• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "ref-cache.h"
52 #include "compression.h"
53 #include "locking.h"
54 
55 struct btrfs_iget_args {
56 	u64 ino;
57 	struct btrfs_root *root;
58 };
59 
60 static struct inode_operations btrfs_dir_inode_operations;
61 static struct inode_operations btrfs_symlink_inode_operations;
62 static struct inode_operations btrfs_dir_ro_inode_operations;
63 static struct inode_operations btrfs_special_inode_operations;
64 static struct inode_operations btrfs_file_inode_operations;
65 static struct address_space_operations btrfs_aops;
66 static struct address_space_operations btrfs_symlink_aops;
67 static struct file_operations btrfs_dir_file_operations;
68 static struct extent_io_ops btrfs_extent_io_ops;
69 
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_transaction_cachep;
73 struct kmem_cache *btrfs_bit_radix_cachep;
74 struct kmem_cache *btrfs_path_cachep;
75 
76 #define S_SHIFT 12
77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
79 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
80 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
81 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
82 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
83 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
84 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
85 };
86 
87 static void btrfs_truncate(struct inode *inode);
88 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
89 static noinline int cow_file_range(struct inode *inode,
90 				   struct page *locked_page,
91 				   u64 start, u64 end, int *page_started,
92 				   unsigned long *nr_written, int unlock);
93 
btrfs_init_inode_security(struct inode * inode,struct inode * dir)94 static int btrfs_init_inode_security(struct inode *inode,  struct inode *dir)
95 {
96 	int err;
97 
98 	err = btrfs_init_acl(inode, dir);
99 	if (!err)
100 		err = btrfs_xattr_security_init(inode, dir);
101 	return err;
102 }
103 
104 /*
105  * this does all the hard work for inserting an inline extent into
106  * the btree.  The caller should have done a btrfs_drop_extents so that
107  * no overlapping inline items exist in the btree
108  */
insert_inline_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,u64 start,size_t size,size_t compressed_size,struct page ** compressed_pages)109 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
110 				struct btrfs_root *root, struct inode *inode,
111 				u64 start, size_t size, size_t compressed_size,
112 				struct page **compressed_pages)
113 {
114 	struct btrfs_key key;
115 	struct btrfs_path *path;
116 	struct extent_buffer *leaf;
117 	struct page *page = NULL;
118 	char *kaddr;
119 	unsigned long ptr;
120 	struct btrfs_file_extent_item *ei;
121 	int err = 0;
122 	int ret;
123 	size_t cur_size = size;
124 	size_t datasize;
125 	unsigned long offset;
126 	int use_compress = 0;
127 
128 	if (compressed_size && compressed_pages) {
129 		use_compress = 1;
130 		cur_size = compressed_size;
131 	}
132 
133 	path = btrfs_alloc_path();
134 	if (!path)
135 		return -ENOMEM;
136 
137 	btrfs_set_trans_block_group(trans, inode);
138 
139 	key.objectid = inode->i_ino;
140 	key.offset = start;
141 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
142 	datasize = btrfs_file_extent_calc_inline_size(cur_size);
143 
144 	inode_add_bytes(inode, size);
145 	ret = btrfs_insert_empty_item(trans, root, path, &key,
146 				      datasize);
147 	BUG_ON(ret);
148 	if (ret) {
149 		err = ret;
150 		goto fail;
151 	}
152 	leaf = path->nodes[0];
153 	ei = btrfs_item_ptr(leaf, path->slots[0],
154 			    struct btrfs_file_extent_item);
155 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
156 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
157 	btrfs_set_file_extent_encryption(leaf, ei, 0);
158 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
159 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
160 	ptr = btrfs_file_extent_inline_start(ei);
161 
162 	if (use_compress) {
163 		struct page *cpage;
164 		int i = 0;
165 		while (compressed_size > 0) {
166 			cpage = compressed_pages[i];
167 			cur_size = min_t(unsigned long, compressed_size,
168 				       PAGE_CACHE_SIZE);
169 
170 			kaddr = kmap(cpage);
171 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
172 			kunmap(cpage);
173 
174 			i++;
175 			ptr += cur_size;
176 			compressed_size -= cur_size;
177 		}
178 		btrfs_set_file_extent_compression(leaf, ei,
179 						  BTRFS_COMPRESS_ZLIB);
180 	} else {
181 		page = find_get_page(inode->i_mapping,
182 				     start >> PAGE_CACHE_SHIFT);
183 		btrfs_set_file_extent_compression(leaf, ei, 0);
184 		kaddr = kmap_atomic(page, KM_USER0);
185 		offset = start & (PAGE_CACHE_SIZE - 1);
186 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
187 		kunmap_atomic(kaddr, KM_USER0);
188 		page_cache_release(page);
189 	}
190 	btrfs_mark_buffer_dirty(leaf);
191 	btrfs_free_path(path);
192 
193 	BTRFS_I(inode)->disk_i_size = inode->i_size;
194 	btrfs_update_inode(trans, root, inode);
195 	return 0;
196 fail:
197 	btrfs_free_path(path);
198 	return err;
199 }
200 
201 
202 /*
203  * conditionally insert an inline extent into the file.  This
204  * does the checks required to make sure the data is small enough
205  * to fit as an inline extent.
206  */
cow_file_range_inline(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,u64 start,u64 end,size_t compressed_size,struct page ** compressed_pages)207 static int cow_file_range_inline(struct btrfs_trans_handle *trans,
208 				 struct btrfs_root *root,
209 				 struct inode *inode, u64 start, u64 end,
210 				 size_t compressed_size,
211 				 struct page **compressed_pages)
212 {
213 	u64 isize = i_size_read(inode);
214 	u64 actual_end = min(end + 1, isize);
215 	u64 inline_len = actual_end - start;
216 	u64 aligned_end = (end + root->sectorsize - 1) &
217 			~((u64)root->sectorsize - 1);
218 	u64 hint_byte;
219 	u64 data_len = inline_len;
220 	int ret;
221 
222 	if (compressed_size)
223 		data_len = compressed_size;
224 
225 	if (start > 0 ||
226 	    actual_end >= PAGE_CACHE_SIZE ||
227 	    data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
228 	    (!compressed_size &&
229 	    (actual_end & (root->sectorsize - 1)) == 0) ||
230 	    end + 1 < isize ||
231 	    data_len > root->fs_info->max_inline) {
232 		return 1;
233 	}
234 
235 	ret = btrfs_drop_extents(trans, root, inode, start,
236 				 aligned_end, start, &hint_byte);
237 	BUG_ON(ret);
238 
239 	if (isize > actual_end)
240 		inline_len = min_t(u64, isize, actual_end);
241 	ret = insert_inline_extent(trans, root, inode, start,
242 				   inline_len, compressed_size,
243 				   compressed_pages);
244 	BUG_ON(ret);
245 	btrfs_drop_extent_cache(inode, start, aligned_end, 0);
246 	return 0;
247 }
248 
249 struct async_extent {
250 	u64 start;
251 	u64 ram_size;
252 	u64 compressed_size;
253 	struct page **pages;
254 	unsigned long nr_pages;
255 	struct list_head list;
256 };
257 
258 struct async_cow {
259 	struct inode *inode;
260 	struct btrfs_root *root;
261 	struct page *locked_page;
262 	u64 start;
263 	u64 end;
264 	struct list_head extents;
265 	struct btrfs_work work;
266 };
267 
add_async_extent(struct async_cow * cow,u64 start,u64 ram_size,u64 compressed_size,struct page ** pages,unsigned long nr_pages)268 static noinline int add_async_extent(struct async_cow *cow,
269 				     u64 start, u64 ram_size,
270 				     u64 compressed_size,
271 				     struct page **pages,
272 				     unsigned long nr_pages)
273 {
274 	struct async_extent *async_extent;
275 
276 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
277 	async_extent->start = start;
278 	async_extent->ram_size = ram_size;
279 	async_extent->compressed_size = compressed_size;
280 	async_extent->pages = pages;
281 	async_extent->nr_pages = nr_pages;
282 	list_add_tail(&async_extent->list, &cow->extents);
283 	return 0;
284 }
285 
286 /*
287  * we create compressed extents in two phases.  The first
288  * phase compresses a range of pages that have already been
289  * locked (both pages and state bits are locked).
290  *
291  * This is done inside an ordered work queue, and the compression
292  * is spread across many cpus.  The actual IO submission is step
293  * two, and the ordered work queue takes care of making sure that
294  * happens in the same order things were put onto the queue by
295  * writepages and friends.
296  *
297  * If this code finds it can't get good compression, it puts an
298  * entry onto the work queue to write the uncompressed bytes.  This
299  * makes sure that both compressed inodes and uncompressed inodes
300  * are written in the same order that pdflush sent them down.
301  */
compress_file_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,struct async_cow * async_cow,int * num_added)302 static noinline int compress_file_range(struct inode *inode,
303 					struct page *locked_page,
304 					u64 start, u64 end,
305 					struct async_cow *async_cow,
306 					int *num_added)
307 {
308 	struct btrfs_root *root = BTRFS_I(inode)->root;
309 	struct btrfs_trans_handle *trans;
310 	u64 num_bytes;
311 	u64 orig_start;
312 	u64 disk_num_bytes;
313 	u64 blocksize = root->sectorsize;
314 	u64 actual_end;
315 	u64 isize = i_size_read(inode);
316 	int ret = 0;
317 	struct page **pages = NULL;
318 	unsigned long nr_pages;
319 	unsigned long nr_pages_ret = 0;
320 	unsigned long total_compressed = 0;
321 	unsigned long total_in = 0;
322 	unsigned long max_compressed = 128 * 1024;
323 	unsigned long max_uncompressed = 128 * 1024;
324 	int i;
325 	int will_compress;
326 
327 	orig_start = start;
328 
329 	actual_end = min_t(u64, isize, end + 1);
330 again:
331 	will_compress = 0;
332 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
333 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
334 
335 	/*
336 	 * we don't want to send crud past the end of i_size through
337 	 * compression, that's just a waste of CPU time.  So, if the
338 	 * end of the file is before the start of our current
339 	 * requested range of bytes, we bail out to the uncompressed
340 	 * cleanup code that can deal with all of this.
341 	 *
342 	 * It isn't really the fastest way to fix things, but this is a
343 	 * very uncommon corner.
344 	 */
345 	if (actual_end <= start)
346 		goto cleanup_and_bail_uncompressed;
347 
348 	total_compressed = actual_end - start;
349 
350 	/* we want to make sure that amount of ram required to uncompress
351 	 * an extent is reasonable, so we limit the total size in ram
352 	 * of a compressed extent to 128k.  This is a crucial number
353 	 * because it also controls how easily we can spread reads across
354 	 * cpus for decompression.
355 	 *
356 	 * We also want to make sure the amount of IO required to do
357 	 * a random read is reasonably small, so we limit the size of
358 	 * a compressed extent to 128k.
359 	 */
360 	total_compressed = min(total_compressed, max_uncompressed);
361 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
362 	num_bytes = max(blocksize,  num_bytes);
363 	disk_num_bytes = num_bytes;
364 	total_in = 0;
365 	ret = 0;
366 
367 	/*
368 	 * we do compression for mount -o compress and when the
369 	 * inode has not been flagged as nocompress.  This flag can
370 	 * change at any time if we discover bad compression ratios.
371 	 */
372 	if (!btrfs_test_flag(inode, NOCOMPRESS) &&
373 	    btrfs_test_opt(root, COMPRESS)) {
374 		WARN_ON(pages);
375 		pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
376 
377 		ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
378 						total_compressed, pages,
379 						nr_pages, &nr_pages_ret,
380 						&total_in,
381 						&total_compressed,
382 						max_compressed);
383 
384 		if (!ret) {
385 			unsigned long offset = total_compressed &
386 				(PAGE_CACHE_SIZE - 1);
387 			struct page *page = pages[nr_pages_ret - 1];
388 			char *kaddr;
389 
390 			/* zero the tail end of the last page, we might be
391 			 * sending it down to disk
392 			 */
393 			if (offset) {
394 				kaddr = kmap_atomic(page, KM_USER0);
395 				memset(kaddr + offset, 0,
396 				       PAGE_CACHE_SIZE - offset);
397 				kunmap_atomic(kaddr, KM_USER0);
398 			}
399 			will_compress = 1;
400 		}
401 	}
402 	if (start == 0) {
403 		trans = btrfs_join_transaction(root, 1);
404 		BUG_ON(!trans);
405 		btrfs_set_trans_block_group(trans, inode);
406 
407 		/* lets try to make an inline extent */
408 		if (ret || total_in < (actual_end - start)) {
409 			/* we didn't compress the entire range, try
410 			 * to make an uncompressed inline extent.
411 			 */
412 			ret = cow_file_range_inline(trans, root, inode,
413 						    start, end, 0, NULL);
414 		} else {
415 			/* try making a compressed inline extent */
416 			ret = cow_file_range_inline(trans, root, inode,
417 						    start, end,
418 						    total_compressed, pages);
419 		}
420 		btrfs_end_transaction(trans, root);
421 		if (ret == 0) {
422 			/*
423 			 * inline extent creation worked, we don't need
424 			 * to create any more async work items.  Unlock
425 			 * and free up our temp pages.
426 			 */
427 			extent_clear_unlock_delalloc(inode,
428 						     &BTRFS_I(inode)->io_tree,
429 						     start, end, NULL, 1, 0,
430 						     0, 1, 1, 1);
431 			ret = 0;
432 			goto free_pages_out;
433 		}
434 	}
435 
436 	if (will_compress) {
437 		/*
438 		 * we aren't doing an inline extent round the compressed size
439 		 * up to a block size boundary so the allocator does sane
440 		 * things
441 		 */
442 		total_compressed = (total_compressed + blocksize - 1) &
443 			~(blocksize - 1);
444 
445 		/*
446 		 * one last check to make sure the compression is really a
447 		 * win, compare the page count read with the blocks on disk
448 		 */
449 		total_in = (total_in + PAGE_CACHE_SIZE - 1) &
450 			~(PAGE_CACHE_SIZE - 1);
451 		if (total_compressed >= total_in) {
452 			will_compress = 0;
453 		} else {
454 			disk_num_bytes = total_compressed;
455 			num_bytes = total_in;
456 		}
457 	}
458 	if (!will_compress && pages) {
459 		/*
460 		 * the compression code ran but failed to make things smaller,
461 		 * free any pages it allocated and our page pointer array
462 		 */
463 		for (i = 0; i < nr_pages_ret; i++) {
464 			WARN_ON(pages[i]->mapping);
465 			page_cache_release(pages[i]);
466 		}
467 		kfree(pages);
468 		pages = NULL;
469 		total_compressed = 0;
470 		nr_pages_ret = 0;
471 
472 		/* flag the file so we don't compress in the future */
473 		btrfs_set_flag(inode, NOCOMPRESS);
474 	}
475 	if (will_compress) {
476 		*num_added += 1;
477 
478 		/* the async work queues will take care of doing actual
479 		 * allocation on disk for these compressed pages,
480 		 * and will submit them to the elevator.
481 		 */
482 		add_async_extent(async_cow, start, num_bytes,
483 				 total_compressed, pages, nr_pages_ret);
484 
485 		if (start + num_bytes < end && start + num_bytes < actual_end) {
486 			start += num_bytes;
487 			pages = NULL;
488 			cond_resched();
489 			goto again;
490 		}
491 	} else {
492 cleanup_and_bail_uncompressed:
493 		/*
494 		 * No compression, but we still need to write the pages in
495 		 * the file we've been given so far.  redirty the locked
496 		 * page if it corresponds to our extent and set things up
497 		 * for the async work queue to run cow_file_range to do
498 		 * the normal delalloc dance
499 		 */
500 		if (page_offset(locked_page) >= start &&
501 		    page_offset(locked_page) <= end) {
502 			__set_page_dirty_nobuffers(locked_page);
503 			/* unlocked later on in the async handlers */
504 		}
505 		add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
506 		*num_added += 1;
507 	}
508 
509 out:
510 	return 0;
511 
512 free_pages_out:
513 	for (i = 0; i < nr_pages_ret; i++) {
514 		WARN_ON(pages[i]->mapping);
515 		page_cache_release(pages[i]);
516 	}
517 	kfree(pages);
518 
519 	goto out;
520 }
521 
522 /*
523  * phase two of compressed writeback.  This is the ordered portion
524  * of the code, which only gets called in the order the work was
525  * queued.  We walk all the async extents created by compress_file_range
526  * and send them down to the disk.
527  */
submit_compressed_extents(struct inode * inode,struct async_cow * async_cow)528 static noinline int submit_compressed_extents(struct inode *inode,
529 					      struct async_cow *async_cow)
530 {
531 	struct async_extent *async_extent;
532 	u64 alloc_hint = 0;
533 	struct btrfs_trans_handle *trans;
534 	struct btrfs_key ins;
535 	struct extent_map *em;
536 	struct btrfs_root *root = BTRFS_I(inode)->root;
537 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
538 	struct extent_io_tree *io_tree;
539 	int ret;
540 
541 	if (list_empty(&async_cow->extents))
542 		return 0;
543 
544 	trans = btrfs_join_transaction(root, 1);
545 
546 	while (!list_empty(&async_cow->extents)) {
547 		async_extent = list_entry(async_cow->extents.next,
548 					  struct async_extent, list);
549 		list_del(&async_extent->list);
550 
551 		io_tree = &BTRFS_I(inode)->io_tree;
552 
553 		/* did the compression code fall back to uncompressed IO? */
554 		if (!async_extent->pages) {
555 			int page_started = 0;
556 			unsigned long nr_written = 0;
557 
558 			lock_extent(io_tree, async_extent->start,
559 				    async_extent->start +
560 				    async_extent->ram_size - 1, GFP_NOFS);
561 
562 			/* allocate blocks */
563 			cow_file_range(inode, async_cow->locked_page,
564 				       async_extent->start,
565 				       async_extent->start +
566 				       async_extent->ram_size - 1,
567 				       &page_started, &nr_written, 0);
568 
569 			/*
570 			 * if page_started, cow_file_range inserted an
571 			 * inline extent and took care of all the unlocking
572 			 * and IO for us.  Otherwise, we need to submit
573 			 * all those pages down to the drive.
574 			 */
575 			if (!page_started)
576 				extent_write_locked_range(io_tree,
577 						  inode, async_extent->start,
578 						  async_extent->start +
579 						  async_extent->ram_size - 1,
580 						  btrfs_get_extent,
581 						  WB_SYNC_ALL);
582 			kfree(async_extent);
583 			cond_resched();
584 			continue;
585 		}
586 
587 		lock_extent(io_tree, async_extent->start,
588 			    async_extent->start + async_extent->ram_size - 1,
589 			    GFP_NOFS);
590 		/*
591 		 * here we're doing allocation and writeback of the
592 		 * compressed pages
593 		 */
594 		btrfs_drop_extent_cache(inode, async_extent->start,
595 					async_extent->start +
596 					async_extent->ram_size - 1, 0);
597 
598 		ret = btrfs_reserve_extent(trans, root,
599 					   async_extent->compressed_size,
600 					   async_extent->compressed_size,
601 					   0, alloc_hint,
602 					   (u64)-1, &ins, 1);
603 		BUG_ON(ret);
604 		em = alloc_extent_map(GFP_NOFS);
605 		em->start = async_extent->start;
606 		em->len = async_extent->ram_size;
607 		em->orig_start = em->start;
608 
609 		em->block_start = ins.objectid;
610 		em->block_len = ins.offset;
611 		em->bdev = root->fs_info->fs_devices->latest_bdev;
612 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
613 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
614 
615 		while (1) {
616 			spin_lock(&em_tree->lock);
617 			ret = add_extent_mapping(em_tree, em);
618 			spin_unlock(&em_tree->lock);
619 			if (ret != -EEXIST) {
620 				free_extent_map(em);
621 				break;
622 			}
623 			btrfs_drop_extent_cache(inode, async_extent->start,
624 						async_extent->start +
625 						async_extent->ram_size - 1, 0);
626 		}
627 
628 		ret = btrfs_add_ordered_extent(inode, async_extent->start,
629 					       ins.objectid,
630 					       async_extent->ram_size,
631 					       ins.offset,
632 					       BTRFS_ORDERED_COMPRESSED);
633 		BUG_ON(ret);
634 
635 		btrfs_end_transaction(trans, root);
636 
637 		/*
638 		 * clear dirty, set writeback and unlock the pages.
639 		 */
640 		extent_clear_unlock_delalloc(inode,
641 					     &BTRFS_I(inode)->io_tree,
642 					     async_extent->start,
643 					     async_extent->start +
644 					     async_extent->ram_size - 1,
645 					     NULL, 1, 1, 0, 1, 1, 0);
646 
647 		ret = btrfs_submit_compressed_write(inode,
648 				    async_extent->start,
649 				    async_extent->ram_size,
650 				    ins.objectid,
651 				    ins.offset, async_extent->pages,
652 				    async_extent->nr_pages);
653 
654 		BUG_ON(ret);
655 		trans = btrfs_join_transaction(root, 1);
656 		alloc_hint = ins.objectid + ins.offset;
657 		kfree(async_extent);
658 		cond_resched();
659 	}
660 
661 	btrfs_end_transaction(trans, root);
662 	return 0;
663 }
664 
665 /*
666  * when extent_io.c finds a delayed allocation range in the file,
667  * the call backs end up in this code.  The basic idea is to
668  * allocate extents on disk for the range, and create ordered data structs
669  * in ram to track those extents.
670  *
671  * locked_page is the page that writepage had locked already.  We use
672  * it to make sure we don't do extra locks or unlocks.
673  *
674  * *page_started is set to one if we unlock locked_page and do everything
675  * required to start IO on it.  It may be clean and already done with
676  * IO when we return.
677  */
cow_file_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,int unlock)678 static noinline int cow_file_range(struct inode *inode,
679 				   struct page *locked_page,
680 				   u64 start, u64 end, int *page_started,
681 				   unsigned long *nr_written,
682 				   int unlock)
683 {
684 	struct btrfs_root *root = BTRFS_I(inode)->root;
685 	struct btrfs_trans_handle *trans;
686 	u64 alloc_hint = 0;
687 	u64 num_bytes;
688 	unsigned long ram_size;
689 	u64 disk_num_bytes;
690 	u64 cur_alloc_size;
691 	u64 blocksize = root->sectorsize;
692 	u64 actual_end;
693 	u64 isize = i_size_read(inode);
694 	struct btrfs_key ins;
695 	struct extent_map *em;
696 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
697 	int ret = 0;
698 
699 	trans = btrfs_join_transaction(root, 1);
700 	BUG_ON(!trans);
701 	btrfs_set_trans_block_group(trans, inode);
702 
703 	actual_end = min_t(u64, isize, end + 1);
704 
705 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
706 	num_bytes = max(blocksize,  num_bytes);
707 	disk_num_bytes = num_bytes;
708 	ret = 0;
709 
710 	if (start == 0) {
711 		/* lets try to make an inline extent */
712 		ret = cow_file_range_inline(trans, root, inode,
713 					    start, end, 0, NULL);
714 		if (ret == 0) {
715 			extent_clear_unlock_delalloc(inode,
716 						     &BTRFS_I(inode)->io_tree,
717 						     start, end, NULL, 1, 1,
718 						     1, 1, 1, 1);
719 			*nr_written = *nr_written +
720 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
721 			*page_started = 1;
722 			ret = 0;
723 			goto out;
724 		}
725 	}
726 
727 	BUG_ON(disk_num_bytes >
728 	       btrfs_super_total_bytes(&root->fs_info->super_copy));
729 
730 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
731 
732 	while (disk_num_bytes > 0) {
733 		cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
734 		ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
735 					   root->sectorsize, 0, alloc_hint,
736 					   (u64)-1, &ins, 1);
737 		BUG_ON(ret);
738 
739 		em = alloc_extent_map(GFP_NOFS);
740 		em->start = start;
741 		em->orig_start = em->start;
742 
743 		ram_size = ins.offset;
744 		em->len = ins.offset;
745 
746 		em->block_start = ins.objectid;
747 		em->block_len = ins.offset;
748 		em->bdev = root->fs_info->fs_devices->latest_bdev;
749 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
750 
751 		while (1) {
752 			spin_lock(&em_tree->lock);
753 			ret = add_extent_mapping(em_tree, em);
754 			spin_unlock(&em_tree->lock);
755 			if (ret != -EEXIST) {
756 				free_extent_map(em);
757 				break;
758 			}
759 			btrfs_drop_extent_cache(inode, start,
760 						start + ram_size - 1, 0);
761 		}
762 
763 		cur_alloc_size = ins.offset;
764 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
765 					       ram_size, cur_alloc_size, 0);
766 		BUG_ON(ret);
767 
768 		if (root->root_key.objectid ==
769 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
770 			ret = btrfs_reloc_clone_csums(inode, start,
771 						      cur_alloc_size);
772 			BUG_ON(ret);
773 		}
774 
775 		if (disk_num_bytes < cur_alloc_size)
776 			break;
777 
778 		/* we're not doing compressed IO, don't unlock the first
779 		 * page (which the caller expects to stay locked), don't
780 		 * clear any dirty bits and don't set any writeback bits
781 		 */
782 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
783 					     start, start + ram_size - 1,
784 					     locked_page, unlock, 1,
785 					     1, 0, 0, 0);
786 		disk_num_bytes -= cur_alloc_size;
787 		num_bytes -= cur_alloc_size;
788 		alloc_hint = ins.objectid + ins.offset;
789 		start += cur_alloc_size;
790 	}
791 out:
792 	ret = 0;
793 	btrfs_end_transaction(trans, root);
794 
795 	return ret;
796 }
797 
798 /*
799  * work queue call back to started compression on a file and pages
800  */
async_cow_start(struct btrfs_work * work)801 static noinline void async_cow_start(struct btrfs_work *work)
802 {
803 	struct async_cow *async_cow;
804 	int num_added = 0;
805 	async_cow = container_of(work, struct async_cow, work);
806 
807 	compress_file_range(async_cow->inode, async_cow->locked_page,
808 			    async_cow->start, async_cow->end, async_cow,
809 			    &num_added);
810 	if (num_added == 0)
811 		async_cow->inode = NULL;
812 }
813 
814 /*
815  * work queue call back to submit previously compressed pages
816  */
async_cow_submit(struct btrfs_work * work)817 static noinline void async_cow_submit(struct btrfs_work *work)
818 {
819 	struct async_cow *async_cow;
820 	struct btrfs_root *root;
821 	unsigned long nr_pages;
822 
823 	async_cow = container_of(work, struct async_cow, work);
824 
825 	root = async_cow->root;
826 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
827 		PAGE_CACHE_SHIFT;
828 
829 	atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
830 
831 	if (atomic_read(&root->fs_info->async_delalloc_pages) <
832 	    5 * 1042 * 1024 &&
833 	    waitqueue_active(&root->fs_info->async_submit_wait))
834 		wake_up(&root->fs_info->async_submit_wait);
835 
836 	if (async_cow->inode)
837 		submit_compressed_extents(async_cow->inode, async_cow);
838 }
839 
async_cow_free(struct btrfs_work * work)840 static noinline void async_cow_free(struct btrfs_work *work)
841 {
842 	struct async_cow *async_cow;
843 	async_cow = container_of(work, struct async_cow, work);
844 	kfree(async_cow);
845 }
846 
cow_file_range_async(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written)847 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
848 				u64 start, u64 end, int *page_started,
849 				unsigned long *nr_written)
850 {
851 	struct async_cow *async_cow;
852 	struct btrfs_root *root = BTRFS_I(inode)->root;
853 	unsigned long nr_pages;
854 	u64 cur_end;
855 	int limit = 10 * 1024 * 1042;
856 
857 	if (!btrfs_test_opt(root, COMPRESS)) {
858 		return cow_file_range(inode, locked_page, start, end,
859 				      page_started, nr_written, 1);
860 	}
861 
862 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
863 			 EXTENT_DELALLOC, 1, 0, GFP_NOFS);
864 	while (start < end) {
865 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
866 		async_cow->inode = inode;
867 		async_cow->root = root;
868 		async_cow->locked_page = locked_page;
869 		async_cow->start = start;
870 
871 		if (btrfs_test_flag(inode, NOCOMPRESS))
872 			cur_end = end;
873 		else
874 			cur_end = min(end, start + 512 * 1024 - 1);
875 
876 		async_cow->end = cur_end;
877 		INIT_LIST_HEAD(&async_cow->extents);
878 
879 		async_cow->work.func = async_cow_start;
880 		async_cow->work.ordered_func = async_cow_submit;
881 		async_cow->work.ordered_free = async_cow_free;
882 		async_cow->work.flags = 0;
883 
884 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
885 			PAGE_CACHE_SHIFT;
886 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
887 
888 		btrfs_queue_worker(&root->fs_info->delalloc_workers,
889 				   &async_cow->work);
890 
891 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
892 			wait_event(root->fs_info->async_submit_wait,
893 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
894 			    limit));
895 		}
896 
897 		while (atomic_read(&root->fs_info->async_submit_draining) &&
898 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
899 			wait_event(root->fs_info->async_submit_wait,
900 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
901 			   0));
902 		}
903 
904 		*nr_written += nr_pages;
905 		start = cur_end + 1;
906 	}
907 	*page_started = 1;
908 	return 0;
909 }
910 
csum_exist_in_range(struct btrfs_root * root,u64 bytenr,u64 num_bytes)911 static noinline int csum_exist_in_range(struct btrfs_root *root,
912 					u64 bytenr, u64 num_bytes)
913 {
914 	int ret;
915 	struct btrfs_ordered_sum *sums;
916 	LIST_HEAD(list);
917 
918 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
919 				       bytenr + num_bytes - 1, &list);
920 	if (ret == 0 && list_empty(&list))
921 		return 0;
922 
923 	while (!list_empty(&list)) {
924 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
925 		list_del(&sums->list);
926 		kfree(sums);
927 	}
928 	return 1;
929 }
930 
931 /*
932  * when nowcow writeback call back.  This checks for snapshots or COW copies
933  * of the extents that exist in the file, and COWs the file as required.
934  *
935  * If no cow copies or snapshots exist, we write directly to the existing
936  * blocks on disk
937  */
run_delalloc_nocow(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,int force,unsigned long * nr_written)938 static int run_delalloc_nocow(struct inode *inode, struct page *locked_page,
939 			      u64 start, u64 end, int *page_started, int force,
940 			      unsigned long *nr_written)
941 {
942 	struct btrfs_root *root = BTRFS_I(inode)->root;
943 	struct btrfs_trans_handle *trans;
944 	struct extent_buffer *leaf;
945 	struct btrfs_path *path;
946 	struct btrfs_file_extent_item *fi;
947 	struct btrfs_key found_key;
948 	u64 cow_start;
949 	u64 cur_offset;
950 	u64 extent_end;
951 	u64 disk_bytenr;
952 	u64 num_bytes;
953 	int extent_type;
954 	int ret;
955 	int type;
956 	int nocow;
957 	int check_prev = 1;
958 
959 	path = btrfs_alloc_path();
960 	BUG_ON(!path);
961 	trans = btrfs_join_transaction(root, 1);
962 	BUG_ON(!trans);
963 
964 	cow_start = (u64)-1;
965 	cur_offset = start;
966 	while (1) {
967 		ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
968 					       cur_offset, 0);
969 		BUG_ON(ret < 0);
970 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
971 			leaf = path->nodes[0];
972 			btrfs_item_key_to_cpu(leaf, &found_key,
973 					      path->slots[0] - 1);
974 			if (found_key.objectid == inode->i_ino &&
975 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
976 				path->slots[0]--;
977 		}
978 		check_prev = 0;
979 next_slot:
980 		leaf = path->nodes[0];
981 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
982 			ret = btrfs_next_leaf(root, path);
983 			if (ret < 0)
984 				BUG_ON(1);
985 			if (ret > 0)
986 				break;
987 			leaf = path->nodes[0];
988 		}
989 
990 		nocow = 0;
991 		disk_bytenr = 0;
992 		num_bytes = 0;
993 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
994 
995 		if (found_key.objectid > inode->i_ino ||
996 		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
997 		    found_key.offset > end)
998 			break;
999 
1000 		if (found_key.offset > cur_offset) {
1001 			extent_end = found_key.offset;
1002 			goto out_check;
1003 		}
1004 
1005 		fi = btrfs_item_ptr(leaf, path->slots[0],
1006 				    struct btrfs_file_extent_item);
1007 		extent_type = btrfs_file_extent_type(leaf, fi);
1008 
1009 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1010 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1011 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1012 			extent_end = found_key.offset +
1013 				btrfs_file_extent_num_bytes(leaf, fi);
1014 			if (extent_end <= start) {
1015 				path->slots[0]++;
1016 				goto next_slot;
1017 			}
1018 			if (disk_bytenr == 0)
1019 				goto out_check;
1020 			if (btrfs_file_extent_compression(leaf, fi) ||
1021 			    btrfs_file_extent_encryption(leaf, fi) ||
1022 			    btrfs_file_extent_other_encoding(leaf, fi))
1023 				goto out_check;
1024 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1025 				goto out_check;
1026 			if (btrfs_extent_readonly(root, disk_bytenr))
1027 				goto out_check;
1028 			if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1029 						  disk_bytenr))
1030 				goto out_check;
1031 			disk_bytenr += btrfs_file_extent_offset(leaf, fi);
1032 			disk_bytenr += cur_offset - found_key.offset;
1033 			num_bytes = min(end + 1, extent_end) - cur_offset;
1034 			/*
1035 			 * force cow if csum exists in the range.
1036 			 * this ensure that csum for a given extent are
1037 			 * either valid or do not exist.
1038 			 */
1039 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1040 				goto out_check;
1041 			nocow = 1;
1042 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1043 			extent_end = found_key.offset +
1044 				btrfs_file_extent_inline_len(leaf, fi);
1045 			extent_end = ALIGN(extent_end, root->sectorsize);
1046 		} else {
1047 			BUG_ON(1);
1048 		}
1049 out_check:
1050 		if (extent_end <= start) {
1051 			path->slots[0]++;
1052 			goto next_slot;
1053 		}
1054 		if (!nocow) {
1055 			if (cow_start == (u64)-1)
1056 				cow_start = cur_offset;
1057 			cur_offset = extent_end;
1058 			if (cur_offset > end)
1059 				break;
1060 			path->slots[0]++;
1061 			goto next_slot;
1062 		}
1063 
1064 		btrfs_release_path(root, path);
1065 		if (cow_start != (u64)-1) {
1066 			ret = cow_file_range(inode, locked_page, cow_start,
1067 					found_key.offset - 1, page_started,
1068 					nr_written, 1);
1069 			BUG_ON(ret);
1070 			cow_start = (u64)-1;
1071 		}
1072 
1073 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1074 			struct extent_map *em;
1075 			struct extent_map_tree *em_tree;
1076 			em_tree = &BTRFS_I(inode)->extent_tree;
1077 			em = alloc_extent_map(GFP_NOFS);
1078 			em->start = cur_offset;
1079 			em->orig_start = em->start;
1080 			em->len = num_bytes;
1081 			em->block_len = num_bytes;
1082 			em->block_start = disk_bytenr;
1083 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1084 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1085 			while (1) {
1086 				spin_lock(&em_tree->lock);
1087 				ret = add_extent_mapping(em_tree, em);
1088 				spin_unlock(&em_tree->lock);
1089 				if (ret != -EEXIST) {
1090 					free_extent_map(em);
1091 					break;
1092 				}
1093 				btrfs_drop_extent_cache(inode, em->start,
1094 						em->start + em->len - 1, 0);
1095 			}
1096 			type = BTRFS_ORDERED_PREALLOC;
1097 		} else {
1098 			type = BTRFS_ORDERED_NOCOW;
1099 		}
1100 
1101 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1102 					       num_bytes, num_bytes, type);
1103 		BUG_ON(ret);
1104 
1105 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1106 					cur_offset, cur_offset + num_bytes - 1,
1107 					locked_page, 1, 1, 1, 0, 0, 0);
1108 		cur_offset = extent_end;
1109 		if (cur_offset > end)
1110 			break;
1111 	}
1112 	btrfs_release_path(root, path);
1113 
1114 	if (cur_offset <= end && cow_start == (u64)-1)
1115 		cow_start = cur_offset;
1116 	if (cow_start != (u64)-1) {
1117 		ret = cow_file_range(inode, locked_page, cow_start, end,
1118 				     page_started, nr_written, 1);
1119 		BUG_ON(ret);
1120 	}
1121 
1122 	ret = btrfs_end_transaction(trans, root);
1123 	BUG_ON(ret);
1124 	btrfs_free_path(path);
1125 	return 0;
1126 }
1127 
1128 /*
1129  * extent_io.c call back to do delayed allocation processing
1130  */
run_delalloc_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written)1131 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1132 			      u64 start, u64 end, int *page_started,
1133 			      unsigned long *nr_written)
1134 {
1135 	int ret;
1136 
1137 	if (btrfs_test_flag(inode, NODATACOW))
1138 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1139 					 page_started, 1, nr_written);
1140 	else if (btrfs_test_flag(inode, PREALLOC))
1141 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1142 					 page_started, 0, nr_written);
1143 	else
1144 		ret = cow_file_range_async(inode, locked_page, start, end,
1145 					   page_started, nr_written);
1146 
1147 	return ret;
1148 }
1149 
1150 /*
1151  * extent_io.c set_bit_hook, used to track delayed allocation
1152  * bytes in this file, and to maintain the list of inodes that
1153  * have pending delalloc work to be done.
1154  */
btrfs_set_bit_hook(struct inode * inode,u64 start,u64 end,unsigned long old,unsigned long bits)1155 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1156 		       unsigned long old, unsigned long bits)
1157 {
1158 	/*
1159 	 * set_bit and clear bit hooks normally require _irqsave/restore
1160 	 * but in this case, we are only testeing for the DELALLOC
1161 	 * bit, which is only set or cleared with irqs on
1162 	 */
1163 	if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1164 		struct btrfs_root *root = BTRFS_I(inode)->root;
1165 		btrfs_delalloc_reserve_space(root, inode, end - start + 1);
1166 		spin_lock(&root->fs_info->delalloc_lock);
1167 		BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1168 		root->fs_info->delalloc_bytes += end - start + 1;
1169 		if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1170 			list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1171 				      &root->fs_info->delalloc_inodes);
1172 		}
1173 		spin_unlock(&root->fs_info->delalloc_lock);
1174 	}
1175 	return 0;
1176 }
1177 
1178 /*
1179  * extent_io.c clear_bit_hook, see set_bit_hook for why
1180  */
btrfs_clear_bit_hook(struct inode * inode,u64 start,u64 end,unsigned long old,unsigned long bits)1181 static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
1182 			 unsigned long old, unsigned long bits)
1183 {
1184 	/*
1185 	 * set_bit and clear bit hooks normally require _irqsave/restore
1186 	 * but in this case, we are only testeing for the DELALLOC
1187 	 * bit, which is only set or cleared with irqs on
1188 	 */
1189 	if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1190 		struct btrfs_root *root = BTRFS_I(inode)->root;
1191 
1192 		spin_lock(&root->fs_info->delalloc_lock);
1193 		if (end - start + 1 > root->fs_info->delalloc_bytes) {
1194 			printk(KERN_INFO "btrfs warning: delalloc account "
1195 			       "%llu %llu\n",
1196 			       (unsigned long long)end - start + 1,
1197 			       (unsigned long long)
1198 			       root->fs_info->delalloc_bytes);
1199 			btrfs_delalloc_free_space(root, inode, (u64)-1);
1200 			root->fs_info->delalloc_bytes = 0;
1201 			BTRFS_I(inode)->delalloc_bytes = 0;
1202 		} else {
1203 			btrfs_delalloc_free_space(root, inode,
1204 						  end - start + 1);
1205 			root->fs_info->delalloc_bytes -= end - start + 1;
1206 			BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
1207 		}
1208 		if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1209 		    !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1210 			list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1211 		}
1212 		spin_unlock(&root->fs_info->delalloc_lock);
1213 	}
1214 	return 0;
1215 }
1216 
1217 /*
1218  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1219  * we don't create bios that span stripes or chunks
1220  */
btrfs_merge_bio_hook(struct page * page,unsigned long offset,size_t size,struct bio * bio,unsigned long bio_flags)1221 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1222 			 size_t size, struct bio *bio,
1223 			 unsigned long bio_flags)
1224 {
1225 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1226 	struct btrfs_mapping_tree *map_tree;
1227 	u64 logical = (u64)bio->bi_sector << 9;
1228 	u64 length = 0;
1229 	u64 map_length;
1230 	int ret;
1231 
1232 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1233 		return 0;
1234 
1235 	length = bio->bi_size;
1236 	map_tree = &root->fs_info->mapping_tree;
1237 	map_length = length;
1238 	ret = btrfs_map_block(map_tree, READ, logical,
1239 			      &map_length, NULL, 0);
1240 
1241 	if (map_length < length + size)
1242 		return 1;
1243 	return 0;
1244 }
1245 
1246 /*
1247  * in order to insert checksums into the metadata in large chunks,
1248  * we wait until bio submission time.   All the pages in the bio are
1249  * checksummed and sums are attached onto the ordered extent record.
1250  *
1251  * At IO completion time the cums attached on the ordered extent record
1252  * are inserted into the btree
1253  */
__btrfs_submit_bio_start(struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags)1254 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1255 				    struct bio *bio, int mirror_num,
1256 				    unsigned long bio_flags)
1257 {
1258 	struct btrfs_root *root = BTRFS_I(inode)->root;
1259 	int ret = 0;
1260 
1261 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1262 	BUG_ON(ret);
1263 	return 0;
1264 }
1265 
1266 /*
1267  * in order to insert checksums into the metadata in large chunks,
1268  * we wait until bio submission time.   All the pages in the bio are
1269  * checksummed and sums are attached onto the ordered extent record.
1270  *
1271  * At IO completion time the cums attached on the ordered extent record
1272  * are inserted into the btree
1273  */
__btrfs_submit_bio_done(struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags)1274 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1275 			  int mirror_num, unsigned long bio_flags)
1276 {
1277 	struct btrfs_root *root = BTRFS_I(inode)->root;
1278 	return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1279 }
1280 
1281 /*
1282  * extent_io.c submission hook. This does the right thing for csum calculation
1283  * on write, or reading the csums from the tree before a read
1284  */
btrfs_submit_bio_hook(struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags)1285 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1286 			  int mirror_num, unsigned long bio_flags)
1287 {
1288 	struct btrfs_root *root = BTRFS_I(inode)->root;
1289 	int ret = 0;
1290 	int skip_sum;
1291 
1292 	skip_sum = btrfs_test_flag(inode, NODATASUM);
1293 
1294 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1295 	BUG_ON(ret);
1296 
1297 	if (!(rw & (1 << BIO_RW))) {
1298 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1299 			return btrfs_submit_compressed_read(inode, bio,
1300 						    mirror_num, bio_flags);
1301 		} else if (!skip_sum)
1302 			btrfs_lookup_bio_sums(root, inode, bio, NULL);
1303 		goto mapit;
1304 	} else if (!skip_sum) {
1305 		/* csum items have already been cloned */
1306 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1307 			goto mapit;
1308 		/* we're doing a write, do the async checksumming */
1309 		return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1310 				   inode, rw, bio, mirror_num,
1311 				   bio_flags, __btrfs_submit_bio_start,
1312 				   __btrfs_submit_bio_done);
1313 	}
1314 
1315 mapit:
1316 	return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1317 }
1318 
1319 /*
1320  * given a list of ordered sums record them in the inode.  This happens
1321  * at IO completion time based on sums calculated at bio submission time.
1322  */
add_pending_csums(struct btrfs_trans_handle * trans,struct inode * inode,u64 file_offset,struct list_head * list)1323 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1324 			     struct inode *inode, u64 file_offset,
1325 			     struct list_head *list)
1326 {
1327 	struct btrfs_ordered_sum *sum;
1328 
1329 	btrfs_set_trans_block_group(trans, inode);
1330 
1331 	list_for_each_entry(sum, list, list) {
1332 		btrfs_csum_file_blocks(trans,
1333 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1334 	}
1335 	return 0;
1336 }
1337 
btrfs_set_extent_delalloc(struct inode * inode,u64 start,u64 end)1338 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1339 {
1340 	if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1341 		WARN_ON(1);
1342 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1343 				   GFP_NOFS);
1344 }
1345 
1346 /* see btrfs_writepage_start_hook for details on why this is required */
1347 struct btrfs_writepage_fixup {
1348 	struct page *page;
1349 	struct btrfs_work work;
1350 };
1351 
btrfs_writepage_fixup_worker(struct btrfs_work * work)1352 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1353 {
1354 	struct btrfs_writepage_fixup *fixup;
1355 	struct btrfs_ordered_extent *ordered;
1356 	struct page *page;
1357 	struct inode *inode;
1358 	u64 page_start;
1359 	u64 page_end;
1360 
1361 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1362 	page = fixup->page;
1363 again:
1364 	lock_page(page);
1365 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1366 		ClearPageChecked(page);
1367 		goto out_page;
1368 	}
1369 
1370 	inode = page->mapping->host;
1371 	page_start = page_offset(page);
1372 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1373 
1374 	lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1375 
1376 	/* already ordered? We're done */
1377 	if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
1378 			     EXTENT_ORDERED, 0)) {
1379 		goto out;
1380 	}
1381 
1382 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1383 	if (ordered) {
1384 		unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1385 			      page_end, GFP_NOFS);
1386 		unlock_page(page);
1387 		btrfs_start_ordered_extent(inode, ordered, 1);
1388 		goto again;
1389 	}
1390 
1391 	btrfs_set_extent_delalloc(inode, page_start, page_end);
1392 	ClearPageChecked(page);
1393 out:
1394 	unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1395 out_page:
1396 	unlock_page(page);
1397 	page_cache_release(page);
1398 }
1399 
1400 /*
1401  * There are a few paths in the higher layers of the kernel that directly
1402  * set the page dirty bit without asking the filesystem if it is a
1403  * good idea.  This causes problems because we want to make sure COW
1404  * properly happens and the data=ordered rules are followed.
1405  *
1406  * In our case any range that doesn't have the ORDERED bit set
1407  * hasn't been properly setup for IO.  We kick off an async process
1408  * to fix it up.  The async helper will wait for ordered extents, set
1409  * the delalloc bit and make it safe to write the page.
1410  */
btrfs_writepage_start_hook(struct page * page,u64 start,u64 end)1411 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1412 {
1413 	struct inode *inode = page->mapping->host;
1414 	struct btrfs_writepage_fixup *fixup;
1415 	struct btrfs_root *root = BTRFS_I(inode)->root;
1416 	int ret;
1417 
1418 	ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1419 			     EXTENT_ORDERED, 0);
1420 	if (ret)
1421 		return 0;
1422 
1423 	if (PageChecked(page))
1424 		return -EAGAIN;
1425 
1426 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1427 	if (!fixup)
1428 		return -EAGAIN;
1429 
1430 	SetPageChecked(page);
1431 	page_cache_get(page);
1432 	fixup->work.func = btrfs_writepage_fixup_worker;
1433 	fixup->page = page;
1434 	btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1435 	return -EAGAIN;
1436 }
1437 
insert_reserved_file_extent(struct btrfs_trans_handle * trans,struct inode * inode,u64 file_pos,u64 disk_bytenr,u64 disk_num_bytes,u64 num_bytes,u64 ram_bytes,u8 compression,u8 encryption,u16 other_encoding,int extent_type)1438 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1439 				       struct inode *inode, u64 file_pos,
1440 				       u64 disk_bytenr, u64 disk_num_bytes,
1441 				       u64 num_bytes, u64 ram_bytes,
1442 				       u8 compression, u8 encryption,
1443 				       u16 other_encoding, int extent_type)
1444 {
1445 	struct btrfs_root *root = BTRFS_I(inode)->root;
1446 	struct btrfs_file_extent_item *fi;
1447 	struct btrfs_path *path;
1448 	struct extent_buffer *leaf;
1449 	struct btrfs_key ins;
1450 	u64 hint;
1451 	int ret;
1452 
1453 	path = btrfs_alloc_path();
1454 	BUG_ON(!path);
1455 
1456 	ret = btrfs_drop_extents(trans, root, inode, file_pos,
1457 				 file_pos + num_bytes, file_pos, &hint);
1458 	BUG_ON(ret);
1459 
1460 	ins.objectid = inode->i_ino;
1461 	ins.offset = file_pos;
1462 	ins.type = BTRFS_EXTENT_DATA_KEY;
1463 	ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1464 	BUG_ON(ret);
1465 	leaf = path->nodes[0];
1466 	fi = btrfs_item_ptr(leaf, path->slots[0],
1467 			    struct btrfs_file_extent_item);
1468 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1469 	btrfs_set_file_extent_type(leaf, fi, extent_type);
1470 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1471 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1472 	btrfs_set_file_extent_offset(leaf, fi, 0);
1473 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1474 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1475 	btrfs_set_file_extent_compression(leaf, fi, compression);
1476 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
1477 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1478 	btrfs_mark_buffer_dirty(leaf);
1479 
1480 	inode_add_bytes(inode, num_bytes);
1481 	btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0);
1482 
1483 	ins.objectid = disk_bytenr;
1484 	ins.offset = disk_num_bytes;
1485 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1486 	ret = btrfs_alloc_reserved_extent(trans, root, leaf->start,
1487 					  root->root_key.objectid,
1488 					  trans->transid, inode->i_ino, &ins);
1489 	BUG_ON(ret);
1490 
1491 	btrfs_free_path(path);
1492 	return 0;
1493 }
1494 
1495 /* as ordered data IO finishes, this gets called so we can finish
1496  * an ordered extent if the range of bytes in the file it covers are
1497  * fully written.
1498  */
btrfs_finish_ordered_io(struct inode * inode,u64 start,u64 end)1499 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1500 {
1501 	struct btrfs_root *root = BTRFS_I(inode)->root;
1502 	struct btrfs_trans_handle *trans;
1503 	struct btrfs_ordered_extent *ordered_extent;
1504 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1505 	int compressed = 0;
1506 	int ret;
1507 
1508 	ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1509 	if (!ret)
1510 		return 0;
1511 
1512 	trans = btrfs_join_transaction(root, 1);
1513 
1514 	ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1515 	BUG_ON(!ordered_extent);
1516 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1517 		goto nocow;
1518 
1519 	lock_extent(io_tree, ordered_extent->file_offset,
1520 		    ordered_extent->file_offset + ordered_extent->len - 1,
1521 		    GFP_NOFS);
1522 
1523 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1524 		compressed = 1;
1525 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1526 		BUG_ON(compressed);
1527 		ret = btrfs_mark_extent_written(trans, root, inode,
1528 						ordered_extent->file_offset,
1529 						ordered_extent->file_offset +
1530 						ordered_extent->len);
1531 		BUG_ON(ret);
1532 	} else {
1533 		ret = insert_reserved_file_extent(trans, inode,
1534 						ordered_extent->file_offset,
1535 						ordered_extent->start,
1536 						ordered_extent->disk_len,
1537 						ordered_extent->len,
1538 						ordered_extent->len,
1539 						compressed, 0, 0,
1540 						BTRFS_FILE_EXTENT_REG);
1541 		BUG_ON(ret);
1542 	}
1543 	unlock_extent(io_tree, ordered_extent->file_offset,
1544 		    ordered_extent->file_offset + ordered_extent->len - 1,
1545 		    GFP_NOFS);
1546 nocow:
1547 	add_pending_csums(trans, inode, ordered_extent->file_offset,
1548 			  &ordered_extent->list);
1549 
1550 	mutex_lock(&BTRFS_I(inode)->extent_mutex);
1551 	btrfs_ordered_update_i_size(inode, ordered_extent);
1552 	btrfs_update_inode(trans, root, inode);
1553 	btrfs_remove_ordered_extent(inode, ordered_extent);
1554 	mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1555 
1556 	/* once for us */
1557 	btrfs_put_ordered_extent(ordered_extent);
1558 	/* once for the tree */
1559 	btrfs_put_ordered_extent(ordered_extent);
1560 
1561 	btrfs_end_transaction(trans, root);
1562 	return 0;
1563 }
1564 
btrfs_writepage_end_io_hook(struct page * page,u64 start,u64 end,struct extent_state * state,int uptodate)1565 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1566 				struct extent_state *state, int uptodate)
1567 {
1568 	return btrfs_finish_ordered_io(page->mapping->host, start, end);
1569 }
1570 
1571 /*
1572  * When IO fails, either with EIO or csum verification fails, we
1573  * try other mirrors that might have a good copy of the data.  This
1574  * io_failure_record is used to record state as we go through all the
1575  * mirrors.  If another mirror has good data, the page is set up to date
1576  * and things continue.  If a good mirror can't be found, the original
1577  * bio end_io callback is called to indicate things have failed.
1578  */
1579 struct io_failure_record {
1580 	struct page *page;
1581 	u64 start;
1582 	u64 len;
1583 	u64 logical;
1584 	unsigned long bio_flags;
1585 	int last_mirror;
1586 };
1587 
btrfs_io_failed_hook(struct bio * failed_bio,struct page * page,u64 start,u64 end,struct extent_state * state)1588 static int btrfs_io_failed_hook(struct bio *failed_bio,
1589 			 struct page *page, u64 start, u64 end,
1590 			 struct extent_state *state)
1591 {
1592 	struct io_failure_record *failrec = NULL;
1593 	u64 private;
1594 	struct extent_map *em;
1595 	struct inode *inode = page->mapping->host;
1596 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1597 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1598 	struct bio *bio;
1599 	int num_copies;
1600 	int ret;
1601 	int rw;
1602 	u64 logical;
1603 
1604 	ret = get_state_private(failure_tree, start, &private);
1605 	if (ret) {
1606 		failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1607 		if (!failrec)
1608 			return -ENOMEM;
1609 		failrec->start = start;
1610 		failrec->len = end - start + 1;
1611 		failrec->last_mirror = 0;
1612 		failrec->bio_flags = 0;
1613 
1614 		spin_lock(&em_tree->lock);
1615 		em = lookup_extent_mapping(em_tree, start, failrec->len);
1616 		if (em->start > start || em->start + em->len < start) {
1617 			free_extent_map(em);
1618 			em = NULL;
1619 		}
1620 		spin_unlock(&em_tree->lock);
1621 
1622 		if (!em || IS_ERR(em)) {
1623 			kfree(failrec);
1624 			return -EIO;
1625 		}
1626 		logical = start - em->start;
1627 		logical = em->block_start + logical;
1628 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1629 			logical = em->block_start;
1630 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1631 		}
1632 		failrec->logical = logical;
1633 		free_extent_map(em);
1634 		set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1635 				EXTENT_DIRTY, GFP_NOFS);
1636 		set_state_private(failure_tree, start,
1637 				 (u64)(unsigned long)failrec);
1638 	} else {
1639 		failrec = (struct io_failure_record *)(unsigned long)private;
1640 	}
1641 	num_copies = btrfs_num_copies(
1642 			      &BTRFS_I(inode)->root->fs_info->mapping_tree,
1643 			      failrec->logical, failrec->len);
1644 	failrec->last_mirror++;
1645 	if (!state) {
1646 		spin_lock(&BTRFS_I(inode)->io_tree.lock);
1647 		state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1648 						    failrec->start,
1649 						    EXTENT_LOCKED);
1650 		if (state && state->start != failrec->start)
1651 			state = NULL;
1652 		spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1653 	}
1654 	if (!state || failrec->last_mirror > num_copies) {
1655 		set_state_private(failure_tree, failrec->start, 0);
1656 		clear_extent_bits(failure_tree, failrec->start,
1657 				  failrec->start + failrec->len - 1,
1658 				  EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1659 		kfree(failrec);
1660 		return -EIO;
1661 	}
1662 	bio = bio_alloc(GFP_NOFS, 1);
1663 	bio->bi_private = state;
1664 	bio->bi_end_io = failed_bio->bi_end_io;
1665 	bio->bi_sector = failrec->logical >> 9;
1666 	bio->bi_bdev = failed_bio->bi_bdev;
1667 	bio->bi_size = 0;
1668 
1669 	bio_add_page(bio, page, failrec->len, start - page_offset(page));
1670 	if (failed_bio->bi_rw & (1 << BIO_RW))
1671 		rw = WRITE;
1672 	else
1673 		rw = READ;
1674 
1675 	BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1676 						      failrec->last_mirror,
1677 						      failrec->bio_flags);
1678 	return 0;
1679 }
1680 
1681 /*
1682  * each time an IO finishes, we do a fast check in the IO failure tree
1683  * to see if we need to process or clean up an io_failure_record
1684  */
btrfs_clean_io_failures(struct inode * inode,u64 start)1685 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1686 {
1687 	u64 private;
1688 	u64 private_failure;
1689 	struct io_failure_record *failure;
1690 	int ret;
1691 
1692 	private = 0;
1693 	if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1694 			     (u64)-1, 1, EXTENT_DIRTY)) {
1695 		ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1696 					start, &private_failure);
1697 		if (ret == 0) {
1698 			failure = (struct io_failure_record *)(unsigned long)
1699 				   private_failure;
1700 			set_state_private(&BTRFS_I(inode)->io_failure_tree,
1701 					  failure->start, 0);
1702 			clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1703 					  failure->start,
1704 					  failure->start + failure->len - 1,
1705 					  EXTENT_DIRTY | EXTENT_LOCKED,
1706 					  GFP_NOFS);
1707 			kfree(failure);
1708 		}
1709 	}
1710 	return 0;
1711 }
1712 
1713 /*
1714  * when reads are done, we need to check csums to verify the data is correct
1715  * if there's a match, we allow the bio to finish.  If not, we go through
1716  * the io_failure_record routines to find good copies
1717  */
btrfs_readpage_end_io_hook(struct page * page,u64 start,u64 end,struct extent_state * state)1718 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1719 			       struct extent_state *state)
1720 {
1721 	size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1722 	struct inode *inode = page->mapping->host;
1723 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1724 	char *kaddr;
1725 	u64 private = ~(u32)0;
1726 	int ret;
1727 	struct btrfs_root *root = BTRFS_I(inode)->root;
1728 	u32 csum = ~(u32)0;
1729 
1730 	if (PageChecked(page)) {
1731 		ClearPageChecked(page);
1732 		goto good;
1733 	}
1734 	if (btrfs_test_flag(inode, NODATASUM))
1735 		return 0;
1736 
1737 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1738 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1)) {
1739 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1740 				  GFP_NOFS);
1741 		return 0;
1742 	}
1743 
1744 	if (state && state->start == start) {
1745 		private = state->private;
1746 		ret = 0;
1747 	} else {
1748 		ret = get_state_private(io_tree, start, &private);
1749 	}
1750 	kaddr = kmap_atomic(page, KM_USER0);
1751 	if (ret)
1752 		goto zeroit;
1753 
1754 	csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1755 	btrfs_csum_final(csum, (char *)&csum);
1756 	if (csum != private)
1757 		goto zeroit;
1758 
1759 	kunmap_atomic(kaddr, KM_USER0);
1760 good:
1761 	/* if the io failure tree for this inode is non-empty,
1762 	 * check to see if we've recovered from a failed IO
1763 	 */
1764 	btrfs_clean_io_failures(inode, start);
1765 	return 0;
1766 
1767 zeroit:
1768 	printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1769 	       "private %llu\n", page->mapping->host->i_ino,
1770 	       (unsigned long long)start, csum,
1771 	       (unsigned long long)private);
1772 	memset(kaddr + offset, 1, end - start + 1);
1773 	flush_dcache_page(page);
1774 	kunmap_atomic(kaddr, KM_USER0);
1775 	if (private == 0)
1776 		return 0;
1777 	return -EIO;
1778 }
1779 
1780 /*
1781  * This creates an orphan entry for the given inode in case something goes
1782  * wrong in the middle of an unlink/truncate.
1783  */
btrfs_orphan_add(struct btrfs_trans_handle * trans,struct inode * inode)1784 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1785 {
1786 	struct btrfs_root *root = BTRFS_I(inode)->root;
1787 	int ret = 0;
1788 
1789 	spin_lock(&root->list_lock);
1790 
1791 	/* already on the orphan list, we're good */
1792 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1793 		spin_unlock(&root->list_lock);
1794 		return 0;
1795 	}
1796 
1797 	list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1798 
1799 	spin_unlock(&root->list_lock);
1800 
1801 	/*
1802 	 * insert an orphan item to track this unlinked/truncated file
1803 	 */
1804 	ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1805 
1806 	return ret;
1807 }
1808 
1809 /*
1810  * We have done the truncate/delete so we can go ahead and remove the orphan
1811  * item for this particular inode.
1812  */
btrfs_orphan_del(struct btrfs_trans_handle * trans,struct inode * inode)1813 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1814 {
1815 	struct btrfs_root *root = BTRFS_I(inode)->root;
1816 	int ret = 0;
1817 
1818 	spin_lock(&root->list_lock);
1819 
1820 	if (list_empty(&BTRFS_I(inode)->i_orphan)) {
1821 		spin_unlock(&root->list_lock);
1822 		return 0;
1823 	}
1824 
1825 	list_del_init(&BTRFS_I(inode)->i_orphan);
1826 	if (!trans) {
1827 		spin_unlock(&root->list_lock);
1828 		return 0;
1829 	}
1830 
1831 	spin_unlock(&root->list_lock);
1832 
1833 	ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1834 
1835 	return ret;
1836 }
1837 
1838 /*
1839  * this cleans up any orphans that may be left on the list from the last use
1840  * of this root.
1841  */
btrfs_orphan_cleanup(struct btrfs_root * root)1842 void btrfs_orphan_cleanup(struct btrfs_root *root)
1843 {
1844 	struct btrfs_path *path;
1845 	struct extent_buffer *leaf;
1846 	struct btrfs_item *item;
1847 	struct btrfs_key key, found_key;
1848 	struct btrfs_trans_handle *trans;
1849 	struct inode *inode;
1850 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
1851 
1852 	path = btrfs_alloc_path();
1853 	if (!path)
1854 		return;
1855 	path->reada = -1;
1856 
1857 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1858 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1859 	key.offset = (u64)-1;
1860 
1861 
1862 	while (1) {
1863 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1864 		if (ret < 0) {
1865 			printk(KERN_ERR "Error searching slot for orphan: %d"
1866 			       "\n", ret);
1867 			break;
1868 		}
1869 
1870 		/*
1871 		 * if ret == 0 means we found what we were searching for, which
1872 		 * is weird, but possible, so only screw with path if we didnt
1873 		 * find the key and see if we have stuff that matches
1874 		 */
1875 		if (ret > 0) {
1876 			if (path->slots[0] == 0)
1877 				break;
1878 			path->slots[0]--;
1879 		}
1880 
1881 		/* pull out the item */
1882 		leaf = path->nodes[0];
1883 		item = btrfs_item_nr(leaf, path->slots[0]);
1884 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1885 
1886 		/* make sure the item matches what we want */
1887 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1888 			break;
1889 		if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1890 			break;
1891 
1892 		/* release the path since we're done with it */
1893 		btrfs_release_path(root, path);
1894 
1895 		/*
1896 		 * this is where we are basically btrfs_lookup, without the
1897 		 * crossing root thing.  we store the inode number in the
1898 		 * offset of the orphan item.
1899 		 */
1900 		inode = btrfs_iget_locked(root->fs_info->sb,
1901 					  found_key.offset, root);
1902 		if (!inode)
1903 			break;
1904 
1905 		if (inode->i_state & I_NEW) {
1906 			BTRFS_I(inode)->root = root;
1907 
1908 			/* have to set the location manually */
1909 			BTRFS_I(inode)->location.objectid = inode->i_ino;
1910 			BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
1911 			BTRFS_I(inode)->location.offset = 0;
1912 
1913 			btrfs_read_locked_inode(inode);
1914 			unlock_new_inode(inode);
1915 		}
1916 
1917 		/*
1918 		 * add this inode to the orphan list so btrfs_orphan_del does
1919 		 * the proper thing when we hit it
1920 		 */
1921 		spin_lock(&root->list_lock);
1922 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1923 		spin_unlock(&root->list_lock);
1924 
1925 		/*
1926 		 * if this is a bad inode, means we actually succeeded in
1927 		 * removing the inode, but not the orphan record, which means
1928 		 * we need to manually delete the orphan since iput will just
1929 		 * do a destroy_inode
1930 		 */
1931 		if (is_bad_inode(inode)) {
1932 			trans = btrfs_start_transaction(root, 1);
1933 			btrfs_orphan_del(trans, inode);
1934 			btrfs_end_transaction(trans, root);
1935 			iput(inode);
1936 			continue;
1937 		}
1938 
1939 		/* if we have links, this was a truncate, lets do that */
1940 		if (inode->i_nlink) {
1941 			nr_truncate++;
1942 			btrfs_truncate(inode);
1943 		} else {
1944 			nr_unlink++;
1945 		}
1946 
1947 		/* this will do delete_inode and everything for us */
1948 		iput(inode);
1949 	}
1950 
1951 	if (nr_unlink)
1952 		printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
1953 	if (nr_truncate)
1954 		printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
1955 
1956 	btrfs_free_path(path);
1957 }
1958 
1959 /*
1960  * read an inode from the btree into the in-memory inode
1961  */
btrfs_read_locked_inode(struct inode * inode)1962 void btrfs_read_locked_inode(struct inode *inode)
1963 {
1964 	struct btrfs_path *path;
1965 	struct extent_buffer *leaf;
1966 	struct btrfs_inode_item *inode_item;
1967 	struct btrfs_timespec *tspec;
1968 	struct btrfs_root *root = BTRFS_I(inode)->root;
1969 	struct btrfs_key location;
1970 	u64 alloc_group_block;
1971 	u32 rdev;
1972 	int ret;
1973 
1974 	path = btrfs_alloc_path();
1975 	BUG_ON(!path);
1976 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
1977 
1978 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
1979 	if (ret)
1980 		goto make_bad;
1981 
1982 	leaf = path->nodes[0];
1983 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1984 				    struct btrfs_inode_item);
1985 
1986 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
1987 	inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
1988 	inode->i_uid = btrfs_inode_uid(leaf, inode_item);
1989 	inode->i_gid = btrfs_inode_gid(leaf, inode_item);
1990 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
1991 
1992 	tspec = btrfs_inode_atime(inode_item);
1993 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1994 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1995 
1996 	tspec = btrfs_inode_mtime(inode_item);
1997 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1998 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1999 
2000 	tspec = btrfs_inode_ctime(inode_item);
2001 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2002 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2003 
2004 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2005 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2006 	BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2007 	inode->i_generation = BTRFS_I(inode)->generation;
2008 	inode->i_rdev = 0;
2009 	rdev = btrfs_inode_rdev(leaf, inode_item);
2010 
2011 	BTRFS_I(inode)->index_cnt = (u64)-1;
2012 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2013 
2014 	alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2015 
2016 	BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2017 						alloc_group_block, 0);
2018 	btrfs_free_path(path);
2019 	inode_item = NULL;
2020 
2021 	switch (inode->i_mode & S_IFMT) {
2022 	case S_IFREG:
2023 		inode->i_mapping->a_ops = &btrfs_aops;
2024 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2025 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2026 		inode->i_fop = &btrfs_file_operations;
2027 		inode->i_op = &btrfs_file_inode_operations;
2028 		break;
2029 	case S_IFDIR:
2030 		inode->i_fop = &btrfs_dir_file_operations;
2031 		if (root == root->fs_info->tree_root)
2032 			inode->i_op = &btrfs_dir_ro_inode_operations;
2033 		else
2034 			inode->i_op = &btrfs_dir_inode_operations;
2035 		break;
2036 	case S_IFLNK:
2037 		inode->i_op = &btrfs_symlink_inode_operations;
2038 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
2039 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2040 		break;
2041 	default:
2042 		inode->i_op = &btrfs_special_inode_operations;
2043 		init_special_inode(inode, inode->i_mode, rdev);
2044 		break;
2045 	}
2046 	return;
2047 
2048 make_bad:
2049 	btrfs_free_path(path);
2050 	make_bad_inode(inode);
2051 }
2052 
2053 /*
2054  * given a leaf and an inode, copy the inode fields into the leaf
2055  */
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode)2056 static void fill_inode_item(struct btrfs_trans_handle *trans,
2057 			    struct extent_buffer *leaf,
2058 			    struct btrfs_inode_item *item,
2059 			    struct inode *inode)
2060 {
2061 	btrfs_set_inode_uid(leaf, item, inode->i_uid);
2062 	btrfs_set_inode_gid(leaf, item, inode->i_gid);
2063 	btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2064 	btrfs_set_inode_mode(leaf, item, inode->i_mode);
2065 	btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2066 
2067 	btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2068 			       inode->i_atime.tv_sec);
2069 	btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2070 				inode->i_atime.tv_nsec);
2071 
2072 	btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2073 			       inode->i_mtime.tv_sec);
2074 	btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2075 				inode->i_mtime.tv_nsec);
2076 
2077 	btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2078 			       inode->i_ctime.tv_sec);
2079 	btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2080 				inode->i_ctime.tv_nsec);
2081 
2082 	btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2083 	btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2084 	btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2085 	btrfs_set_inode_transid(leaf, item, trans->transid);
2086 	btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2087 	btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2088 	btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2089 }
2090 
2091 /*
2092  * copy everything in the in-memory inode into the btree.
2093  */
btrfs_update_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)2094 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2095 				struct btrfs_root *root, struct inode *inode)
2096 {
2097 	struct btrfs_inode_item *inode_item;
2098 	struct btrfs_path *path;
2099 	struct extent_buffer *leaf;
2100 	int ret;
2101 
2102 	path = btrfs_alloc_path();
2103 	BUG_ON(!path);
2104 	ret = btrfs_lookup_inode(trans, root, path,
2105 				 &BTRFS_I(inode)->location, 1);
2106 	if (ret) {
2107 		if (ret > 0)
2108 			ret = -ENOENT;
2109 		goto failed;
2110 	}
2111 
2112 	btrfs_unlock_up_safe(path, 1);
2113 	leaf = path->nodes[0];
2114 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2115 				  struct btrfs_inode_item);
2116 
2117 	fill_inode_item(trans, leaf, inode_item, inode);
2118 	btrfs_mark_buffer_dirty(leaf);
2119 	btrfs_set_inode_last_trans(trans, inode);
2120 	ret = 0;
2121 failed:
2122 	btrfs_free_path(path);
2123 	return ret;
2124 }
2125 
2126 
2127 /*
2128  * unlink helper that gets used here in inode.c and in the tree logging
2129  * recovery code.  It remove a link in a directory with a given name, and
2130  * also drops the back refs in the inode to the directory
2131  */
btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,struct inode * inode,const char * name,int name_len)2132 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2133 		       struct btrfs_root *root,
2134 		       struct inode *dir, struct inode *inode,
2135 		       const char *name, int name_len)
2136 {
2137 	struct btrfs_path *path;
2138 	int ret = 0;
2139 	struct extent_buffer *leaf;
2140 	struct btrfs_dir_item *di;
2141 	struct btrfs_key key;
2142 	u64 index;
2143 
2144 	path = btrfs_alloc_path();
2145 	if (!path) {
2146 		ret = -ENOMEM;
2147 		goto err;
2148 	}
2149 
2150 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2151 				    name, name_len, -1);
2152 	if (IS_ERR(di)) {
2153 		ret = PTR_ERR(di);
2154 		goto err;
2155 	}
2156 	if (!di) {
2157 		ret = -ENOENT;
2158 		goto err;
2159 	}
2160 	leaf = path->nodes[0];
2161 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2162 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2163 	if (ret)
2164 		goto err;
2165 	btrfs_release_path(root, path);
2166 
2167 	ret = btrfs_del_inode_ref(trans, root, name, name_len,
2168 				  inode->i_ino,
2169 				  dir->i_ino, &index);
2170 	if (ret) {
2171 		printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2172 		       "inode %lu parent %lu\n", name_len, name,
2173 		       inode->i_ino, dir->i_ino);
2174 		goto err;
2175 	}
2176 
2177 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2178 					 index, name, name_len, -1);
2179 	if (IS_ERR(di)) {
2180 		ret = PTR_ERR(di);
2181 		goto err;
2182 	}
2183 	if (!di) {
2184 		ret = -ENOENT;
2185 		goto err;
2186 	}
2187 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2188 	btrfs_release_path(root, path);
2189 
2190 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2191 					 inode, dir->i_ino);
2192 	BUG_ON(ret != 0 && ret != -ENOENT);
2193 	if (ret != -ENOENT)
2194 		BTRFS_I(dir)->log_dirty_trans = trans->transid;
2195 
2196 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2197 					   dir, index);
2198 	BUG_ON(ret);
2199 err:
2200 	btrfs_free_path(path);
2201 	if (ret)
2202 		goto out;
2203 
2204 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2205 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2206 	btrfs_update_inode(trans, root, dir);
2207 	btrfs_drop_nlink(inode);
2208 	ret = btrfs_update_inode(trans, root, inode);
2209 	dir->i_sb->s_dirt = 1;
2210 out:
2211 	return ret;
2212 }
2213 
btrfs_unlink(struct inode * dir,struct dentry * dentry)2214 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2215 {
2216 	struct btrfs_root *root;
2217 	struct btrfs_trans_handle *trans;
2218 	struct inode *inode = dentry->d_inode;
2219 	int ret;
2220 	unsigned long nr = 0;
2221 
2222 	root = BTRFS_I(dir)->root;
2223 
2224 	trans = btrfs_start_transaction(root, 1);
2225 
2226 	btrfs_set_trans_block_group(trans, dir);
2227 	ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2228 				 dentry->d_name.name, dentry->d_name.len);
2229 
2230 	if (inode->i_nlink == 0)
2231 		ret = btrfs_orphan_add(trans, inode);
2232 
2233 	nr = trans->blocks_used;
2234 
2235 	btrfs_end_transaction_throttle(trans, root);
2236 	btrfs_btree_balance_dirty(root, nr);
2237 	return ret;
2238 }
2239 
btrfs_rmdir(struct inode * dir,struct dentry * dentry)2240 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2241 {
2242 	struct inode *inode = dentry->d_inode;
2243 	int err = 0;
2244 	int ret;
2245 	struct btrfs_root *root = BTRFS_I(dir)->root;
2246 	struct btrfs_trans_handle *trans;
2247 	unsigned long nr = 0;
2248 
2249 	/*
2250 	 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2251 	 * the root of a subvolume or snapshot
2252 	 */
2253 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2254 	    inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) {
2255 		return -ENOTEMPTY;
2256 	}
2257 
2258 	trans = btrfs_start_transaction(root, 1);
2259 	btrfs_set_trans_block_group(trans, dir);
2260 
2261 	err = btrfs_orphan_add(trans, inode);
2262 	if (err)
2263 		goto fail_trans;
2264 
2265 	/* now the directory is empty */
2266 	err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2267 				 dentry->d_name.name, dentry->d_name.len);
2268 	if (!err)
2269 		btrfs_i_size_write(inode, 0);
2270 
2271 fail_trans:
2272 	nr = trans->blocks_used;
2273 	ret = btrfs_end_transaction_throttle(trans, root);
2274 	btrfs_btree_balance_dirty(root, nr);
2275 
2276 	if (ret && !err)
2277 		err = ret;
2278 	return err;
2279 }
2280 
2281 #if 0
2282 /*
2283  * when truncating bytes in a file, it is possible to avoid reading
2284  * the leaves that contain only checksum items.  This can be the
2285  * majority of the IO required to delete a large file, but it must
2286  * be done carefully.
2287  *
2288  * The keys in the level just above the leaves are checked to make sure
2289  * the lowest key in a given leaf is a csum key, and starts at an offset
2290  * after the new  size.
2291  *
2292  * Then the key for the next leaf is checked to make sure it also has
2293  * a checksum item for the same file.  If it does, we know our target leaf
2294  * contains only checksum items, and it can be safely freed without reading
2295  * it.
2296  *
2297  * This is just an optimization targeted at large files.  It may do
2298  * nothing.  It will return 0 unless things went badly.
2299  */
2300 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2301 				     struct btrfs_root *root,
2302 				     struct btrfs_path *path,
2303 				     struct inode *inode, u64 new_size)
2304 {
2305 	struct btrfs_key key;
2306 	int ret;
2307 	int nritems;
2308 	struct btrfs_key found_key;
2309 	struct btrfs_key other_key;
2310 	struct btrfs_leaf_ref *ref;
2311 	u64 leaf_gen;
2312 	u64 leaf_start;
2313 
2314 	path->lowest_level = 1;
2315 	key.objectid = inode->i_ino;
2316 	key.type = BTRFS_CSUM_ITEM_KEY;
2317 	key.offset = new_size;
2318 again:
2319 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2320 	if (ret < 0)
2321 		goto out;
2322 
2323 	if (path->nodes[1] == NULL) {
2324 		ret = 0;
2325 		goto out;
2326 	}
2327 	ret = 0;
2328 	btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2329 	nritems = btrfs_header_nritems(path->nodes[1]);
2330 
2331 	if (!nritems)
2332 		goto out;
2333 
2334 	if (path->slots[1] >= nritems)
2335 		goto next_node;
2336 
2337 	/* did we find a key greater than anything we want to delete? */
2338 	if (found_key.objectid > inode->i_ino ||
2339 	   (found_key.objectid == inode->i_ino && found_key.type > key.type))
2340 		goto out;
2341 
2342 	/* we check the next key in the node to make sure the leave contains
2343 	 * only checksum items.  This comparison doesn't work if our
2344 	 * leaf is the last one in the node
2345 	 */
2346 	if (path->slots[1] + 1 >= nritems) {
2347 next_node:
2348 		/* search forward from the last key in the node, this
2349 		 * will bring us into the next node in the tree
2350 		 */
2351 		btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2352 
2353 		/* unlikely, but we inc below, so check to be safe */
2354 		if (found_key.offset == (u64)-1)
2355 			goto out;
2356 
2357 		/* search_forward needs a path with locks held, do the
2358 		 * search again for the original key.  It is possible
2359 		 * this will race with a balance and return a path that
2360 		 * we could modify, but this drop is just an optimization
2361 		 * and is allowed to miss some leaves.
2362 		 */
2363 		btrfs_release_path(root, path);
2364 		found_key.offset++;
2365 
2366 		/* setup a max key for search_forward */
2367 		other_key.offset = (u64)-1;
2368 		other_key.type = key.type;
2369 		other_key.objectid = key.objectid;
2370 
2371 		path->keep_locks = 1;
2372 		ret = btrfs_search_forward(root, &found_key, &other_key,
2373 					   path, 0, 0);
2374 		path->keep_locks = 0;
2375 		if (ret || found_key.objectid != key.objectid ||
2376 		    found_key.type != key.type) {
2377 			ret = 0;
2378 			goto out;
2379 		}
2380 
2381 		key.offset = found_key.offset;
2382 		btrfs_release_path(root, path);
2383 		cond_resched();
2384 		goto again;
2385 	}
2386 
2387 	/* we know there's one more slot after us in the tree,
2388 	 * read that key so we can verify it is also a checksum item
2389 	 */
2390 	btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2391 
2392 	if (found_key.objectid < inode->i_ino)
2393 		goto next_key;
2394 
2395 	if (found_key.type != key.type || found_key.offset < new_size)
2396 		goto next_key;
2397 
2398 	/*
2399 	 * if the key for the next leaf isn't a csum key from this objectid,
2400 	 * we can't be sure there aren't good items inside this leaf.
2401 	 * Bail out
2402 	 */
2403 	if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2404 		goto out;
2405 
2406 	leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2407 	leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2408 	/*
2409 	 * it is safe to delete this leaf, it contains only
2410 	 * csum items from this inode at an offset >= new_size
2411 	 */
2412 	ret = btrfs_del_leaf(trans, root, path, leaf_start);
2413 	BUG_ON(ret);
2414 
2415 	if (root->ref_cows && leaf_gen < trans->transid) {
2416 		ref = btrfs_alloc_leaf_ref(root, 0);
2417 		if (ref) {
2418 			ref->root_gen = root->root_key.offset;
2419 			ref->bytenr = leaf_start;
2420 			ref->owner = 0;
2421 			ref->generation = leaf_gen;
2422 			ref->nritems = 0;
2423 
2424 			btrfs_sort_leaf_ref(ref);
2425 
2426 			ret = btrfs_add_leaf_ref(root, ref, 0);
2427 			WARN_ON(ret);
2428 			btrfs_free_leaf_ref(root, ref);
2429 		} else {
2430 			WARN_ON(1);
2431 		}
2432 	}
2433 next_key:
2434 	btrfs_release_path(root, path);
2435 
2436 	if (other_key.objectid == inode->i_ino &&
2437 	    other_key.type == key.type && other_key.offset > key.offset) {
2438 		key.offset = other_key.offset;
2439 		cond_resched();
2440 		goto again;
2441 	}
2442 	ret = 0;
2443 out:
2444 	/* fixup any changes we've made to the path */
2445 	path->lowest_level = 0;
2446 	path->keep_locks = 0;
2447 	btrfs_release_path(root, path);
2448 	return ret;
2449 }
2450 
2451 #endif
2452 
2453 /*
2454  * this can truncate away extent items, csum items and directory items.
2455  * It starts at a high offset and removes keys until it can't find
2456  * any higher than new_size
2457  *
2458  * csum items that cross the new i_size are truncated to the new size
2459  * as well.
2460  *
2461  * min_type is the minimum key type to truncate down to.  If set to 0, this
2462  * will kill all the items on this inode, including the INODE_ITEM_KEY.
2463  */
btrfs_truncate_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,u64 new_size,u32 min_type)2464 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2465 					struct btrfs_root *root,
2466 					struct inode *inode,
2467 					u64 new_size, u32 min_type)
2468 {
2469 	int ret;
2470 	struct btrfs_path *path;
2471 	struct btrfs_key key;
2472 	struct btrfs_key found_key;
2473 	u32 found_type = (u8)-1;
2474 	struct extent_buffer *leaf;
2475 	struct btrfs_file_extent_item *fi;
2476 	u64 extent_start = 0;
2477 	u64 extent_num_bytes = 0;
2478 	u64 item_end = 0;
2479 	u64 root_gen = 0;
2480 	u64 root_owner = 0;
2481 	int found_extent;
2482 	int del_item;
2483 	int pending_del_nr = 0;
2484 	int pending_del_slot = 0;
2485 	int extent_type = -1;
2486 	int encoding;
2487 	u64 mask = root->sectorsize - 1;
2488 
2489 	if (root->ref_cows)
2490 		btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2491 	path = btrfs_alloc_path();
2492 	path->reada = -1;
2493 	BUG_ON(!path);
2494 
2495 	/* FIXME, add redo link to tree so we don't leak on crash */
2496 	key.objectid = inode->i_ino;
2497 	key.offset = (u64)-1;
2498 	key.type = (u8)-1;
2499 
2500 search_again:
2501 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2502 	if (ret < 0)
2503 		goto error;
2504 
2505 	if (ret > 0) {
2506 		/* there are no items in the tree for us to truncate, we're
2507 		 * done
2508 		 */
2509 		if (path->slots[0] == 0) {
2510 			ret = 0;
2511 			goto error;
2512 		}
2513 		path->slots[0]--;
2514 	}
2515 
2516 	while (1) {
2517 		fi = NULL;
2518 		leaf = path->nodes[0];
2519 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2520 		found_type = btrfs_key_type(&found_key);
2521 		encoding = 0;
2522 
2523 		if (found_key.objectid != inode->i_ino)
2524 			break;
2525 
2526 		if (found_type < min_type)
2527 			break;
2528 
2529 		item_end = found_key.offset;
2530 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
2531 			fi = btrfs_item_ptr(leaf, path->slots[0],
2532 					    struct btrfs_file_extent_item);
2533 			extent_type = btrfs_file_extent_type(leaf, fi);
2534 			encoding = btrfs_file_extent_compression(leaf, fi);
2535 			encoding |= btrfs_file_extent_encryption(leaf, fi);
2536 			encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2537 
2538 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2539 				item_end +=
2540 				    btrfs_file_extent_num_bytes(leaf, fi);
2541 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2542 				item_end += btrfs_file_extent_inline_len(leaf,
2543 									 fi);
2544 			}
2545 			item_end--;
2546 		}
2547 		if (item_end < new_size) {
2548 			if (found_type == BTRFS_DIR_ITEM_KEY)
2549 				found_type = BTRFS_INODE_ITEM_KEY;
2550 			else if (found_type == BTRFS_EXTENT_ITEM_KEY)
2551 				found_type = BTRFS_EXTENT_DATA_KEY;
2552 			else if (found_type == BTRFS_EXTENT_DATA_KEY)
2553 				found_type = BTRFS_XATTR_ITEM_KEY;
2554 			else if (found_type == BTRFS_XATTR_ITEM_KEY)
2555 				found_type = BTRFS_INODE_REF_KEY;
2556 			else if (found_type)
2557 				found_type--;
2558 			else
2559 				break;
2560 			btrfs_set_key_type(&key, found_type);
2561 			goto next;
2562 		}
2563 		if (found_key.offset >= new_size)
2564 			del_item = 1;
2565 		else
2566 			del_item = 0;
2567 		found_extent = 0;
2568 
2569 		/* FIXME, shrink the extent if the ref count is only 1 */
2570 		if (found_type != BTRFS_EXTENT_DATA_KEY)
2571 			goto delete;
2572 
2573 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2574 			u64 num_dec;
2575 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2576 			if (!del_item && !encoding) {
2577 				u64 orig_num_bytes =
2578 					btrfs_file_extent_num_bytes(leaf, fi);
2579 				extent_num_bytes = new_size -
2580 					found_key.offset + root->sectorsize - 1;
2581 				extent_num_bytes = extent_num_bytes &
2582 					~((u64)root->sectorsize - 1);
2583 				btrfs_set_file_extent_num_bytes(leaf, fi,
2584 							 extent_num_bytes);
2585 				num_dec = (orig_num_bytes -
2586 					   extent_num_bytes);
2587 				if (root->ref_cows && extent_start != 0)
2588 					inode_sub_bytes(inode, num_dec);
2589 				btrfs_mark_buffer_dirty(leaf);
2590 			} else {
2591 				extent_num_bytes =
2592 					btrfs_file_extent_disk_num_bytes(leaf,
2593 									 fi);
2594 				/* FIXME blocksize != 4096 */
2595 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2596 				if (extent_start != 0) {
2597 					found_extent = 1;
2598 					if (root->ref_cows)
2599 						inode_sub_bytes(inode, num_dec);
2600 				}
2601 				root_gen = btrfs_header_generation(leaf);
2602 				root_owner = btrfs_header_owner(leaf);
2603 			}
2604 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2605 			/*
2606 			 * we can't truncate inline items that have had
2607 			 * special encodings
2608 			 */
2609 			if (!del_item &&
2610 			    btrfs_file_extent_compression(leaf, fi) == 0 &&
2611 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
2612 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2613 				u32 size = new_size - found_key.offset;
2614 
2615 				if (root->ref_cows) {
2616 					inode_sub_bytes(inode, item_end + 1 -
2617 							new_size);
2618 				}
2619 				size =
2620 				    btrfs_file_extent_calc_inline_size(size);
2621 				ret = btrfs_truncate_item(trans, root, path,
2622 							  size, 1);
2623 				BUG_ON(ret);
2624 			} else if (root->ref_cows) {
2625 				inode_sub_bytes(inode, item_end + 1 -
2626 						found_key.offset);
2627 			}
2628 		}
2629 delete:
2630 		if (del_item) {
2631 			if (!pending_del_nr) {
2632 				/* no pending yet, add ourselves */
2633 				pending_del_slot = path->slots[0];
2634 				pending_del_nr = 1;
2635 			} else if (pending_del_nr &&
2636 				   path->slots[0] + 1 == pending_del_slot) {
2637 				/* hop on the pending chunk */
2638 				pending_del_nr++;
2639 				pending_del_slot = path->slots[0];
2640 			} else {
2641 				BUG();
2642 			}
2643 		} else {
2644 			break;
2645 		}
2646 		if (found_extent) {
2647 			ret = btrfs_free_extent(trans, root, extent_start,
2648 						extent_num_bytes,
2649 						leaf->start, root_owner,
2650 						root_gen, inode->i_ino, 0);
2651 			BUG_ON(ret);
2652 		}
2653 next:
2654 		if (path->slots[0] == 0) {
2655 			if (pending_del_nr)
2656 				goto del_pending;
2657 			btrfs_release_path(root, path);
2658 			if (found_type == BTRFS_INODE_ITEM_KEY)
2659 				break;
2660 			goto search_again;
2661 		}
2662 
2663 		path->slots[0]--;
2664 		if (pending_del_nr &&
2665 		    path->slots[0] + 1 != pending_del_slot) {
2666 			struct btrfs_key debug;
2667 del_pending:
2668 			btrfs_item_key_to_cpu(path->nodes[0], &debug,
2669 					      pending_del_slot);
2670 			ret = btrfs_del_items(trans, root, path,
2671 					      pending_del_slot,
2672 					      pending_del_nr);
2673 			BUG_ON(ret);
2674 			pending_del_nr = 0;
2675 			btrfs_release_path(root, path);
2676 			if (found_type == BTRFS_INODE_ITEM_KEY)
2677 				break;
2678 			goto search_again;
2679 		}
2680 	}
2681 	ret = 0;
2682 error:
2683 	if (pending_del_nr) {
2684 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
2685 				      pending_del_nr);
2686 	}
2687 	btrfs_free_path(path);
2688 	inode->i_sb->s_dirt = 1;
2689 	return ret;
2690 }
2691 
2692 /*
2693  * taken from block_truncate_page, but does cow as it zeros out
2694  * any bytes left in the last page in the file.
2695  */
btrfs_truncate_page(struct address_space * mapping,loff_t from)2696 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2697 {
2698 	struct inode *inode = mapping->host;
2699 	struct btrfs_root *root = BTRFS_I(inode)->root;
2700 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2701 	struct btrfs_ordered_extent *ordered;
2702 	char *kaddr;
2703 	u32 blocksize = root->sectorsize;
2704 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2705 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2706 	struct page *page;
2707 	int ret = 0;
2708 	u64 page_start;
2709 	u64 page_end;
2710 
2711 	if ((offset & (blocksize - 1)) == 0)
2712 		goto out;
2713 
2714 	ret = -ENOMEM;
2715 again:
2716 	page = grab_cache_page(mapping, index);
2717 	if (!page)
2718 		goto out;
2719 
2720 	page_start = page_offset(page);
2721 	page_end = page_start + PAGE_CACHE_SIZE - 1;
2722 
2723 	if (!PageUptodate(page)) {
2724 		ret = btrfs_readpage(NULL, page);
2725 		lock_page(page);
2726 		if (page->mapping != mapping) {
2727 			unlock_page(page);
2728 			page_cache_release(page);
2729 			goto again;
2730 		}
2731 		if (!PageUptodate(page)) {
2732 			ret = -EIO;
2733 			goto out_unlock;
2734 		}
2735 	}
2736 	wait_on_page_writeback(page);
2737 
2738 	lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2739 	set_page_extent_mapped(page);
2740 
2741 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
2742 	if (ordered) {
2743 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2744 		unlock_page(page);
2745 		page_cache_release(page);
2746 		btrfs_start_ordered_extent(inode, ordered, 1);
2747 		btrfs_put_ordered_extent(ordered);
2748 		goto again;
2749 	}
2750 
2751 	btrfs_set_extent_delalloc(inode, page_start, page_end);
2752 	ret = 0;
2753 	if (offset != PAGE_CACHE_SIZE) {
2754 		kaddr = kmap(page);
2755 		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2756 		flush_dcache_page(page);
2757 		kunmap(page);
2758 	}
2759 	ClearPageChecked(page);
2760 	set_page_dirty(page);
2761 	unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2762 
2763 out_unlock:
2764 	unlock_page(page);
2765 	page_cache_release(page);
2766 out:
2767 	return ret;
2768 }
2769 
btrfs_cont_expand(struct inode * inode,loff_t size)2770 int btrfs_cont_expand(struct inode *inode, loff_t size)
2771 {
2772 	struct btrfs_trans_handle *trans;
2773 	struct btrfs_root *root = BTRFS_I(inode)->root;
2774 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2775 	struct extent_map *em;
2776 	u64 mask = root->sectorsize - 1;
2777 	u64 hole_start = (inode->i_size + mask) & ~mask;
2778 	u64 block_end = (size + mask) & ~mask;
2779 	u64 last_byte;
2780 	u64 cur_offset;
2781 	u64 hole_size;
2782 	int err;
2783 
2784 	if (size <= hole_start)
2785 		return 0;
2786 
2787 	err = btrfs_check_metadata_free_space(root);
2788 	if (err)
2789 		return err;
2790 
2791 	btrfs_truncate_page(inode->i_mapping, inode->i_size);
2792 
2793 	while (1) {
2794 		struct btrfs_ordered_extent *ordered;
2795 		btrfs_wait_ordered_range(inode, hole_start,
2796 					 block_end - hole_start);
2797 		lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2798 		ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2799 		if (!ordered)
2800 			break;
2801 		unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2802 		btrfs_put_ordered_extent(ordered);
2803 	}
2804 
2805 	trans = btrfs_start_transaction(root, 1);
2806 	btrfs_set_trans_block_group(trans, inode);
2807 
2808 	cur_offset = hole_start;
2809 	while (1) {
2810 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2811 				block_end - cur_offset, 0);
2812 		BUG_ON(IS_ERR(em) || !em);
2813 		last_byte = min(extent_map_end(em), block_end);
2814 		last_byte = (last_byte + mask) & ~mask;
2815 		if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2816 			u64 hint_byte = 0;
2817 			hole_size = last_byte - cur_offset;
2818 			err = btrfs_drop_extents(trans, root, inode,
2819 						 cur_offset,
2820 						 cur_offset + hole_size,
2821 						 cur_offset, &hint_byte);
2822 			if (err)
2823 				break;
2824 			err = btrfs_insert_file_extent(trans, root,
2825 					inode->i_ino, cur_offset, 0,
2826 					0, hole_size, 0, hole_size,
2827 					0, 0, 0);
2828 			btrfs_drop_extent_cache(inode, hole_start,
2829 					last_byte - 1, 0);
2830 		}
2831 		free_extent_map(em);
2832 		cur_offset = last_byte;
2833 		if (err || cur_offset >= block_end)
2834 			break;
2835 	}
2836 
2837 	btrfs_end_transaction(trans, root);
2838 	unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2839 	return err;
2840 }
2841 
btrfs_setattr(struct dentry * dentry,struct iattr * attr)2842 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2843 {
2844 	struct inode *inode = dentry->d_inode;
2845 	int err;
2846 
2847 	err = inode_change_ok(inode, attr);
2848 	if (err)
2849 		return err;
2850 
2851 	if (S_ISREG(inode->i_mode) &&
2852 	    attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
2853 		err = btrfs_cont_expand(inode, attr->ia_size);
2854 		if (err)
2855 			return err;
2856 	}
2857 
2858 	err = inode_setattr(inode, attr);
2859 
2860 	if (!err && ((attr->ia_valid & ATTR_MODE)))
2861 		err = btrfs_acl_chmod(inode);
2862 	return err;
2863 }
2864 
btrfs_delete_inode(struct inode * inode)2865 void btrfs_delete_inode(struct inode *inode)
2866 {
2867 	struct btrfs_trans_handle *trans;
2868 	struct btrfs_root *root = BTRFS_I(inode)->root;
2869 	unsigned long nr;
2870 	int ret;
2871 
2872 	truncate_inode_pages(&inode->i_data, 0);
2873 	if (is_bad_inode(inode)) {
2874 		btrfs_orphan_del(NULL, inode);
2875 		goto no_delete;
2876 	}
2877 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
2878 
2879 	btrfs_i_size_write(inode, 0);
2880 	trans = btrfs_join_transaction(root, 1);
2881 
2882 	btrfs_set_trans_block_group(trans, inode);
2883 	ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
2884 	if (ret) {
2885 		btrfs_orphan_del(NULL, inode);
2886 		goto no_delete_lock;
2887 	}
2888 
2889 	btrfs_orphan_del(trans, inode);
2890 
2891 	nr = trans->blocks_used;
2892 	clear_inode(inode);
2893 
2894 	btrfs_end_transaction(trans, root);
2895 	btrfs_btree_balance_dirty(root, nr);
2896 	return;
2897 
2898 no_delete_lock:
2899 	nr = trans->blocks_used;
2900 	btrfs_end_transaction(trans, root);
2901 	btrfs_btree_balance_dirty(root, nr);
2902 no_delete:
2903 	clear_inode(inode);
2904 }
2905 
2906 /*
2907  * this returns the key found in the dir entry in the location pointer.
2908  * If no dir entries were found, location->objectid is 0.
2909  */
btrfs_inode_by_name(struct inode * dir,struct dentry * dentry,struct btrfs_key * location)2910 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
2911 			       struct btrfs_key *location)
2912 {
2913 	const char *name = dentry->d_name.name;
2914 	int namelen = dentry->d_name.len;
2915 	struct btrfs_dir_item *di;
2916 	struct btrfs_path *path;
2917 	struct btrfs_root *root = BTRFS_I(dir)->root;
2918 	int ret = 0;
2919 
2920 	path = btrfs_alloc_path();
2921 	BUG_ON(!path);
2922 
2923 	di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
2924 				    namelen, 0);
2925 	if (IS_ERR(di))
2926 		ret = PTR_ERR(di);
2927 
2928 	if (!di || IS_ERR(di))
2929 		goto out_err;
2930 
2931 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
2932 out:
2933 	btrfs_free_path(path);
2934 	return ret;
2935 out_err:
2936 	location->objectid = 0;
2937 	goto out;
2938 }
2939 
2940 /*
2941  * when we hit a tree root in a directory, the btrfs part of the inode
2942  * needs to be changed to reflect the root directory of the tree root.  This
2943  * is kind of like crossing a mount point.
2944  */
fixup_tree_root_location(struct btrfs_root * root,struct btrfs_key * location,struct btrfs_root ** sub_root,struct dentry * dentry)2945 static int fixup_tree_root_location(struct btrfs_root *root,
2946 			     struct btrfs_key *location,
2947 			     struct btrfs_root **sub_root,
2948 			     struct dentry *dentry)
2949 {
2950 	struct btrfs_root_item *ri;
2951 
2952 	if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
2953 		return 0;
2954 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
2955 		return 0;
2956 
2957 	*sub_root = btrfs_read_fs_root(root->fs_info, location,
2958 					dentry->d_name.name,
2959 					dentry->d_name.len);
2960 	if (IS_ERR(*sub_root))
2961 		return PTR_ERR(*sub_root);
2962 
2963 	ri = &(*sub_root)->root_item;
2964 	location->objectid = btrfs_root_dirid(ri);
2965 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2966 	location->offset = 0;
2967 
2968 	return 0;
2969 }
2970 
init_btrfs_i(struct inode * inode)2971 static noinline void init_btrfs_i(struct inode *inode)
2972 {
2973 	struct btrfs_inode *bi = BTRFS_I(inode);
2974 
2975 	bi->i_acl = NULL;
2976 	bi->i_default_acl = NULL;
2977 
2978 	bi->generation = 0;
2979 	bi->sequence = 0;
2980 	bi->last_trans = 0;
2981 	bi->logged_trans = 0;
2982 	bi->delalloc_bytes = 0;
2983 	bi->reserved_bytes = 0;
2984 	bi->disk_i_size = 0;
2985 	bi->flags = 0;
2986 	bi->index_cnt = (u64)-1;
2987 	bi->log_dirty_trans = 0;
2988 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
2989 	extent_io_tree_init(&BTRFS_I(inode)->io_tree,
2990 			     inode->i_mapping, GFP_NOFS);
2991 	extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
2992 			     inode->i_mapping, GFP_NOFS);
2993 	INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
2994 	btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
2995 	mutex_init(&BTRFS_I(inode)->extent_mutex);
2996 	mutex_init(&BTRFS_I(inode)->log_mutex);
2997 }
2998 
btrfs_init_locked_inode(struct inode * inode,void * p)2999 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3000 {
3001 	struct btrfs_iget_args *args = p;
3002 	inode->i_ino = args->ino;
3003 	init_btrfs_i(inode);
3004 	BTRFS_I(inode)->root = args->root;
3005 	btrfs_set_inode_space_info(args->root, inode);
3006 	return 0;
3007 }
3008 
btrfs_find_actor(struct inode * inode,void * opaque)3009 static int btrfs_find_actor(struct inode *inode, void *opaque)
3010 {
3011 	struct btrfs_iget_args *args = opaque;
3012 	return args->ino == inode->i_ino &&
3013 		args->root == BTRFS_I(inode)->root;
3014 }
3015 
btrfs_ilookup(struct super_block * s,u64 objectid,struct btrfs_root * root,int wait)3016 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
3017 			    struct btrfs_root *root, int wait)
3018 {
3019 	struct inode *inode;
3020 	struct btrfs_iget_args args;
3021 	args.ino = objectid;
3022 	args.root = root;
3023 
3024 	if (wait) {
3025 		inode = ilookup5(s, objectid, btrfs_find_actor,
3026 				 (void *)&args);
3027 	} else {
3028 		inode = ilookup5_nowait(s, objectid, btrfs_find_actor,
3029 					(void *)&args);
3030 	}
3031 	return inode;
3032 }
3033 
btrfs_iget_locked(struct super_block * s,u64 objectid,struct btrfs_root * root)3034 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
3035 				struct btrfs_root *root)
3036 {
3037 	struct inode *inode;
3038 	struct btrfs_iget_args args;
3039 	args.ino = objectid;
3040 	args.root = root;
3041 
3042 	inode = iget5_locked(s, objectid, btrfs_find_actor,
3043 			     btrfs_init_locked_inode,
3044 			     (void *)&args);
3045 	return inode;
3046 }
3047 
3048 /* Get an inode object given its location and corresponding root.
3049  * Returns in *is_new if the inode was read from disk
3050  */
btrfs_iget(struct super_block * s,struct btrfs_key * location,struct btrfs_root * root,int * is_new)3051 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3052 			 struct btrfs_root *root, int *is_new)
3053 {
3054 	struct inode *inode;
3055 
3056 	inode = btrfs_iget_locked(s, location->objectid, root);
3057 	if (!inode)
3058 		return ERR_PTR(-EACCES);
3059 
3060 	if (inode->i_state & I_NEW) {
3061 		BTRFS_I(inode)->root = root;
3062 		memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3063 		btrfs_read_locked_inode(inode);
3064 		unlock_new_inode(inode);
3065 		if (is_new)
3066 			*is_new = 1;
3067 	} else {
3068 		if (is_new)
3069 			*is_new = 0;
3070 	}
3071 
3072 	return inode;
3073 }
3074 
btrfs_lookup_dentry(struct inode * dir,struct dentry * dentry)3075 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3076 {
3077 	struct inode *inode;
3078 	struct btrfs_inode *bi = BTRFS_I(dir);
3079 	struct btrfs_root *root = bi->root;
3080 	struct btrfs_root *sub_root = root;
3081 	struct btrfs_key location;
3082 	int ret, new;
3083 
3084 	if (dentry->d_name.len > BTRFS_NAME_LEN)
3085 		return ERR_PTR(-ENAMETOOLONG);
3086 
3087 	ret = btrfs_inode_by_name(dir, dentry, &location);
3088 
3089 	if (ret < 0)
3090 		return ERR_PTR(ret);
3091 
3092 	inode = NULL;
3093 	if (location.objectid) {
3094 		ret = fixup_tree_root_location(root, &location, &sub_root,
3095 						dentry);
3096 		if (ret < 0)
3097 			return ERR_PTR(ret);
3098 		if (ret > 0)
3099 			return ERR_PTR(-ENOENT);
3100 		inode = btrfs_iget(dir->i_sb, &location, sub_root, &new);
3101 		if (IS_ERR(inode))
3102 			return ERR_CAST(inode);
3103 	}
3104 	return inode;
3105 }
3106 
btrfs_lookup(struct inode * dir,struct dentry * dentry,struct nameidata * nd)3107 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3108 				   struct nameidata *nd)
3109 {
3110 	struct inode *inode;
3111 
3112 	if (dentry->d_name.len > BTRFS_NAME_LEN)
3113 		return ERR_PTR(-ENAMETOOLONG);
3114 
3115 	inode = btrfs_lookup_dentry(dir, dentry);
3116 	if (IS_ERR(inode))
3117 		return ERR_CAST(inode);
3118 
3119 	return d_splice_alias(inode, dentry);
3120 }
3121 
3122 static unsigned char btrfs_filetype_table[] = {
3123 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3124 };
3125 
btrfs_real_readdir(struct file * filp,void * dirent,filldir_t filldir)3126 static int btrfs_real_readdir(struct file *filp, void *dirent,
3127 			      filldir_t filldir)
3128 {
3129 	struct inode *inode = filp->f_dentry->d_inode;
3130 	struct btrfs_root *root = BTRFS_I(inode)->root;
3131 	struct btrfs_item *item;
3132 	struct btrfs_dir_item *di;
3133 	struct btrfs_key key;
3134 	struct btrfs_key found_key;
3135 	struct btrfs_path *path;
3136 	int ret;
3137 	u32 nritems;
3138 	struct extent_buffer *leaf;
3139 	int slot;
3140 	int advance;
3141 	unsigned char d_type;
3142 	int over = 0;
3143 	u32 di_cur;
3144 	u32 di_total;
3145 	u32 di_len;
3146 	int key_type = BTRFS_DIR_INDEX_KEY;
3147 	char tmp_name[32];
3148 	char *name_ptr;
3149 	int name_len;
3150 
3151 	/* FIXME, use a real flag for deciding about the key type */
3152 	if (root->fs_info->tree_root == root)
3153 		key_type = BTRFS_DIR_ITEM_KEY;
3154 
3155 	/* special case for "." */
3156 	if (filp->f_pos == 0) {
3157 		over = filldir(dirent, ".", 1,
3158 			       1, inode->i_ino,
3159 			       DT_DIR);
3160 		if (over)
3161 			return 0;
3162 		filp->f_pos = 1;
3163 	}
3164 	/* special case for .., just use the back ref */
3165 	if (filp->f_pos == 1) {
3166 		u64 pino = parent_ino(filp->f_path.dentry);
3167 		over = filldir(dirent, "..", 2,
3168 			       2, pino, DT_DIR);
3169 		if (over)
3170 			return 0;
3171 		filp->f_pos = 2;
3172 	}
3173 	path = btrfs_alloc_path();
3174 	path->reada = 2;
3175 
3176 	btrfs_set_key_type(&key, key_type);
3177 	key.offset = filp->f_pos;
3178 	key.objectid = inode->i_ino;
3179 
3180 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3181 	if (ret < 0)
3182 		goto err;
3183 	advance = 0;
3184 
3185 	while (1) {
3186 		leaf = path->nodes[0];
3187 		nritems = btrfs_header_nritems(leaf);
3188 		slot = path->slots[0];
3189 		if (advance || slot >= nritems) {
3190 			if (slot >= nritems - 1) {
3191 				ret = btrfs_next_leaf(root, path);
3192 				if (ret)
3193 					break;
3194 				leaf = path->nodes[0];
3195 				nritems = btrfs_header_nritems(leaf);
3196 				slot = path->slots[0];
3197 			} else {
3198 				slot++;
3199 				path->slots[0]++;
3200 			}
3201 		}
3202 
3203 		advance = 1;
3204 		item = btrfs_item_nr(leaf, slot);
3205 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3206 
3207 		if (found_key.objectid != key.objectid)
3208 			break;
3209 		if (btrfs_key_type(&found_key) != key_type)
3210 			break;
3211 		if (found_key.offset < filp->f_pos)
3212 			continue;
3213 
3214 		filp->f_pos = found_key.offset;
3215 
3216 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3217 		di_cur = 0;
3218 		di_total = btrfs_item_size(leaf, item);
3219 
3220 		while (di_cur < di_total) {
3221 			struct btrfs_key location;
3222 
3223 			name_len = btrfs_dir_name_len(leaf, di);
3224 			if (name_len <= sizeof(tmp_name)) {
3225 				name_ptr = tmp_name;
3226 			} else {
3227 				name_ptr = kmalloc(name_len, GFP_NOFS);
3228 				if (!name_ptr) {
3229 					ret = -ENOMEM;
3230 					goto err;
3231 				}
3232 			}
3233 			read_extent_buffer(leaf, name_ptr,
3234 					   (unsigned long)(di + 1), name_len);
3235 
3236 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3237 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
3238 
3239 			/* is this a reference to our own snapshot? If so
3240 			 * skip it
3241 			 */
3242 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
3243 			    location.objectid == root->root_key.objectid) {
3244 				over = 0;
3245 				goto skip;
3246 			}
3247 			over = filldir(dirent, name_ptr, name_len,
3248 				       found_key.offset, location.objectid,
3249 				       d_type);
3250 
3251 skip:
3252 			if (name_ptr != tmp_name)
3253 				kfree(name_ptr);
3254 
3255 			if (over)
3256 				goto nopos;
3257 			di_len = btrfs_dir_name_len(leaf, di) +
3258 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
3259 			di_cur += di_len;
3260 			di = (struct btrfs_dir_item *)((char *)di + di_len);
3261 		}
3262 	}
3263 
3264 	/* Reached end of directory/root. Bump pos past the last item. */
3265 	if (key_type == BTRFS_DIR_INDEX_KEY)
3266 		filp->f_pos = INT_LIMIT(off_t);
3267 	else
3268 		filp->f_pos++;
3269 nopos:
3270 	ret = 0;
3271 err:
3272 	btrfs_free_path(path);
3273 	return ret;
3274 }
3275 
btrfs_write_inode(struct inode * inode,int wait)3276 int btrfs_write_inode(struct inode *inode, int wait)
3277 {
3278 	struct btrfs_root *root = BTRFS_I(inode)->root;
3279 	struct btrfs_trans_handle *trans;
3280 	int ret = 0;
3281 
3282 	if (root->fs_info->btree_inode == inode)
3283 		return 0;
3284 
3285 	if (wait) {
3286 		trans = btrfs_join_transaction(root, 1);
3287 		btrfs_set_trans_block_group(trans, inode);
3288 		ret = btrfs_commit_transaction(trans, root);
3289 	}
3290 	return ret;
3291 }
3292 
3293 /*
3294  * This is somewhat expensive, updating the tree every time the
3295  * inode changes.  But, it is most likely to find the inode in cache.
3296  * FIXME, needs more benchmarking...there are no reasons other than performance
3297  * to keep or drop this code.
3298  */
btrfs_dirty_inode(struct inode * inode)3299 void btrfs_dirty_inode(struct inode *inode)
3300 {
3301 	struct btrfs_root *root = BTRFS_I(inode)->root;
3302 	struct btrfs_trans_handle *trans;
3303 
3304 	trans = btrfs_join_transaction(root, 1);
3305 	btrfs_set_trans_block_group(trans, inode);
3306 	btrfs_update_inode(trans, root, inode);
3307 	btrfs_end_transaction(trans, root);
3308 }
3309 
3310 /*
3311  * find the highest existing sequence number in a directory
3312  * and then set the in-memory index_cnt variable to reflect
3313  * free sequence numbers
3314  */
btrfs_set_inode_index_count(struct inode * inode)3315 static int btrfs_set_inode_index_count(struct inode *inode)
3316 {
3317 	struct btrfs_root *root = BTRFS_I(inode)->root;
3318 	struct btrfs_key key, found_key;
3319 	struct btrfs_path *path;
3320 	struct extent_buffer *leaf;
3321 	int ret;
3322 
3323 	key.objectid = inode->i_ino;
3324 	btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3325 	key.offset = (u64)-1;
3326 
3327 	path = btrfs_alloc_path();
3328 	if (!path)
3329 		return -ENOMEM;
3330 
3331 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3332 	if (ret < 0)
3333 		goto out;
3334 	/* FIXME: we should be able to handle this */
3335 	if (ret == 0)
3336 		goto out;
3337 	ret = 0;
3338 
3339 	/*
3340 	 * MAGIC NUMBER EXPLANATION:
3341 	 * since we search a directory based on f_pos we have to start at 2
3342 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3343 	 * else has to start at 2
3344 	 */
3345 	if (path->slots[0] == 0) {
3346 		BTRFS_I(inode)->index_cnt = 2;
3347 		goto out;
3348 	}
3349 
3350 	path->slots[0]--;
3351 
3352 	leaf = path->nodes[0];
3353 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3354 
3355 	if (found_key.objectid != inode->i_ino ||
3356 	    btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3357 		BTRFS_I(inode)->index_cnt = 2;
3358 		goto out;
3359 	}
3360 
3361 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3362 out:
3363 	btrfs_free_path(path);
3364 	return ret;
3365 }
3366 
3367 /*
3368  * helper to find a free sequence number in a given directory.  This current
3369  * code is very simple, later versions will do smarter things in the btree
3370  */
btrfs_set_inode_index(struct inode * dir,u64 * index)3371 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3372 {
3373 	int ret = 0;
3374 
3375 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3376 		ret = btrfs_set_inode_index_count(dir);
3377 		if (ret)
3378 			return ret;
3379 	}
3380 
3381 	*index = BTRFS_I(dir)->index_cnt;
3382 	BTRFS_I(dir)->index_cnt++;
3383 
3384 	return ret;
3385 }
3386 
btrfs_new_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,const char * name,int name_len,u64 ref_objectid,u64 objectid,u64 alloc_hint,int mode,u64 * index)3387 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3388 				     struct btrfs_root *root,
3389 				     struct inode *dir,
3390 				     const char *name, int name_len,
3391 				     u64 ref_objectid, u64 objectid,
3392 				     u64 alloc_hint, int mode, u64 *index)
3393 {
3394 	struct inode *inode;
3395 	struct btrfs_inode_item *inode_item;
3396 	struct btrfs_key *location;
3397 	struct btrfs_path *path;
3398 	struct btrfs_inode_ref *ref;
3399 	struct btrfs_key key[2];
3400 	u32 sizes[2];
3401 	unsigned long ptr;
3402 	int ret;
3403 	int owner;
3404 
3405 	path = btrfs_alloc_path();
3406 	BUG_ON(!path);
3407 
3408 	inode = new_inode(root->fs_info->sb);
3409 	if (!inode)
3410 		return ERR_PTR(-ENOMEM);
3411 
3412 	if (dir) {
3413 		ret = btrfs_set_inode_index(dir, index);
3414 		if (ret)
3415 			return ERR_PTR(ret);
3416 	}
3417 	/*
3418 	 * index_cnt is ignored for everything but a dir,
3419 	 * btrfs_get_inode_index_count has an explanation for the magic
3420 	 * number
3421 	 */
3422 	init_btrfs_i(inode);
3423 	BTRFS_I(inode)->index_cnt = 2;
3424 	BTRFS_I(inode)->root = root;
3425 	BTRFS_I(inode)->generation = trans->transid;
3426 	btrfs_set_inode_space_info(root, inode);
3427 
3428 	if (mode & S_IFDIR)
3429 		owner = 0;
3430 	else
3431 		owner = 1;
3432 	BTRFS_I(inode)->block_group =
3433 			btrfs_find_block_group(root, 0, alloc_hint, owner);
3434 	if ((mode & S_IFREG)) {
3435 		if (btrfs_test_opt(root, NODATASUM))
3436 			btrfs_set_flag(inode, NODATASUM);
3437 		if (btrfs_test_opt(root, NODATACOW))
3438 			btrfs_set_flag(inode, NODATACOW);
3439 	}
3440 
3441 	key[0].objectid = objectid;
3442 	btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3443 	key[0].offset = 0;
3444 
3445 	key[1].objectid = objectid;
3446 	btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3447 	key[1].offset = ref_objectid;
3448 
3449 	sizes[0] = sizeof(struct btrfs_inode_item);
3450 	sizes[1] = name_len + sizeof(*ref);
3451 
3452 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3453 	if (ret != 0)
3454 		goto fail;
3455 
3456 	if (objectid > root->highest_inode)
3457 		root->highest_inode = objectid;
3458 
3459 	inode->i_uid = current_fsuid();
3460 
3461 	if (dir && (dir->i_mode & S_ISGID)) {
3462 		inode->i_gid = dir->i_gid;
3463 		if (S_ISDIR(mode))
3464 			mode |= S_ISGID;
3465 	} else
3466 		inode->i_gid = current_fsgid();
3467 
3468 	inode->i_mode = mode;
3469 	inode->i_ino = objectid;
3470 	inode_set_bytes(inode, 0);
3471 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3472 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3473 				  struct btrfs_inode_item);
3474 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
3475 
3476 	ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3477 			     struct btrfs_inode_ref);
3478 	btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
3479 	btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
3480 	ptr = (unsigned long)(ref + 1);
3481 	write_extent_buffer(path->nodes[0], name, ptr, name_len);
3482 
3483 	btrfs_mark_buffer_dirty(path->nodes[0]);
3484 	btrfs_free_path(path);
3485 
3486 	location = &BTRFS_I(inode)->location;
3487 	location->objectid = objectid;
3488 	location->offset = 0;
3489 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3490 
3491 	insert_inode_hash(inode);
3492 	return inode;
3493 fail:
3494 	if (dir)
3495 		BTRFS_I(dir)->index_cnt--;
3496 	btrfs_free_path(path);
3497 	return ERR_PTR(ret);
3498 }
3499 
btrfs_inode_type(struct inode * inode)3500 static inline u8 btrfs_inode_type(struct inode *inode)
3501 {
3502 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
3503 }
3504 
3505 /*
3506  * utility function to add 'inode' into 'parent_inode' with
3507  * a give name and a given sequence number.
3508  * if 'add_backref' is true, also insert a backref from the
3509  * inode to the parent directory.
3510  */
btrfs_add_link(struct btrfs_trans_handle * trans,struct inode * parent_inode,struct inode * inode,const char * name,int name_len,int add_backref,u64 index)3511 int btrfs_add_link(struct btrfs_trans_handle *trans,
3512 		   struct inode *parent_inode, struct inode *inode,
3513 		   const char *name, int name_len, int add_backref, u64 index)
3514 {
3515 	int ret;
3516 	struct btrfs_key key;
3517 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
3518 
3519 	key.objectid = inode->i_ino;
3520 	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3521 	key.offset = 0;
3522 
3523 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
3524 				    parent_inode->i_ino,
3525 				    &key, btrfs_inode_type(inode),
3526 				    index);
3527 	if (ret == 0) {
3528 		if (add_backref) {
3529 			ret = btrfs_insert_inode_ref(trans, root,
3530 						     name, name_len,
3531 						     inode->i_ino,
3532 						     parent_inode->i_ino,
3533 						     index);
3534 		}
3535 		btrfs_i_size_write(parent_inode, parent_inode->i_size +
3536 				   name_len * 2);
3537 		parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
3538 		ret = btrfs_update_inode(trans, root, parent_inode);
3539 	}
3540 	return ret;
3541 }
3542 
btrfs_add_nondir(struct btrfs_trans_handle * trans,struct dentry * dentry,struct inode * inode,int backref,u64 index)3543 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
3544 			    struct dentry *dentry, struct inode *inode,
3545 			    int backref, u64 index)
3546 {
3547 	int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3548 				 inode, dentry->d_name.name,
3549 				 dentry->d_name.len, backref, index);
3550 	if (!err) {
3551 		d_instantiate(dentry, inode);
3552 		return 0;
3553 	}
3554 	if (err > 0)
3555 		err = -EEXIST;
3556 	return err;
3557 }
3558 
btrfs_mknod(struct inode * dir,struct dentry * dentry,int mode,dev_t rdev)3559 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3560 			int mode, dev_t rdev)
3561 {
3562 	struct btrfs_trans_handle *trans;
3563 	struct btrfs_root *root = BTRFS_I(dir)->root;
3564 	struct inode *inode = NULL;
3565 	int err;
3566 	int drop_inode = 0;
3567 	u64 objectid;
3568 	unsigned long nr = 0;
3569 	u64 index = 0;
3570 
3571 	if (!new_valid_dev(rdev))
3572 		return -EINVAL;
3573 
3574 	err = btrfs_check_metadata_free_space(root);
3575 	if (err)
3576 		goto fail;
3577 
3578 	trans = btrfs_start_transaction(root, 1);
3579 	btrfs_set_trans_block_group(trans, dir);
3580 
3581 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3582 	if (err) {
3583 		err = -ENOSPC;
3584 		goto out_unlock;
3585 	}
3586 
3587 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3588 				dentry->d_name.len,
3589 				dentry->d_parent->d_inode->i_ino, objectid,
3590 				BTRFS_I(dir)->block_group, mode, &index);
3591 	err = PTR_ERR(inode);
3592 	if (IS_ERR(inode))
3593 		goto out_unlock;
3594 
3595 	err = btrfs_init_inode_security(inode, dir);
3596 	if (err) {
3597 		drop_inode = 1;
3598 		goto out_unlock;
3599 	}
3600 
3601 	btrfs_set_trans_block_group(trans, inode);
3602 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3603 	if (err)
3604 		drop_inode = 1;
3605 	else {
3606 		inode->i_op = &btrfs_special_inode_operations;
3607 		init_special_inode(inode, inode->i_mode, rdev);
3608 		btrfs_update_inode(trans, root, inode);
3609 	}
3610 	dir->i_sb->s_dirt = 1;
3611 	btrfs_update_inode_block_group(trans, inode);
3612 	btrfs_update_inode_block_group(trans, dir);
3613 out_unlock:
3614 	nr = trans->blocks_used;
3615 	btrfs_end_transaction_throttle(trans, root);
3616 fail:
3617 	if (drop_inode) {
3618 		inode_dec_link_count(inode);
3619 		iput(inode);
3620 	}
3621 	btrfs_btree_balance_dirty(root, nr);
3622 	return err;
3623 }
3624 
btrfs_create(struct inode * dir,struct dentry * dentry,int mode,struct nameidata * nd)3625 static int btrfs_create(struct inode *dir, struct dentry *dentry,
3626 			int mode, struct nameidata *nd)
3627 {
3628 	struct btrfs_trans_handle *trans;
3629 	struct btrfs_root *root = BTRFS_I(dir)->root;
3630 	struct inode *inode = NULL;
3631 	int err;
3632 	int drop_inode = 0;
3633 	unsigned long nr = 0;
3634 	u64 objectid;
3635 	u64 index = 0;
3636 
3637 	err = btrfs_check_metadata_free_space(root);
3638 	if (err)
3639 		goto fail;
3640 	trans = btrfs_start_transaction(root, 1);
3641 	btrfs_set_trans_block_group(trans, dir);
3642 
3643 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3644 	if (err) {
3645 		err = -ENOSPC;
3646 		goto out_unlock;
3647 	}
3648 
3649 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3650 				dentry->d_name.len,
3651 				dentry->d_parent->d_inode->i_ino,
3652 				objectid, BTRFS_I(dir)->block_group, mode,
3653 				&index);
3654 	err = PTR_ERR(inode);
3655 	if (IS_ERR(inode))
3656 		goto out_unlock;
3657 
3658 	err = btrfs_init_inode_security(inode, dir);
3659 	if (err) {
3660 		drop_inode = 1;
3661 		goto out_unlock;
3662 	}
3663 
3664 	btrfs_set_trans_block_group(trans, inode);
3665 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3666 	if (err)
3667 		drop_inode = 1;
3668 	else {
3669 		inode->i_mapping->a_ops = &btrfs_aops;
3670 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3671 		inode->i_fop = &btrfs_file_operations;
3672 		inode->i_op = &btrfs_file_inode_operations;
3673 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3674 	}
3675 	dir->i_sb->s_dirt = 1;
3676 	btrfs_update_inode_block_group(trans, inode);
3677 	btrfs_update_inode_block_group(trans, dir);
3678 out_unlock:
3679 	nr = trans->blocks_used;
3680 	btrfs_end_transaction_throttle(trans, root);
3681 fail:
3682 	if (drop_inode) {
3683 		inode_dec_link_count(inode);
3684 		iput(inode);
3685 	}
3686 	btrfs_btree_balance_dirty(root, nr);
3687 	return err;
3688 }
3689 
btrfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)3690 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
3691 		      struct dentry *dentry)
3692 {
3693 	struct btrfs_trans_handle *trans;
3694 	struct btrfs_root *root = BTRFS_I(dir)->root;
3695 	struct inode *inode = old_dentry->d_inode;
3696 	u64 index;
3697 	unsigned long nr = 0;
3698 	int err;
3699 	int drop_inode = 0;
3700 
3701 	if (inode->i_nlink == 0)
3702 		return -ENOENT;
3703 
3704 	btrfs_inc_nlink(inode);
3705 	err = btrfs_check_metadata_free_space(root);
3706 	if (err)
3707 		goto fail;
3708 	err = btrfs_set_inode_index(dir, &index);
3709 	if (err)
3710 		goto fail;
3711 
3712 	trans = btrfs_start_transaction(root, 1);
3713 
3714 	btrfs_set_trans_block_group(trans, dir);
3715 	atomic_inc(&inode->i_count);
3716 
3717 	err = btrfs_add_nondir(trans, dentry, inode, 1, index);
3718 
3719 	if (err)
3720 		drop_inode = 1;
3721 
3722 	dir->i_sb->s_dirt = 1;
3723 	btrfs_update_inode_block_group(trans, dir);
3724 	err = btrfs_update_inode(trans, root, inode);
3725 
3726 	if (err)
3727 		drop_inode = 1;
3728 
3729 	nr = trans->blocks_used;
3730 	btrfs_end_transaction_throttle(trans, root);
3731 fail:
3732 	if (drop_inode) {
3733 		inode_dec_link_count(inode);
3734 		iput(inode);
3735 	}
3736 	btrfs_btree_balance_dirty(root, nr);
3737 	return err;
3738 }
3739 
btrfs_mkdir(struct inode * dir,struct dentry * dentry,int mode)3740 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3741 {
3742 	struct inode *inode = NULL;
3743 	struct btrfs_trans_handle *trans;
3744 	struct btrfs_root *root = BTRFS_I(dir)->root;
3745 	int err = 0;
3746 	int drop_on_err = 0;
3747 	u64 objectid = 0;
3748 	u64 index = 0;
3749 	unsigned long nr = 1;
3750 
3751 	err = btrfs_check_metadata_free_space(root);
3752 	if (err)
3753 		goto out_unlock;
3754 
3755 	trans = btrfs_start_transaction(root, 1);
3756 	btrfs_set_trans_block_group(trans, dir);
3757 
3758 	if (IS_ERR(trans)) {
3759 		err = PTR_ERR(trans);
3760 		goto out_unlock;
3761 	}
3762 
3763 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3764 	if (err) {
3765 		err = -ENOSPC;
3766 		goto out_unlock;
3767 	}
3768 
3769 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3770 				dentry->d_name.len,
3771 				dentry->d_parent->d_inode->i_ino, objectid,
3772 				BTRFS_I(dir)->block_group, S_IFDIR | mode,
3773 				&index);
3774 	if (IS_ERR(inode)) {
3775 		err = PTR_ERR(inode);
3776 		goto out_fail;
3777 	}
3778 
3779 	drop_on_err = 1;
3780 
3781 	err = btrfs_init_inode_security(inode, dir);
3782 	if (err)
3783 		goto out_fail;
3784 
3785 	inode->i_op = &btrfs_dir_inode_operations;
3786 	inode->i_fop = &btrfs_dir_file_operations;
3787 	btrfs_set_trans_block_group(trans, inode);
3788 
3789 	btrfs_i_size_write(inode, 0);
3790 	err = btrfs_update_inode(trans, root, inode);
3791 	if (err)
3792 		goto out_fail;
3793 
3794 	err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3795 				 inode, dentry->d_name.name,
3796 				 dentry->d_name.len, 0, index);
3797 	if (err)
3798 		goto out_fail;
3799 
3800 	d_instantiate(dentry, inode);
3801 	drop_on_err = 0;
3802 	dir->i_sb->s_dirt = 1;
3803 	btrfs_update_inode_block_group(trans, inode);
3804 	btrfs_update_inode_block_group(trans, dir);
3805 
3806 out_fail:
3807 	nr = trans->blocks_used;
3808 	btrfs_end_transaction_throttle(trans, root);
3809 
3810 out_unlock:
3811 	if (drop_on_err)
3812 		iput(inode);
3813 	btrfs_btree_balance_dirty(root, nr);
3814 	return err;
3815 }
3816 
3817 /* helper for btfs_get_extent.  Given an existing extent in the tree,
3818  * and an extent that you want to insert, deal with overlap and insert
3819  * the new extent into the tree.
3820  */
merge_extent_mapping(struct extent_map_tree * em_tree,struct extent_map * existing,struct extent_map * em,u64 map_start,u64 map_len)3821 static int merge_extent_mapping(struct extent_map_tree *em_tree,
3822 				struct extent_map *existing,
3823 				struct extent_map *em,
3824 				u64 map_start, u64 map_len)
3825 {
3826 	u64 start_diff;
3827 
3828 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
3829 	start_diff = map_start - em->start;
3830 	em->start = map_start;
3831 	em->len = map_len;
3832 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
3833 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3834 		em->block_start += start_diff;
3835 		em->block_len -= start_diff;
3836 	}
3837 	return add_extent_mapping(em_tree, em);
3838 }
3839 
uncompress_inline(struct btrfs_path * path,struct inode * inode,struct page * page,size_t pg_offset,u64 extent_offset,struct btrfs_file_extent_item * item)3840 static noinline int uncompress_inline(struct btrfs_path *path,
3841 				      struct inode *inode, struct page *page,
3842 				      size_t pg_offset, u64 extent_offset,
3843 				      struct btrfs_file_extent_item *item)
3844 {
3845 	int ret;
3846 	struct extent_buffer *leaf = path->nodes[0];
3847 	char *tmp;
3848 	size_t max_size;
3849 	unsigned long inline_size;
3850 	unsigned long ptr;
3851 
3852 	WARN_ON(pg_offset != 0);
3853 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
3854 	inline_size = btrfs_file_extent_inline_item_len(leaf,
3855 					btrfs_item_nr(leaf, path->slots[0]));
3856 	tmp = kmalloc(inline_size, GFP_NOFS);
3857 	ptr = btrfs_file_extent_inline_start(item);
3858 
3859 	read_extent_buffer(leaf, tmp, ptr, inline_size);
3860 
3861 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
3862 	ret = btrfs_zlib_decompress(tmp, page, extent_offset,
3863 				    inline_size, max_size);
3864 	if (ret) {
3865 		char *kaddr = kmap_atomic(page, KM_USER0);
3866 		unsigned long copy_size = min_t(u64,
3867 				  PAGE_CACHE_SIZE - pg_offset,
3868 				  max_size - extent_offset);
3869 		memset(kaddr + pg_offset, 0, copy_size);
3870 		kunmap_atomic(kaddr, KM_USER0);
3871 	}
3872 	kfree(tmp);
3873 	return 0;
3874 }
3875 
3876 /*
3877  * a bit scary, this does extent mapping from logical file offset to the disk.
3878  * the ugly parts come from merging extents from the disk with the in-ram
3879  * representation.  This gets more complex because of the data=ordered code,
3880  * where the in-ram extents might be locked pending data=ordered completion.
3881  *
3882  * This also copies inline extents directly into the page.
3883  */
3884 
btrfs_get_extent(struct inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,int create)3885 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
3886 				    size_t pg_offset, u64 start, u64 len,
3887 				    int create)
3888 {
3889 	int ret;
3890 	int err = 0;
3891 	u64 bytenr;
3892 	u64 extent_start = 0;
3893 	u64 extent_end = 0;
3894 	u64 objectid = inode->i_ino;
3895 	u32 found_type;
3896 	struct btrfs_path *path = NULL;
3897 	struct btrfs_root *root = BTRFS_I(inode)->root;
3898 	struct btrfs_file_extent_item *item;
3899 	struct extent_buffer *leaf;
3900 	struct btrfs_key found_key;
3901 	struct extent_map *em = NULL;
3902 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3903 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3904 	struct btrfs_trans_handle *trans = NULL;
3905 	int compressed;
3906 
3907 again:
3908 	spin_lock(&em_tree->lock);
3909 	em = lookup_extent_mapping(em_tree, start, len);
3910 	if (em)
3911 		em->bdev = root->fs_info->fs_devices->latest_bdev;
3912 	spin_unlock(&em_tree->lock);
3913 
3914 	if (em) {
3915 		if (em->start > start || em->start + em->len <= start)
3916 			free_extent_map(em);
3917 		else if (em->block_start == EXTENT_MAP_INLINE && page)
3918 			free_extent_map(em);
3919 		else
3920 			goto out;
3921 	}
3922 	em = alloc_extent_map(GFP_NOFS);
3923 	if (!em) {
3924 		err = -ENOMEM;
3925 		goto out;
3926 	}
3927 	em->bdev = root->fs_info->fs_devices->latest_bdev;
3928 	em->start = EXTENT_MAP_HOLE;
3929 	em->orig_start = EXTENT_MAP_HOLE;
3930 	em->len = (u64)-1;
3931 	em->block_len = (u64)-1;
3932 
3933 	if (!path) {
3934 		path = btrfs_alloc_path();
3935 		BUG_ON(!path);
3936 	}
3937 
3938 	ret = btrfs_lookup_file_extent(trans, root, path,
3939 				       objectid, start, trans != NULL);
3940 	if (ret < 0) {
3941 		err = ret;
3942 		goto out;
3943 	}
3944 
3945 	if (ret != 0) {
3946 		if (path->slots[0] == 0)
3947 			goto not_found;
3948 		path->slots[0]--;
3949 	}
3950 
3951 	leaf = path->nodes[0];
3952 	item = btrfs_item_ptr(leaf, path->slots[0],
3953 			      struct btrfs_file_extent_item);
3954 	/* are we inside the extent that was found? */
3955 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3956 	found_type = btrfs_key_type(&found_key);
3957 	if (found_key.objectid != objectid ||
3958 	    found_type != BTRFS_EXTENT_DATA_KEY) {
3959 		goto not_found;
3960 	}
3961 
3962 	found_type = btrfs_file_extent_type(leaf, item);
3963 	extent_start = found_key.offset;
3964 	compressed = btrfs_file_extent_compression(leaf, item);
3965 	if (found_type == BTRFS_FILE_EXTENT_REG ||
3966 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
3967 		extent_end = extent_start +
3968 		       btrfs_file_extent_num_bytes(leaf, item);
3969 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
3970 		size_t size;
3971 		size = btrfs_file_extent_inline_len(leaf, item);
3972 		extent_end = (extent_start + size + root->sectorsize - 1) &
3973 			~((u64)root->sectorsize - 1);
3974 	}
3975 
3976 	if (start >= extent_end) {
3977 		path->slots[0]++;
3978 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3979 			ret = btrfs_next_leaf(root, path);
3980 			if (ret < 0) {
3981 				err = ret;
3982 				goto out;
3983 			}
3984 			if (ret > 0)
3985 				goto not_found;
3986 			leaf = path->nodes[0];
3987 		}
3988 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3989 		if (found_key.objectid != objectid ||
3990 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
3991 			goto not_found;
3992 		if (start + len <= found_key.offset)
3993 			goto not_found;
3994 		em->start = start;
3995 		em->len = found_key.offset - start;
3996 		goto not_found_em;
3997 	}
3998 
3999 	if (found_type == BTRFS_FILE_EXTENT_REG ||
4000 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4001 		em->start = extent_start;
4002 		em->len = extent_end - extent_start;
4003 		em->orig_start = extent_start -
4004 				 btrfs_file_extent_offset(leaf, item);
4005 		bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4006 		if (bytenr == 0) {
4007 			em->block_start = EXTENT_MAP_HOLE;
4008 			goto insert;
4009 		}
4010 		if (compressed) {
4011 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4012 			em->block_start = bytenr;
4013 			em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4014 									 item);
4015 		} else {
4016 			bytenr += btrfs_file_extent_offset(leaf, item);
4017 			em->block_start = bytenr;
4018 			em->block_len = em->len;
4019 			if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4020 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4021 		}
4022 		goto insert;
4023 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4024 		unsigned long ptr;
4025 		char *map;
4026 		size_t size;
4027 		size_t extent_offset;
4028 		size_t copy_size;
4029 
4030 		em->block_start = EXTENT_MAP_INLINE;
4031 		if (!page || create) {
4032 			em->start = extent_start;
4033 			em->len = extent_end - extent_start;
4034 			goto out;
4035 		}
4036 
4037 		size = btrfs_file_extent_inline_len(leaf, item);
4038 		extent_offset = page_offset(page) + pg_offset - extent_start;
4039 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4040 				size - extent_offset);
4041 		em->start = extent_start + extent_offset;
4042 		em->len = (copy_size + root->sectorsize - 1) &
4043 			~((u64)root->sectorsize - 1);
4044 		em->orig_start = EXTENT_MAP_INLINE;
4045 		if (compressed)
4046 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4047 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4048 		if (create == 0 && !PageUptodate(page)) {
4049 			if (btrfs_file_extent_compression(leaf, item) ==
4050 			    BTRFS_COMPRESS_ZLIB) {
4051 				ret = uncompress_inline(path, inode, page,
4052 							pg_offset,
4053 							extent_offset, item);
4054 				BUG_ON(ret);
4055 			} else {
4056 				map = kmap(page);
4057 				read_extent_buffer(leaf, map + pg_offset, ptr,
4058 						   copy_size);
4059 				kunmap(page);
4060 			}
4061 			flush_dcache_page(page);
4062 		} else if (create && PageUptodate(page)) {
4063 			if (!trans) {
4064 				kunmap(page);
4065 				free_extent_map(em);
4066 				em = NULL;
4067 				btrfs_release_path(root, path);
4068 				trans = btrfs_join_transaction(root, 1);
4069 				goto again;
4070 			}
4071 			map = kmap(page);
4072 			write_extent_buffer(leaf, map + pg_offset, ptr,
4073 					    copy_size);
4074 			kunmap(page);
4075 			btrfs_mark_buffer_dirty(leaf);
4076 		}
4077 		set_extent_uptodate(io_tree, em->start,
4078 				    extent_map_end(em) - 1, GFP_NOFS);
4079 		goto insert;
4080 	} else {
4081 		printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4082 		WARN_ON(1);
4083 	}
4084 not_found:
4085 	em->start = start;
4086 	em->len = len;
4087 not_found_em:
4088 	em->block_start = EXTENT_MAP_HOLE;
4089 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4090 insert:
4091 	btrfs_release_path(root, path);
4092 	if (em->start > start || extent_map_end(em) <= start) {
4093 		printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4094 		       "[%llu %llu]\n", (unsigned long long)em->start,
4095 		       (unsigned long long)em->len,
4096 		       (unsigned long long)start,
4097 		       (unsigned long long)len);
4098 		err = -EIO;
4099 		goto out;
4100 	}
4101 
4102 	err = 0;
4103 	spin_lock(&em_tree->lock);
4104 	ret = add_extent_mapping(em_tree, em);
4105 	/* it is possible that someone inserted the extent into the tree
4106 	 * while we had the lock dropped.  It is also possible that
4107 	 * an overlapping map exists in the tree
4108 	 */
4109 	if (ret == -EEXIST) {
4110 		struct extent_map *existing;
4111 
4112 		ret = 0;
4113 
4114 		existing = lookup_extent_mapping(em_tree, start, len);
4115 		if (existing && (existing->start > start ||
4116 		    existing->start + existing->len <= start)) {
4117 			free_extent_map(existing);
4118 			existing = NULL;
4119 		}
4120 		if (!existing) {
4121 			existing = lookup_extent_mapping(em_tree, em->start,
4122 							 em->len);
4123 			if (existing) {
4124 				err = merge_extent_mapping(em_tree, existing,
4125 							   em, start,
4126 							   root->sectorsize);
4127 				free_extent_map(existing);
4128 				if (err) {
4129 					free_extent_map(em);
4130 					em = NULL;
4131 				}
4132 			} else {
4133 				err = -EIO;
4134 				free_extent_map(em);
4135 				em = NULL;
4136 			}
4137 		} else {
4138 			free_extent_map(em);
4139 			em = existing;
4140 			err = 0;
4141 		}
4142 	}
4143 	spin_unlock(&em_tree->lock);
4144 out:
4145 	if (path)
4146 		btrfs_free_path(path);
4147 	if (trans) {
4148 		ret = btrfs_end_transaction(trans, root);
4149 		if (!err)
4150 			err = ret;
4151 	}
4152 	if (err) {
4153 		free_extent_map(em);
4154 		WARN_ON(1);
4155 		return ERR_PTR(err);
4156 	}
4157 	return em;
4158 }
4159 
btrfs_direct_IO(int rw,struct kiocb * iocb,const struct iovec * iov,loff_t offset,unsigned long nr_segs)4160 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4161 			const struct iovec *iov, loff_t offset,
4162 			unsigned long nr_segs)
4163 {
4164 	return -EINVAL;
4165 }
4166 
btrfs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,__u64 start,__u64 len)4167 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4168 		__u64 start, __u64 len)
4169 {
4170 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4171 }
4172 
btrfs_readpage(struct file * file,struct page * page)4173 int btrfs_readpage(struct file *file, struct page *page)
4174 {
4175 	struct extent_io_tree *tree;
4176 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4177 	return extent_read_full_page(tree, page, btrfs_get_extent);
4178 }
4179 
btrfs_writepage(struct page * page,struct writeback_control * wbc)4180 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4181 {
4182 	struct extent_io_tree *tree;
4183 
4184 
4185 	if (current->flags & PF_MEMALLOC) {
4186 		redirty_page_for_writepage(wbc, page);
4187 		unlock_page(page);
4188 		return 0;
4189 	}
4190 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4191 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4192 }
4193 
btrfs_writepages(struct address_space * mapping,struct writeback_control * wbc)4194 int btrfs_writepages(struct address_space *mapping,
4195 		     struct writeback_control *wbc)
4196 {
4197 	struct extent_io_tree *tree;
4198 
4199 	tree = &BTRFS_I(mapping->host)->io_tree;
4200 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4201 }
4202 
4203 static int
btrfs_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)4204 btrfs_readpages(struct file *file, struct address_space *mapping,
4205 		struct list_head *pages, unsigned nr_pages)
4206 {
4207 	struct extent_io_tree *tree;
4208 	tree = &BTRFS_I(mapping->host)->io_tree;
4209 	return extent_readpages(tree, mapping, pages, nr_pages,
4210 				btrfs_get_extent);
4211 }
__btrfs_releasepage(struct page * page,gfp_t gfp_flags)4212 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4213 {
4214 	struct extent_io_tree *tree;
4215 	struct extent_map_tree *map;
4216 	int ret;
4217 
4218 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4219 	map = &BTRFS_I(page->mapping->host)->extent_tree;
4220 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4221 	if (ret == 1) {
4222 		ClearPagePrivate(page);
4223 		set_page_private(page, 0);
4224 		page_cache_release(page);
4225 	}
4226 	return ret;
4227 }
4228 
btrfs_releasepage(struct page * page,gfp_t gfp_flags)4229 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4230 {
4231 	if (PageWriteback(page) || PageDirty(page))
4232 		return 0;
4233 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
4234 }
4235 
btrfs_invalidatepage(struct page * page,unsigned long offset)4236 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4237 {
4238 	struct extent_io_tree *tree;
4239 	struct btrfs_ordered_extent *ordered;
4240 	u64 page_start = page_offset(page);
4241 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4242 
4243 	wait_on_page_writeback(page);
4244 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4245 	if (offset) {
4246 		btrfs_releasepage(page, GFP_NOFS);
4247 		return;
4248 	}
4249 
4250 	lock_extent(tree, page_start, page_end, GFP_NOFS);
4251 	ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4252 					   page_offset(page));
4253 	if (ordered) {
4254 		/*
4255 		 * IO on this page will never be started, so we need
4256 		 * to account for any ordered extents now
4257 		 */
4258 		clear_extent_bit(tree, page_start, page_end,
4259 				 EXTENT_DIRTY | EXTENT_DELALLOC |
4260 				 EXTENT_LOCKED, 1, 0, GFP_NOFS);
4261 		btrfs_finish_ordered_io(page->mapping->host,
4262 					page_start, page_end);
4263 		btrfs_put_ordered_extent(ordered);
4264 		lock_extent(tree, page_start, page_end, GFP_NOFS);
4265 	}
4266 	clear_extent_bit(tree, page_start, page_end,
4267 		 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4268 		 EXTENT_ORDERED,
4269 		 1, 1, GFP_NOFS);
4270 	__btrfs_releasepage(page, GFP_NOFS);
4271 
4272 	ClearPageChecked(page);
4273 	if (PagePrivate(page)) {
4274 		ClearPagePrivate(page);
4275 		set_page_private(page, 0);
4276 		page_cache_release(page);
4277 	}
4278 }
4279 
4280 /*
4281  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4282  * called from a page fault handler when a page is first dirtied. Hence we must
4283  * be careful to check for EOF conditions here. We set the page up correctly
4284  * for a written page which means we get ENOSPC checking when writing into
4285  * holes and correct delalloc and unwritten extent mapping on filesystems that
4286  * support these features.
4287  *
4288  * We are not allowed to take the i_mutex here so we have to play games to
4289  * protect against truncate races as the page could now be beyond EOF.  Because
4290  * vmtruncate() writes the inode size before removing pages, once we have the
4291  * page lock we can determine safely if the page is beyond EOF. If it is not
4292  * beyond EOF, then the page is guaranteed safe against truncation until we
4293  * unlock the page.
4294  */
btrfs_page_mkwrite(struct vm_area_struct * vma,struct page * page)4295 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4296 {
4297 	struct inode *inode = fdentry(vma->vm_file)->d_inode;
4298 	struct btrfs_root *root = BTRFS_I(inode)->root;
4299 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4300 	struct btrfs_ordered_extent *ordered;
4301 	char *kaddr;
4302 	unsigned long zero_start;
4303 	loff_t size;
4304 	int ret;
4305 	u64 page_start;
4306 	u64 page_end;
4307 
4308 	ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
4309 	if (ret)
4310 		goto out;
4311 
4312 	ret = -EINVAL;
4313 again:
4314 	lock_page(page);
4315 	size = i_size_read(inode);
4316 	page_start = page_offset(page);
4317 	page_end = page_start + PAGE_CACHE_SIZE - 1;
4318 
4319 	if ((page->mapping != inode->i_mapping) ||
4320 	    (page_start >= size)) {
4321 		btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4322 		/* page got truncated out from underneath us */
4323 		goto out_unlock;
4324 	}
4325 	wait_on_page_writeback(page);
4326 
4327 	lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4328 	set_page_extent_mapped(page);
4329 
4330 	/*
4331 	 * we can't set the delalloc bits if there are pending ordered
4332 	 * extents.  Drop our locks and wait for them to finish
4333 	 */
4334 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
4335 	if (ordered) {
4336 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4337 		unlock_page(page);
4338 		btrfs_start_ordered_extent(inode, ordered, 1);
4339 		btrfs_put_ordered_extent(ordered);
4340 		goto again;
4341 	}
4342 
4343 	btrfs_set_extent_delalloc(inode, page_start, page_end);
4344 	ret = 0;
4345 
4346 	/* page is wholly or partially inside EOF */
4347 	if (page_start + PAGE_CACHE_SIZE > size)
4348 		zero_start = size & ~PAGE_CACHE_MASK;
4349 	else
4350 		zero_start = PAGE_CACHE_SIZE;
4351 
4352 	if (zero_start != PAGE_CACHE_SIZE) {
4353 		kaddr = kmap(page);
4354 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4355 		flush_dcache_page(page);
4356 		kunmap(page);
4357 	}
4358 	ClearPageChecked(page);
4359 	set_page_dirty(page);
4360 	unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4361 
4362 out_unlock:
4363 	unlock_page(page);
4364 out:
4365 	return ret;
4366 }
4367 
btrfs_truncate(struct inode * inode)4368 static void btrfs_truncate(struct inode *inode)
4369 {
4370 	struct btrfs_root *root = BTRFS_I(inode)->root;
4371 	int ret;
4372 	struct btrfs_trans_handle *trans;
4373 	unsigned long nr;
4374 	u64 mask = root->sectorsize - 1;
4375 
4376 	if (!S_ISREG(inode->i_mode))
4377 		return;
4378 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4379 		return;
4380 
4381 	btrfs_truncate_page(inode->i_mapping, inode->i_size);
4382 	btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
4383 
4384 	trans = btrfs_start_transaction(root, 1);
4385 	btrfs_set_trans_block_group(trans, inode);
4386 	btrfs_i_size_write(inode, inode->i_size);
4387 
4388 	ret = btrfs_orphan_add(trans, inode);
4389 	if (ret)
4390 		goto out;
4391 	/* FIXME, add redo link to tree so we don't leak on crash */
4392 	ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
4393 				      BTRFS_EXTENT_DATA_KEY);
4394 	btrfs_update_inode(trans, root, inode);
4395 
4396 	ret = btrfs_orphan_del(trans, inode);
4397 	BUG_ON(ret);
4398 
4399 out:
4400 	nr = trans->blocks_used;
4401 	ret = btrfs_end_transaction_throttle(trans, root);
4402 	BUG_ON(ret);
4403 	btrfs_btree_balance_dirty(root, nr);
4404 }
4405 
4406 /*
4407  * create a new subvolume directory/inode (helper for the ioctl).
4408  */
btrfs_create_subvol_root(struct btrfs_trans_handle * trans,struct btrfs_root * new_root,struct dentry * dentry,u64 new_dirid,u64 alloc_hint)4409 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
4410 			     struct btrfs_root *new_root, struct dentry *dentry,
4411 			     u64 new_dirid, u64 alloc_hint)
4412 {
4413 	struct inode *inode;
4414 	int error;
4415 	u64 index = 0;
4416 
4417 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
4418 				new_dirid, alloc_hint, S_IFDIR | 0700, &index);
4419 	if (IS_ERR(inode))
4420 		return PTR_ERR(inode);
4421 	inode->i_op = &btrfs_dir_inode_operations;
4422 	inode->i_fop = &btrfs_dir_file_operations;
4423 
4424 	inode->i_nlink = 1;
4425 	btrfs_i_size_write(inode, 0);
4426 
4427 	error = btrfs_update_inode(trans, new_root, inode);
4428 	if (error)
4429 		return error;
4430 
4431 	d_instantiate(dentry, inode);
4432 	return 0;
4433 }
4434 
4435 /* helper function for file defrag and space balancing.  This
4436  * forces readahead on a given range of bytes in an inode
4437  */
btrfs_force_ra(struct address_space * mapping,struct file_ra_state * ra,struct file * file,pgoff_t offset,pgoff_t last_index)4438 unsigned long btrfs_force_ra(struct address_space *mapping,
4439 			      struct file_ra_state *ra, struct file *file,
4440 			      pgoff_t offset, pgoff_t last_index)
4441 {
4442 	pgoff_t req_size = last_index - offset + 1;
4443 
4444 	page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4445 	return offset + req_size;
4446 }
4447 
btrfs_alloc_inode(struct super_block * sb)4448 struct inode *btrfs_alloc_inode(struct super_block *sb)
4449 {
4450 	struct btrfs_inode *ei;
4451 
4452 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
4453 	if (!ei)
4454 		return NULL;
4455 	ei->last_trans = 0;
4456 	ei->logged_trans = 0;
4457 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
4458 	ei->i_acl = BTRFS_ACL_NOT_CACHED;
4459 	ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
4460 	INIT_LIST_HEAD(&ei->i_orphan);
4461 	return &ei->vfs_inode;
4462 }
4463 
btrfs_destroy_inode(struct inode * inode)4464 void btrfs_destroy_inode(struct inode *inode)
4465 {
4466 	struct btrfs_ordered_extent *ordered;
4467 	WARN_ON(!list_empty(&inode->i_dentry));
4468 	WARN_ON(inode->i_data.nrpages);
4469 
4470 	if (BTRFS_I(inode)->i_acl &&
4471 	    BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
4472 		posix_acl_release(BTRFS_I(inode)->i_acl);
4473 	if (BTRFS_I(inode)->i_default_acl &&
4474 	    BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
4475 		posix_acl_release(BTRFS_I(inode)->i_default_acl);
4476 
4477 	spin_lock(&BTRFS_I(inode)->root->list_lock);
4478 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
4479 		printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
4480 		       " list\n", inode->i_ino);
4481 		dump_stack();
4482 	}
4483 	spin_unlock(&BTRFS_I(inode)->root->list_lock);
4484 
4485 	while (1) {
4486 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
4487 		if (!ordered)
4488 			break;
4489 		else {
4490 			printk(KERN_ERR "btrfs found ordered "
4491 			       "extent %llu %llu on inode cleanup\n",
4492 			       (unsigned long long)ordered->file_offset,
4493 			       (unsigned long long)ordered->len);
4494 			btrfs_remove_ordered_extent(inode, ordered);
4495 			btrfs_put_ordered_extent(ordered);
4496 			btrfs_put_ordered_extent(ordered);
4497 		}
4498 	}
4499 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
4500 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4501 }
4502 
init_once(void * foo)4503 static void init_once(void *foo)
4504 {
4505 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4506 
4507 	inode_init_once(&ei->vfs_inode);
4508 }
4509 
btrfs_destroy_cachep(void)4510 void btrfs_destroy_cachep(void)
4511 {
4512 	if (btrfs_inode_cachep)
4513 		kmem_cache_destroy(btrfs_inode_cachep);
4514 	if (btrfs_trans_handle_cachep)
4515 		kmem_cache_destroy(btrfs_trans_handle_cachep);
4516 	if (btrfs_transaction_cachep)
4517 		kmem_cache_destroy(btrfs_transaction_cachep);
4518 	if (btrfs_bit_radix_cachep)
4519 		kmem_cache_destroy(btrfs_bit_radix_cachep);
4520 	if (btrfs_path_cachep)
4521 		kmem_cache_destroy(btrfs_path_cachep);
4522 }
4523 
btrfs_cache_create(const char * name,size_t size,unsigned long extra_flags,void (* ctor)(void *))4524 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
4525 				       unsigned long extra_flags,
4526 				       void (*ctor)(void *))
4527 {
4528 	return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
4529 				 SLAB_MEM_SPREAD | extra_flags), ctor);
4530 }
4531 
btrfs_init_cachep(void)4532 int btrfs_init_cachep(void)
4533 {
4534 	btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
4535 					  sizeof(struct btrfs_inode),
4536 					  0, init_once);
4537 	if (!btrfs_inode_cachep)
4538 		goto fail;
4539 	btrfs_trans_handle_cachep =
4540 			btrfs_cache_create("btrfs_trans_handle_cache",
4541 					   sizeof(struct btrfs_trans_handle),
4542 					   0, NULL);
4543 	if (!btrfs_trans_handle_cachep)
4544 		goto fail;
4545 	btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
4546 					     sizeof(struct btrfs_transaction),
4547 					     0, NULL);
4548 	if (!btrfs_transaction_cachep)
4549 		goto fail;
4550 	btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
4551 					 sizeof(struct btrfs_path),
4552 					 0, NULL);
4553 	if (!btrfs_path_cachep)
4554 		goto fail;
4555 	btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
4556 					      SLAB_DESTROY_BY_RCU, NULL);
4557 	if (!btrfs_bit_radix_cachep)
4558 		goto fail;
4559 	return 0;
4560 fail:
4561 	btrfs_destroy_cachep();
4562 	return -ENOMEM;
4563 }
4564 
btrfs_getattr(struct vfsmount * mnt,struct dentry * dentry,struct kstat * stat)4565 static int btrfs_getattr(struct vfsmount *mnt,
4566 			 struct dentry *dentry, struct kstat *stat)
4567 {
4568 	struct inode *inode = dentry->d_inode;
4569 	generic_fillattr(inode, stat);
4570 	stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
4571 	stat->blksize = PAGE_CACHE_SIZE;
4572 	stat->blocks = (inode_get_bytes(inode) +
4573 			BTRFS_I(inode)->delalloc_bytes) >> 9;
4574 	return 0;
4575 }
4576 
btrfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)4577 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4578 			   struct inode *new_dir, struct dentry *new_dentry)
4579 {
4580 	struct btrfs_trans_handle *trans;
4581 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
4582 	struct inode *new_inode = new_dentry->d_inode;
4583 	struct inode *old_inode = old_dentry->d_inode;
4584 	struct timespec ctime = CURRENT_TIME;
4585 	u64 index = 0;
4586 	int ret;
4587 
4588 	/* we're not allowed to rename between subvolumes */
4589 	if (BTRFS_I(old_inode)->root->root_key.objectid !=
4590 	    BTRFS_I(new_dir)->root->root_key.objectid)
4591 		return -EXDEV;
4592 
4593 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
4594 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
4595 		return -ENOTEMPTY;
4596 	}
4597 
4598 	/* to rename a snapshot or subvolume, we need to juggle the
4599 	 * backrefs.  This isn't coded yet
4600 	 */
4601 	if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
4602 		return -EXDEV;
4603 
4604 	ret = btrfs_check_metadata_free_space(root);
4605 	if (ret)
4606 		goto out_unlock;
4607 
4608 	trans = btrfs_start_transaction(root, 1);
4609 
4610 	btrfs_set_trans_block_group(trans, new_dir);
4611 
4612 	btrfs_inc_nlink(old_dentry->d_inode);
4613 	old_dir->i_ctime = old_dir->i_mtime = ctime;
4614 	new_dir->i_ctime = new_dir->i_mtime = ctime;
4615 	old_inode->i_ctime = ctime;
4616 
4617 	ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
4618 				 old_dentry->d_name.name,
4619 				 old_dentry->d_name.len);
4620 	if (ret)
4621 		goto out_fail;
4622 
4623 	if (new_inode) {
4624 		new_inode->i_ctime = CURRENT_TIME;
4625 		ret = btrfs_unlink_inode(trans, root, new_dir,
4626 					 new_dentry->d_inode,
4627 					 new_dentry->d_name.name,
4628 					 new_dentry->d_name.len);
4629 		if (ret)
4630 			goto out_fail;
4631 		if (new_inode->i_nlink == 0) {
4632 			ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4633 			if (ret)
4634 				goto out_fail;
4635 		}
4636 
4637 	}
4638 	ret = btrfs_set_inode_index(new_dir, &index);
4639 	if (ret)
4640 		goto out_fail;
4641 
4642 	ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
4643 			     old_inode, new_dentry->d_name.name,
4644 			     new_dentry->d_name.len, 1, index);
4645 	if (ret)
4646 		goto out_fail;
4647 
4648 out_fail:
4649 	btrfs_end_transaction_throttle(trans, root);
4650 out_unlock:
4651 	return ret;
4652 }
4653 
4654 /*
4655  * some fairly slow code that needs optimization. This walks the list
4656  * of all the inodes with pending delalloc and forces them to disk.
4657  */
btrfs_start_delalloc_inodes(struct btrfs_root * root)4658 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
4659 {
4660 	struct list_head *head = &root->fs_info->delalloc_inodes;
4661 	struct btrfs_inode *binode;
4662 	struct inode *inode;
4663 
4664 	if (root->fs_info->sb->s_flags & MS_RDONLY)
4665 		return -EROFS;
4666 
4667 	spin_lock(&root->fs_info->delalloc_lock);
4668 	while (!list_empty(head)) {
4669 		binode = list_entry(head->next, struct btrfs_inode,
4670 				    delalloc_inodes);
4671 		inode = igrab(&binode->vfs_inode);
4672 		if (!inode)
4673 			list_del_init(&binode->delalloc_inodes);
4674 		spin_unlock(&root->fs_info->delalloc_lock);
4675 		if (inode) {
4676 			filemap_flush(inode->i_mapping);
4677 			iput(inode);
4678 		}
4679 		cond_resched();
4680 		spin_lock(&root->fs_info->delalloc_lock);
4681 	}
4682 	spin_unlock(&root->fs_info->delalloc_lock);
4683 
4684 	/* the filemap_flush will queue IO into the worker threads, but
4685 	 * we have to make sure the IO is actually started and that
4686 	 * ordered extents get created before we return
4687 	 */
4688 	atomic_inc(&root->fs_info->async_submit_draining);
4689 	while (atomic_read(&root->fs_info->nr_async_submits) ||
4690 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
4691 		wait_event(root->fs_info->async_submit_wait,
4692 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
4693 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
4694 	}
4695 	atomic_dec(&root->fs_info->async_submit_draining);
4696 	return 0;
4697 }
4698 
btrfs_symlink(struct inode * dir,struct dentry * dentry,const char * symname)4699 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
4700 			 const char *symname)
4701 {
4702 	struct btrfs_trans_handle *trans;
4703 	struct btrfs_root *root = BTRFS_I(dir)->root;
4704 	struct btrfs_path *path;
4705 	struct btrfs_key key;
4706 	struct inode *inode = NULL;
4707 	int err;
4708 	int drop_inode = 0;
4709 	u64 objectid;
4710 	u64 index = 0 ;
4711 	int name_len;
4712 	int datasize;
4713 	unsigned long ptr;
4714 	struct btrfs_file_extent_item *ei;
4715 	struct extent_buffer *leaf;
4716 	unsigned long nr = 0;
4717 
4718 	name_len = strlen(symname) + 1;
4719 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
4720 		return -ENAMETOOLONG;
4721 
4722 	err = btrfs_check_metadata_free_space(root);
4723 	if (err)
4724 		goto out_fail;
4725 
4726 	trans = btrfs_start_transaction(root, 1);
4727 	btrfs_set_trans_block_group(trans, dir);
4728 
4729 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4730 	if (err) {
4731 		err = -ENOSPC;
4732 		goto out_unlock;
4733 	}
4734 
4735 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4736 				dentry->d_name.len,
4737 				dentry->d_parent->d_inode->i_ino, objectid,
4738 				BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
4739 				&index);
4740 	err = PTR_ERR(inode);
4741 	if (IS_ERR(inode))
4742 		goto out_unlock;
4743 
4744 	err = btrfs_init_inode_security(inode, dir);
4745 	if (err) {
4746 		drop_inode = 1;
4747 		goto out_unlock;
4748 	}
4749 
4750 	btrfs_set_trans_block_group(trans, inode);
4751 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4752 	if (err)
4753 		drop_inode = 1;
4754 	else {
4755 		inode->i_mapping->a_ops = &btrfs_aops;
4756 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4757 		inode->i_fop = &btrfs_file_operations;
4758 		inode->i_op = &btrfs_file_inode_operations;
4759 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4760 	}
4761 	dir->i_sb->s_dirt = 1;
4762 	btrfs_update_inode_block_group(trans, inode);
4763 	btrfs_update_inode_block_group(trans, dir);
4764 	if (drop_inode)
4765 		goto out_unlock;
4766 
4767 	path = btrfs_alloc_path();
4768 	BUG_ON(!path);
4769 	key.objectid = inode->i_ino;
4770 	key.offset = 0;
4771 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
4772 	datasize = btrfs_file_extent_calc_inline_size(name_len);
4773 	err = btrfs_insert_empty_item(trans, root, path, &key,
4774 				      datasize);
4775 	if (err) {
4776 		drop_inode = 1;
4777 		goto out_unlock;
4778 	}
4779 	leaf = path->nodes[0];
4780 	ei = btrfs_item_ptr(leaf, path->slots[0],
4781 			    struct btrfs_file_extent_item);
4782 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
4783 	btrfs_set_file_extent_type(leaf, ei,
4784 				   BTRFS_FILE_EXTENT_INLINE);
4785 	btrfs_set_file_extent_encryption(leaf, ei, 0);
4786 	btrfs_set_file_extent_compression(leaf, ei, 0);
4787 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
4788 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
4789 
4790 	ptr = btrfs_file_extent_inline_start(ei);
4791 	write_extent_buffer(leaf, symname, ptr, name_len);
4792 	btrfs_mark_buffer_dirty(leaf);
4793 	btrfs_free_path(path);
4794 
4795 	inode->i_op = &btrfs_symlink_inode_operations;
4796 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
4797 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4798 	inode_set_bytes(inode, name_len);
4799 	btrfs_i_size_write(inode, name_len - 1);
4800 	err = btrfs_update_inode(trans, root, inode);
4801 	if (err)
4802 		drop_inode = 1;
4803 
4804 out_unlock:
4805 	nr = trans->blocks_used;
4806 	btrfs_end_transaction_throttle(trans, root);
4807 out_fail:
4808 	if (drop_inode) {
4809 		inode_dec_link_count(inode);
4810 		iput(inode);
4811 	}
4812 	btrfs_btree_balance_dirty(root, nr);
4813 	return err;
4814 }
4815 
prealloc_file_range(struct inode * inode,u64 start,u64 end,u64 alloc_hint,int mode)4816 static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
4817 			       u64 alloc_hint, int mode)
4818 {
4819 	struct btrfs_trans_handle *trans;
4820 	struct btrfs_root *root = BTRFS_I(inode)->root;
4821 	struct btrfs_key ins;
4822 	u64 alloc_size;
4823 	u64 cur_offset = start;
4824 	u64 num_bytes = end - start;
4825 	int ret = 0;
4826 
4827 	trans = btrfs_join_transaction(root, 1);
4828 	BUG_ON(!trans);
4829 	btrfs_set_trans_block_group(trans, inode);
4830 
4831 	while (num_bytes > 0) {
4832 		alloc_size = min(num_bytes, root->fs_info->max_extent);
4833 		ret = btrfs_reserve_extent(trans, root, alloc_size,
4834 					   root->sectorsize, 0, alloc_hint,
4835 					   (u64)-1, &ins, 1);
4836 		if (ret) {
4837 			WARN_ON(1);
4838 			goto out;
4839 		}
4840 		ret = insert_reserved_file_extent(trans, inode,
4841 						  cur_offset, ins.objectid,
4842 						  ins.offset, ins.offset,
4843 						  ins.offset, 0, 0, 0,
4844 						  BTRFS_FILE_EXTENT_PREALLOC);
4845 		BUG_ON(ret);
4846 		num_bytes -= ins.offset;
4847 		cur_offset += ins.offset;
4848 		alloc_hint = ins.objectid + ins.offset;
4849 	}
4850 out:
4851 	if (cur_offset > start) {
4852 		inode->i_ctime = CURRENT_TIME;
4853 		btrfs_set_flag(inode, PREALLOC);
4854 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4855 		    cur_offset > i_size_read(inode))
4856 			btrfs_i_size_write(inode, cur_offset);
4857 		ret = btrfs_update_inode(trans, root, inode);
4858 		BUG_ON(ret);
4859 	}
4860 
4861 	btrfs_end_transaction(trans, root);
4862 	return ret;
4863 }
4864 
btrfs_fallocate(struct inode * inode,int mode,loff_t offset,loff_t len)4865 static long btrfs_fallocate(struct inode *inode, int mode,
4866 			    loff_t offset, loff_t len)
4867 {
4868 	u64 cur_offset;
4869 	u64 last_byte;
4870 	u64 alloc_start;
4871 	u64 alloc_end;
4872 	u64 alloc_hint = 0;
4873 	u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
4874 	struct extent_map *em;
4875 	int ret;
4876 
4877 	alloc_start = offset & ~mask;
4878 	alloc_end =  (offset + len + mask) & ~mask;
4879 
4880 	mutex_lock(&inode->i_mutex);
4881 	if (alloc_start > inode->i_size) {
4882 		ret = btrfs_cont_expand(inode, alloc_start);
4883 		if (ret)
4884 			goto out;
4885 	}
4886 
4887 	while (1) {
4888 		struct btrfs_ordered_extent *ordered;
4889 		lock_extent(&BTRFS_I(inode)->io_tree, alloc_start,
4890 			    alloc_end - 1, GFP_NOFS);
4891 		ordered = btrfs_lookup_first_ordered_extent(inode,
4892 							    alloc_end - 1);
4893 		if (ordered &&
4894 		    ordered->file_offset + ordered->len > alloc_start &&
4895 		    ordered->file_offset < alloc_end) {
4896 			btrfs_put_ordered_extent(ordered);
4897 			unlock_extent(&BTRFS_I(inode)->io_tree,
4898 				      alloc_start, alloc_end - 1, GFP_NOFS);
4899 			btrfs_wait_ordered_range(inode, alloc_start,
4900 						 alloc_end - alloc_start);
4901 		} else {
4902 			if (ordered)
4903 				btrfs_put_ordered_extent(ordered);
4904 			break;
4905 		}
4906 	}
4907 
4908 	cur_offset = alloc_start;
4909 	while (1) {
4910 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4911 				      alloc_end - cur_offset, 0);
4912 		BUG_ON(IS_ERR(em) || !em);
4913 		last_byte = min(extent_map_end(em), alloc_end);
4914 		last_byte = (last_byte + mask) & ~mask;
4915 		if (em->block_start == EXTENT_MAP_HOLE) {
4916 			ret = prealloc_file_range(inode, cur_offset,
4917 					last_byte, alloc_hint, mode);
4918 			if (ret < 0) {
4919 				free_extent_map(em);
4920 				break;
4921 			}
4922 		}
4923 		if (em->block_start <= EXTENT_MAP_LAST_BYTE)
4924 			alloc_hint = em->block_start;
4925 		free_extent_map(em);
4926 
4927 		cur_offset = last_byte;
4928 		if (cur_offset >= alloc_end) {
4929 			ret = 0;
4930 			break;
4931 		}
4932 	}
4933 	unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, alloc_end - 1,
4934 		      GFP_NOFS);
4935 out:
4936 	mutex_unlock(&inode->i_mutex);
4937 	return ret;
4938 }
4939 
btrfs_set_page_dirty(struct page * page)4940 static int btrfs_set_page_dirty(struct page *page)
4941 {
4942 	return __set_page_dirty_nobuffers(page);
4943 }
4944 
btrfs_permission(struct inode * inode,int mask)4945 static int btrfs_permission(struct inode *inode, int mask)
4946 {
4947 	if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
4948 		return -EACCES;
4949 	return generic_permission(inode, mask, btrfs_check_acl);
4950 }
4951 
4952 static struct inode_operations btrfs_dir_inode_operations = {
4953 	.getattr	= btrfs_getattr,
4954 	.lookup		= btrfs_lookup,
4955 	.create		= btrfs_create,
4956 	.unlink		= btrfs_unlink,
4957 	.link		= btrfs_link,
4958 	.mkdir		= btrfs_mkdir,
4959 	.rmdir		= btrfs_rmdir,
4960 	.rename		= btrfs_rename,
4961 	.symlink	= btrfs_symlink,
4962 	.setattr	= btrfs_setattr,
4963 	.mknod		= btrfs_mknod,
4964 	.setxattr	= btrfs_setxattr,
4965 	.getxattr	= btrfs_getxattr,
4966 	.listxattr	= btrfs_listxattr,
4967 	.removexattr	= btrfs_removexattr,
4968 	.permission	= btrfs_permission,
4969 };
4970 static struct inode_operations btrfs_dir_ro_inode_operations = {
4971 	.lookup		= btrfs_lookup,
4972 	.permission	= btrfs_permission,
4973 };
4974 static struct file_operations btrfs_dir_file_operations = {
4975 	.llseek		= generic_file_llseek,
4976 	.read		= generic_read_dir,
4977 	.readdir	= btrfs_real_readdir,
4978 	.unlocked_ioctl	= btrfs_ioctl,
4979 #ifdef CONFIG_COMPAT
4980 	.compat_ioctl	= btrfs_ioctl,
4981 #endif
4982 	.release        = btrfs_release_file,
4983 	.fsync		= btrfs_sync_file,
4984 };
4985 
4986 static struct extent_io_ops btrfs_extent_io_ops = {
4987 	.fill_delalloc = run_delalloc_range,
4988 	.submit_bio_hook = btrfs_submit_bio_hook,
4989 	.merge_bio_hook = btrfs_merge_bio_hook,
4990 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
4991 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
4992 	.writepage_start_hook = btrfs_writepage_start_hook,
4993 	.readpage_io_failed_hook = btrfs_io_failed_hook,
4994 	.set_bit_hook = btrfs_set_bit_hook,
4995 	.clear_bit_hook = btrfs_clear_bit_hook,
4996 };
4997 
4998 /*
4999  * btrfs doesn't support the bmap operation because swapfiles
5000  * use bmap to make a mapping of extents in the file.  They assume
5001  * these extents won't change over the life of the file and they
5002  * use the bmap result to do IO directly to the drive.
5003  *
5004  * the btrfs bmap call would return logical addresses that aren't
5005  * suitable for IO and they also will change frequently as COW
5006  * operations happen.  So, swapfile + btrfs == corruption.
5007  *
5008  * For now we're avoiding this by dropping bmap.
5009  */
5010 static struct address_space_operations btrfs_aops = {
5011 	.readpage	= btrfs_readpage,
5012 	.writepage	= btrfs_writepage,
5013 	.writepages	= btrfs_writepages,
5014 	.readpages	= btrfs_readpages,
5015 	.sync_page	= block_sync_page,
5016 	.direct_IO	= btrfs_direct_IO,
5017 	.invalidatepage = btrfs_invalidatepage,
5018 	.releasepage	= btrfs_releasepage,
5019 	.set_page_dirty	= btrfs_set_page_dirty,
5020 };
5021 
5022 static struct address_space_operations btrfs_symlink_aops = {
5023 	.readpage	= btrfs_readpage,
5024 	.writepage	= btrfs_writepage,
5025 	.invalidatepage = btrfs_invalidatepage,
5026 	.releasepage	= btrfs_releasepage,
5027 };
5028 
5029 static struct inode_operations btrfs_file_inode_operations = {
5030 	.truncate	= btrfs_truncate,
5031 	.getattr	= btrfs_getattr,
5032 	.setattr	= btrfs_setattr,
5033 	.setxattr	= btrfs_setxattr,
5034 	.getxattr	= btrfs_getxattr,
5035 	.listxattr      = btrfs_listxattr,
5036 	.removexattr	= btrfs_removexattr,
5037 	.permission	= btrfs_permission,
5038 	.fallocate	= btrfs_fallocate,
5039 	.fiemap		= btrfs_fiemap,
5040 };
5041 static struct inode_operations btrfs_special_inode_operations = {
5042 	.getattr	= btrfs_getattr,
5043 	.setattr	= btrfs_setattr,
5044 	.permission	= btrfs_permission,
5045 	.setxattr	= btrfs_setxattr,
5046 	.getxattr	= btrfs_getxattr,
5047 	.listxattr	= btrfs_listxattr,
5048 	.removexattr	= btrfs_removexattr,
5049 };
5050 static struct inode_operations btrfs_symlink_inode_operations = {
5051 	.readlink	= generic_readlink,
5052 	.follow_link	= page_follow_link_light,
5053 	.put_link	= page_put_link,
5054 	.permission	= btrfs_permission,
5055 	.setxattr	= btrfs_setxattr,
5056 	.getxattr	= btrfs_getxattr,
5057 	.listxattr	= btrfs_listxattr,
5058 	.removexattr	= btrfs_removexattr,
5059 };
5060