• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Implementation of the kernel access vector cache (AVC).
3  *
4  * Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
5  *	     James Morris <jmorris@redhat.com>
6  *
7  * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
8  *	Replaced the avc_lock spinlock by RCU.
9  *
10  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
11  *
12  *	This program is free software; you can redistribute it and/or modify
13  *	it under the terms of the GNU General Public License version 2,
14  *	as published by the Free Software Foundation.
15  */
16 #include <linux/types.h>
17 #include <linux/stddef.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/dcache.h>
22 #include <linux/init.h>
23 #include <linux/skbuff.h>
24 #include <linux/percpu.h>
25 #include <net/sock.h>
26 #include <linux/un.h>
27 #include <net/af_unix.h>
28 #include <linux/ip.h>
29 #include <linux/audit.h>
30 #include <linux/ipv6.h>
31 #include <net/ipv6.h>
32 #include "avc.h"
33 #include "avc_ss.h"
34 
35 static const struct av_perm_to_string av_perm_to_string[] = {
36 #define S_(c, v, s) { c, v, s },
37 #include "av_perm_to_string.h"
38 #undef S_
39 };
40 
41 static const char *class_to_string[] = {
42 #define S_(s) s,
43 #include "class_to_string.h"
44 #undef S_
45 };
46 
47 #define TB_(s) static const char *s[] = {
48 #define TE_(s) };
49 #define S_(s) s,
50 #include "common_perm_to_string.h"
51 #undef TB_
52 #undef TE_
53 #undef S_
54 
55 static const struct av_inherit av_inherit[] = {
56 #define S_(c, i, b) {	.tclass = c,\
57 			.common_pts = common_##i##_perm_to_string,\
58 			.common_base =  b },
59 #include "av_inherit.h"
60 #undef S_
61 };
62 
63 const struct selinux_class_perm selinux_class_perm = {
64 	.av_perm_to_string = av_perm_to_string,
65 	.av_pts_len = ARRAY_SIZE(av_perm_to_string),
66 	.class_to_string = class_to_string,
67 	.cts_len = ARRAY_SIZE(class_to_string),
68 	.av_inherit = av_inherit,
69 	.av_inherit_len = ARRAY_SIZE(av_inherit)
70 };
71 
72 #define AVC_CACHE_SLOTS			512
73 #define AVC_DEF_CACHE_THRESHOLD		512
74 #define AVC_CACHE_RECLAIM		16
75 
76 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
77 #define avc_cache_stats_incr(field)				\
78 do {								\
79 	per_cpu(avc_cache_stats, get_cpu()).field++;		\
80 	put_cpu();						\
81 } while (0)
82 #else
83 #define avc_cache_stats_incr(field)	do {} while (0)
84 #endif
85 
86 struct avc_entry {
87 	u32			ssid;
88 	u32			tsid;
89 	u16			tclass;
90 	struct av_decision	avd;
91 	atomic_t		used;	/* used recently */
92 };
93 
94 struct avc_node {
95 	struct avc_entry	ae;
96 	struct list_head	list;
97 	struct rcu_head		rhead;
98 };
99 
100 struct avc_cache {
101 	struct list_head	slots[AVC_CACHE_SLOTS];
102 	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
103 	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
104 	atomic_t		active_nodes;
105 	u32			latest_notif;	/* latest revocation notification */
106 };
107 
108 struct avc_callback_node {
109 	int (*callback) (u32 event, u32 ssid, u32 tsid,
110 			 u16 tclass, u32 perms,
111 			 u32 *out_retained);
112 	u32 events;
113 	u32 ssid;
114 	u32 tsid;
115 	u16 tclass;
116 	u32 perms;
117 	struct avc_callback_node *next;
118 };
119 
120 /* Exported via selinufs */
121 unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
122 
123 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
124 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
125 #endif
126 
127 static struct avc_cache avc_cache;
128 static struct avc_callback_node *avc_callbacks;
129 static struct kmem_cache *avc_node_cachep;
130 
avc_hash(u32 ssid,u32 tsid,u16 tclass)131 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
132 {
133 	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
134 }
135 
136 /**
137  * avc_dump_av - Display an access vector in human-readable form.
138  * @tclass: target security class
139  * @av: access vector
140  */
avc_dump_av(struct audit_buffer * ab,u16 tclass,u32 av)141 void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
142 {
143 	const char **common_pts = NULL;
144 	u32 common_base = 0;
145 	int i, i2, perm;
146 
147 	if (av == 0) {
148 		audit_log_format(ab, " null");
149 		return;
150 	}
151 
152 	for (i = 0; i < ARRAY_SIZE(av_inherit); i++) {
153 		if (av_inherit[i].tclass == tclass) {
154 			common_pts = av_inherit[i].common_pts;
155 			common_base = av_inherit[i].common_base;
156 			break;
157 		}
158 	}
159 
160 	audit_log_format(ab, " {");
161 	i = 0;
162 	perm = 1;
163 	while (perm < common_base) {
164 		if (perm & av) {
165 			audit_log_format(ab, " %s", common_pts[i]);
166 			av &= ~perm;
167 		}
168 		i++;
169 		perm <<= 1;
170 	}
171 
172 	while (i < sizeof(av) * 8) {
173 		if (perm & av) {
174 			for (i2 = 0; i2 < ARRAY_SIZE(av_perm_to_string); i2++) {
175 				if ((av_perm_to_string[i2].tclass == tclass) &&
176 				    (av_perm_to_string[i2].value == perm))
177 					break;
178 			}
179 			if (i2 < ARRAY_SIZE(av_perm_to_string)) {
180 				audit_log_format(ab, " %s",
181 						 av_perm_to_string[i2].name);
182 				av &= ~perm;
183 			}
184 		}
185 		i++;
186 		perm <<= 1;
187 	}
188 
189 	if (av)
190 		audit_log_format(ab, " 0x%x", av);
191 
192 	audit_log_format(ab, " }");
193 }
194 
195 /**
196  * avc_dump_query - Display a SID pair and a class in human-readable form.
197  * @ssid: source security identifier
198  * @tsid: target security identifier
199  * @tclass: target security class
200  */
avc_dump_query(struct audit_buffer * ab,u32 ssid,u32 tsid,u16 tclass)201 static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
202 {
203 	int rc;
204 	char *scontext;
205 	u32 scontext_len;
206 
207 	rc = security_sid_to_context(ssid, &scontext, &scontext_len);
208 	if (rc)
209 		audit_log_format(ab, "ssid=%d", ssid);
210 	else {
211 		audit_log_format(ab, "scontext=%s", scontext);
212 		kfree(scontext);
213 	}
214 
215 	rc = security_sid_to_context(tsid, &scontext, &scontext_len);
216 	if (rc)
217 		audit_log_format(ab, " tsid=%d", tsid);
218 	else {
219 		audit_log_format(ab, " tcontext=%s", scontext);
220 		kfree(scontext);
221 	}
222 
223 	BUG_ON(tclass >= ARRAY_SIZE(class_to_string) || !class_to_string[tclass]);
224 	audit_log_format(ab, " tclass=%s", class_to_string[tclass]);
225 }
226 
227 /**
228  * avc_init - Initialize the AVC.
229  *
230  * Initialize the access vector cache.
231  */
avc_init(void)232 void __init avc_init(void)
233 {
234 	int i;
235 
236 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
237 		INIT_LIST_HEAD(&avc_cache.slots[i]);
238 		spin_lock_init(&avc_cache.slots_lock[i]);
239 	}
240 	atomic_set(&avc_cache.active_nodes, 0);
241 	atomic_set(&avc_cache.lru_hint, 0);
242 
243 	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
244 					     0, SLAB_PANIC, NULL);
245 
246 	audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
247 }
248 
avc_get_hash_stats(char * page)249 int avc_get_hash_stats(char *page)
250 {
251 	int i, chain_len, max_chain_len, slots_used;
252 	struct avc_node *node;
253 
254 	rcu_read_lock();
255 
256 	slots_used = 0;
257 	max_chain_len = 0;
258 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
259 		if (!list_empty(&avc_cache.slots[i])) {
260 			slots_used++;
261 			chain_len = 0;
262 			list_for_each_entry_rcu(node, &avc_cache.slots[i], list)
263 				chain_len++;
264 			if (chain_len > max_chain_len)
265 				max_chain_len = chain_len;
266 		}
267 	}
268 
269 	rcu_read_unlock();
270 
271 	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
272 			 "longest chain: %d\n",
273 			 atomic_read(&avc_cache.active_nodes),
274 			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
275 }
276 
avc_node_free(struct rcu_head * rhead)277 static void avc_node_free(struct rcu_head *rhead)
278 {
279 	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
280 	kmem_cache_free(avc_node_cachep, node);
281 	avc_cache_stats_incr(frees);
282 }
283 
avc_node_delete(struct avc_node * node)284 static void avc_node_delete(struct avc_node *node)
285 {
286 	list_del_rcu(&node->list);
287 	call_rcu(&node->rhead, avc_node_free);
288 	atomic_dec(&avc_cache.active_nodes);
289 }
290 
avc_node_kill(struct avc_node * node)291 static void avc_node_kill(struct avc_node *node)
292 {
293 	kmem_cache_free(avc_node_cachep, node);
294 	avc_cache_stats_incr(frees);
295 	atomic_dec(&avc_cache.active_nodes);
296 }
297 
avc_node_replace(struct avc_node * new,struct avc_node * old)298 static void avc_node_replace(struct avc_node *new, struct avc_node *old)
299 {
300 	list_replace_rcu(&old->list, &new->list);
301 	call_rcu(&old->rhead, avc_node_free);
302 	atomic_dec(&avc_cache.active_nodes);
303 }
304 
avc_reclaim_node(void)305 static inline int avc_reclaim_node(void)
306 {
307 	struct avc_node *node;
308 	int hvalue, try, ecx;
309 	unsigned long flags;
310 
311 	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
312 		hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
313 
314 		if (!spin_trylock_irqsave(&avc_cache.slots_lock[hvalue], flags))
315 			continue;
316 
317 		rcu_read_lock();
318 		list_for_each_entry(node, &avc_cache.slots[hvalue], list) {
319 			if (atomic_dec_and_test(&node->ae.used)) {
320 				/* Recently Unused */
321 				avc_node_delete(node);
322 				avc_cache_stats_incr(reclaims);
323 				ecx++;
324 				if (ecx >= AVC_CACHE_RECLAIM) {
325 					rcu_read_unlock();
326 					spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);
327 					goto out;
328 				}
329 			}
330 		}
331 		rcu_read_unlock();
332 		spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);
333 	}
334 out:
335 	return ecx;
336 }
337 
avc_alloc_node(void)338 static struct avc_node *avc_alloc_node(void)
339 {
340 	struct avc_node *node;
341 
342 	node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);
343 	if (!node)
344 		goto out;
345 
346 	INIT_RCU_HEAD(&node->rhead);
347 	INIT_LIST_HEAD(&node->list);
348 	atomic_set(&node->ae.used, 1);
349 	avc_cache_stats_incr(allocations);
350 
351 	if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
352 		avc_reclaim_node();
353 
354 out:
355 	return node;
356 }
357 
avc_node_populate(struct avc_node * node,u32 ssid,u32 tsid,u16 tclass,struct avc_entry * ae)358 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae)
359 {
360 	node->ae.ssid = ssid;
361 	node->ae.tsid = tsid;
362 	node->ae.tclass = tclass;
363 	memcpy(&node->ae.avd, &ae->avd, sizeof(node->ae.avd));
364 }
365 
avc_search_node(u32 ssid,u32 tsid,u16 tclass)366 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
367 {
368 	struct avc_node *node, *ret = NULL;
369 	int hvalue;
370 
371 	hvalue = avc_hash(ssid, tsid, tclass);
372 	list_for_each_entry_rcu(node, &avc_cache.slots[hvalue], list) {
373 		if (ssid == node->ae.ssid &&
374 		    tclass == node->ae.tclass &&
375 		    tsid == node->ae.tsid) {
376 			ret = node;
377 			break;
378 		}
379 	}
380 
381 	if (ret == NULL) {
382 		/* cache miss */
383 		goto out;
384 	}
385 
386 	/* cache hit */
387 	if (atomic_read(&ret->ae.used) != 1)
388 		atomic_set(&ret->ae.used, 1);
389 out:
390 	return ret;
391 }
392 
393 /**
394  * avc_lookup - Look up an AVC entry.
395  * @ssid: source security identifier
396  * @tsid: target security identifier
397  * @tclass: target security class
398  * @requested: requested permissions, interpreted based on @tclass
399  *
400  * Look up an AVC entry that is valid for the
401  * @requested permissions between the SID pair
402  * (@ssid, @tsid), interpreting the permissions
403  * based on @tclass.  If a valid AVC entry exists,
404  * then this function return the avc_node.
405  * Otherwise, this function returns NULL.
406  */
avc_lookup(u32 ssid,u32 tsid,u16 tclass,u32 requested)407 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass, u32 requested)
408 {
409 	struct avc_node *node;
410 
411 	avc_cache_stats_incr(lookups);
412 	node = avc_search_node(ssid, tsid, tclass);
413 
414 	if (node && ((node->ae.avd.decided & requested) == requested)) {
415 		avc_cache_stats_incr(hits);
416 		goto out;
417 	}
418 
419 	node = NULL;
420 	avc_cache_stats_incr(misses);
421 out:
422 	return node;
423 }
424 
avc_latest_notif_update(int seqno,int is_insert)425 static int avc_latest_notif_update(int seqno, int is_insert)
426 {
427 	int ret = 0;
428 	static DEFINE_SPINLOCK(notif_lock);
429 	unsigned long flag;
430 
431 	spin_lock_irqsave(&notif_lock, flag);
432 	if (is_insert) {
433 		if (seqno < avc_cache.latest_notif) {
434 			printk(KERN_WARNING "SELinux: avc:  seqno %d < latest_notif %d\n",
435 			       seqno, avc_cache.latest_notif);
436 			ret = -EAGAIN;
437 		}
438 	} else {
439 		if (seqno > avc_cache.latest_notif)
440 			avc_cache.latest_notif = seqno;
441 	}
442 	spin_unlock_irqrestore(&notif_lock, flag);
443 
444 	return ret;
445 }
446 
447 /**
448  * avc_insert - Insert an AVC entry.
449  * @ssid: source security identifier
450  * @tsid: target security identifier
451  * @tclass: target security class
452  * @ae: AVC entry
453  *
454  * Insert an AVC entry for the SID pair
455  * (@ssid, @tsid) and class @tclass.
456  * The access vectors and the sequence number are
457  * normally provided by the security server in
458  * response to a security_compute_av() call.  If the
459  * sequence number @ae->avd.seqno is not less than the latest
460  * revocation notification, then the function copies
461  * the access vectors into a cache entry, returns
462  * avc_node inserted. Otherwise, this function returns NULL.
463  */
avc_insert(u32 ssid,u32 tsid,u16 tclass,struct avc_entry * ae)464 static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae)
465 {
466 	struct avc_node *pos, *node = NULL;
467 	int hvalue;
468 	unsigned long flag;
469 
470 	if (avc_latest_notif_update(ae->avd.seqno, 1))
471 		goto out;
472 
473 	node = avc_alloc_node();
474 	if (node) {
475 		hvalue = avc_hash(ssid, tsid, tclass);
476 		avc_node_populate(node, ssid, tsid, tclass, ae);
477 
478 		spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag);
479 		list_for_each_entry(pos, &avc_cache.slots[hvalue], list) {
480 			if (pos->ae.ssid == ssid &&
481 			    pos->ae.tsid == tsid &&
482 			    pos->ae.tclass == tclass) {
483 				avc_node_replace(node, pos);
484 				goto found;
485 			}
486 		}
487 		list_add_rcu(&node->list, &avc_cache.slots[hvalue]);
488 found:
489 		spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag);
490 	}
491 out:
492 	return node;
493 }
494 
avc_print_ipv6_addr(struct audit_buffer * ab,struct in6_addr * addr,__be16 port,char * name1,char * name2)495 static inline void avc_print_ipv6_addr(struct audit_buffer *ab,
496 				       struct in6_addr *addr, __be16 port,
497 				       char *name1, char *name2)
498 {
499 	if (!ipv6_addr_any(addr))
500 		audit_log_format(ab, " %s=%pI6", name1, addr);
501 	if (port)
502 		audit_log_format(ab, " %s=%d", name2, ntohs(port));
503 }
504 
avc_print_ipv4_addr(struct audit_buffer * ab,__be32 addr,__be16 port,char * name1,char * name2)505 static inline void avc_print_ipv4_addr(struct audit_buffer *ab, __be32 addr,
506 				       __be16 port, char *name1, char *name2)
507 {
508 	if (addr)
509 		audit_log_format(ab, " %s=%pI4", name1, &addr);
510 	if (port)
511 		audit_log_format(ab, " %s=%d", name2, ntohs(port));
512 }
513 
514 /**
515  * avc_audit - Audit the granting or denial of permissions.
516  * @ssid: source security identifier
517  * @tsid: target security identifier
518  * @tclass: target security class
519  * @requested: requested permissions
520  * @avd: access vector decisions
521  * @result: result from avc_has_perm_noaudit
522  * @a:  auxiliary audit data
523  *
524  * Audit the granting or denial of permissions in accordance
525  * with the policy.  This function is typically called by
526  * avc_has_perm() after a permission check, but can also be
527  * called directly by callers who use avc_has_perm_noaudit()
528  * in order to separate the permission check from the auditing.
529  * For example, this separation is useful when the permission check must
530  * be performed under a lock, to allow the lock to be released
531  * before calling the auditing code.
532  */
avc_audit(u32 ssid,u32 tsid,u16 tclass,u32 requested,struct av_decision * avd,int result,struct avc_audit_data * a)533 void avc_audit(u32 ssid, u32 tsid,
534 	       u16 tclass, u32 requested,
535 	       struct av_decision *avd, int result, struct avc_audit_data *a)
536 {
537 	struct task_struct *tsk = current;
538 	struct inode *inode = NULL;
539 	u32 denied, audited;
540 	struct audit_buffer *ab;
541 
542 	denied = requested & ~avd->allowed;
543 	if (denied) {
544 		audited = denied;
545 		if (!(audited & avd->auditdeny))
546 			return;
547 	} else if (result) {
548 		audited = denied = requested;
549 	} else {
550 		audited = requested;
551 		if (!(audited & avd->auditallow))
552 			return;
553 	}
554 
555 	ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_AVC);
556 	if (!ab)
557 		return;		/* audit_panic has been called */
558 	audit_log_format(ab, "avc:  %s ", denied ? "denied" : "granted");
559 	avc_dump_av(ab, tclass, audited);
560 	audit_log_format(ab, " for ");
561 	if (a && a->tsk)
562 		tsk = a->tsk;
563 	if (tsk && tsk->pid) {
564 		audit_log_format(ab, " pid=%d comm=", tsk->pid);
565 		audit_log_untrustedstring(ab, tsk->comm);
566 	}
567 	if (a) {
568 		switch (a->type) {
569 		case AVC_AUDIT_DATA_IPC:
570 			audit_log_format(ab, " key=%d", a->u.ipc_id);
571 			break;
572 		case AVC_AUDIT_DATA_CAP:
573 			audit_log_format(ab, " capability=%d", a->u.cap);
574 			break;
575 		case AVC_AUDIT_DATA_FS:
576 			if (a->u.fs.path.dentry) {
577 				struct dentry *dentry = a->u.fs.path.dentry;
578 				if (a->u.fs.path.mnt) {
579 					audit_log_d_path(ab, "path=",
580 							 &a->u.fs.path);
581 				} else {
582 					audit_log_format(ab, " name=");
583 					audit_log_untrustedstring(ab, dentry->d_name.name);
584 				}
585 				inode = dentry->d_inode;
586 			} else if (a->u.fs.inode) {
587 				struct dentry *dentry;
588 				inode = a->u.fs.inode;
589 				dentry = d_find_alias(inode);
590 				if (dentry) {
591 					audit_log_format(ab, " name=");
592 					audit_log_untrustedstring(ab, dentry->d_name.name);
593 					dput(dentry);
594 				}
595 			}
596 			if (inode)
597 				audit_log_format(ab, " dev=%s ino=%lu",
598 						 inode->i_sb->s_id,
599 						 inode->i_ino);
600 			break;
601 		case AVC_AUDIT_DATA_NET:
602 			if (a->u.net.sk) {
603 				struct sock *sk = a->u.net.sk;
604 				struct unix_sock *u;
605 				int len = 0;
606 				char *p = NULL;
607 
608 				switch (sk->sk_family) {
609 				case AF_INET: {
610 					struct inet_sock *inet = inet_sk(sk);
611 
612 					avc_print_ipv4_addr(ab, inet->rcv_saddr,
613 							    inet->sport,
614 							    "laddr", "lport");
615 					avc_print_ipv4_addr(ab, inet->daddr,
616 							    inet->dport,
617 							    "faddr", "fport");
618 					break;
619 				}
620 				case AF_INET6: {
621 					struct inet_sock *inet = inet_sk(sk);
622 					struct ipv6_pinfo *inet6 = inet6_sk(sk);
623 
624 					avc_print_ipv6_addr(ab, &inet6->rcv_saddr,
625 							    inet->sport,
626 							    "laddr", "lport");
627 					avc_print_ipv6_addr(ab, &inet6->daddr,
628 							    inet->dport,
629 							    "faddr", "fport");
630 					break;
631 				}
632 				case AF_UNIX:
633 					u = unix_sk(sk);
634 					if (u->dentry) {
635 						struct path path = {
636 							.dentry = u->dentry,
637 							.mnt = u->mnt
638 						};
639 						audit_log_d_path(ab, "path=",
640 								 &path);
641 						break;
642 					}
643 					if (!u->addr)
644 						break;
645 					len = u->addr->len-sizeof(short);
646 					p = &u->addr->name->sun_path[0];
647 					audit_log_format(ab, " path=");
648 					if (*p)
649 						audit_log_untrustedstring(ab, p);
650 					else
651 						audit_log_n_hex(ab, p, len);
652 					break;
653 				}
654 			}
655 
656 			switch (a->u.net.family) {
657 			case AF_INET:
658 				avc_print_ipv4_addr(ab, a->u.net.v4info.saddr,
659 						    a->u.net.sport,
660 						    "saddr", "src");
661 				avc_print_ipv4_addr(ab, a->u.net.v4info.daddr,
662 						    a->u.net.dport,
663 						    "daddr", "dest");
664 				break;
665 			case AF_INET6:
666 				avc_print_ipv6_addr(ab, &a->u.net.v6info.saddr,
667 						    a->u.net.sport,
668 						    "saddr", "src");
669 				avc_print_ipv6_addr(ab, &a->u.net.v6info.daddr,
670 						    a->u.net.dport,
671 						    "daddr", "dest");
672 				break;
673 			}
674 			if (a->u.net.netif > 0) {
675 				struct net_device *dev;
676 
677 				/* NOTE: we always use init's namespace */
678 				dev = dev_get_by_index(&init_net,
679 						       a->u.net.netif);
680 				if (dev) {
681 					audit_log_format(ab, " netif=%s",
682 							 dev->name);
683 					dev_put(dev);
684 				}
685 			}
686 			break;
687 		}
688 	}
689 	audit_log_format(ab, " ");
690 	avc_dump_query(ab, ssid, tsid, tclass);
691 	audit_log_end(ab);
692 }
693 
694 /**
695  * avc_add_callback - Register a callback for security events.
696  * @callback: callback function
697  * @events: security events
698  * @ssid: source security identifier or %SECSID_WILD
699  * @tsid: target security identifier or %SECSID_WILD
700  * @tclass: target security class
701  * @perms: permissions
702  *
703  * Register a callback function for events in the set @events
704  * related to the SID pair (@ssid, @tsid) and
705  * and the permissions @perms, interpreting
706  * @perms based on @tclass.  Returns %0 on success or
707  * -%ENOMEM if insufficient memory exists to add the callback.
708  */
avc_add_callback(int (* callback)(u32 event,u32 ssid,u32 tsid,u16 tclass,u32 perms,u32 * out_retained),u32 events,u32 ssid,u32 tsid,u16 tclass,u32 perms)709 int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
710 				     u16 tclass, u32 perms,
711 				     u32 *out_retained),
712 		     u32 events, u32 ssid, u32 tsid,
713 		     u16 tclass, u32 perms)
714 {
715 	struct avc_callback_node *c;
716 	int rc = 0;
717 
718 	c = kmalloc(sizeof(*c), GFP_ATOMIC);
719 	if (!c) {
720 		rc = -ENOMEM;
721 		goto out;
722 	}
723 
724 	c->callback = callback;
725 	c->events = events;
726 	c->ssid = ssid;
727 	c->tsid = tsid;
728 	c->perms = perms;
729 	c->next = avc_callbacks;
730 	avc_callbacks = c;
731 out:
732 	return rc;
733 }
734 
avc_sidcmp(u32 x,u32 y)735 static inline int avc_sidcmp(u32 x, u32 y)
736 {
737 	return (x == y || x == SECSID_WILD || y == SECSID_WILD);
738 }
739 
740 /**
741  * avc_update_node Update an AVC entry
742  * @event : Updating event
743  * @perms : Permission mask bits
744  * @ssid,@tsid,@tclass : identifier of an AVC entry
745  *
746  * if a valid AVC entry doesn't exist,this function returns -ENOENT.
747  * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
748  * otherwise, this function update the AVC entry. The original AVC-entry object
749  * will release later by RCU.
750  */
avc_update_node(u32 event,u32 perms,u32 ssid,u32 tsid,u16 tclass)751 static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass)
752 {
753 	int hvalue, rc = 0;
754 	unsigned long flag;
755 	struct avc_node *pos, *node, *orig = NULL;
756 
757 	node = avc_alloc_node();
758 	if (!node) {
759 		rc = -ENOMEM;
760 		goto out;
761 	}
762 
763 	/* Lock the target slot */
764 	hvalue = avc_hash(ssid, tsid, tclass);
765 	spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag);
766 
767 	list_for_each_entry(pos, &avc_cache.slots[hvalue], list) {
768 		if (ssid == pos->ae.ssid &&
769 		    tsid == pos->ae.tsid &&
770 		    tclass == pos->ae.tclass){
771 			orig = pos;
772 			break;
773 		}
774 	}
775 
776 	if (!orig) {
777 		rc = -ENOENT;
778 		avc_node_kill(node);
779 		goto out_unlock;
780 	}
781 
782 	/*
783 	 * Copy and replace original node.
784 	 */
785 
786 	avc_node_populate(node, ssid, tsid, tclass, &orig->ae);
787 
788 	switch (event) {
789 	case AVC_CALLBACK_GRANT:
790 		node->ae.avd.allowed |= perms;
791 		break;
792 	case AVC_CALLBACK_TRY_REVOKE:
793 	case AVC_CALLBACK_REVOKE:
794 		node->ae.avd.allowed &= ~perms;
795 		break;
796 	case AVC_CALLBACK_AUDITALLOW_ENABLE:
797 		node->ae.avd.auditallow |= perms;
798 		break;
799 	case AVC_CALLBACK_AUDITALLOW_DISABLE:
800 		node->ae.avd.auditallow &= ~perms;
801 		break;
802 	case AVC_CALLBACK_AUDITDENY_ENABLE:
803 		node->ae.avd.auditdeny |= perms;
804 		break;
805 	case AVC_CALLBACK_AUDITDENY_DISABLE:
806 		node->ae.avd.auditdeny &= ~perms;
807 		break;
808 	}
809 	avc_node_replace(node, orig);
810 out_unlock:
811 	spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag);
812 out:
813 	return rc;
814 }
815 
816 /**
817  * avc_ss_reset - Flush the cache and revalidate migrated permissions.
818  * @seqno: policy sequence number
819  */
avc_ss_reset(u32 seqno)820 int avc_ss_reset(u32 seqno)
821 {
822 	struct avc_callback_node *c;
823 	int i, rc = 0, tmprc;
824 	unsigned long flag;
825 	struct avc_node *node;
826 
827 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
828 		spin_lock_irqsave(&avc_cache.slots_lock[i], flag);
829 		/*
830 		 * With preemptable RCU, the outer spinlock does not
831 		 * prevent RCU grace periods from ending.
832 		 */
833 		rcu_read_lock();
834 		list_for_each_entry(node, &avc_cache.slots[i], list)
835 			avc_node_delete(node);
836 		rcu_read_unlock();
837 		spin_unlock_irqrestore(&avc_cache.slots_lock[i], flag);
838 	}
839 
840 	for (c = avc_callbacks; c; c = c->next) {
841 		if (c->events & AVC_CALLBACK_RESET) {
842 			tmprc = c->callback(AVC_CALLBACK_RESET,
843 					    0, 0, 0, 0, NULL);
844 			/* save the first error encountered for the return
845 			   value and continue processing the callbacks */
846 			if (!rc)
847 				rc = tmprc;
848 		}
849 	}
850 
851 	avc_latest_notif_update(seqno, 0);
852 	return rc;
853 }
854 
855 /**
856  * avc_has_perm_noaudit - Check permissions but perform no auditing.
857  * @ssid: source security identifier
858  * @tsid: target security identifier
859  * @tclass: target security class
860  * @requested: requested permissions, interpreted based on @tclass
861  * @flags:  AVC_STRICT or 0
862  * @avd: access vector decisions
863  *
864  * Check the AVC to determine whether the @requested permissions are granted
865  * for the SID pair (@ssid, @tsid), interpreting the permissions
866  * based on @tclass, and call the security server on a cache miss to obtain
867  * a new decision and add it to the cache.  Return a copy of the decisions
868  * in @avd.  Return %0 if all @requested permissions are granted,
869  * -%EACCES if any permissions are denied, or another -errno upon
870  * other errors.  This function is typically called by avc_has_perm(),
871  * but may also be called directly to separate permission checking from
872  * auditing, e.g. in cases where a lock must be held for the check but
873  * should be released for the auditing.
874  */
avc_has_perm_noaudit(u32 ssid,u32 tsid,u16 tclass,u32 requested,unsigned flags,struct av_decision * avd)875 int avc_has_perm_noaudit(u32 ssid, u32 tsid,
876 			 u16 tclass, u32 requested,
877 			 unsigned flags,
878 			 struct av_decision *avd)
879 {
880 	struct avc_node *node;
881 	struct avc_entry entry, *p_ae;
882 	int rc = 0;
883 	u32 denied;
884 
885 	BUG_ON(!requested);
886 
887 	rcu_read_lock();
888 
889 	node = avc_lookup(ssid, tsid, tclass, requested);
890 	if (!node) {
891 		rcu_read_unlock();
892 		rc = security_compute_av(ssid, tsid, tclass, requested, &entry.avd);
893 		if (rc)
894 			goto out;
895 		rcu_read_lock();
896 		node = avc_insert(ssid, tsid, tclass, &entry);
897 	}
898 
899 	p_ae = node ? &node->ae : &entry;
900 
901 	if (avd)
902 		memcpy(avd, &p_ae->avd, sizeof(*avd));
903 
904 	denied = requested & ~(p_ae->avd.allowed);
905 
906 	if (denied) {
907 		if (flags & AVC_STRICT)
908 			rc = -EACCES;
909 		else if (!selinux_enforcing || security_permissive_sid(ssid))
910 			avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
911 					tsid, tclass);
912 		else
913 			rc = -EACCES;
914 	}
915 
916 	rcu_read_unlock();
917 out:
918 	return rc;
919 }
920 
921 /**
922  * avc_has_perm - Check permissions and perform any appropriate auditing.
923  * @ssid: source security identifier
924  * @tsid: target security identifier
925  * @tclass: target security class
926  * @requested: requested permissions, interpreted based on @tclass
927  * @auditdata: auxiliary audit data
928  *
929  * Check the AVC to determine whether the @requested permissions are granted
930  * for the SID pair (@ssid, @tsid), interpreting the permissions
931  * based on @tclass, and call the security server on a cache miss to obtain
932  * a new decision and add it to the cache.  Audit the granting or denial of
933  * permissions in accordance with the policy.  Return %0 if all @requested
934  * permissions are granted, -%EACCES if any permissions are denied, or
935  * another -errno upon other errors.
936  */
avc_has_perm(u32 ssid,u32 tsid,u16 tclass,u32 requested,struct avc_audit_data * auditdata)937 int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
938 		 u32 requested, struct avc_audit_data *auditdata)
939 {
940 	struct av_decision avd;
941 	int rc;
942 
943 	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
944 	avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata);
945 	return rc;
946 }
947 
avc_policy_seqno(void)948 u32 avc_policy_seqno(void)
949 {
950 	return avc_cache.latest_notif;
951 }
952