• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Cell Broadband Engine Performance Monitor
3  *
4  * (C) Copyright IBM Corporation 2001,2006
5  *
6  * Author:
7  *    David Erb (djerb@us.ibm.com)
8  *    Kevin Corry (kevcorry@us.ibm.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 
25 #include <linux/interrupt.h>
26 #include <linux/types.h>
27 #include <asm/io.h>
28 #include <asm/irq_regs.h>
29 #include <asm/machdep.h>
30 #include <asm/pmc.h>
31 #include <asm/reg.h>
32 #include <asm/spu.h>
33 #include <asm/cell-regs.h>
34 
35 #include "interrupt.h"
36 
37 /*
38  * When writing to write-only mmio addresses, save a shadow copy. All of the
39  * registers are 32-bit, but stored in the upper-half of a 64-bit field in
40  * pmd_regs.
41  */
42 
43 #define WRITE_WO_MMIO(reg, x)					\
44 	do {							\
45 		u32 _x = (x);					\
46 		struct cbe_pmd_regs __iomem *pmd_regs;		\
47 		struct cbe_pmd_shadow_regs *shadow_regs;	\
48 		pmd_regs = cbe_get_cpu_pmd_regs(cpu);		\
49 		shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu);	\
50 		out_be64(&(pmd_regs->reg), (((u64)_x) << 32));	\
51 		shadow_regs->reg = _x;				\
52 	} while (0)
53 
54 #define READ_SHADOW_REG(val, reg)				\
55 	do {							\
56 		struct cbe_pmd_shadow_regs *shadow_regs;	\
57 		shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu);	\
58 		(val) = shadow_regs->reg;			\
59 	} while (0)
60 
61 #define READ_MMIO_UPPER32(val, reg)				\
62 	do {							\
63 		struct cbe_pmd_regs __iomem *pmd_regs;		\
64 		pmd_regs = cbe_get_cpu_pmd_regs(cpu);		\
65 		(val) = (u32)(in_be64(&pmd_regs->reg) >> 32);	\
66 	} while (0)
67 
68 /*
69  * Physical counter registers.
70  * Each physical counter can act as one 32-bit counter or two 16-bit counters.
71  */
72 
cbe_read_phys_ctr(u32 cpu,u32 phys_ctr)73 u32 cbe_read_phys_ctr(u32 cpu, u32 phys_ctr)
74 {
75 	u32 val_in_latch, val = 0;
76 
77 	if (phys_ctr < NR_PHYS_CTRS) {
78 		READ_SHADOW_REG(val_in_latch, counter_value_in_latch);
79 
80 		/* Read the latch or the actual counter, whichever is newer. */
81 		if (val_in_latch & (1 << phys_ctr)) {
82 			READ_SHADOW_REG(val, pm_ctr[phys_ctr]);
83 		} else {
84 			READ_MMIO_UPPER32(val, pm_ctr[phys_ctr]);
85 		}
86 	}
87 
88 	return val;
89 }
90 EXPORT_SYMBOL_GPL(cbe_read_phys_ctr);
91 
cbe_write_phys_ctr(u32 cpu,u32 phys_ctr,u32 val)92 void cbe_write_phys_ctr(u32 cpu, u32 phys_ctr, u32 val)
93 {
94 	struct cbe_pmd_shadow_regs *shadow_regs;
95 	u32 pm_ctrl;
96 
97 	if (phys_ctr < NR_PHYS_CTRS) {
98 		/* Writing to a counter only writes to a hardware latch.
99 		 * The new value is not propagated to the actual counter
100 		 * until the performance monitor is enabled.
101 		 */
102 		WRITE_WO_MMIO(pm_ctr[phys_ctr], val);
103 
104 		pm_ctrl = cbe_read_pm(cpu, pm_control);
105 		if (pm_ctrl & CBE_PM_ENABLE_PERF_MON) {
106 			/* The counters are already active, so we need to
107 			 * rewrite the pm_control register to "re-enable"
108 			 * the PMU.
109 			 */
110 			cbe_write_pm(cpu, pm_control, pm_ctrl);
111 		} else {
112 			shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu);
113 			shadow_regs->counter_value_in_latch |= (1 << phys_ctr);
114 		}
115 	}
116 }
117 EXPORT_SYMBOL_GPL(cbe_write_phys_ctr);
118 
119 /*
120  * "Logical" counter registers.
121  * These will read/write 16-bits or 32-bits depending on the
122  * current size of the counter. Counters 4 - 7 are always 16-bit.
123  */
124 
cbe_read_ctr(u32 cpu,u32 ctr)125 u32 cbe_read_ctr(u32 cpu, u32 ctr)
126 {
127 	u32 val;
128 	u32 phys_ctr = ctr & (NR_PHYS_CTRS - 1);
129 
130 	val = cbe_read_phys_ctr(cpu, phys_ctr);
131 
132 	if (cbe_get_ctr_size(cpu, phys_ctr) == 16)
133 		val = (ctr < NR_PHYS_CTRS) ? (val >> 16) : (val & 0xffff);
134 
135 	return val;
136 }
137 EXPORT_SYMBOL_GPL(cbe_read_ctr);
138 
cbe_write_ctr(u32 cpu,u32 ctr,u32 val)139 void cbe_write_ctr(u32 cpu, u32 ctr, u32 val)
140 {
141 	u32 phys_ctr;
142 	u32 phys_val;
143 
144 	phys_ctr = ctr & (NR_PHYS_CTRS - 1);
145 
146 	if (cbe_get_ctr_size(cpu, phys_ctr) == 16) {
147 		phys_val = cbe_read_phys_ctr(cpu, phys_ctr);
148 
149 		if (ctr < NR_PHYS_CTRS)
150 			val = (val << 16) | (phys_val & 0xffff);
151 		else
152 			val = (val & 0xffff) | (phys_val & 0xffff0000);
153 	}
154 
155 	cbe_write_phys_ctr(cpu, phys_ctr, val);
156 }
157 EXPORT_SYMBOL_GPL(cbe_write_ctr);
158 
159 /*
160  * Counter-control registers.
161  * Each "logical" counter has a corresponding control register.
162  */
163 
cbe_read_pm07_control(u32 cpu,u32 ctr)164 u32 cbe_read_pm07_control(u32 cpu, u32 ctr)
165 {
166 	u32 pm07_control = 0;
167 
168 	if (ctr < NR_CTRS)
169 		READ_SHADOW_REG(pm07_control, pm07_control[ctr]);
170 
171 	return pm07_control;
172 }
173 EXPORT_SYMBOL_GPL(cbe_read_pm07_control);
174 
cbe_write_pm07_control(u32 cpu,u32 ctr,u32 val)175 void cbe_write_pm07_control(u32 cpu, u32 ctr, u32 val)
176 {
177 	if (ctr < NR_CTRS)
178 		WRITE_WO_MMIO(pm07_control[ctr], val);
179 }
180 EXPORT_SYMBOL_GPL(cbe_write_pm07_control);
181 
182 /*
183  * Other PMU control registers. Most of these are write-only.
184  */
185 
cbe_read_pm(u32 cpu,enum pm_reg_name reg)186 u32 cbe_read_pm(u32 cpu, enum pm_reg_name reg)
187 {
188 	u32 val = 0;
189 
190 	switch (reg) {
191 	case group_control:
192 		READ_SHADOW_REG(val, group_control);
193 		break;
194 
195 	case debug_bus_control:
196 		READ_SHADOW_REG(val, debug_bus_control);
197 		break;
198 
199 	case trace_address:
200 		READ_MMIO_UPPER32(val, trace_address);
201 		break;
202 
203 	case ext_tr_timer:
204 		READ_SHADOW_REG(val, ext_tr_timer);
205 		break;
206 
207 	case pm_status:
208 		READ_MMIO_UPPER32(val, pm_status);
209 		break;
210 
211 	case pm_control:
212 		READ_SHADOW_REG(val, pm_control);
213 		break;
214 
215 	case pm_interval:
216 		READ_MMIO_UPPER32(val, pm_interval);
217 		break;
218 
219 	case pm_start_stop:
220 		READ_SHADOW_REG(val, pm_start_stop);
221 		break;
222 	}
223 
224 	return val;
225 }
226 EXPORT_SYMBOL_GPL(cbe_read_pm);
227 
cbe_write_pm(u32 cpu,enum pm_reg_name reg,u32 val)228 void cbe_write_pm(u32 cpu, enum pm_reg_name reg, u32 val)
229 {
230 	switch (reg) {
231 	case group_control:
232 		WRITE_WO_MMIO(group_control, val);
233 		break;
234 
235 	case debug_bus_control:
236 		WRITE_WO_MMIO(debug_bus_control, val);
237 		break;
238 
239 	case trace_address:
240 		WRITE_WO_MMIO(trace_address, val);
241 		break;
242 
243 	case ext_tr_timer:
244 		WRITE_WO_MMIO(ext_tr_timer, val);
245 		break;
246 
247 	case pm_status:
248 		WRITE_WO_MMIO(pm_status, val);
249 		break;
250 
251 	case pm_control:
252 		WRITE_WO_MMIO(pm_control, val);
253 		break;
254 
255 	case pm_interval:
256 		WRITE_WO_MMIO(pm_interval, val);
257 		break;
258 
259 	case pm_start_stop:
260 		WRITE_WO_MMIO(pm_start_stop, val);
261 		break;
262 	}
263 }
264 EXPORT_SYMBOL_GPL(cbe_write_pm);
265 
266 /*
267  * Get/set the size of a physical counter to either 16 or 32 bits.
268  */
269 
cbe_get_ctr_size(u32 cpu,u32 phys_ctr)270 u32 cbe_get_ctr_size(u32 cpu, u32 phys_ctr)
271 {
272 	u32 pm_ctrl, size = 0;
273 
274 	if (phys_ctr < NR_PHYS_CTRS) {
275 		pm_ctrl = cbe_read_pm(cpu, pm_control);
276 		size = (pm_ctrl & CBE_PM_16BIT_CTR(phys_ctr)) ? 16 : 32;
277 	}
278 
279 	return size;
280 }
281 EXPORT_SYMBOL_GPL(cbe_get_ctr_size);
282 
cbe_set_ctr_size(u32 cpu,u32 phys_ctr,u32 ctr_size)283 void cbe_set_ctr_size(u32 cpu, u32 phys_ctr, u32 ctr_size)
284 {
285 	u32 pm_ctrl;
286 
287 	if (phys_ctr < NR_PHYS_CTRS) {
288 		pm_ctrl = cbe_read_pm(cpu, pm_control);
289 		switch (ctr_size) {
290 		case 16:
291 			pm_ctrl |= CBE_PM_16BIT_CTR(phys_ctr);
292 			break;
293 
294 		case 32:
295 			pm_ctrl &= ~CBE_PM_16BIT_CTR(phys_ctr);
296 			break;
297 		}
298 		cbe_write_pm(cpu, pm_control, pm_ctrl);
299 	}
300 }
301 EXPORT_SYMBOL_GPL(cbe_set_ctr_size);
302 
303 /*
304  * Enable/disable the entire performance monitoring unit.
305  * When we enable the PMU, all pending writes to counters get committed.
306  */
307 
cbe_enable_pm(u32 cpu)308 void cbe_enable_pm(u32 cpu)
309 {
310 	struct cbe_pmd_shadow_regs *shadow_regs;
311 	u32 pm_ctrl;
312 
313 	shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu);
314 	shadow_regs->counter_value_in_latch = 0;
315 
316 	pm_ctrl = cbe_read_pm(cpu, pm_control) | CBE_PM_ENABLE_PERF_MON;
317 	cbe_write_pm(cpu, pm_control, pm_ctrl);
318 }
319 EXPORT_SYMBOL_GPL(cbe_enable_pm);
320 
cbe_disable_pm(u32 cpu)321 void cbe_disable_pm(u32 cpu)
322 {
323 	u32 pm_ctrl;
324 	pm_ctrl = cbe_read_pm(cpu, pm_control) & ~CBE_PM_ENABLE_PERF_MON;
325 	cbe_write_pm(cpu, pm_control, pm_ctrl);
326 }
327 EXPORT_SYMBOL_GPL(cbe_disable_pm);
328 
329 /*
330  * Reading from the trace_buffer.
331  * The trace buffer is two 64-bit registers. Reading from
332  * the second half automatically increments the trace_address.
333  */
334 
cbe_read_trace_buffer(u32 cpu,u64 * buf)335 void cbe_read_trace_buffer(u32 cpu, u64 *buf)
336 {
337 	struct cbe_pmd_regs __iomem *pmd_regs = cbe_get_cpu_pmd_regs(cpu);
338 
339 	*buf++ = in_be64(&pmd_regs->trace_buffer_0_63);
340 	*buf++ = in_be64(&pmd_regs->trace_buffer_64_127);
341 }
342 EXPORT_SYMBOL_GPL(cbe_read_trace_buffer);
343 
344 /*
345  * Enabling/disabling interrupts for the entire performance monitoring unit.
346  */
347 
cbe_get_and_clear_pm_interrupts(u32 cpu)348 u32 cbe_get_and_clear_pm_interrupts(u32 cpu)
349 {
350 	/* Reading pm_status clears the interrupt bits. */
351 	return cbe_read_pm(cpu, pm_status);
352 }
353 EXPORT_SYMBOL_GPL(cbe_get_and_clear_pm_interrupts);
354 
cbe_enable_pm_interrupts(u32 cpu,u32 thread,u32 mask)355 void cbe_enable_pm_interrupts(u32 cpu, u32 thread, u32 mask)
356 {
357 	/* Set which node and thread will handle the next interrupt. */
358 	iic_set_interrupt_routing(cpu, thread, 0);
359 
360 	/* Enable the interrupt bits in the pm_status register. */
361 	if (mask)
362 		cbe_write_pm(cpu, pm_status, mask);
363 }
364 EXPORT_SYMBOL_GPL(cbe_enable_pm_interrupts);
365 
cbe_disable_pm_interrupts(u32 cpu)366 void cbe_disable_pm_interrupts(u32 cpu)
367 {
368 	cbe_get_and_clear_pm_interrupts(cpu);
369 	cbe_write_pm(cpu, pm_status, 0);
370 }
371 EXPORT_SYMBOL_GPL(cbe_disable_pm_interrupts);
372 
cbe_pm_irq(int irq,void * dev_id)373 static irqreturn_t cbe_pm_irq(int irq, void *dev_id)
374 {
375 	perf_irq(get_irq_regs());
376 	return IRQ_HANDLED;
377 }
378 
cbe_init_pm_irq(void)379 static int __init cbe_init_pm_irq(void)
380 {
381 	unsigned int irq;
382 	int rc, node;
383 
384 	for_each_node(node) {
385 		irq = irq_create_mapping(NULL, IIC_IRQ_IOEX_PMI |
386 					       (node << IIC_IRQ_NODE_SHIFT));
387 		if (irq == NO_IRQ) {
388 			printk("ERROR: Unable to allocate irq for node %d\n",
389 			       node);
390 			return -EINVAL;
391 		}
392 
393 		rc = request_irq(irq, cbe_pm_irq,
394 				 IRQF_DISABLED, "cbe-pmu-0", NULL);
395 		if (rc) {
396 			printk("ERROR: Request for irq on node %d failed\n",
397 			       node);
398 			return rc;
399 		}
400 	}
401 
402 	return 0;
403 }
404 machine_arch_initcall(cell, cbe_init_pm_irq);
405 
cbe_sync_irq(int node)406 void cbe_sync_irq(int node)
407 {
408 	unsigned int irq;
409 
410 	irq = irq_find_mapping(NULL,
411 			       IIC_IRQ_IOEX_PMI
412 			       | (node << IIC_IRQ_NODE_SHIFT));
413 
414 	if (irq == NO_IRQ) {
415 		printk(KERN_WARNING "ERROR, unable to get existing irq %d " \
416 		"for node %d\n", irq, node);
417 		return;
418 	}
419 
420 	synchronize_irq(irq);
421 }
422 EXPORT_SYMBOL_GPL(cbe_sync_irq);
423 
424