for this particular inode.
1812 */
btrfs_orphan_del(struct btrfs_trans_handle * trans,struct inode * inode)1813 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1814 {
1815 struct btrfs_root *root = BTRFS_I(inode)->root;
1816 int ret = 0;
1817
1818 spin_lock(&root->list_lock);
1819
1820 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
1821 spin_unlock(&root->list_lock);
1822 return 0;
1823 }
1824
1825 list_del_init(&BTRFS_I(inode)->i_orphan);
1826 if (!trans) {
1827 spin_unlock(&root->list_lock);
1828 return 0;
1829 }
1830
1831 spin_unlock(&root->list_lock);
1832
1833 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1834
1835 return ret;
1836 }
1837
1838 /*
1839 * this cleans up any orphans that may be left on the list from the last use
1840 * of this root.
1841 */
btrfs_orphan_cleanup(struct btrfs_root * root)1842 void btrfs_orphan_cleanup(struct btrfs_root *root)
1843 {
1844 struct btrfs_path *path;
1845 struct extent_buffer *leaf;
1846 struct btrfs_item *item;
1847 struct btrfs_key key, found_key;
1848 struct btrfs_trans_handle *trans;
1849 struct inode *inode;
1850 int ret = 0, nr_unlink = 0, nr_truncate = 0;
1851
1852 path = btrfs_alloc_path();
1853 if (!path)
1854 return;
1855 path->reada = -1;
1856
1857 key.objectid = BTRFS_ORPHAN_OBJECTID;
1858 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1859 key.offset = (u64)-1;
1860
1861
1862 while (1) {
1863 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1864 if (ret < 0) {
1865 printk(KERN_ERR "Error searching slot for orphan: %d"
1866 "\n", ret);
1867 break;
1868 }
1869
1870 /*
1871 * if ret == 0 means we found what we were searching for, which
1872 * is weird, but possible, so only screw with path if we didnt
1873 * find the key and see if we have stuff that matches
1874 */
1875 if (ret > 0) {
1876 if (path->slots[0] == 0)
1877 break;
1878 path->slots[0]--;
1879 }
1880
1881 /* pull out the item */
1882 leaf = path->nodes[0];
1883 item = btrfs_item_nr(leaf, path->slots[0]);
1884 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1885
1886 /* make sure the item matches what we want */
1887 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1888 break;
1889 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1890 break;
1891
1892 /* release the path since we're done with it */
1893 btrfs_release_path(root, path);
1894
1895 /*
1896 * this is where we are basically btrfs_lookup, without the
1897 * crossing root thing. we store the inode number in the
1898 * offset of the orphan item.
1899 */
1900 inode = btrfs_iget_locked(root->fs_info->sb,
1901 found_key.offset, root);
1902 if (!inode)
1903 break;
1904
1905 if (inode->i_state & I_NEW) {
1906 BTRFS_I(inode)->root = root;
1907
1908 /* have to set the location manually */
1909 BTRFS_I(inode)->location.objectid = inode->i_ino;
1910 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
1911 BTRFS_I(inode)->location.offset = 0;
1912
1913 btrfs_read_locked_inode(inode);
1914 unlock_new_inode(inode);
1915 }
1916
1917 /*
1918 * add this inode to the orphan list so btrfs_orphan_del does
1919 * the proper thing when we hit it
1920 */
1921 spin_lock(&root->list_lock);
1922 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1923 spin_unlock(&root->list_lock);
1924
1925 /*
1926 * if this is a bad inode, means we actually succeeded in
1927 * removing the inode, but not the orphan record, which means
1928 * we need to manually delete the orphan since iput will just
1929 * do a destroy_inode
1930 */
1931 if (is_bad_inode(inode)) {
1932 trans = btrfs_start_transaction(root, 1);
1933 btrfs_orphan_del(trans, inode);
1934 btrfs_end_transaction(trans, root);
1935 iput(inode);
1936 continue;
1937 }
1938
1939 /* if we have links, this was a truncate, lets do that */
1940 if (inode->i_nlink) {
1941 nr_truncate++;
1942 btrfs_truncate(inode);
1943 } else {
1944 nr_unlink++;
1945 }
1946
1947 /* this will do delete_inode and everything for us */
1948 iput(inode);
1949 }
1950
1951 if (nr_unlink)
1952 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
1953 if (nr_truncate)
1954 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
1955
1956 btrfs_free_path(path);
1957 }
1958
1959 /*
1960 * read an inode from the btree into the in-memory inode
1961 */
btrfs_read_locked_inode(struct inode * inode)1962 void btrfs_read_locked_inode(struct inode *inode)
1963 {
1964 struct btrfs_path *path;
1965 struct extent_buffer *leaf;
1966 struct btrfs_inode_item *inode_item;
1967 struct btrfs_timespec *tspec;
1968 struct btrfs_root *root = BTRFS_I(inode)->root;
1969 struct btrfs_key location;
1970 u64 alloc_group_block;
1971 u32 rdev;
1972 int ret;
1973
1974 path = btrfs_alloc_path();
1975 BUG_ON(!path);
1976 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
1977
1978 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
1979 if (ret)
1980 goto make_bad;
1981
1982 leaf = path->nodes[0];
1983 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1984 struct btrfs_inode_item);
1985
1986 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
1987 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
1988 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
1989 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
1990 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
1991
1992 tspec = btrfs_inode_atime(inode_item);
1993 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1994 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1995
1996 tspec = btrfs_inode_mtime(inode_item);
1997 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1998 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1999
2000 tspec = btrfs_inode_ctime(inode_item);
2001 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2002 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2003
2004 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2005 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2006 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2007 inode->i_generation = BTRFS_I(inode)->generation;
2008 inode->i_rdev = 0;
2009 rdev = btrfs_inode_rdev(leaf, inode_item);
2010
2011 BTRFS_I(inode)->index_cnt = (u64)-1;
2012 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2013
2014 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2015
2016 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2017 alloc_group_block, 0);
2018 btrfs_free_path(path);
2019 inode_item = NULL;
2020
2021 switch (inode->i_mode & S_IFMT) {
2022 case S_IFREG:
2023 inode->i_mapping->a_ops = &btrfs_aops;
2024 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2025 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2026 inode->i_fop = &btrfs_file_operations;
2027 inode->i_op = &btrfs_file_inode_operations;
2028 break;
2029 case S_IFDIR:
2030 inode->i_fop = &btrfs_dir_file_operations;
2031 if (root == root->fs_info->tree_root)
2032 inode->i_op = &btrfs_dir_ro_inode_operations;
2033 else
2034 inode->i_op = &btrfs_dir_inode_operations;
2035 break;
2036 case S_IFLNK:
2037 inode->i_op = &btrfs_symlink_inode_operations;
2038 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2039 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2040 break;
2041 default:
2042 inode->i_op = &btrfs_special_inode_operations;
2043 init_special_inode(inode, inode->i_mode, rdev);
2044 break;
2045 }
2046 return;
2047
2048 make_bad:
2049 btrfs_free_path(path);
2050 make_bad_inode(inode);
2051 }
2052
2053 /*
2054 * given a leaf and an inode, copy the inode fields into the leaf
2055 */
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode)2056 static void fill_inode_item(struct btrfs_trans_handle *trans,
2057 struct extent_buffer *leaf,
2058 struct btrfs_inode_item *item,
2059 struct inode *inode)
2060 {
2061 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2062 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2063 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2064 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2065 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2066
2067 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2068 inode->i_atime.tv_sec);
2069 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2070 inode->i_atime.tv_nsec);
2071
2072 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2073 inode->i_mtime.tv_sec);
2074 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2075 inode->i_mtime.tv_nsec);
2076
2077 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2078 inode->i_ctime.tv_sec);
2079 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2080 inode->i_ctime.tv_nsec);
2081
2082 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2083 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2084 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2085 btrfs_set_inode_transid(leaf, item, trans->transid);
2086 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2087 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2088 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2089 }
2090
2091 /*
2092 * copy everything in the in-memory inode into the btree.
2093 */
btrfs_update_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)2094 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2095 struct btrfs_root *root, struct inode *inode)
2096 {
2097 struct btrfs_inode_item *inode_item;
2098 struct btrfs_path *path;
2099 struct extent_buffer *leaf;
2100 int ret;
2101
2102 path = btrfs_alloc_path();
2103 BUG_ON(!path);
2104 ret = btrfs_lookup_inode(trans, root, path,
2105 &BTRFS_I(inode)->location, 1);
2106 if (ret) {
2107 if (ret > 0)
2108 ret = -ENOENT;
2109 goto failed;
2110 }
2111
2112 btrfs_unlock_up_safe(path, 1);
2113 leaf = path->nodes[0];
2114 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2115 struct btrfs_inode_item);
2116
2117 fill_inode_item(trans, leaf, inode_item, inode);
2118 btrfs_mark_buffer_dirty(leaf);
2119 btrfs_set_inode_last_trans(trans, inode);
2120 ret = 0;
2121 failed:
2122 btrfs_free_path(path);
2123 return ret;
2124 }
2125
2126
2127 /*
2128 * unlink helper that gets used here in inode.c and in the tree logging
2129 * recovery code. It remove a link in a directory with a given name, and
2130 * also drops the back refs in the inode to the directory
2131 */
btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,struct inode * inode,const char * name,int name_len)2132 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2133 struct btrfs_root *root,
2134 struct inode *dir, struct inode *inode,
2135 const char *name, int name_len)
2136 {
2137 struct btrfs_path *path;
2138 int ret = 0;
2139 struct extent_buffer *leaf;
2140 struct btrfs_dir_item *di;
2141 struct btrfs_key key;
2142 u64 index;
2143
2144 path = btrfs_alloc_path();
2145 if (!path) {
2146 ret = -ENOMEM;
2147 goto err;
2148 }
2149
2150 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2151 name, name_len, -1);
2152 if (IS_ERR(di)) {
2153 ret = PTR_ERR(di);
2154 goto err;
2155 }
2156 if (!di) {
2157 ret = -ENOENT;
2158 goto err;
2159 }
2160 leaf = path->nodes[0];
2161 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2162 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2163 if (ret)
2164 goto err;
2165 btrfs_release_path(root, path);
2166
2167 ret = btrfs_del_inode_ref(trans, root, name, name_len,
2168 inode->i_ino,
2169 dir->i_ino, &index);
2170 if (ret) {
2171 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2172 "inode %lu parent %lu\n", name_len, name,
2173 inode->i_ino, dir->i_ino);
2174 goto err;
2175 }
2176
2177 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2178 index, name, name_len, -1);
2179 if (IS_ERR(di)) {
2180 ret = PTR_ERR(di);
2181 goto err;
2182 }
2183 if (!di) {
2184 ret = -ENOENT;
2185 goto err;
2186 }
2187 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2188 btrfs_release_path(root, path);
2189
2190 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2191 inode, dir->i_ino);
2192 BUG_ON(ret != 0 && ret != -ENOENT);
2193 if (ret != -ENOENT)
2194 BTRFS_I(dir)->log_dirty_trans = trans->transid;
2195
2196 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2197 dir, index);
2198 BUG_ON(ret);
2199 err:
2200 btrfs_free_path(path);
2201 if (ret)
2202 goto out;
2203
2204 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2205 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2206 btrfs_update_inode(trans, root, dir);
2207 btrfs_drop_nlink(inode);
2208 ret = btrfs_update_inode(trans, root, inode);
2209 dir->i_sb->s_dirt = 1;
2210 out:
2211 return ret;
2212 }
2213
btrfs_unlink(struct inode * dir,struct dentry * dentry)2214 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2215 {
2216 struct btrfs_root *root;
2217 struct btrfs_trans_handle *trans;
2218 struct inode *inode = dentry->d_inode;
2219 int ret;
2220 unsigned long nr = 0;
2221
2222 root = BTRFS_I(dir)->root;
2223
2224 trans = btrfs_start_transaction(root, 1);
2225
2226 btrfs_set_trans_block_group(trans, dir);
2227 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2228 dentry->d_name.name, dentry->d_name.len);
2229
2230 if (inode->i_nlink == 0)
2231 ret = btrfs_orphan_add(trans, inode);
2232
2233 nr = trans->blocks_used;
2234
2235 btrfs_end_transaction_throttle(trans, root);
2236 btrfs_btree_balance_dirty(root, nr);
2237 return ret;
2238 }
2239
btrfs_rmdir(struct inode * dir,struct dentry * dentry)2240 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2241 {
2242 struct inode *inode = dentry->d_inode;
2243 int err = 0;
2244 int ret;
2245 struct btrfs_root *root = BTRFS_I(dir)->root;
2246 struct btrfs_trans_handle *trans;
2247 unsigned long nr = 0;
2248
2249 /*
2250 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2251 * the root of a subvolume or snapshot
2252 */
2253 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2254 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) {
2255 return -ENOTEMPTY;
2256 }
2257
2258 trans = btrfs_start_transaction(root, 1);
2259 btrfs_set_trans_block_group(trans, dir);
2260
2261 err = btrfs_orphan_add(trans, inode);
2262 if (err)
2263 goto fail_trans;
2264
2265 /* now the directory is empty */
2266 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2267 dentry->d_name.name, dentry->d_name.len);
2268 if (!err)
2269 btrfs_i_size_write(inode, 0);
2270
2271 fail_trans:
2272 nr = trans->blocks_used;
2273 ret = btrfs_end_transaction_throttle(trans, root);
2274 btrfs_btree_balance_dirty(root, nr);
2275
2276 if (ret && !err)
2277 err = ret;
2278 return err;
2279 }
2280
2281 #if 0
2282 /*
2283 * when truncating bytes in a file, it is possible to avoid reading
2284 * the leaves that contain only checksum items. This can be the
2285 * majority of the IO required to delete a large file, but it must
2286 * be done carefully.
2287 *
2288 * The keys in the level just above the leaves are checked to make sure
2289 * the lowest key in a given leaf is a csum key, and starts at an offset
2290 * after the new size.
2291 *
2292 * Then the key for the next leaf is checked to make sure it also has
2293 * a checksum item for the same file. If it does, we know our target leaf
2294 * contains only checksum items, and it can be safely freed without reading
2295 * it.
2296 *
2297 * This is just an optimization targeted at large files. It may do
2298 * nothing. It will return 0 unless things went badly.
2299 */
2300 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2301 struct btrfs_root *root,
2302 struct btrfs_path *path,
2303 struct inode *inode, u64 new_size)
2304 {
2305 struct btrfs_key key;
2306 int ret;
2307 int nritems;
2308 struct btrfs_key found_key;
2309 struct btrfs_key other_key;
2310 struct btrfs_leaf_ref *ref;
2311 u64 leaf_gen;
2312 u64 leaf_start;
2313
2314 path->lowest_level = 1;
2315 key.objectid = inode->i_ino;
2316 key.type = BTRFS_CSUM_ITEM_KEY;
2317 key.offset = new_size;
2318 again:
2319 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2320 if (ret < 0)
2321 goto out;
2322
2323 if (path->nodes[1] == NULL) {
2324 ret = 0;
2325 goto out;
2326 }
2327 ret = 0;
2328 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2329 nritems = btrfs_header_nritems(path->nodes[1]);
2330
2331 if (!nritems)
2332 goto out;
2333
2334 if (path->slots[1] >= nritems)
2335 goto next_node;
2336
2337 /* did we find a key greater than anything we want to delete? */
2338 if (found_key.objectid > inode->i_ino ||
2339 (found_key.objectid == inode->i_ino && found_key.type > key.type))
2340 goto out;
2341
2342 /* we check the next key in the node to make sure the leave contains
2343 * only checksum items. This comparison doesn't work if our
2344 * leaf is the last one in the node
2345 */
2346 if (path->slots[1] + 1 >= nritems) {
2347 next_node:
2348 /* search forward from the last key in the node, this
2349 * will bring us into the next node in the tree
2350 */
2351 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2352
2353 /* unlikely, but we inc below, so check to be safe */
2354 if (found_key.offset == (u64)-1)
2355 goto out;
2356
2357 /* search_forward needs a path with locks held, do the
2358 * search again for the original key. It is possible
2359 * this will race with a balance and return a path that
2360 * we could modify, but this drop is just an optimization
2361 * and is allowed to miss some leaves.
2362 */
2363 btrfs_release_path(root, path);
2364 found_key.offset++;
2365
2366 /* setup a max key for search_forward */
2367 other_key.offset = (u64)-1;
2368 other_key.type = key.type;
2369 other_key.objectid = key.objectid;
2370
2371 path->keep_locks = 1;
2372 ret = btrfs_search_forward(root, &found_key, &other_key,
2373 path, 0, 0);
2374 path->keep_locks = 0;
2375 if (ret || found_key.objectid != key.objectid ||
2376 found_key.type != key.type) {
2377 ret = 0;
2378 goto out;
2379 }
2380
2381 key.offset = found_key.offset;
2382 btrfs_release_path(root, path);
2383 cond_resched();
2384 goto again;
2385 }
2386
2387 /* we know there's one more slot after us in the tree,
2388 * read that key so we can verify it is also a checksum item
2389 */
2390 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2391
2392 if (found_key.objectid < inode->i_ino)
2393 goto next_key;
2394
2395 if (found_key.type != key.type || found_key.offset < new_size)
2396 goto next_key;
2397
2398 /*
2399 * if the key for the next leaf isn't a csum key from this objectid,
2400 * we can't be sure there aren't good items inside this leaf.
2401 * Bail out
2402 */
2403 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2404 goto out;
2405
2406 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2407 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2408 /*
2409 * it is safe to delete this leaf, it contains only
2410 * csum items from this inode at an offset >= new_size
2411 */
2412 ret = btrfs_del_leaf(trans, root, path, leaf_start);
2413 BUG_ON(ret);
2414
2415 if (root->ref_cows && leaf_gen < trans->transid) {
2416 ref = btrfs_alloc_leaf_ref(root, 0);
2417 if (ref) {
2418 ref->root_gen = root->root_key.offset;
2419 ref->bytenr = leaf_start;
2420 ref->owner = 0;
2421 ref->generation = leaf_gen;
2422 ref->nritems = 0;
2423
2424 btrfs_sort_leaf_ref(ref);
2425
2426 ret = btrfs_add_leaf_ref(root, ref, 0);
2427 WARN_ON(ret);
2428 btrfs_free_leaf_ref(root, ref);
2429 } else {
2430 WARN_ON(1);
2431 }
2432 }
2433 next_key:
2434 btrfs_release_path(root, path);
2435
2436 if (other_key.objectid == inode->i_ino &&
2437 other_key.type == key.type && other_key.offset > key.offset) {
2438 key.offset = other_key.offset;
2439 cond_resched();
2440 goto again;
2441 }
2442 ret = 0;
2443 out:
2444 /* fixup any changes we've made to the path */
2445 path->lowest_level = 0;
2446 path->keep_locks = 0;
2447 btrfs_release_path(root, path);
2448 return ret;
2449 }
2450
2451 #endif
2452
2453 /*
2454 * this can truncate away extent items, csum items and directory items.
2455 * It starts at a high offset and removes keys until it can't find
2456 * any higher than new_size
2457 *
2458 * csum items that cross the new i_size are truncated to the new size
2459 * as well.
2460 *
2461 * min_type is the minimum key type to truncate down to. If set to 0, this
2462 * will kill all the items on this inode, including the INODE_ITEM_KEY.
2463 */
btrfs_truncate_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,u64 new_size,u32 min_type)2464 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2465 struct btrfs_root *root,
2466 struct inode *inode,
2467 u64 new_size, u32 min_type)
2468 {
2469 int ret;
2470 struct btrfs_path *path;
2471 struct btrfs_key key;
2472 struct btrfs_key found_key;
2473 u32 found_type = (u8)-1;
2474 struct extent_buffer *leaf;
2475 struct btrfs_file_extent_item *fi;
2476 u64 extent_start = 0;
2477 u64 extent_num_bytes = 0;
2478 u64 item_end = 0;
2479 u64 root_gen = 0;
2480 u64 root_owner = 0;
2481 int found_extent;
2482 int del_item;
2483 int pending_del_nr = 0;
2484 int pending_del_slot = 0;
2485 int extent_type = -1;
2486 int encoding;
2487 u64 mask = root->sectorsize - 1;
2488
2489 if (root->ref_cows)
2490 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2491 path = btrfs_alloc_path();
2492 path->reada = -1;
2493 BUG_ON(!path);
2494
2495 /* FIXME, add redo link to tree so we don't leak on crash */
2496 key.objectid = inode->i_ino;
2497 key.offset = (u64)-1;
2498 key.type = (u8)-1;
2499
2500 search_again:
2501 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2502 if (ret < 0)
2503 goto error;
2504
2505 if (ret > 0) {
2506 /* there are no items in the tree for us to truncate, we're
2507 * done
2508 */
2509 if (path->slots[0] == 0) {
2510 ret = 0;
2511 goto error;
2512 }
2513 path->slots[0]--;
2514 }
2515
2516 while (1) {
2517 fi = NULL;
2518 leaf = path->nodes[0];
2519 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2520 found_type = btrfs_key_type(&found_key);
2521 encoding = 0;
2522
2523 if (found_key.objectid != inode->i_ino)
2524 break;
2525
2526 if (found_type < min_type)
2527 break;
2528
2529 item_end = found_key.offset;
2530 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2531 fi = btrfs_item_ptr(leaf, path->slots[0],
2532 struct btrfs_file_extent_item);
2533 extent_type = btrfs_file_extent_type(leaf, fi);
2534 encoding = btrfs_file_extent_compression(leaf, fi);
2535 encoding |= btrfs_file_extent_encryption(leaf, fi);
2536 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2537
2538 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2539 item_end +=
2540 btrfs_file_extent_num_bytes(leaf, fi);
2541 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2542 item_end += btrfs_file_extent_inline_len(leaf,
2543 fi);
2544 }
2545 item_end--;
2546 }
2547 if (item_end < new_size) {
2548 if (found_type == BTRFS_DIR_ITEM_KEY)
2549 found_type = BTRFS_INODE_ITEM_KEY;
2550 else if (found_type == BTRFS_EXTENT_ITEM_KEY)
2551 found_type = BTRFS_EXTENT_DATA_KEY;
2552 else if (found_type == BTRFS_EXTENT_DATA_KEY)
2553 found_type = BTRFS_XATTR_ITEM_KEY;
2554 else if (found_type == BTRFS_XATTR_ITEM_KEY)
2555 found_type = BTRFS_INODE_REF_KEY;
2556 else if (found_type)
2557 found_type--;
2558 else
2559 break;
2560 btrfs_set_key_type(&key, found_type);
2561 goto next;
2562 }
2563 if (found_key.offset >= new_size)
2564 del_item = 1;
2565 else
2566 del_item = 0;
2567 found_extent = 0;
2568
2569 /* FIXME, shrink the extent if the ref count is only 1 */
2570 if (found_type != BTRFS_EXTENT_DATA_KEY)
2571 goto delete;
2572
2573 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2574 u64 num_dec;
2575 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2576 if (!del_item && !encoding) {
2577 u64 orig_num_bytes =
2578 btrfs_file_extent_num_bytes(leaf, fi);
2579 extent_num_bytes = new_size -
2580 found_key.offset + root->sectorsize - 1;
2581 extent_num_bytes = extent_num_bytes &
2582 ~((u64)root->sectorsize - 1);
2583 btrfs_set_file_extent_num_bytes(leaf, fi,
2584 extent_num_bytes);
2585 num_dec = (orig_num_bytes -
2586 extent_num_bytes);
2587 if (root->ref_cows && extent_start != 0)
2588 inode_sub_bytes(inode, num_dec);
2589 btrfs_mark_buffer_dirty(leaf);
2590 } else {
2591 extent_num_bytes =
2592 btrfs_file_extent_disk_num_bytes(leaf,
2593 fi);
2594 /* FIXME blocksize != 4096 */
2595 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2596 if (extent_start != 0) {
2597 found_extent = 1;
2598 if (root->ref_cows)
2599 inode_sub_bytes(inode, num_dec);
2600 }
2601 root_gen = btrfs_header_generation(leaf);
2602 root_owner = btrfs_header_owner(leaf);
2603 }
2604 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2605 /*
2606 * we can't truncate inline items that have had
2607 * special encodings
2608 */
2609 if (!del_item &&
2610 btrfs_file_extent_compression(leaf, fi) == 0 &&
2611 btrfs_file_extent_encryption(leaf, fi) == 0 &&
2612 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2613 u32 size = new_size - found_key.offset;
2614
2615 if (root->ref_cows) {
2616 inode_sub_bytes(inode, item_end + 1 -
2617 new_size);
2618 }
2619 size =
2620 btrfs_file_extent_calc_inline_size(size);
2621 ret = btrfs_truncate_item(trans, root, path,
2622 size, 1);
2623 BUG_ON(ret);
2624 } else if (root->ref_cows) {
2625 inode_sub_bytes(inode, item_end + 1 -
2626 found_key.offset);
2627 }
2628 }
2629 delete:
2630 if (del_item) {
2631 if (!pending_del_nr) {
2632 /* no pending yet, add ourselves */
2633 pending_del_slot = path->slots[0];
2634 pending_del_nr = 1;
2635 } else if (pending_del_nr &&
2636 path->slots[0] + 1 == pending_del_slot) {
2637 /* hop on the pending chunk */
2638 pending_del_nr++;
2639 pending_del_slot = path->slots[0];
2640 } else {
2641 BUG();
2642 }
2643 } else {
2644 break;
2645 }
2646 if (found_extent) {
2647 ret = btrfs_free_extent(trans, root, extent_start,
2648 extent_num_bytes,
2649 leaf->start, root_owner,
2650 root_gen, inode->i_ino, 0);
2651 BUG_ON(ret);
2652 }
2653 next:
2654 if (path->slots[0] == 0) {
2655 if (pending_del_nr)
2656 goto del_pending;
2657 btrfs_release_path(root, path);
2658 if (found_type == BTRFS_INODE_ITEM_KEY)
2659 break;
2660 goto search_again;
2661 }
2662
2663 path->slots[0]--;
2664 if (pending_del_nr &&
2665 path->slots[0] + 1 != pending_del_slot) {
2666 struct btrfs_key debug;
2667 del_pending:
2668 btrfs_item_key_to_cpu(path->nodes[0], &debug,
2669 pending_del_slot);
2670 ret = btrfs_del_items(trans, root, path,
2671 pending_del_slot,
2672 pending_del_nr);
2673 BUG_ON(ret);
2674 pending_del_nr = 0;
2675 btrfs_release_path(root, path);
2676 if (found_type == BTRFS_INODE_ITEM_KEY)
2677 break;
2678 goto search_again;
2679 }
2680 }
2681 ret = 0;
2682 error:
2683 if (pending_del_nr) {
2684 ret = btrfs_del_items(trans, root, path, pending_del_slot,
2685 pending_del_nr);
2686 }
2687 btrfs_free_path(path);
2688 inode->i_sb->s_dirt = 1;
2689 return ret;
2690 }
2691
2692 /*
2693 * taken from block_truncate_page, but does cow as it zeros out
2694 * any bytes left in the last page in the file.
2695 */
btrfs_truncate_page(struct address_space * mapping,loff_t from)2696 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2697 {
2698 struct inode *inode = mapping->host;
2699 struct btrfs_root *root = BTRFS_I(inode)->root;
2700 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2701 struct btrfs_ordered_extent *ordered;
2702 char *kaddr;
2703 u32 blocksize = root->sectorsize;
2704 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2705 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2706 struct page *page;
2707 int ret = 0;
2708 u64 page_start;
2709 u64 page_end;
2710
2711 if ((offset & (blocksize - 1)) == 0)
2712 goto out;
2713
2714 ret = -ENOMEM;
2715 again:
2716 page = grab_cache_page(mapping, index);
2717 if (!page)
2718 goto out;
2719
2720 page_start = page_offset(page);
2721 page_end = page_start + PAGE_CACHE_SIZE - 1;
2722
2723 if (!PageUptodate(page)) {
2724 ret = btrfs_readpage(NULL, page);
2725 lock_page(page);
2726 if (page->mapping != mapping) {
2727 unlock_page(page);
2728 page_cache_release(page);
2729 goto again;
2730 }
2731 if (!PageUptodate(page)) {
2732 ret = -EIO;
2733 goto out_unlock;
2734 }
2735 }
2736 wait_on_page_writeback(page);
2737
2738 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2739 set_page_extent_mapped(page);
2740
2741 ordered = btrfs_lookup_ordered_extent(inode, page_start);
2742 if (ordered) {
2743 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2744 unlock_page(page);
2745 page_cache_release(page);
2746 btrfs_start_ordered_extent(inode, ordered, 1);
2747 btrfs_put_ordered_extent(ordered);
2748 goto again;
2749 }
2750
2751 btrfs_set_extent_delalloc(inode, page_start, page_end);
2752 ret = 0;
2753 if (offset != PAGE_CACHE_SIZE) {
2754 kaddr = kmap(page);
2755 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2756 flush_dcache_page(page);
2757 kunmap(page);
2758 }
2759 ClearPageChecked(page);
2760 set_page_dirty(page);
2761 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2762
2763 out_unlock:
2764 unlock_page(page);
2765 page_cache_release(page);
2766 out:
2767 return ret;
2768 }
2769
btrfs_cont_expand(struct inode * inode,loff_t size)2770 int btrfs_cont_expand(struct inode *inode, loff_t size)
2771 {
2772 struct btrfs_trans_handle *trans;
2773 struct btrfs_root *root = BTRFS_I(inode)->root;
2774 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2775 struct extent_map *em;
2776 u64 mask = root->sectorsize - 1;
2777 u64 hole_start = (inode->i_size + mask) & ~mask;
2778 u64 block_end = (size + mask) & ~mask;
2779 u64 last_byte;
2780 u64 cur_offset;
2781 u64 hole_size;
2782 int err;
2783
2784 if (size <= hole_start)
2785 return 0;
2786
2787 err = btrfs_check_metadata_free_space(root);
2788 if (err)
2789 return err;
2790
2791 btrfs_truncate_page(inode->i_mapping, inode->i_size);
2792
2793 while (1) {
2794 struct btrfs_ordered_extent *ordered;
2795 btrfs_wait_ordered_range(inode, hole_start,
2796 block_end - hole_start);
2797 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2798 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2799 if (!ordered)
2800 break;
2801 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2802 btrfs_put_ordered_extent(ordered);
2803 }
2804
2805 trans = btrfs_start_transaction(root, 1);
2806 btrfs_set_trans_block_group(trans, inode);
2807
2808 cur_offset = hole_start;
2809 while (1) {
2810 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2811 block_end - cur_offset, 0);
2812 BUG_ON(IS_ERR(em) || !em);
2813 last_byte = min(extent_map_end(em), block_end);
2814 last_byte = (last_byte + mask) & ~mask;
2815 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2816 u64 hint_byte = 0;
2817 hole_size = last_byte - cur_offset;
2818 err = btrfs_drop_extents(trans, root, inode,
2819 cur_offset,
2820 cur_offset + hole_size,
2821 cur_offset, &hint_byte);
2822 if (err)
2823 break;
2824 err = btrfs_insert_file_extent(trans, root,
2825 inode->i_ino, cur_offset, 0,
2826 0, hole_size, 0, hole_size,
2827 0, 0, 0);
2828 btrfs_drop_extent_cache(inode, hole_start,
2829 last_byte - 1, 0);
2830 }
2831 free_extent_map(em);
2832 cur_offset = last_byte;
2833 if (err || cur_offset >= block_end)
2834 break;
2835 }
2836
2837 btrfs_end_transaction(trans, root);
2838 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2839 return err;
2840 }
2841
btrfs_setattr(struct dentry * dentry,struct iattr * attr)2842 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2843 {
2844 struct inode *inode = dentry->d_inode;
2845 int err;
2846
2847 err = inode_change_ok(inode, attr);
2848 if (err)
2849 return err;
2850
2851 if (S_ISREG(inode->i_mode) &&
2852 attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
2853 err = btrfs_cont_expand(inode, attr->ia_size);
2854 if (err)
2855 return err;
2856 }
2857
2858 err = inode_setattr(inode, attr);
2859
2860 if (!err && ((attr->ia_valid & ATTR_MODE)))
2861 err = btrfs_acl_chmod(inode);
2862 return err;
2863 }
2864
btrfs_delete_inode(struct inode * inode)2865 void btrfs_delete_inode(struct inode *inode)
2866 {
2867 struct btrfs_trans_handle *trans;
2868 struct btrfs_root *root = BTRFS_I(inode)->root;
2869 unsigned long nr;
2870 int ret;
2871
2872 truncate_inode_pages(&inode->i_data, 0);
2873 if (is_bad_inode(inode)) {
2874 btrfs_orphan_del(NULL, inode);
2875 goto no_delete;
2876 }
2877 btrfs_wait_ordered_range(inode, 0, (u64)-1);
2878
2879 btrfs_i_size_write(inode, 0);
2880 trans = btrfs_join_transaction(root, 1);
2881
2882 btrfs_set_trans_block_group(trans, inode);
2883 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
2884 if (ret) {
2885 btrfs_orphan_del(NULL, inode);
2886 goto no_delete_lock;
2887 }
2888
2889 btrfs_orphan_del(trans, inode);
2890
2891 nr = trans->blocks_used;
2892 clear_inode(inode);
2893
2894 btrfs_end_transaction(trans, root);
2895 btrfs_btree_balance_dirty(root, nr);
2896 return;
2897
2898 no_delete_lock:
2899 nr = trans->blocks_used;
2900 btrfs_end_transaction(trans, root);
2901 btrfs_btree_balance_dirty(root, nr);
2902 no_delete:
2903 clear_inode(inode);
2904 }
2905
2906 /*
2907 * this returns the key found in the dir entry in the location pointer.
2908 * If no dir entries were found, location->objectid is 0.
2909 */
btrfs_inode_by_name(struct inode * dir,struct dentry * dentry,struct btrfs_key * location)2910 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
2911 struct btrfs_key *location)
2912 {
2913 const char *name = dentry->d_name.name;
2914 int namelen = dentry->d_name.len;
2915 struct btrfs_dir_item *di;
2916 struct btrfs_path *path;
2917 struct btrfs_root *root = BTRFS_I(dir)->root;
2918 int ret = 0;
2919
2920 path = btrfs_alloc_path();
2921 BUG_ON(!path);
2922
2923 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
2924 namelen, 0);
2925 if (IS_ERR(di))
2926 ret = PTR_ERR(di);
2927
2928 if (!di || IS_ERR(di))
2929 goto out_err;
2930
2931 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
2932 out:
2933 btrfs_free_path(path);
2934 return ret;
2935 out_err:
2936 location->objectid = 0;
2937 goto out;
2938 }
2939
2940 /*
2941 * when we hit a tree root in a directory, the btrfs part of the inode
2942 * needs to be changed to reflect the root directory of the tree root. This
2943 * is kind of like crossing a mount point.
2944 */
fixup_tree_root_location(struct btrfs_root * root,struct btrfs_key * location,struct btrfs_root ** sub_root,struct dentry * dentry)2945 static int fixup_tree_root_location(struct btrfs_root *root,
2946 struct btrfs_key *location,
2947 struct btrfs_root **sub_root,
2948 struct dentry *dentry)
2949 {
2950 struct btrfs_root_item *ri;
2951
2952 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
2953 return 0;
2954 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
2955 return 0;
2956
2957 *sub_root = btrfs_read_fs_root(root->fs_info, location,
2958 dentry->d_name.name,
2959 dentry->d_name.len);
2960 if (IS_ERR(*sub_root))
2961 return PTR_ERR(*sub_root);
2962
2963 ri = &(*sub_root)->root_item;
2964 location->objectid = btrfs_root_dirid(ri);
2965 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2966 location->offset = 0;
2967
2968 return 0;
2969 }
2970
init_btrfs_i(struct inode * inode)2971 static noinline void init_btrfs_i(struct inode *inode)
2972 {
2973 struct btrfs_inode *bi = BTRFS_I(inode);
2974
2975 bi->i_acl = NULL;
2976 bi->i_default_acl = NULL;
2977
2978 bi->generation = 0;
2979 bi->sequence = 0;
2980 bi->last_trans = 0;
2981 bi->logged_trans = 0;
2982 bi->delalloc_bytes = 0;
2983 bi->reserved_bytes = 0;
2984 bi->disk_i_size = 0;
2985 bi->flags = 0;
2986 bi->index_cnt = (u64)-1;
2987 bi->log_dirty_trans = 0;
2988 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
2989 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
2990 inode->i_mapping, GFP_NOFS);
2991 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
2992 inode->i_mapping, GFP_NOFS);
2993 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
2994 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
2995 mutex_init(&BTRFS_I(inode)->extent_mutex);
2996 mutex_init(&BTRFS_I(inode)->log_mutex);
2997 }
2998
btrfs_init_locked_inode(struct inode * inode,void * p)2999 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3000 {
3001 struct btrfs_iget_args *args = p;
3002 inode->i_ino = args->ino;
3003 init_btrfs_i(inode);
3004 BTRFS_I(inode)->root = args->root;
3005 btrfs_set_inode_space_info(args->root, inode);
3006 return 0;
3007 }
3008
btrfs_find_actor(struct inode * inode,void * opaque)3009 static int btrfs_find_actor(struct inode *inode, void *opaque)
3010 {
3011 struct btrfs_iget_args *args = opaque;
3012 return args->ino == inode->i_ino &&
3013 args->root == BTRFS_I(inode)->root;
3014 }
3015
btrfs_ilookup(struct super_block * s,u64 objectid,struct btrfs_root * root,int wait)3016 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
3017 struct btrfs_root *root, int wait)
3018 {
3019 struct inode *inode;
3020 struct btrfs_iget_args args;
3021 args.ino = objectid;
3022 args.root = root;
3023
3024 if (wait) {
3025 inode = ilookup5(s, objectid, btrfs_find_actor,
3026 (void *)&args);
3027 } else {
3028 inode = ilookup5_nowait(s, objectid, btrfs_find_actor,
3029 (void *)&args);
3030 }
3031 return inode;
3032 }
3033
btrfs_iget_locked(struct super_block * s,u64 objectid,struct btrfs_root * root)3034 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
3035 struct btrfs_root *root)
3036 {
3037 struct inode *inode;
3038 struct btrfs_iget_args args;
3039 args.ino = objectid;
3040 args.root = root;
3041
3042 inode = iget5_locked(s, objectid, btrfs_find_actor,
3043 btrfs_init_locked_inode,
3044 (void *)&args);
3045 return inode;
3046 }
3047
3048 /* Get an inode object given its location and corresponding root.
3049 * Returns in *is_new if the inode was read from disk
3050 */
btrfs_iget(struct super_block * s,struct btrfs_key * location,struct btrfs_root * root,int * is_new)3051 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3052 struct btrfs_root *root, int *is_new)
3053 {
3054 struct inode *inode;
3055
3056 inode = btrfs_iget_locked(s, location->objectid, root);
3057 if (!inode)
3058 return ERR_PTR(-EACCES);
3059
3060 if (inode->i_state & I_NEW) {
3061 BTRFS_I(inode)->root = root;
3062 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3063 btrfs_read_locked_inode(inode);
3064 unlock_new_inode(inode);
3065 if (is_new)
3066 *is_new = 1;
3067 } else {
3068 if (is_new)
3069 *is_new = 0;
3070 }
3071
3072 return inode;
3073 }
3074
btrfs_lookup_dentry(struct inode * dir,struct dentry * dentry)3075 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3076 {
3077 struct inode *inode;
3078 struct btrfs_inode *bi = BTRFS_I(dir);
3079 struct btrfs_root *root = bi->root;
3080 struct btrfs_root *sub_root = root;
3081 struct btrfs_key location;
3082 int ret, new;
3083
3084 if (dentry->d_name.len > BTRFS_NAME_LEN)
3085 return ERR_PTR(-ENAMETOOLONG);
3086
3087 ret = btrfs_inode_by_name(dir, dentry, &location);
3088
3089 if (ret < 0)
3090 return ERR_PTR(ret);
3091
3092 inode = NULL;
3093 if (location.objectid) {
3094 ret = fixup_tree_root_location(root, &location, &sub_root,
3095 dentry);
3096 if (ret < 0)
3097 return ERR_PTR(ret);
3098 if (ret > 0)
3099 return ERR_PTR(-ENOENT);
3100 inode = btrfs_iget(dir->i_sb, &location, sub_root, &new);
3101 if (IS_ERR(inode))
3102 return ERR_CAST(inode);
3103 }
3104 return inode;
3105 }
3106
btrfs_lookup(struct inode * dir,struct dentry * dentry,struct nameidata * nd)3107 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3108 struct nameidata *nd)
3109 {
3110 struct inode *inode;
3111
3112 if (dentry->d_name.len > BTRFS_NAME_LEN)
3113 return ERR_PTR(-ENAMETOOLONG);
3114
3115 inode = btrfs_lookup_dentry(dir, dentry);
3116 if (IS_ERR(inode))
3117 return ERR_CAST(inode);
3118
3119 return d_splice_alias(inode, dentry);
3120 }
3121
3122 static unsigned char btrfs_filetype_table[] = {
3123 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3124 };
3125
btrfs_real_readdir(struct file * filp,void * dirent,filldir_t filldir)3126 static int btrfs_real_readdir(struct file *filp, void *dirent,
3127 filldir_t filldir)
3128 {
3129 struct inode *inode = filp->f_dentry->d_inode;
3130 struct btrfs_root *root = BTRFS_I(inode)->root;
3131 struct btrfs_item *item;
3132 struct btrfs_dir_item *di;
3133 struct btrfs_key key;
3134 struct btrfs_key found_key;
3135 struct btrfs_path *path;
3136 int ret;
3137 u32 nritems;
3138 struct extent_buffer *leaf;
3139 int slot;
3140 int advance;
3141 unsigned char d_type;
3142 int over = 0;
3143 u32 di_cur;
3144 u32 di_total;
3145 u32 di_len;
3146 int key_type = BTRFS_DIR_INDEX_KEY;
3147 char tmp_name[32];
3148 char *name_ptr;
3149 int name_len;
3150
3151 /* FIXME, use a real flag for deciding about the key type */
3152 if (root->fs_info->tree_root == root)
3153 key_type = BTRFS_DIR_ITEM_KEY;
3154
3155 /* special case for "." */
3156 if (filp->f_pos == 0) {
3157 over = filldir(dirent, ".", 1,
3158 1, inode->i_ino,
3159 DT_DIR);
3160 if (over)
3161 return 0;
3162 filp->f_pos = 1;
3163 }
3164 /* special case for .., just use the back ref */
3165 if (filp->f_pos == 1) {
3166 u64 pino = parent_ino(filp->f_path.dentry);
3167 over = filldir(dirent, "..", 2,
3168 2, pino, DT_DIR);
3169 if (over)
3170 return 0;
3171 filp->f_pos = 2;
3172 }
3173 path = btrfs_alloc_path();
3174 path->reada = 2;
3175
3176 btrfs_set_key_type(&key, key_type);
3177 key.offset = filp->f_pos;
3178 key.objectid = inode->i_ino;
3179
3180 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3181 if (ret < 0)
3182 goto err;
3183 advance = 0;
3184
3185 while (1) {
3186 leaf = path->nodes[0];
3187 nritems = btrfs_header_nritems(leaf);
3188 slot = path->slots[0];
3189 if (advance || slot >= nritems) {
3190 if (slot >= nritems - 1) {
3191 ret = btrfs_next_leaf(root, path);
3192 if (ret)
3193 break;
3194 leaf = path->nodes[0];
3195 nritems = btrfs_header_nritems(leaf);
3196 slot = path->slots[0];
3197 } else {
3198 slot++;
3199 path->slots[0]++;
3200 }
3201 }
3202
3203 advance = 1;
3204 item = btrfs_item_nr(leaf, slot);
3205 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3206
3207 if (found_key.objectid != key.objectid)
3208 break;
3209 if (btrfs_key_type(&found_key) != key_type)
3210 break;
3211 if (found_key.offset < filp->f_pos)
3212 continue;
3213
3214 filp->f_pos = found_key.offset;
3215
3216 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3217 di_cur = 0;
3218 di_total = btrfs_item_size(leaf, item);
3219
3220 while (di_cur < di_total) {
3221 struct btrfs_key location;
3222
3223 name_len = btrfs_dir_name_len(leaf, di);
3224 if (name_len <= sizeof(tmp_name)) {
3225 name_ptr = tmp_name;
3226 } else {
3227 name_ptr = kmalloc(name_len, GFP_NOFS);
3228 if (!name_ptr) {
3229 ret = -ENOMEM;
3230 goto err;
3231 }
3232 }
3233 read_extent_buffer(leaf, name_ptr,
3234 (unsigned long)(di + 1), name_len);
3235
3236 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3237 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3238
3239 /* is this a reference to our own snapshot? If so
3240 * skip it
3241 */
3242 if (location.type == BTRFS_ROOT_ITEM_KEY &&
3243 location.objectid == root->root_key.objectid) {
3244 over = 0;
3245 goto skip;
3246 }
3247 over = filldir(dirent, name_ptr, name_len,
3248 found_key.offset, location.objectid,
3249 d_type);
3250
3251 skip:
3252 if (name_ptr != tmp_name)
3253 kfree(name_ptr);
3254
3255 if (over)
3256 goto nopos;
3257 di_len = btrfs_dir_name_len(leaf, di) +
3258 btrfs_dir_data_len(leaf, di) + sizeof(*di);
3259 di_cur += di_len;
3260 di = (struct btrfs_dir_item *)((char *)di + di_len);
3261 }
3262 }
3263
3264 /* Reached end of directory/root. Bump pos past the last item. */
3265 if (key_type == BTRFS_DIR_INDEX_KEY)
3266 filp->f_pos = INT_LIMIT(off_t);
3267 else
3268 filp->f_pos++;
3269 nopos:
3270 ret = 0;
3271 err:
3272 btrfs_free_path(path);
3273 return ret;
3274 }
3275
btrfs_write_inode(struct inode * inode,int wait)3276 int btrfs_write_inode(struct inode *inode, int wait)
3277 {
3278 struct btrfs_root *root = BTRFS_I(inode)->root;
3279 struct btrfs_trans_handle *trans;
3280 int ret = 0;
3281
3282 if (root->fs_info->btree_inode == inode)
3283 return 0;
3284
3285 if (wait) {
3286 trans = btrfs_join_transaction(root, 1);
3287 btrfs_set_trans_block_group(trans, inode);
3288 ret = btrfs_commit_transaction(trans, root);
3289 }
3290 return ret;
3291 }
3292
3293 /*
3294 * This is somewhat expensive, updating the tree every time the
3295 * inode changes. But, it is most likely to find the inode in cache.
3296 * FIXME, needs more benchmarking...there are no reasons other than performance
3297 * to keep or drop this code.
3298 */
btrfs_dirty_inode(struct inode * inode)3299 void btrfs_dirty_inode(struct inode *inode)
3300 {
3301 struct btrfs_root *root = BTRFS_I(inode)->root;
3302 struct btrfs_trans_handle *trans;
3303
3304 trans = btrfs_join_transaction(root, 1);
3305 btrfs_set_trans_block_group(trans, inode);
3306 btrfs_update_inode(trans, root, inode);
3307 btrfs_end_transaction(trans, root);
3308 }
3309
3310 /*
3311 * find the highest existing sequence number in a directory
3312 * and then set the in-memory index_cnt variable to reflect
3313 * free sequence numbers
3314 */
btrfs_set_inode_index_count(struct inode * inode)3315 static int btrfs_set_inode_index_count(struct inode *inode)
3316 {
3317 struct btrfs_root *root = BTRFS_I(inode)->root;
3318 struct btrfs_key key, found_key;
3319 struct btrfs_path *path;
3320 struct extent_buffer *leaf;
3321 int ret;
3322
3323 key.objectid = inode->i_ino;
3324 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3325 key.offset = (u64)-1;
3326
3327 path = btrfs_alloc_path();
3328 if (!path)
3329 return -ENOMEM;
3330
3331 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3332 if (ret < 0)
3333 goto out;
3334 /* FIXME: we should be able to handle this */
3335 if (ret == 0)
3336 goto out;
3337 ret = 0;
3338
3339 /*
3340 * MAGIC NUMBER EXPLANATION:
3341 * since we search a directory based on f_pos we have to start at 2
3342 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3343 * else has to start at 2
3344 */
3345 if (path->slots[0] == 0) {
3346 BTRFS_I(inode)->index_cnt = 2;
3347 goto out;
3348 }
3349
3350 path->slots[0]--;
3351
3352 leaf = path->nodes[0];
3353 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3354
3355 if (found_key.objectid != inode->i_ino ||
3356 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3357 BTRFS_I(inode)->index_cnt = 2;
3358 goto out;
3359 }
3360
3361 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3362 out:
3363 btrfs_free_path(path);
3364 return ret;
3365 }
3366
3367 /*
3368 * helper to find a free sequence number in a given directory. This current
3369 * code is very simple, later versions will do smarter things in the btree
3370 */
btrfs_set_inode_index(struct inode * dir,u64 * index)3371 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3372 {
3373 int ret = 0;
3374
3375 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3376 ret = btrfs_set_inode_index_count(dir);
3377 if (ret)
3378 return ret;
3379 }
3380
3381 *index = BTRFS_I(dir)->index_cnt;
3382 BTRFS_I(dir)->index_cnt++;
3383
3384 return ret;
3385 }
3386
btrfs_new_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,const char * name,int name_len,u64 ref_objectid,u64 objectid,u64 alloc_hint,int mode,u64 * index)3387 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3388 struct btrfs_root *root,
3389 struct inode *dir,
3390 const char *name, int name_len,
3391 u64 ref_objectid, u64 objectid,
3392 u64 alloc_hint, int mode, u64 *index)
3393 {
3394 struct inode *inode;
3395 struct btrfs_inode_item *inode_item;
3396 struct btrfs_key *location;
3397 struct btrfs_path *path;
3398 struct btrfs_inode_ref *ref;
3399 struct btrfs_key key[2];
3400 u32 sizes[2];
3401 unsigned long ptr;
3402 int ret;
3403 int owner;
3404
3405 path = btrfs_alloc_path();
3406 BUG_ON(!path);
3407
3408 inode = new_inode(root->fs_info->sb);
3409 if (!inode)
3410 return ERR_PTR(-ENOMEM);
3411
3412 if (dir) {
3413 ret = btrfs_set_inode_index(dir, index);
3414 if (ret)
3415 return ERR_PTR(ret);
3416 }
3417 /*
3418 * index_cnt is ignored for everything but a dir,
3419 * btrfs_get_inode_index_count has an explanation for the magic
3420 * number
3421 */
3422 init_btrfs_i(inode);
3423 BTRFS_I(inode)->index_cnt = 2;
3424 BTRFS_I(inode)->root = root;
3425 BTRFS_I(inode)->generation = trans->transid;
3426 btrfs_set_inode_space_info(root, inode);
3427
3428 if (mode & S_IFDIR)
3429 owner = 0;
3430 else
3431 owner = 1;
3432 BTRFS_I(inode)->block_group =
3433 btrfs_find_block_group(root, 0, alloc_hint, owner);
3434 if ((mode & S_IFREG)) {
3435 if (btrfs_test_opt(root, NODATASUM))
3436 btrfs_set_flag(inode, NODATASUM);
3437 if (btrfs_test_opt(root, NODATACOW))
3438 btrfs_set_flag(inode, NODATACOW);
3439 }
3440
3441 key[0].objectid = objectid;
3442 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3443 key[0].offset = 0;
3444
3445 key[1].objectid = objectid;
3446 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3447 key[1].offset = ref_objectid;
3448
3449 sizes[0] = sizeof(struct btrfs_inode_item);
3450 sizes[1] = name_len + sizeof(*ref);
3451
3452 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3453 if (ret != 0)
3454 goto fail;
3455
3456 if (objectid > root->highest_inode)
3457 root->highest_inode = objectid;
3458
3459 inode->i_uid = current_fsuid();
3460
3461 if (dir && (dir->i_mode & S_ISGID)) {
3462 inode->i_gid = dir->i_gid;
3463 if (S_ISDIR(mode))
3464 mode |= S_ISGID;
3465 } else
3466 inode->i_gid = current_fsgid();
3467
3468 inode->i_mode = mode;
3469 inode->i_ino = objectid;
3470 inode_set_bytes(inode, 0);
3471 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3472 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3473 struct btrfs_inode_item);
3474 fill_inode_item(trans, path->nodes[0], inode_item, inode);
3475
3476 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3477 struct btrfs_inode_ref);
3478 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
3479 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
3480 ptr = (unsigned long)(ref + 1);
3481 write_extent_buffer(path->nodes[0], name, ptr, name_len);
3482
3483 btrfs_mark_buffer_dirty(path->nodes[0]);
3484 btrfs_free_path(path);
3485
3486 location = &BTRFS_I(inode)->location;
3487 location->objectid = objectid;
3488 location->offset = 0;
3489 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3490
3491 insert_inode_hash(inode);
3492 return inode;
3493 fail:
3494 if (dir)
3495 BTRFS_I(dir)->index_cnt--;
3496 btrfs_free_path(path);
3497 return ERR_PTR(ret);
3498 }
3499
btrfs_inode_type(struct inode * inode)3500 static inline u8 btrfs_inode_type(struct inode *inode)
3501 {
3502 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
3503 }
3504
3505 /*
3506 * utility function to add 'inode' into 'parent_inode' with
3507 * a give name and a given sequence number.
3508 * if 'add_backref' is true, also insert a backref from the
3509 * inode to the parent directory.
3510 */
btrfs_add_link(struct btrfs_trans_handle * trans,struct inode * parent_inode,struct inode * inode,const char * name,int name_len,int add_backref,u64 index)3511 int btrfs_add_link(struct btrfs_trans_handle *trans,
3512 struct inode *parent_inode, struct inode *inode,
3513 const char *name, int name_len, int add_backref, u64 index)
3514 {
3515 int ret;
3516 struct btrfs_key key;
3517 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
3518
3519 key.objectid = inode->i_ino;
3520 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3521 key.offset = 0;
3522
3523 ret = btrfs_insert_dir_item(trans, root, name, name_len,
3524 parent_inode->i_ino,
3525 &key, btrfs_inode_type(inode),
3526 index);
3527 if (ret == 0) {
3528 if (add_backref) {
3529 ret = btrfs_insert_inode_ref(trans, root,
3530 name, name_len,
3531 inode->i_ino,
3532 parent_inode->i_ino,
3533 index);
3534 }
3535 btrfs_i_size_write(parent_inode, parent_inode->i_size +
3536 name_len * 2);
3537 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
3538 ret = btrfs_update_inode(trans, root, parent_inode);
3539 }
3540 return ret;
3541 }
3542
btrfs_add_nondir(struct btrfs_trans_handle * trans,struct dentry * dentry,struct inode * inode,int backref,u64 index)3543 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
3544 struct dentry *dentry, struct inode *inode,
3545 int backref, u64 index)
3546 {
3547 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3548 inode, dentry->d_name.name,
3549 dentry->d_name.len, backref, index);
3550 if (!err) {
3551 d_instantiate(dentry, inode);
3552 return 0;
3553 }
3554 if (err > 0)
3555 err = -EEXIST;
3556 return err;
3557 }
3558
btrfs_mknod(struct inode * dir,struct dentry * dentry,int mode,dev_t rdev)3559 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3560 int mode, dev_t rdev)
3561 {
3562 struct btrfs_trans_handle *trans;
3563 struct btrfs_root *root = BTRFS_I(dir)->root;
3564 struct inode *inode = NULL;
3565 int err;
3566 int drop_inode = 0;
3567 u64 objectid;
3568 unsigned long nr = 0;
3569 u64 index = 0;
3570
3571 if (!new_valid_dev(rdev))
3572 return -EINVAL;
3573
3574 err = btrfs_check_metadata_free_space(root);
3575 if (err)
3576 goto fail;
3577
3578 trans = btrfs_start_transaction(root, 1);
3579 btrfs_set_trans_block_group(trans, dir);
3580
3581 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3582 if (err) {
3583 err = -ENOSPC;
3584 goto out_unlock;
3585 }
3586
3587 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3588 dentry->d_name.len,
3589 dentry->d_parent->d_inode->i_ino, objectid,
3590 BTRFS_I(dir)->block_group, mode, &index);
3591 err = PTR_ERR(inode);
3592 if (IS_ERR(inode))
3593 goto out_unlock;
3594
3595 err = btrfs_init_inode_security(inode, dir);
3596 if (err) {
3597 drop_inode = 1;
3598 goto out_unlock;
3599 }
3600
3601 btrfs_set_trans_block_group(trans, inode);
3602 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3603 if (err)
3604 drop_inode = 1;
3605 else {
3606 inode->i_op = &btrfs_special_inode_operations;
3607 init_special_inode(inode, inode->i_mode, rdev);
3608 btrfs_update_inode(trans, root, inode);
3609 }
3610 dir->i_sb->s_dirt = 1;
3611 btrfs_update_inode_block_group(trans, inode);
3612 btrfs_update_inode_block_group(trans, dir);
3613 out_unlock:
3614 nr = trans->blocks_used;
3615 btrfs_end_transaction_throttle(trans, root);
3616 fail:
3617 if (drop_inode) {
3618 inode_dec_link_count(inode);
3619 iput(inode);
3620 }
3621 btrfs_btree_balance_dirty(root, nr);
3622 return err;
3623 }
3624
btrfs_create(struct inode * dir,struct dentry * dentry,int mode,struct nameidata * nd)3625 static int btrfs_create(struct inode *dir, struct dentry *dentry,
3626 int mode, struct nameidata *nd)
3627 {
3628 struct btrfs_trans_handle *trans;
3629 struct btrfs_root *root = BTRFS_I(dir)->root;
3630 struct inode *inode = NULL;
3631 int err;
3632 int drop_inode = 0;
3633 unsigned long nr = 0;
3634 u64 objectid;
3635 u64 index = 0;
3636
3637 err = btrfs_check_metadata_free_space(root);
3638 if (err)
3639 goto fail;
3640 trans = btrfs_start_transaction(root, 1);
3641 btrfs_set_trans_block_group(trans, dir);
3642
3643 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3644 if (err) {
3645 err = -ENOSPC;
3646 goto out_unlock;
3647 }
3648
3649 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3650 dentry->d_name.len,
3651 dentry->d_parent->d_inode->i_ino,
3652 objectid, BTRFS_I(dir)->block_group, mode,
3653 &index);
3654 err = PTR_ERR(inode);
3655 if (IS_ERR(inode))
3656 goto out_unlock;
3657
3658 err = btrfs_init_inode_security(inode, dir);
3659 if (err) {
3660 drop_inode = 1;
3661 goto out_unlock;
3662 }
3663
3664 btrfs_set_trans_block_group(trans, inode);
3665 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3666 if (err)
3667 drop_inode = 1;
3668 else {
3669 inode->i_mapping->a_ops = &btrfs_aops;
3670 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3671 inode->i_fop = &btrfs_file_operations;
3672 inode->i_op = &btrfs_file_inode_operations;
3673 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3674 }
3675 dir->i_sb->s_dirt = 1;
3676 btrfs_update_inode_block_group(trans, inode);
3677 btrfs_update_inode_block_group(trans, dir);
3678 out_unlock:
3679 nr = trans->blocks_used;
3680 btrfs_end_transaction_throttle(trans, root);
3681 fail:
3682 if (drop_inode) {
3683 inode_dec_link_count(inode);
3684 iput(inode);
3685 }
3686 btrfs_btree_balance_dirty(root, nr);
3687 return err;
3688 }
3689
btrfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)3690 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
3691 struct dentry *dentry)
3692 {
3693 struct btrfs_trans_handle *trans;
3694 struct btrfs_root *root = BTRFS_I(dir)->root;
3695 struct inode *inode = old_dentry->d_inode;
3696 u64 index;
3697 unsigned long nr = 0;
3698 int err;
3699 int drop_inode = 0;
3700
3701 if (inode->i_nlink == 0)
3702 return -ENOENT;
3703
3704 btrfs_inc_nlink(inode);
3705 err = btrfs_check_metadata_free_space(root);
3706 if (err)
3707 goto fail;
3708 err = btrfs_set_inode_index(dir, &index);
3709 if (err)
3710 goto fail;
3711
3712 trans = btrfs_start_transaction(root, 1);
3713
3714 btrfs_set_trans_block_group(trans, dir);
3715 atomic_inc(&inode->i_count);
3716
3717 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
3718
3719 if (err)
3720 drop_inode = 1;
3721
3722 dir->i_sb->s_dirt = 1;
3723 btrfs_update_inode_block_group(trans, dir);
3724 err = btrfs_update_inode(trans, root, inode);
3725
3726 if (err)
3727 drop_inode = 1;
3728
3729 nr = trans->blocks_used;
3730 btrfs_end_transaction_throttle(trans, root);
3731 fail:
3732 if (drop_inode) {
3733 inode_dec_link_count(inode);
3734 iput(inode);
3735 }
3736 btrfs_btree_balance_dirty(root, nr);
3737 return err;
3738 }
3739
btrfs_mkdir(struct inode * dir,struct dentry * dentry,int mode)3740 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3741 {
3742 struct inode *inode = NULL;
3743 struct btrfs_trans_handle *trans;
3744 struct btrfs_root *root = BTRFS_I(dir)->root;
3745 int err = 0;
3746 int drop_on_err = 0;
3747 u64 objectid = 0;
3748 u64 index = 0;
3749 unsigned long nr = 1;
3750
3751 err = btrfs_check_metadata_free_space(root);
3752 if (err)
3753 goto out_unlock;
3754
3755 trans = btrfs_start_transaction(root, 1);
3756 btrfs_set_trans_block_group(trans, dir);
3757
3758 if (IS_ERR(trans)) {
3759 err = PTR_ERR(trans);
3760 goto out_unlock;
3761 }
3762
3763 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3764 if (err) {
3765 err = -ENOSPC;
3766 goto out_unlock;
3767 }
3768
3769 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3770 dentry->d_name.len,
3771 dentry->d_parent->d_inode->i_ino, objectid,
3772 BTRFS_I(dir)->block_group, S_IFDIR | mode,
3773 &index);
3774 if (IS_ERR(inode)) {
3775 err = PTR_ERR(inode);
3776 goto out_fail;
3777 }
3778
3779 drop_on_err = 1;
3780
3781 err = btrfs_init_inode_security(inode, dir);
3782 if (err)
3783 goto out_fail;
3784
3785 inode->i_op = &btrfs_dir_inode_operations;
3786 inode->i_fop = &btrfs_dir_file_operations;
3787 btrfs_set_trans_block_group(trans, inode);
3788
3789 btrfs_i_size_write(inode, 0);
3790 err = btrfs_update_inode(trans, root, inode);
3791 if (err)
3792 goto out_fail;
3793
3794 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3795 inode, dentry->d_name.name,
3796 dentry->d_name.len, 0, index);
3797 if (err)
3798 goto out_fail;
3799
3800 d_instantiate(dentry, inode);
3801 drop_on_err = 0;
3802 dir->i_sb->s_dirt = 1;
3803 btrfs_update_inode_block_group(trans, inode);
3804 btrfs_update_inode_block_group(trans, dir);
3805
3806 out_fail:
3807 nr = trans->blocks_used;
3808 btrfs_end_transaction_throttle(trans, root);
3809
3810 out_unlock:
3811 if (drop_on_err)
3812 iput(inode);
3813 btrfs_btree_balance_dirty(root, nr);
3814 return err;
3815 }
3816
3817 /* helper for btfs_get_extent. Given an existing extent in the tree,
3818 * and an extent that you want to insert, deal with overlap and insert
3819 * the new extent into the tree.
3820 */
merge_extent_mapping(struct extent_map_tree * em_tree,struct extent_map * existing,struct extent_map * em,u64 map_start,u64 map_len)3821 static int merge_extent_mapping(struct extent_map_tree *em_tree,
3822 struct extent_map *existing,
3823 struct extent_map *em,
3824 u64 map_start, u64 map_len)
3825 {
3826 u64 start_diff;
3827
3828 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
3829 start_diff = map_start - em->start;
3830 em->start = map_start;
3831 em->len = map_len;
3832 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
3833 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3834 em->block_start += start_diff;
3835 em->block_len -= start_diff;
3836 }
3837 return add_extent_mapping(em_tree, em);
3838 }
3839
uncompress_inline(struct btrfs_path * path,struct inode * inode,struct page * page,size_t pg_offset,u64 extent_offset,struct btrfs_file_extent_item * item)3840 static noinline int uncompress_inline(struct btrfs_path *path,
3841 struct inode *inode, struct page *page,
3842 size_t pg_offset, u64 extent_offset,
3843 struct btrfs_file_extent_item *item)
3844 {
3845 int ret;
3846 struct extent_buffer *leaf = path->nodes[0];
3847 char *tmp;
3848 size_t max_size;
3849 unsigned long inline_size;
3850 unsigned long ptr;
3851
3852 WARN_ON(pg_offset != 0);
3853 max_size = btrfs_file_extent_ram_bytes(leaf, item);
3854 inline_size = btrfs_file_extent_inline_item_len(leaf,
3855 btrfs_item_nr(leaf, path->slots[0]));
3856 tmp = kmalloc(inline_size, GFP_NOFS);
3857 ptr = btrfs_file_extent_inline_start(item);
3858
3859 read_extent_buffer(leaf, tmp, ptr, inline_size);
3860
3861 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
3862 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
3863 inline_size, max_size);
3864 if (ret) {
3865 char *kaddr = kmap_atomic(page, KM_USER0);
3866 unsigned long copy_size = min_t(u64,
3867 PAGE_CACHE_SIZE - pg_offset,
3868 max_size - extent_offset);
3869 memset(kaddr + pg_offset, 0, copy_size);
3870 kunmap_atomic(kaddr, KM_USER0);
3871 }
3872 kfree(tmp);
3873 return 0;
3874 }
3875
3876 /*
3877 * a bit scary, this does extent mapping from logical file offset to the disk.
3878 * the ugly parts come from merging extents from the disk with the in-ram
3879 * representation. This gets more complex because of the data=ordered code,
3880 * where the in-ram extents might be locked pending data=ordered completion.
3881 *
3882 * This also copies inline extents directly into the page.
3883 */
3884
btrfs_get_extent(struct inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,int create)3885 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
3886 size_t pg_offset, u64 start, u64 len,
3887 int create)
3888 {
3889 int ret;
3890 int err = 0;
3891 u64 bytenr;
3892 u64 extent_start = 0;
3893 u64 extent_end = 0;
3894 u64 objectid = inode->i_ino;
3895 u32 found_type;
3896 struct btrfs_path *path = NULL;
3897 struct btrfs_root *root = BTRFS_I(inode)->root;
3898 struct btrfs_file_extent_item *item;
3899 struct extent_buffer *leaf;
3900 struct btrfs_key found_key;
3901 struct extent_map *em = NULL;
3902 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3903 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3904 struct btrfs_trans_handle *trans = NULL;
3905 int compressed;
3906
3907 again:
3908 spin_lock(&em_tree->lock);
3909 em = lookup_extent_mapping(em_tree, start, len);
3910 if (em)
3911 em->bdev = root->fs_info->fs_devices->latest_bdev;
3912 spin_unlock(&em_tree->lock);
3913
3914 if (em) {
3915 if (em->start > start || em->start + em->len <= start)
3916 free_extent_map(em);
3917 else if (em->block_start == EXTENT_MAP_INLINE && page)
3918 free_extent_map(em);
3919 else
3920 goto out;
3921 }
3922 em = alloc_extent_map(GFP_NOFS);
3923 if (!em) {
3924 err = -ENOMEM;
3925 goto out;
3926 }
3927 em->bdev = root->fs_info->fs_devices->latest_bdev;
3928 em->start = EXTENT_MAP_HOLE;
3929 em->orig_start = EXTENT_MAP_HOLE;
3930 em->len = (u64)-1;
3931 em->block_len = (u64)-1;
3932
3933 if (!path) {
3934 path = btrfs_alloc_path();
3935 BUG_ON(!path);
3936 }
3937
3938 ret = btrfs_lookup_file_extent(trans, root, path,
3939 objectid, start, trans != NULL);
3940 if (ret < 0) {
3941 err = ret;
3942 goto out;
3943 }
3944
3945 if (ret != 0) {
3946 if (path->slots[0] == 0)
3947 goto not_found;
3948 path->slots[0]--;
3949 }
3950
3951 leaf = path->nodes[0];
3952 item = btrfs_item_ptr(leaf, path->slots[0],
3953 struct btrfs_file_extent_item);
3954 /* are we inside the extent that was found? */
3955 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3956 found_type = btrfs_key_type(&found_key);
3957 if (found_key.objectid != objectid ||
3958 found_type != BTRFS_EXTENT_DATA_KEY) {
3959 goto not_found;
3960 }
3961
3962 found_type = btrfs_file_extent_type(leaf, item);
3963 extent_start = found_key.offset;
3964 compressed = btrfs_file_extent_compression(leaf, item);
3965 if (found_type == BTRFS_FILE_EXTENT_REG ||
3966 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
3967 extent_end = extent_start +
3968 btrfs_file_extent_num_bytes(leaf, item);
3969 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
3970 size_t size;
3971 size = btrfs_file_extent_inline_len(leaf, item);
3972 extent_end = (extent_start + size + root->sectorsize - 1) &
3973 ~((u64)root->sectorsize - 1);
3974 }
3975
3976 if (start >= extent_end) {
3977 path->slots[0]++;
3978 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3979 ret = btrfs_next_leaf(root, path);
3980 if (ret < 0) {
3981 err = ret;
3982 goto out;
3983 }
3984 if (ret > 0)
3985 goto not_found;
3986 leaf = path->nodes[0];
3987 }
3988 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3989 if (found_key.objectid != objectid ||
3990 found_key.type != BTRFS_EXTENT_DATA_KEY)
3991 goto not_found;
3992 if (start + len <= found_key.offset)
3993 goto not_found;
3994 em->start = start;
3995 em->len = found_key.offset - start;
3996 goto not_found_em;
3997 }
3998
3999 if (found_type == BTRFS_FILE_EXTENT_REG ||
4000 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4001 em->start = extent_start;
4002 em->len = extent_end - extent_start;
4003 em->orig_start = extent_start -
4004 btrfs_file_extent_offset(leaf, item);
4005 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4006 if (bytenr == 0) {
4007 em->block_start = EXTENT_MAP_HOLE;
4008 goto insert;
4009 }
4010 if (compressed) {
4011 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4012 em->block_start = bytenr;
4013 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4014 item);
4015 } else {
4016 bytenr += btrfs_file_extent_offset(leaf, item);
4017 em->block_start = bytenr;
4018 em->block_len = em->len;
4019 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4020 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4021 }
4022 goto insert;
4023 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4024 unsigned long ptr;
4025 char *map;
4026 size_t size;
4027 size_t extent_offset;
4028 size_t copy_size;
4029
4030 em->block_start = EXTENT_MAP_INLINE;
4031 if (!page || create) {
4032 em->start = extent_start;
4033 em->len = extent_end - extent_start;
4034 goto out;
4035 }
4036
4037 size = btrfs_file_extent_inline_len(leaf, item);
4038 extent_offset = page_offset(page) + pg_offset - extent_start;
4039 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4040 size - extent_offset);
4041 em->start = extent_start + extent_offset;
4042 em->len = (copy_size + root->sectorsize - 1) &
4043 ~((u64)root->sectorsize - 1);
4044 em->orig_start = EXTENT_MAP_INLINE;
4045 if (compressed)
4046 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4047 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4048 if (create == 0 && !PageUptodate(page)) {
4049 if (btrfs_file_extent_compression(leaf, item) ==
4050 BTRFS_COMPRESS_ZLIB) {
4051 ret = uncompress_inline(path, inode, page,
4052 pg_offset,
4053 extent_offset, item);
4054 BUG_ON(ret);
4055 } else {
4056 map = kmap(page);
4057 read_extent_buffer(leaf, map + pg_offset, ptr,
4058 copy_size);
4059 kunmap(page);
4060 }
4061 flush_dcache_page(page);
4062 } else if (create && PageUptodate(page)) {
4063 if (!trans) {
4064 kunmap(page);
4065 free_extent_map(em);
4066 em = NULL;
4067 btrfs_release_path(root, path);
4068 trans = btrfs_join_transaction(root, 1);
4069 goto again;
4070 }
4071 map = kmap(page);
4072 write_extent_buffer(leaf, map + pg_offset, ptr,
4073 copy_size);
4074 kunmap(page);
4075 btrfs_mark_buffer_dirty(leaf);
4076 }
4077 set_extent_uptodate(io_tree, em->start,
4078 extent_map_end(em) - 1, GFP_NOFS);
4079 goto insert;
4080 } else {
4081 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4082 WARN_ON(1);
4083 }
4084 not_found:
4085 em->start = start;
4086 em->len = len;
4087 not_found_em:
4088 em->block_start = EXTENT_MAP_HOLE;
4089 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4090 insert:
4091 btrfs_release_path(root, path);
4092 if (em->start > start || extent_map_end(em) <= start) {
4093 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4094 "[%llu %llu]\n", (unsigned long long)em->start,
4095 (unsigned long long)em->len,
4096 (unsigned long long)start,
4097 (unsigned long long)len);
4098 err = -EIO;
4099 goto out;
4100 }
4101
4102 err = 0;
4103 spin_lock(&em_tree->lock);
4104 ret = add_extent_mapping(em_tree, em);
4105 /* it is possible that someone inserted the extent into the tree
4106 * while we had the lock dropped. It is also possible that
4107 * an overlapping map exists in the tree
4108 */
4109 if (ret == -EEXIST) {
4110 struct extent_map *existing;
4111
4112 ret = 0;
4113
4114 existing = lookup_extent_mapping(em_tree, start, len);
4115 if (existing && (existing->start > start ||
4116 existing->start + existing->len <= start)) {
4117 free_extent_map(existing);
4118 existing = NULL;
4119 }
4120 if (!existing) {
4121 existing = lookup_extent_mapping(em_tree, em->start,
4122 em->len);
4123 if (existing) {
4124 err = merge_extent_mapping(em_tree, existing,
4125 em, start,
4126 root->sectorsize);
4127 free_extent_map(existing);
4128 if (err) {
4129 free_extent_map(em);
4130 em = NULL;
4131 }
4132 } else {
4133 err = -EIO;
4134 free_extent_map(em);
4135 em = NULL;
4136 }
4137 } else {
4138 free_extent_map(em);
4139 em = existing;
4140 err = 0;
4141 }
4142 }
4143 spin_unlock(&em_tree->lock);
4144 out:
4145 if (path)
4146 btrfs_free_path(path);
4147 if (trans) {
4148 ret = btrfs_end_transaction(trans, root);
4149 if (!err)
4150 err = ret;
4151 }
4152 if (err) {
4153 free_extent_map(em);
4154 WARN_ON(1);
4155 return ERR_PTR(err);
4156 }
4157 return em;
4158 }
4159
btrfs_direct_IO(int rw,struct kiocb * iocb,const struct iovec * iov,loff_t offset,unsigned long nr_segs)4160 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4161 const struct iovec *iov, loff_t offset,
4162 unsigned long nr_segs)
4163 {
4164 return -EINVAL;
4165 }
4166
btrfs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,__u64 start,__u64 len)4167 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4168 __u64 start, __u64 len)
4169 {
4170 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4171 }
4172
btrfs_readpage(struct file * file,struct page * page)4173 int btrfs_readpage(struct file *file, struct page *page)
4174 {
4175 struct extent_io_tree *tree;
4176 tree = &BTRFS_I(page->mapping->host)->io_tree;
4177 return extent_read_full_page(tree, page, btrfs_get_extent);
4178 }
4179
btrfs_writepage(struct page * page,struct writeback_control * wbc)4180 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4181 {
4182 struct extent_io_tree *tree;
4183
4184
4185 if (current->flags & PF_MEMALLOC) {
4186 redirty_page_for_writepage(wbc, page);
4187 unlock_page(page);
4188 return 0;
4189 }
4190 tree = &BTRFS_I(page->mapping->host)->io_tree;
4191 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4192 }
4193
btrfs_writepages(struct address_space * mapping,struct writeback_control * wbc)4194 int btrfs_writepages(struct address_space *mapping,
4195 struct writeback_control *wbc)
4196 {
4197 struct extent_io_tree *tree;
4198
4199 tree = &BTRFS_I(mapping->host)->io_tree;
4200 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4201 }
4202
4203 static int
btrfs_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)4204 btrfs_readpages(struct file *file, struct address_space *mapping,
4205 struct list_head *pages, unsigned nr_pages)
4206 {
4207 struct extent_io_tree *tree;
4208 tree = &BTRFS_I(mapping->host)->io_tree;
4209 return extent_readpages(tree, mapping, pages, nr_pages,
4210 btrfs_get_extent);
4211 }
__btrfs_releasepage(struct page * page,gfp_t gfp_flags)4212 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4213 {
4214 struct extent_io_tree *tree;
4215 struct extent_map_tree *map;
4216 int ret;
4217
4218 tree = &BTRFS_I(page->mapping->host)->io_tree;
4219 map = &BTRFS_I(page->mapping->host)->extent_tree;
4220 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4221 if (ret == 1) {
4222 ClearPagePrivate(page);
4223 set_page_private(page, 0);
4224 page_cache_release(page);
4225 }
4226 return ret;
4227 }
4228
btrfs_releasepage(struct page * page,gfp_t gfp_flags)4229 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4230 {
4231 if (PageWriteback(page) || PageDirty(page))
4232 return 0;
4233 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
4234 }
4235
btrfs_invalidatepage(struct page * page,unsigned long offset)4236 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4237 {
4238 struct extent_io_tree *tree;
4239 struct btrfs_ordered_extent *ordered;
4240 u64 page_start = page_offset(page);
4241 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4242
4243 wait_on_page_writeback(page);
4244 tree = &BTRFS_I(page->mapping->host)->io_tree;
4245 if (offset) {
4246 btrfs_releasepage(page, GFP_NOFS);
4247 return;
4248 }
4249
4250 lock_extent(tree, page_start, page_end, GFP_NOFS);
4251 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4252 page_offset(page));
4253 if (ordered) {
4254 /*
4255 * IO on this page will never be started, so we need
4256 * to account for any ordered extents now
4257 */
4258 clear_extent_bit(tree, page_start, page_end,
4259 EXTENT_DIRTY | EXTENT_DELALLOC |
4260 EXTENT_LOCKED, 1, 0, GFP_NOFS);
4261 btrfs_finish_ordered_io(page->mapping->host,
4262 page_start, page_end);
4263 btrfs_put_ordered_extent(ordered);
4264 lock_extent(tree, page_start, page_end, GFP_NOFS);
4265 }
4266 clear_extent_bit(tree, page_start, page_end,
4267 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4268 EXTENT_ORDERED,
4269 1, 1, GFP_NOFS);
4270 __btrfs_releasepage(page, GFP_NOFS);
4271
4272 ClearPageChecked(page);
4273 if (PagePrivate(page)) {
4274 ClearPagePrivate(page);
4275 set_page_private(page, 0);
4276 page_cache_release(page);
4277 }
4278 }
4279
4280 /*
4281 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4282 * called from a page fault handler when a page is first dirtied. Hence we must
4283 * be careful to check for EOF conditions here. We set the page up correctly
4284 * for a written page which means we get ENOSPC checking when writing into
4285 * holes and correct delalloc and unwritten extent mapping on filesystems that
4286 * support these features.
4287 *
4288 * We are not allowed to take the i_mutex here so we have to play games to
4289 * protect against truncate races as the page could now be beyond EOF. Because
4290 * vmtruncate() writes the inode size before removing pages, once we have the
4291 * page lock we can determine safely if the page is beyond EOF. If it is not
4292 * beyond EOF, then the page is guaranteed safe against truncation until we
4293 * unlock the page.
4294 */
btrfs_page_mkwrite(struct vm_area_struct * vma,struct page * page)4295 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4296 {
4297 struct inode *inode = fdentry(vma->vm_file)->d_inode;
4298 struct btrfs_root *root = BTRFS_I(inode)->root;
4299 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4300 struct btrfs_ordered_extent *ordered;
4301 char *kaddr;
4302 unsigned long zero_start;
4303 loff_t size;
4304 int ret;
4305 u64 page_start;
4306 u64 page_end;
4307
4308 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
4309 if (ret)
4310 goto out;
4311
4312 ret = -EINVAL;
4313 again:
4314 lock_page(page);
4315 size = i_size_read(inode);
4316 page_start = page_offset(page);
4317 page_end = page_start + PAGE_CACHE_SIZE - 1;
4318
4319 if ((page->mapping != inode->i_mapping) ||
4320 (page_start >= size)) {
4321 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4322 /* page got truncated out from underneath us */
4323 goto out_unlock;
4324 }
4325 wait_on_page_writeback(page);
4326
4327 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4328 set_page_extent_mapped(page);
4329
4330 /*
4331 * we can't set the delalloc bits if there are pending ordered
4332 * extents. Drop our locks and wait for them to finish
4333 */
4334 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4335 if (ordered) {
4336 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4337 unlock_page(page);
4338 btrfs_start_ordered_extent(inode, ordered, 1);
4339 btrfs_put_ordered_extent(ordered);
4340 goto again;
4341 }
4342
4343 btrfs_set_extent_delalloc(inode, page_start, page_end);
4344 ret = 0;
4345
4346 /* page is wholly or partially inside EOF */
4347 if (page_start + PAGE_CACHE_SIZE > size)
4348 zero_start = size & ~PAGE_CACHE_MASK;
4349 else
4350 zero_start = PAGE_CACHE_SIZE;
4351
4352 if (zero_start != PAGE_CACHE_SIZE) {
4353 kaddr = kmap(page);
4354 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4355 flush_dcache_page(page);
4356 kunmap(page);
4357 }
4358 ClearPageChecked(page);
4359 set_page_dirty(page);
4360 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4361
4362 out_unlock:
4363 unlock_page(page);
4364 out:
4365 return ret;
4366 }
4367
btrfs_truncate(struct inode * inode)4368 static void btrfs_truncate(struct inode *inode)
4369 {
4370 struct btrfs_root *root = BTRFS_I(inode)->root;
4371 int ret;
4372 struct btrfs_trans_handle *trans;
4373 unsigned long nr;
4374 u64 mask = root->sectorsize - 1;
4375
4376 if (!S_ISREG(inode->i_mode))
4377 return;
4378 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4379 return;
4380
4381 btrfs_truncate_page(inode->i_mapping, inode->i_size);
4382 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
4383
4384 trans = btrfs_start_transaction(root, 1);
4385 btrfs_set_trans_block_group(trans, inode);
4386 btrfs_i_size_write(inode, inode->i_size);
4387
4388 ret = btrfs_orphan_add(trans, inode);
4389 if (ret)
4390 goto out;
4391 /* FIXME, add redo link to tree so we don't leak on crash */
4392 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
4393 BTRFS_EXTENT_DATA_KEY);
4394 btrfs_update_inode(trans, root, inode);
4395
4396 ret = btrfs_orphan_del(trans, inode);
4397 BUG_ON(ret);
4398
4399 out:
4400 nr = trans->blocks_used;
4401 ret = btrfs_end_transaction_throttle(trans, root);
4402 BUG_ON(ret);
4403 btrfs_btree_balance_dirty(root, nr);
4404 }
4405
4406 /*
4407 * create a new subvolume directory/inode (helper for the ioctl).
4408 */
btrfs_create_subvol_root(struct btrfs_trans_handle * trans,struct btrfs_root * new_root,struct dentry * dentry,u64 new_dirid,u64 alloc_hint)4409 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
4410 struct btrfs_root *new_root, struct dentry *dentry,
4411 u64 new_dirid, u64 alloc_hint)
4412 {
4413 struct inode *inode;
4414 int error;
4415 u64 index = 0;
4416
4417 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
4418 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
4419 if (IS_ERR(inode))
4420 return PTR_ERR(inode);
4421 inode->i_op = &btrfs_dir_inode_operations;
4422 inode->i_fop = &btrfs_dir_file_operations;
4423
4424 inode->i_nlink = 1;
4425 btrfs_i_size_write(inode, 0);
4426
4427 error = btrfs_update_inode(trans, new_root, inode);
4428 if (error)
4429 return error;
4430
4431 d_instantiate(dentry, inode);
4432 return 0;
4433 }
4434
4435 /* helper function for file defrag and space balancing. This
4436 * forces readahead on a given range of bytes in an inode
4437 */
btrfs_force_ra(struct address_space * mapping,struct file_ra_state * ra,struct file * file,pgoff_t offset,pgoff_t last_index)4438 unsigned long btrfs_force_ra(struct address_space *mapping,
4439 struct file_ra_state *ra, struct file *file,
4440 pgoff_t offset, pgoff_t last_index)
4441 {
4442 pgoff_t req_size = last_index - offset + 1;
4443
4444 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4445 return offset + req_size;
4446 }
4447
btrfs_alloc_inode(struct super_block * sb)4448 struct inode *btrfs_alloc_inode(struct super_block *sb)
4449 {
4450 struct btrfs_inode *ei;
4451
4452 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
4453 if (!ei)
4454 return NULL;
4455 ei->last_trans = 0;
4456 ei->logged_trans = 0;
4457 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
4458 ei->i_acl = BTRFS_ACL_NOT_CACHED;
4459 ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
4460 INIT_LIST_HEAD(&ei->i_orphan);
4461 return &ei->vfs_inode;
4462 }
4463
btrfs_destroy_inode(struct inode * inode)4464 void btrfs_destroy_inode(struct inode *inode)
4465 {
4466 struct btrfs_ordered_extent *ordered;
4467 WARN_ON(!list_empty(&inode->i_dentry));
4468 WARN_ON(inode->i_data.nrpages);
4469
4470 if (BTRFS_I(inode)->i_acl &&
4471 BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
4472 posix_acl_release(BTRFS_I(inode)->i_acl);
4473 if (BTRFS_I(inode)->i_default_acl &&
4474 BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
4475 posix_acl_release(BTRFS_I(inode)->i_default_acl);
4476
4477 spin_lock(&BTRFS_I(inode)->root->list_lock);
4478 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
4479 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
4480 " list\n", inode->i_ino);
4481 dump_stack();
4482 }
4483 spin_unlock(&BTRFS_I(inode)->root->list_lock);
4484
4485 while (1) {
4486 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
4487 if (!ordered)
4488 break;
4489 else {
4490 printk(KERN_ERR "btrfs found ordered "
4491 "extent %llu %llu on inode cleanup\n",
4492 (unsigned long long)ordered->file_offset,
4493 (unsigned long long)ordered->len);
4494 btrfs_remove_ordered_extent(inode, ordered);
4495 btrfs_put_ordered_extent(ordered);
4496 btrfs_put_ordered_extent(ordered);
4497 }
4498 }
4499 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
4500 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4501 }
4502
init_once(void * foo)4503 static void init_once(void *foo)
4504 {
4505 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4506
4507 inode_init_once(&ei->vfs_inode);
4508 }
4509
btrfs_destroy_cachep(void)4510 void btrfs_destroy_cachep(void)
4511 {
4512 if (btrfs_inode_cachep)
4513 kmem_cache_destroy(btrfs_inode_cachep);
4514 if (btrfs_trans_handle_cachep)
4515 kmem_cache_destroy(btrfs_trans_handle_cachep);
4516 if (btrfs_transaction_cachep)
4517 kmem_cache_destroy(btrfs_transaction_cachep);
4518 if (btrfs_bit_radix_cachep)
4519 kmem_cache_destroy(btrfs_bit_radix_cachep);
4520 if (btrfs_path_cachep)
4521 kmem_cache_destroy(btrfs_path_cachep);
4522 }
4523
btrfs_cache_create(const char * name,size_t size,unsigned long extra_flags,void (* ctor)(void *))4524 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
4525 unsigned long extra_flags,
4526 void (*ctor)(void *))
4527 {
4528 return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
4529 SLAB_MEM_SPREAD | extra_flags), ctor);
4530 }
4531
btrfs_init_cachep(void)4532 int btrfs_init_cachep(void)
4533 {
4534 btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
4535 sizeof(struct btrfs_inode),
4536 0, init_once);
4537 if (!btrfs_inode_cachep)
4538 goto fail;
4539 btrfs_trans_handle_cachep =
4540 btrfs_cache_create("btrfs_trans_handle_cache",
4541 sizeof(struct btrfs_trans_handle),
4542 0, NULL);
4543 if (!btrfs_trans_handle_cachep)
4544 goto fail;
4545 btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
4546 sizeof(struct btrfs_transaction),
4547 0, NULL);
4548 if (!btrfs_transaction_cachep)
4549 goto fail;
4550 btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
4551 sizeof(struct btrfs_path),
4552 0, NULL);
4553 if (!btrfs_path_cachep)
4554 goto fail;
4555 btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
4556 SLAB_DESTROY_BY_RCU, NULL);
4557 if (!btrfs_bit_radix_cachep)
4558 goto fail;
4559 return 0;
4560 fail:
4561 btrfs_destroy_cachep();
4562 return -ENOMEM;
4563 }
4564
btrfs_getattr(struct vfsmount * mnt,struct dentry * dentry,struct kstat * stat)4565 static int btrfs_getattr(struct vfsmount *mnt,
4566 struct dentry *dentry, struct kstat *stat)
4567 {
4568 struct inode *inode = dentry->d_inode;
4569 generic_fillattr(inode, stat);
4570 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
4571 stat->blksize = PAGE_CACHE_SIZE;
4572 stat->blocks = (inode_get_bytes(inode) +
4573 BTRFS_I(inode)->delalloc_bytes) >> 9;
4574 return 0;
4575 }
4576
btrfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)4577 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4578 struct inode *new_dir, struct dentry *new_dentry)
4579 {
4580 struct btrfs_trans_handle *trans;
4581 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4582 struct inode *new_inode = new_dentry->d_inode;
4583 struct inode *old_inode = old_dentry->d_inode;
4584 struct timespec ctime = CURRENT_TIME;
4585 u64 index = 0;
4586 int ret;
4587
4588 /* we're not allowed to rename between subvolumes */
4589 if (BTRFS_I(old_inode)->root->root_key.objectid !=
4590 BTRFS_I(new_dir)->root->root_key.objectid)
4591 return -EXDEV;
4592
4593 if (S_ISDIR(old_inode->i_mode) && new_inode &&
4594 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
4595 return -ENOTEMPTY;
4596 }
4597
4598 /* to rename a snapshot or subvolume, we need to juggle the
4599 * backrefs. This isn't coded yet
4600 */
4601 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
4602 return -EXDEV;
4603
4604 ret = btrfs_check_metadata_free_space(root);
4605 if (ret)
4606 goto out_unlock;
4607
4608 trans = btrfs_start_transaction(root, 1);
4609
4610 btrfs_set_trans_block_group(trans, new_dir);
4611
4612 btrfs_inc_nlink(old_dentry->d_inode);
4613 old_dir->i_ctime = old_dir->i_mtime = ctime;
4614 new_dir->i_ctime = new_dir->i_mtime = ctime;
4615 old_inode->i_ctime = ctime;
4616
4617 ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
4618 old_dentry->d_name.name,
4619 old_dentry->d_name.len);
4620 if (ret)
4621 goto out_fail;
4622
4623 if (new_inode) {
4624 new_inode->i_ctime = CURRENT_TIME;
4625 ret = btrfs_unlink_inode(trans, root, new_dir,
4626 new_dentry->d_inode,
4627 new_dentry->d_name.name,
4628 new_dentry->d_name.len);
4629 if (ret)
4630 goto out_fail;
4631 if (new_inode->i_nlink == 0) {
4632 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4633 if (ret)
4634 goto out_fail;
4635 }
4636
4637 }
4638 ret = btrfs_set_inode_index(new_dir, &index);
4639 if (ret)
4640 goto out_fail;
4641
4642 ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
4643 old_inode, new_dentry->d_name.name,
4644 new_dentry->d_name.len, 1, index);
4645 if (ret)
4646 goto out_fail;
4647
4648 out_fail:
4649 btrfs_end_transaction_throttle(trans, root);
4650 out_unlock:
4651 return ret;
4652 }
4653
4654 /*
4655 * some fairly slow code that needs optimization. This walks the list
4656 * of all the inodes with pending delalloc and forces them to disk.
4657 */
btrfs_start_delalloc_inodes(struct btrfs_root * root)4658 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
4659 {
4660 struct list_head *head = &root->fs_info->delalloc_inodes;
4661 struct btrfs_inode *binode;
4662 struct inode *inode;
4663
4664 if (root->fs_info->sb->s_flags & MS_RDONLY)
4665 return -EROFS;
4666
4667 spin_lock(&root->fs_info->delalloc_lock);
4668 while (!list_empty(head)) {
4669 binode = list_entry(head->next, struct btrfs_inode,
4670 delalloc_inodes);
4671 inode = igrab(&binode->vfs_inode);
4672 if (!inode)
4673 list_del_init(&binode->delalloc_inodes);
4674 spin_unlock(&root->fs_info->delalloc_lock);
4675 if (inode) {
4676 filemap_flush(inode->i_mapping);
4677 iput(inode);
4678 }
4679 cond_resched();
4680 spin_lock(&root->fs_info->delalloc_lock);
4681 }
4682 spin_unlock(&root->fs_info->delalloc_lock);
4683
4684 /* the filemap_flush will queue IO into the worker threads, but
4685 * we have to make sure the IO is actually started and that
4686 * ordered extents get created before we return
4687 */
4688 atomic_inc(&root->fs_info->async_submit_draining);
4689 while (atomic_read(&root->fs_info->nr_async_submits) ||
4690 atomic_read(&root->fs_info->async_delalloc_pages)) {
4691 wait_event(root->fs_info->async_submit_wait,
4692 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
4693 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
4694 }
4695 atomic_dec(&root->fs_info->async_submit_draining);
4696 return 0;
4697 }
4698
btrfs_symlink(struct inode * dir,struct dentry * dentry,const char * symname)4699 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
4700 const char *symname)
4701 {
4702 struct btrfs_trans_handle *trans;
4703 struct btrfs_root *root = BTRFS_I(dir)->root;
4704 struct btrfs_path *path;
4705 struct btrfs_key key;
4706 struct inode *inode = NULL;
4707 int err;
4708 int drop_inode = 0;
4709 u64 objectid;
4710 u64 index = 0 ;
4711 int name_len;
4712 int datasize;
4713 unsigned long ptr;
4714 struct btrfs_file_extent_item *ei;
4715 struct extent_buffer *leaf;
4716 unsigned long nr = 0;
4717
4718 name_len = strlen(symname) + 1;
4719 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
4720 return -ENAMETOOLONG;
4721
4722 err = btrfs_check_metadata_free_space(root);
4723 if (err)
4724 goto out_fail;
4725
4726 trans = btrfs_start_transaction(root, 1);
4727 btrfs_set_trans_block_group(trans, dir);
4728
4729 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4730 if (err) {
4731 err = -ENOSPC;
4732 goto out_unlock;
4733 }
4734
4735 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4736 dentry->d_name.len,
4737 dentry->d_parent->d_inode->i_ino, objectid,
4738 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
4739 &index);
4740 err = PTR_ERR(inode);
4741 if (IS_ERR(inode))
4742 goto out_unlock;
4743
4744 err = btrfs_init_inode_security(inode, dir);
4745 if (err) {
4746 drop_inode = 1;
4747 goto out_unlock;
4748 }
4749
4750 btrfs_set_trans_block_group(trans, inode);
4751 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4752 if (err)
4753 drop_inode = 1;
4754 else {
4755 inode->i_mapping->a_ops = &btrfs_aops;
4756 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4757 inode->i_fop = &btrfs_file_operations;
4758 inode->i_op = &btrfs_file_inode_operations;
4759 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4760 }
4761 dir->i_sb->s_dirt = 1;
4762 btrfs_update_inode_block_group(trans, inode);
4763 btrfs_update_inode_block_group(trans, dir);
4764 if (drop_inode)
4765 goto out_unlock;
4766
4767 path = btrfs_alloc_path();
4768 BUG_ON(!path);
4769 key.objectid = inode->i_ino;
4770 key.offset = 0;
4771 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
4772 datasize = btrfs_file_extent_calc_inline_size(name_len);
4773 err = btrfs_insert_empty_item(trans, root, path, &key,
4774 datasize);
4775 if (err) {
4776 drop_inode = 1;
4777 goto out_unlock;
4778 }
4779 leaf = path->nodes[0];
4780 ei = btrfs_item_ptr(leaf, path->slots[0],
4781 struct btrfs_file_extent_item);
4782 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
4783 btrfs_set_file_extent_type(leaf, ei,
4784 BTRFS_FILE_EXTENT_INLINE);
4785 btrfs_set_file_extent_encryption(leaf, ei, 0);
4786 btrfs_set_file_extent_compression(leaf, ei, 0);
4787 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
4788 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
4789
4790 ptr = btrfs_file_extent_inline_start(ei);
4791 write_extent_buffer(leaf, symname, ptr, name_len);
4792 btrfs_mark_buffer_dirty(leaf);
4793 btrfs_free_path(path);
4794
4795 inode->i_op = &btrfs_symlink_inode_operations;
4796 inode->i_mapping->a_ops = &btrfs_symlink_aops;
4797 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4798 inode_set_bytes(inode, name_len);
4799 btrfs_i_size_write(inode, name_len - 1);
4800 err = btrfs_update_inode(trans, root, inode);
4801 if (err)
4802 drop_inode = 1;
4803
4804 out_unlock:
4805 nr = trans->blocks_used;
4806 btrfs_end_transaction_throttle(trans, root);
4807 out_fail:
4808 if (drop_inode) {
4809 inode_dec_link_count(inode);
4810 iput(inode);
4811 }
4812 btrfs_btree_balance_dirty(root, nr);
4813 return err;
4814 }
4815
prealloc_file_range(struct inode * inode,u64 start,u64 end,u64 alloc_hint,int mode)4816 static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
4817 u64 alloc_hint, int mode)
4818 {
4819 struct btrfs_trans_handle *trans;
4820 struct btrfs_root *root = BTRFS_I(inode)->root;
4821 struct btrfs_key ins;
4822 u64 alloc_size;
4823 u64 cur_offset = start;
4824 u64 num_bytes = end - start;
4825 int ret = 0;
4826
4827 trans = btrfs_join_transaction(root, 1);
4828 BUG_ON(!trans);
4829 btrfs_set_trans_block_group(trans, inode);
4830
4831 while (num_bytes > 0) {
4832 alloc_size = min(num_bytes, root->fs_info->max_extent);
4833 ret = btrfs_reserve_extent(trans, root, alloc_size,
4834 root->sectorsize, 0, alloc_hint,
4835 (u64)-1, &ins, 1);
4836 if (ret) {
4837 WARN_ON(1);
4838 goto out;
4839 }
4840 ret = insert_reserved_file_extent(trans, inode,
4841 cur_offset, ins.objectid,
4842 ins.offset, ins.offset,
4843 ins.offset, 0, 0, 0,
4844 BTRFS_FILE_EXTENT_PREALLOC);
4845 BUG_ON(ret);
4846 num_bytes -= ins.offset;
4847 cur_offset += ins.offset;
4848 alloc_hint = ins.objectid + ins.offset;
4849 }
4850 out:
4851 if (cur_offset > start) {
4852 inode->i_ctime = CURRENT_TIME;
4853 btrfs_set_flag(inode, PREALLOC);
4854 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4855 cur_offset > i_size_read(inode))
4856 btrfs_i_size_write(inode, cur_offset);
4857 ret = btrfs_update_inode(trans, root, inode);
4858 BUG_ON(ret);
4859 }
4860
4861 btrfs_end_transaction(trans, root);
4862 return ret;
4863 }
4864
btrfs_fallocate(struct inode * inode,int mode,loff_t offset,loff_t len)4865 static long btrfs_fallocate(struct inode *inode, int mode,
4866 loff_t offset, loff_t len)
4867 {
4868 u64 cur_offset;
4869 u64 last_byte;
4870 u64 alloc_start;
4871 u64 alloc_end;
4872 u64 alloc_hint = 0;
4873 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
4874 struct extent_map *em;
4875 int ret;
4876
4877 alloc_start = offset & ~mask;
4878 alloc_end = (offset + len + mask) & ~mask;
4879
4880 mutex_lock(&inode->i_mutex);
4881 if (alloc_start > inode->i_size) {
4882 ret = btrfs_cont_expand(inode, alloc_start);
4883 if (ret)
4884 goto out;
4885 }
4886
4887 while (1) {
4888 struct btrfs_ordered_extent *ordered;
4889 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start,
4890 alloc_end - 1, GFP_NOFS);
4891 ordered = btrfs_lookup_first_ordered_extent(inode,
4892 alloc_end - 1);
4893 if (ordered &&
4894 ordered->file_offset + ordered->len > alloc_start &&
4895 ordered->file_offset < alloc_end) {
4896 btrfs_put_ordered_extent(ordered);
4897 unlock_extent(&BTRFS_I(inode)->io_tree,
4898 alloc_start, alloc_end - 1, GFP_NOFS);
4899 btrfs_wait_ordered_range(inode, alloc_start,
4900 alloc_end - alloc_start);
4901 } else {
4902 if (ordered)
4903 btrfs_put_ordered_extent(ordered);
4904 break;
4905 }
4906 }
4907
4908 cur_offset = alloc_start;
4909 while (1) {
4910 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4911 alloc_end - cur_offset, 0);
4912 BUG_ON(IS_ERR(em) || !em);
4913 last_byte = min(extent_map_end(em), alloc_end);
4914 last_byte = (last_byte + mask) & ~mask;
4915 if (em->block_start == EXTENT_MAP_HOLE) {
4916 ret = prealloc_file_range(inode, cur_offset,
4917 last_byte, alloc_hint, mode);
4918 if (ret < 0) {
4919 free_extent_map(em);
4920 break;
4921 }
4922 }
4923 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
4924 alloc_hint = em->block_start;
4925 free_extent_map(em);
4926
4927 cur_offset = last_byte;
4928 if (cur_offset >= alloc_end) {
4929 ret = 0;
4930 break;
4931 }
4932 }
4933 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, alloc_end - 1,
4934 GFP_NOFS);
4935 out:
4936 mutex_unlock(&inode->i_mutex);
4937 return ret;
4938 }
4939
btrfs_set_page_dirty(struct page * page)4940 static int btrfs_set_page_dirty(struct page *page)
4941 {
4942 return __set_page_dirty_nobuffers(page);
4943 }
4944
btrfs_permission(struct inode * inode,int mask)4945 static int btrfs_permission(struct inode *inode, int mask)
4946 {
4947 if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
4948 return -EACCES;
4949 return generic_permission(inode, mask, btrfs_check_acl);
4950 }
4951
4952 static struct inode_operations btrfs_dir_inode_operations = {
4953 .getattr = btrfs_getattr,
4954 .lookup = btrfs_lookup,
4955 .create = btrfs_create,
4956 .unlink = btrfs_unlink,
4957 .link = btrfs_link,
4958 .mkdir = btrfs_mkdir,
4959 .rmdir = btrfs_rmdir,
4960 .rename = btrfs_rename,
4961 .symlink = btrfs_symlink,
4962 .setattr = btrfs_setattr,
4963 .mknod = btrfs_mknod,
4964 .setxattr = btrfs_setxattr,
4965 .getxattr = btrfs_getxattr,
4966 .listxattr = btrfs_listxattr,
4967 .removexattr = btrfs_removexattr,
4968 .permission = btrfs_permission,
4969 };
4970 static struct inode_operations btrfs_dir_ro_inode_operations = {
4971 .lookup = btrfs_lookup,
4972 .permission = btrfs_permission,
4973 };
4974 static struct file_operations btrfs_dir_file_operations = {
4975 .llseek = generic_file_llseek,
4976 .read = generic_read_dir,
4977 .readdir = btrfs_real_readdir,
4978 .unlocked_ioctl = btrfs_ioctl,
4979 #ifdef CONFIG_COMPAT
4980 .compat_ioctl = btrfs_ioctl,
4981 #endif
4982 .release = btrfs_release_file,
4983 .fsync = btrfs_sync_file,
4984 };
4985
4986 static struct extent_io_ops btrfs_extent_io_ops = {
4987 .fill_delalloc = run_delalloc_range,
4988 .submit_bio_hook = btrfs_submit_bio_hook,
4989 .merge_bio_hook = btrfs_merge_bio_hook,
4990 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
4991 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
4992 .writepage_start_hook = btrfs_writepage_start_hook,
4993 .readpage_io_failed_hook = btrfs_io_failed_hook,
4994 .set_bit_hook = btrfs_set_bit_hook,
4995 .clear_bit_hook = btrfs_clear_bit_hook,
4996 };
4997
4998 /*
4999 * btrfs doesn't support the bmap operation because swapfiles
5000 * use bmap to make a mapping of extents in the file. They assume
5001 * these extents won't change over the life of the file and they
5002 * use the bmap result to do IO directly to the drive.
5003 *
5004 * the btrfs bmap call would return logical addresses that aren't
5005 * suitable for IO and they also will change frequently as COW
5006 * operations happen. So, swapfile + btrfs == corruption.
5007 *
5008 * For now we're avoiding this by dropping bmap.
5009 */
5010 static struct address_space_operations btrfs_aops = {
5011 .readpage = btrfs_readpage,
5012 .writepage = btrfs_writepage,
5013 .writepages = btrfs_writepages,
5014 .readpages = btrfs_readpages,
5015 .sync_page = block_sync_page,
5016 .direct_IO = btrfs_direct_IO,
5017 .invalidatepage = btrfs_invalidatepage,
5018 .releasepage = btrfs_releasepage,
5019 .set_page_dirty = btrfs_set_page_dirty,
5020 };
5021
5022 static struct address_space_operations btrfs_symlink_aops = {
5023 .readpage = btrfs_readpage,
5024 .writepage = btrfs_writepage,
5025 .invalidatepage = btrfs_invalidatepage,
5026 .releasepage = btrfs_releasepage,
5027 };
5028
5029 static struct inode_operations btrfs_file_inode_operations = {
5030 .truncate = btrfs_truncate,
5031 .getattr = btrfs_getattr,
5032 .setattr = btrfs_setattr,
5033 .setxattr = btrfs_setxattr,
5034 .getxattr = btrfs_getxattr,
5035 .listxattr = btrfs_listxattr,
5036 .removexattr = btrfs_removexattr,
5037 .permission = btrfs_permission,
5038 .fallocate = btrfs_fallocate,
5039 .fiemap = btrfs_fiemap,
5040 };
5041 static struct inode_operations btrfs_special_inode_operations = {
5042 .getattr = btrfs_getattr,
5043 .setattr = btrfs_setattr,
5044 .permission = btrfs_permission,
5045 .setxattr = btrfs_setxattr,
5046 .getxattr = btrfs_getxattr,
5047 .listxattr = btrfs_listxattr,
5048 .removexattr = btrfs_removexattr,
5049 };
5050 static struct inode_operations btrfs_symlink_inode_operations = {
5051 .readlink = generic_readlink,
5052 .follow_link = page_follow_link_light,
5053 .put_link = page_put_link,
5054 .permission = btrfs_permission,
5055 .setxattr = btrfs_setxattr,
5056 .getxattr = btrfs_getxattr,
5057 .listxattr = btrfs_listxattr,
5058 .removexattr = btrfs_removexattr,
5059 };
5060