• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/kernel/hrtimer.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  High-resolution kernel timers
9  *
10  *  In contrast to the low-resolution timeout API implemented in
11  *  kernel/timer.c, hrtimers provide finer resolution and accuracy
12  *  depending on system configuration and capabilities.
13  *
14  *  These timers are currently used for:
15  *   - itimers
16  *   - POSIX timers
17  *   - nanosleep
18  *   - precise in-kernel timing
19  *
20  *  Started by: Thomas Gleixner and Ingo Molnar
21  *
22  *  Credits:
23  *	based on kernel/timer.c
24  *
25  *	Help, testing, suggestions, bugfixes, improvements were
26  *	provided by:
27  *
28  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29  *	et. al.
30  *
31  *  For licencing details see kernel-base/COPYING
32  */
33 
34 #include <linux/cpu.h>
35 #include <linux/module.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 
47 #include <asm/uaccess.h>
48 
49 /**
50  * ktime_get - get the monotonic time in ktime_t format
51  *
52  * returns the time in ktime_t format
53  */
ktime_get(void)54 ktime_t ktime_get(void)
55 {
56 	struct timespec now;
57 
58 	ktime_get_ts(&now);
59 
60 	return timespec_to_ktime(now);
61 }
62 EXPORT_SYMBOL_GPL(ktime_get);
63 
64 /**
65  * ktime_get_real - get the real (wall-) time in ktime_t format
66  *
67  * returns the time in ktime_t format
68  */
ktime_get_real(void)69 ktime_t ktime_get_real(void)
70 {
71 	struct timespec now;
72 
73 	getnstimeofday(&now);
74 
75 	return timespec_to_ktime(now);
76 }
77 
78 EXPORT_SYMBOL_GPL(ktime_get_real);
79 
80 /*
81  * The timer bases:
82  *
83  * Note: If we want to add new timer bases, we have to skip the two
84  * clock ids captured by the cpu-timers. We do this by holding empty
85  * entries rather than doing math adjustment of the clock ids.
86  * This ensures that we capture erroneous accesses to these clock ids
87  * rather than moving them into the range of valid clock id's.
88  */
89 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
90 {
91 
92 	.clock_base =
93 	{
94 		{
95 			.index = CLOCK_REALTIME,
96 			.get_time = &ktime_get_real,
97 			.resolution = KTIME_LOW_RES,
98 		},
99 		{
100 			.index = CLOCK_MONOTONIC,
101 			.get_time = &ktime_get,
102 			.resolution = KTIME_LOW_RES,
103 		},
104 	}
105 };
106 
107 /**
108  * ktime_get_ts - get the monotonic clock in timespec format
109  * @ts:		pointer to timespec variable
110  *
111  * The function calculates the monotonic clock from the realtime
112  * clock and the wall_to_monotonic offset and stores the result
113  * in normalized timespec format in the variable pointed to by @ts.
114  */
ktime_get_ts(struct timespec * ts)115 void ktime_get_ts(struct timespec *ts)
116 {
117 	struct timespec tomono;
118 	unsigned long seq;
119 
120 	do {
121 		seq = read_seqbegin(&xtime_lock);
122 		getnstimeofday(ts);
123 		tomono = wall_to_monotonic;
124 
125 	} while (read_seqretry(&xtime_lock, seq));
126 
127 	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
128 				ts->tv_nsec + tomono.tv_nsec);
129 }
130 EXPORT_SYMBOL_GPL(ktime_get_ts);
131 
132 /*
133  * Get the coarse grained time at the softirq based on xtime and
134  * wall_to_monotonic.
135  */
hrtimer_get_softirq_time(struct hrtimer_cpu_base * base)136 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
137 {
138 	ktime_t xtim, tomono;
139 	struct timespec xts, tom;
140 	unsigned long seq;
141 
142 	do {
143 		seq = read_seqbegin(&xtime_lock);
144 		xts = current_kernel_time();
145 		tom = wall_to_monotonic;
146 	} while (read_seqretry(&xtime_lock, seq));
147 
148 	xtim = timespec_to_ktime(xts);
149 	tomono = timespec_to_ktime(tom);
150 	base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
151 	base->clock_base[CLOCK_MONOTONIC].softirq_time =
152 		ktime_add(xtim, tomono);
153 }
154 
155 /*
156  * Functions and macros which are different for UP/SMP systems are kept in a
157  * single place
158  */
159 #ifdef CONFIG_SMP
160 
161 /*
162  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
163  * means that all timers which are tied to this base via timer->base are
164  * locked, and the base itself is locked too.
165  *
166  * So __run_timers/migrate_timers can safely modify all timers which could
167  * be found on the lists/queues.
168  *
169  * When the timer's base is locked, and the timer removed from list, it is
170  * possible to set timer->base = NULL and drop the lock: the timer remains
171  * locked.
172  */
173 static
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)174 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
175 					     unsigned long *flags)
176 {
177 	struct hrtimer_clock_base *base;
178 
179 	for (;;) {
180 		base = timer->base;
181 		if (likely(base != NULL)) {
182 			spin_lock_irqsave(&base->cpu_base->lock, *flags);
183 			if (likely(base == timer->base))
184 				return base;
185 			/* The timer has migrated to another CPU: */
186 			spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
187 		}
188 		cpu_relax();
189 	}
190 }
191 
192 /*
193  * Switch the timer base to the current CPU when possible.
194  */
195 static inline struct hrtimer_clock_base *
switch_hrtimer_base(struct hrtimer * timer,struct hrtimer_clock_base * base)196 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
197 {
198 	struct hrtimer_clock_base *new_base;
199 	struct hrtimer_cpu_base *new_cpu_base;
200 
201 	new_cpu_base = &__get_cpu_var(hrtimer_bases);
202 	new_base = &new_cpu_base->clock_base[base->index];
203 
204 	if (base != new_base) {
205 		/*
206 		 * We are trying to schedule the timer on the local CPU.
207 		 * However we can't change timer's base while it is running,
208 		 * so we keep it on the same CPU. No hassle vs. reprogramming
209 		 * the event source in the high resolution case. The softirq
210 		 * code will take care of this when the timer function has
211 		 * completed. There is no conflict as we hold the lock until
212 		 * the timer is enqueued.
213 		 */
214 		if (unlikely(hrtimer_callback_running(timer)))
215 			return base;
216 
217 		/* See the comment in lock_timer_base() */
218 		timer->base = NULL;
219 		spin_unlock(&base->cpu_base->lock);
220 		spin_lock(&new_base->cpu_base->lock);
221 		timer->base = new_base;
222 	}
223 	return new_base;
224 }
225 
226 #else /* CONFIG_SMP */
227 
228 static inline struct hrtimer_clock_base *
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)229 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
230 {
231 	struct hrtimer_clock_base *base = timer->base;
232 
233 	spin_lock_irqsave(&base->cpu_base->lock, *flags);
234 
235 	return base;
236 }
237 
238 # define switch_hrtimer_base(t, b)	(b)
239 
240 #endif	/* !CONFIG_SMP */
241 
242 /*
243  * Functions for the union type storage format of ktime_t which are
244  * too large for inlining:
245  */
246 #if BITS_PER_LONG < 64
247 # ifndef CONFIG_KTIME_SCALAR
248 /**
249  * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
250  * @kt:		addend
251  * @nsec:	the scalar nsec value to add
252  *
253  * Returns the sum of kt and nsec in ktime_t format
254  */
ktime_add_ns(const ktime_t kt,u64 nsec)255 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
256 {
257 	ktime_t tmp;
258 
259 	if (likely(nsec < NSEC_PER_SEC)) {
260 		tmp.tv64 = nsec;
261 	} else {
262 		unsigned long rem = do_div(nsec, NSEC_PER_SEC);
263 
264 		tmp = ktime_set((long)nsec, rem);
265 	}
266 
267 	return ktime_add(kt, tmp);
268 }
269 
270 EXPORT_SYMBOL_GPL(ktime_add_ns);
271 
272 /**
273  * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
274  * @kt:		minuend
275  * @nsec:	the scalar nsec value to subtract
276  *
277  * Returns the subtraction of @nsec from @kt in ktime_t format
278  */
ktime_sub_ns(const ktime_t kt,u64 nsec)279 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
280 {
281 	ktime_t tmp;
282 
283 	if (likely(nsec < NSEC_PER_SEC)) {
284 		tmp.tv64 = nsec;
285 	} else {
286 		unsigned long rem = do_div(nsec, NSEC_PER_SEC);
287 
288 		tmp = ktime_set((long)nsec, rem);
289 	}
290 
291 	return ktime_sub(kt, tmp);
292 }
293 
294 EXPORT_SYMBOL_GPL(ktime_sub_ns);
295 # endif /* !CONFIG_KTIME_SCALAR */
296 
297 /*
298  * Divide a ktime value by a nanosecond value
299  */
ktime_divns(const ktime_t kt,s64 div)300 u64 ktime_divns(const ktime_t kt, s64 div)
301 {
302 	u64 dclc;
303 	int sft = 0;
304 
305 	dclc = ktime_to_ns(kt);
306 	/* Make sure the divisor is less than 2^32: */
307 	while (div >> 32) {
308 		sft++;
309 		div >>= 1;
310 	}
311 	dclc >>= sft;
312 	do_div(dclc, (unsigned long) div);
313 
314 	return dclc;
315 }
316 #endif /* BITS_PER_LONG >= 64 */
317 
318 /*
319  * Add two ktime values and do a safety check for overflow:
320  */
ktime_add_safe(const ktime_t lhs,const ktime_t rhs)321 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
322 {
323 	ktime_t res = ktime_add(lhs, rhs);
324 
325 	/*
326 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
327 	 * return to user space in a timespec:
328 	 */
329 	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
330 		res = ktime_set(KTIME_SEC_MAX, 0);
331 
332 	return res;
333 }
334 
335 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
336 
337 static struct debug_obj_descr hrtimer_debug_descr;
338 
339 /*
340  * fixup_init is called when:
341  * - an active object is initialized
342  */
hrtimer_fixup_init(void * addr,enum debug_obj_state state)343 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
344 {
345 	struct hrtimer *timer = addr;
346 
347 	switch (state) {
348 	case ODEBUG_STATE_ACTIVE:
349 		hrtimer_cancel(timer);
350 		debug_object_init(timer, &hrtimer_debug_descr);
351 		return 1;
352 	default:
353 		return 0;
354 	}
355 }
356 
357 /*
358  * fixup_activate is called when:
359  * - an active object is activated
360  * - an unknown object is activated (might be a statically initialized object)
361  */
hrtimer_fixup_activate(void * addr,enum debug_obj_state state)362 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
363 {
364 	switch (state) {
365 
366 	case ODEBUG_STATE_NOTAVAILABLE:
367 		WARN_ON_ONCE(1);
368 		return 0;
369 
370 	case ODEBUG_STATE_ACTIVE:
371 		WARN_ON(1);
372 
373 	default:
374 		return 0;
375 	}
376 }
377 
378 /*
379  * fixup_free is called when:
380  * - an active object is freed
381  */
hrtimer_fixup_free(void * addr,enum debug_obj_state state)382 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
383 {
384 	struct hrtimer *timer = addr;
385 
386 	switch (state) {
387 	case ODEBUG_STATE_ACTIVE:
388 		hrtimer_cancel(timer);
389 		debug_object_free(timer, &hrtimer_debug_descr);
390 		return 1;
391 	default:
392 		return 0;
393 	}
394 }
395 
396 static struct debug_obj_descr hrtimer_debug_descr = {
397 	.name		= "hrtimer",
398 	.fixup_init	= hrtimer_fixup_init,
399 	.fixup_activate	= hrtimer_fixup_activate,
400 	.fixup_free	= hrtimer_fixup_free,
401 };
402 
debug_hrtimer_init(struct hrtimer * timer)403 static inline void debug_hrtimer_init(struct hrtimer *timer)
404 {
405 	debug_object_init(timer, &hrtimer_debug_descr);
406 }
407 
debug_hrtimer_activate(struct hrtimer * timer)408 static inline void debug_hrtimer_activate(struct hrtimer *timer)
409 {
410 	debug_object_activate(timer, &hrtimer_debug_descr);
411 }
412 
debug_hrtimer_deactivate(struct hrtimer * timer)413 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
414 {
415 	debug_object_deactivate(timer, &hrtimer_debug_descr);
416 }
417 
debug_hrtimer_free(struct hrtimer * timer)418 static inline void debug_hrtimer_free(struct hrtimer *timer)
419 {
420 	debug_object_free(timer, &hrtimer_debug_descr);
421 }
422 
423 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
424 			   enum hrtimer_mode mode);
425 
hrtimer_init_on_stack(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)426 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
427 			   enum hrtimer_mode mode)
428 {
429 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
430 	__hrtimer_init(timer, clock_id, mode);
431 }
432 
destroy_hrtimer_on_stack(struct hrtimer * timer)433 void destroy_hrtimer_on_stack(struct hrtimer *timer)
434 {
435 	debug_object_free(timer, &hrtimer_debug_descr);
436 }
437 
438 #else
debug_hrtimer_init(struct hrtimer * timer)439 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
debug_hrtimer_activate(struct hrtimer * timer)440 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
debug_hrtimer_deactivate(struct hrtimer * timer)441 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
442 #endif
443 
444 /* High resolution timer related functions */
445 #ifdef CONFIG_HIGH_RES_TIMERS
446 
447 /*
448  * High resolution timer enabled ?
449  */
450 static int hrtimer_hres_enabled __read_mostly  = 1;
451 
452 /*
453  * Enable / Disable high resolution mode
454  */
setup_hrtimer_hres(char * str)455 static int __init setup_hrtimer_hres(char *str)
456 {
457 	if (!strcmp(str, "off"))
458 		hrtimer_hres_enabled = 0;
459 	else if (!strcmp(str, "on"))
460 		hrtimer_hres_enabled = 1;
461 	else
462 		return 0;
463 	return 1;
464 }
465 
466 __setup("highres=", setup_hrtimer_hres);
467 
468 /*
469  * hrtimer_high_res_enabled - query, if the highres mode is enabled
470  */
hrtimer_is_hres_enabled(void)471 static inline int hrtimer_is_hres_enabled(void)
472 {
473 	return hrtimer_hres_enabled;
474 }
475 
476 /*
477  * Is the high resolution mode active ?
478  */
hrtimer_hres_active(void)479 static inline int hrtimer_hres_active(void)
480 {
481 	return __get_cpu_var(hrtimer_bases).hres_active;
482 }
483 
484 /*
485  * Reprogram the event source with checking both queues for the
486  * next event
487  * Called with interrupts disabled and base->lock held
488  */
hrtimer_force_reprogram(struct hrtimer_cpu_base * cpu_base)489 static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
490 {
491 	int i;
492 	struct hrtimer_clock_base *base = cpu_base->clock_base;
493 	ktime_t expires;
494 
495 	cpu_base->expires_next.tv64 = KTIME_MAX;
496 
497 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
498 		struct hrtimer *timer;
499 
500 		if (!base->first)
501 			continue;
502 		timer = rb_entry(base->first, struct hrtimer, node);
503 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
504 		/*
505 		 * clock_was_set() has changed base->offset so the
506 		 * result might be negative. Fix it up to prevent a
507 		 * false positive in clockevents_program_event()
508 		 */
509 		if (expires.tv64 < 0)
510 			expires.tv64 = 0;
511 		if (expires.tv64 < cpu_base->expires_next.tv64)
512 			cpu_base->expires_next = expires;
513 	}
514 
515 	if (cpu_base->expires_next.tv64 != KTIME_MAX)
516 		tick_program_event(cpu_base->expires_next, 1);
517 }
518 
519 /*
520  * Shared reprogramming for clock_realtime and clock_monotonic
521  *
522  * When a timer is enqueued and expires earlier than the already enqueued
523  * timers, we have to check, whether it expires earlier than the timer for
524  * which the clock event device was armed.
525  *
526  * Called with interrupts disabled and base->cpu_base.lock held
527  */
hrtimer_reprogram(struct hrtimer * timer,struct hrtimer_clock_base * base)528 static int hrtimer_reprogram(struct hrtimer *timer,
529 			     struct hrtimer_clock_base *base)
530 {
531 	ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
532 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
533 	int res;
534 
535 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
536 
537 	/*
538 	 * When the callback is running, we do not reprogram the clock event
539 	 * device. The timer callback is either running on a different CPU or
540 	 * the callback is executed in the hrtimer_interrupt context. The
541 	 * reprogramming is handled either by the softirq, which called the
542 	 * callback or at the end of the hrtimer_interrupt.
543 	 */
544 	if (hrtimer_callback_running(timer))
545 		return 0;
546 
547 	/*
548 	 * CLOCK_REALTIME timer might be requested with an absolute
549 	 * expiry time which is less than base->offset. Nothing wrong
550 	 * about that, just avoid to call into the tick code, which
551 	 * has now objections against negative expiry values.
552 	 */
553 	if (expires.tv64 < 0)
554 		return -ETIME;
555 
556 	if (expires.tv64 >= expires_next->tv64)
557 		return 0;
558 
559 	/*
560 	 * Clockevents returns -ETIME, when the event was in the past.
561 	 */
562 	res = tick_program_event(expires, 0);
563 	if (!IS_ERR_VALUE(res))
564 		*expires_next = expires;
565 	return res;
566 }
567 
568 
569 /*
570  * Retrigger next event is called after clock was set
571  *
572  * Called with interrupts disabled via on_each_cpu()
573  */
retrigger_next_event(void * arg)574 static void retrigger_next_event(void *arg)
575 {
576 	struct hrtimer_cpu_base *base;
577 	struct timespec realtime_offset;
578 	unsigned long seq;
579 
580 	if (!hrtimer_hres_active())
581 		return;
582 
583 	do {
584 		seq = read_seqbegin(&xtime_lock);
585 		set_normalized_timespec(&realtime_offset,
586 					-wall_to_monotonic.tv_sec,
587 					-wall_to_monotonic.tv_nsec);
588 	} while (read_seqretry(&xtime_lock, seq));
589 
590 	base = &__get_cpu_var(hrtimer_bases);
591 
592 	/* Adjust CLOCK_REALTIME offset */
593 	spin_lock(&base->lock);
594 	base->clock_base[CLOCK_REALTIME].offset =
595 		timespec_to_ktime(realtime_offset);
596 
597 	hrtimer_force_reprogram(base);
598 	spin_unlock(&base->lock);
599 }
600 
601 /*
602  * Clock realtime was set
603  *
604  * Change the offset of the realtime clock vs. the monotonic
605  * clock.
606  *
607  * We might have to reprogram the high resolution timer interrupt. On
608  * SMP we call the architecture specific code to retrigger _all_ high
609  * resolution timer interrupts. On UP we just disable interrupts and
610  * call the high resolution interrupt code.
611  */
clock_was_set(void)612 void clock_was_set(void)
613 {
614 	/* Retrigger the CPU local events everywhere */
615 	on_each_cpu(retrigger_next_event, NULL, 1);
616 }
617 
618 /*
619  * During resume we might have to reprogram the high resolution timer
620  * interrupt (on the local CPU):
621  */
hres_timers_resume(void)622 void hres_timers_resume(void)
623 {
624 	WARN_ONCE(!irqs_disabled(),
625 		  KERN_INFO "hres_timers_resume() called with IRQs enabled!");
626 
627 	retrigger_next_event(NULL);
628 }
629 
630 /*
631  * Initialize the high resolution related parts of cpu_base
632  */
hrtimer_init_hres(struct hrtimer_cpu_base * base)633 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
634 {
635 	base->expires_next.tv64 = KTIME_MAX;
636 	base->hres_active = 0;
637 }
638 
639 /*
640  * Initialize the high resolution related parts of a hrtimer
641  */
hrtimer_init_timer_hres(struct hrtimer * timer)642 static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
643 {
644 }
645 
646 
647 /*
648  * When High resolution timers are active, try to reprogram. Note, that in case
649  * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
650  * check happens. The timer gets enqueued into the rbtree. The reprogramming
651  * and expiry check is done in the hrtimer_interrupt or in the softirq.
652  */
hrtimer_enqueue_reprogram(struct hrtimer * timer,struct hrtimer_clock_base * base)653 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
654 					    struct hrtimer_clock_base *base)
655 {
656 	if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
657 		spin_unlock(&base->cpu_base->lock);
658 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
659 		spin_lock(&base->cpu_base->lock);
660 		return 1;
661 	}
662 	return 0;
663 }
664 
665 /*
666  * Switch to high resolution mode
667  */
hrtimer_switch_to_hres(void)668 static int hrtimer_switch_to_hres(void)
669 {
670 	int cpu = smp_processor_id();
671 	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
672 	unsigned long flags;
673 
674 	if (base->hres_active)
675 		return 1;
676 
677 	local_irq_save(flags);
678 
679 	if (tick_init_highres()) {
680 		local_irq_restore(flags);
681 		printk(KERN_WARNING "Could not switch to high resolution "
682 				    "mode on CPU %d\n", cpu);
683 		return 0;
684 	}
685 	base->hres_active = 1;
686 	base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
687 	base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
688 
689 	tick_setup_sched_timer();
690 
691 	/* "Retrigger" the interrupt to get things going */
692 	retrigger_next_event(NULL);
693 	local_irq_restore(flags);
694 	printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
695 	       smp_processor_id());
696 	return 1;
697 }
698 
699 #else
700 
hrtimer_hres_active(void)701 static inline int hrtimer_hres_active(void) { return 0; }
hrtimer_is_hres_enabled(void)702 static inline int hrtimer_is_hres_enabled(void) { return 0; }
hrtimer_switch_to_hres(void)703 static inline int hrtimer_switch_to_hres(void) { return 0; }
hrtimer_force_reprogram(struct hrtimer_cpu_base * base)704 static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
hrtimer_enqueue_reprogram(struct hrtimer * timer,struct hrtimer_clock_base * base)705 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
706 					    struct hrtimer_clock_base *base)
707 {
708 	return 0;
709 }
hrtimer_init_hres(struct hrtimer_cpu_base * base)710 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
hrtimer_init_timer_hres(struct hrtimer * timer)711 static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
712 
713 #endif /* CONFIG_HIGH_RES_TIMERS */
714 
715 #ifdef CONFIG_TIMER_STATS
__timer_stats_hrtimer_set_start_info(struct hrtimer * timer,void * addr)716 void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
717 {
718 	if (timer->start_site)
719 		return;
720 
721 	timer->start_site = addr;
722 	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
723 	timer->start_pid = current->pid;
724 }
725 #endif
726 
727 /*
728  * Counterpart to lock_hrtimer_base above:
729  */
730 static inline
unlock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)731 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
732 {
733 	spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
734 }
735 
736 /**
737  * hrtimer_forward - forward the timer expiry
738  * @timer:	hrtimer to forward
739  * @now:	forward past this time
740  * @interval:	the interval to forward
741  *
742  * Forward the timer expiry so it will expire in the future.
743  * Returns the number of overruns.
744  */
hrtimer_forward(struct hrtimer * timer,ktime_t now,ktime_t interval)745 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
746 {
747 	u64 orun = 1;
748 	ktime_t delta;
749 
750 	delta = ktime_sub(now, hrtimer_get_expires(timer));
751 
752 	if (delta.tv64 < 0)
753 		return 0;
754 
755 	if (interval.tv64 < timer->base->resolution.tv64)
756 		interval.tv64 = timer->base->resolution.tv64;
757 
758 	if (unlikely(delta.tv64 >= interval.tv64)) {
759 		s64 incr = ktime_to_ns(interval);
760 
761 		orun = ktime_divns(delta, incr);
762 		hrtimer_add_expires_ns(timer, incr * orun);
763 		if (hrtimer_get_expires_tv64(timer) > now.tv64)
764 			return orun;
765 		/*
766 		 * This (and the ktime_add() below) is the
767 		 * correction for exact:
768 		 */
769 		orun++;
770 	}
771 	hrtimer_add_expires(timer, interval);
772 
773 	return orun;
774 }
775 EXPORT_SYMBOL_GPL(hrtimer_forward);
776 
777 /*
778  * enqueue_hrtimer - internal function to (re)start a timer
779  *
780  * The timer is inserted in expiry order. Insertion into the
781  * red black tree is O(log(n)). Must hold the base lock.
782  *
783  * Returns 1 when the new timer is the leftmost timer in the tree.
784  */
enqueue_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base)785 static int enqueue_hrtimer(struct hrtimer *timer,
786 			   struct hrtimer_clock_base *base)
787 {
788 	struct rb_node **link = &base->active.rb_node;
789 	struct rb_node *parent = NULL;
790 	struct hrtimer *entry;
791 	int leftmost = 1;
792 
793 	debug_hrtimer_activate(timer);
794 
795 	/*
796 	 * Find the right place in the rbtree:
797 	 */
798 	while (*link) {
799 		parent = *link;
800 		entry = rb_entry(parent, struct hrtimer, node);
801 		/*
802 		 * We dont care about collisions. Nodes with
803 		 * the same expiry time stay together.
804 		 */
805 		if (hrtimer_get_expires_tv64(timer) <
806 				hrtimer_get_expires_tv64(entry)) {
807 			link = &(*link)->rb_left;
808 		} else {
809 			link = &(*link)->rb_right;
810 			leftmost = 0;
811 		}
812 	}
813 
814 	/*
815 	 * Insert the timer to the rbtree and check whether it
816 	 * replaces the first pending timer
817 	 */
818 	if (leftmost)
819 		base->first = &timer->node;
820 
821 	rb_link_node(&timer->node, parent, link);
822 	rb_insert_color(&timer->node, &base->active);
823 	/*
824 	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
825 	 * state of a possibly running callback.
826 	 */
827 	timer->state |= HRTIMER_STATE_ENQUEUED;
828 
829 	return leftmost;
830 }
831 
832 /*
833  * __remove_hrtimer - internal function to remove a timer
834  *
835  * Caller must hold the base lock.
836  *
837  * High resolution timer mode reprograms the clock event device when the
838  * timer is the one which expires next. The caller can disable this by setting
839  * reprogram to zero. This is useful, when the context does a reprogramming
840  * anyway (e.g. timer interrupt)
841  */
__remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,unsigned long newstate,int reprogram)842 static void __remove_hrtimer(struct hrtimer *timer,
843 			     struct hrtimer_clock_base *base,
844 			     unsigned long newstate, int reprogram)
845 {
846 	if (timer->state & HRTIMER_STATE_ENQUEUED) {
847 		/*
848 		 * Remove the timer from the rbtree and replace the
849 		 * first entry pointer if necessary.
850 		 */
851 		if (base->first == &timer->node) {
852 			base->first = rb_next(&timer->node);
853 			/* Reprogram the clock event device. if enabled */
854 			if (reprogram && hrtimer_hres_active())
855 				hrtimer_force_reprogram(base->cpu_base);
856 		}
857 		rb_erase(&timer->node, &base->active);
858 	}
859 	timer->state = newstate;
860 }
861 
862 /*
863  * remove hrtimer, called with base lock held
864  */
865 static inline int
remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base)866 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
867 {
868 	if (hrtimer_is_queued(timer)) {
869 		int reprogram;
870 
871 		/*
872 		 * Remove the timer and force reprogramming when high
873 		 * resolution mode is active and the timer is on the current
874 		 * CPU. If we remove a timer on another CPU, reprogramming is
875 		 * skipped. The interrupt event on this CPU is fired and
876 		 * reprogramming happens in the interrupt handler. This is a
877 		 * rare case and less expensive than a smp call.
878 		 */
879 		debug_hrtimer_deactivate(timer);
880 		timer_stats_hrtimer_clear_start_info(timer);
881 		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
882 		__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
883 				 reprogram);
884 		return 1;
885 	}
886 	return 0;
887 }
888 
889 /**
890  * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
891  * @timer:	the timer to be added
892  * @tim:	expiry time
893  * @delta_ns:	"slack" range for the timer
894  * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
895  *
896  * Returns:
897  *  0 on success
898  *  1 when the timer was active
899  */
900 int
hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,unsigned long delta_ns,const enum hrtimer_mode mode)901 hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, unsigned long delta_ns,
902 			const enum hrtimer_mode mode)
903 {
904 	struct hrtimer_clock_base *base, *new_base;
905 	unsigned long flags;
906 	int ret, leftmost;
907 
908 	base = lock_hrtimer_base(timer, &flags);
909 
910 	/* Remove an active timer from the queue: */
911 	ret = remove_hrtimer(timer, base);
912 
913 	/* Switch the timer base, if necessary: */
914 	new_base = switch_hrtimer_base(timer, base);
915 
916 	if (mode == HRTIMER_MODE_REL) {
917 		tim = ktime_add_safe(tim, new_base->get_time());
918 		/*
919 		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
920 		 * to signal that they simply return xtime in
921 		 * do_gettimeoffset(). In this case we want to round up by
922 		 * resolution when starting a relative timer, to avoid short
923 		 * timeouts. This will go away with the GTOD framework.
924 		 */
925 #ifdef CONFIG_TIME_LOW_RES
926 		tim = ktime_add_safe(tim, base->resolution);
927 #endif
928 	}
929 
930 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
931 
932 	timer_stats_hrtimer_set_start_info(timer);
933 
934 	leftmost = enqueue_hrtimer(timer, new_base);
935 
936 	/*
937 	 * Only allow reprogramming if the new base is on this CPU.
938 	 * (it might still be on another CPU if the timer was pending)
939 	 *
940 	 * XXX send_remote_softirq() ?
941 	 */
942 	if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
943 		hrtimer_enqueue_reprogram(timer, new_base);
944 
945 	unlock_hrtimer_base(timer, &flags);
946 
947 	return ret;
948 }
949 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
950 
951 /**
952  * hrtimer_start - (re)start an hrtimer on the current CPU
953  * @timer:	the timer to be added
954  * @tim:	expiry time
955  * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
956  *
957  * Returns:
958  *  0 on success
959  *  1 when the timer was active
960  */
961 int
hrtimer_start(struct hrtimer * timer,ktime_t tim,const enum hrtimer_mode mode)962 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
963 {
964 	return hrtimer_start_range_ns(timer, tim, 0, mode);
965 }
966 EXPORT_SYMBOL_GPL(hrtimer_start);
967 
968 
969 /**
970  * hrtimer_try_to_cancel - try to deactivate a timer
971  * @timer:	hrtimer to stop
972  *
973  * Returns:
974  *  0 when the timer was not active
975  *  1 when the timer was active
976  * -1 when the timer is currently excuting the callback function and
977  *    cannot be stopped
978  */
hrtimer_try_to_cancel(struct hrtimer * timer)979 int hrtimer_try_to_cancel(struct hrtimer *timer)
980 {
981 	struct hrtimer_clock_base *base;
982 	unsigned long flags;
983 	int ret = -1;
984 
985 	base = lock_hrtimer_base(timer, &flags);
986 
987 	if (!hrtimer_callback_running(timer))
988 		ret = remove_hrtimer(timer, base);
989 
990 	unlock_hrtimer_base(timer, &flags);
991 
992 	return ret;
993 
994 }
995 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
996 
997 /**
998  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
999  * @timer:	the timer to be cancelled
1000  *
1001  * Returns:
1002  *  0 when the timer was not active
1003  *  1 when the timer was active
1004  */
hrtimer_cancel(struct hrtimer * timer)1005 int hrtimer_cancel(struct hrtimer *timer)
1006 {
1007 	for (;;) {
1008 		int ret = hrtimer_try_to_cancel(timer);
1009 
1010 		if (ret >= 0)
1011 			return ret;
1012 		cpu_relax();
1013 	}
1014 }
1015 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1016 
1017 /**
1018  * hrtimer_get_remaining - get remaining time for the timer
1019  * @timer:	the timer to read
1020  */
hrtimer_get_remaining(const struct hrtimer * timer)1021 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1022 {
1023 	struct hrtimer_clock_base *base;
1024 	unsigned long flags;
1025 	ktime_t rem;
1026 
1027 	base = lock_hrtimer_base(timer, &flags);
1028 	rem = hrtimer_expires_remaining(timer);
1029 	unlock_hrtimer_base(timer, &flags);
1030 
1031 	return rem;
1032 }
1033 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1034 
1035 #ifdef CONFIG_NO_HZ
1036 /**
1037  * hrtimer_get_next_event - get the time until next expiry event
1038  *
1039  * Returns the delta to the next expiry event or KTIME_MAX if no timer
1040  * is pending.
1041  */
hrtimer_get_next_event(void)1042 ktime_t hrtimer_get_next_event(void)
1043 {
1044 	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1045 	struct hrtimer_clock_base *base = cpu_base->clock_base;
1046 	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1047 	unsigned long flags;
1048 	int i;
1049 
1050 	spin_lock_irqsave(&cpu_base->lock, flags);
1051 
1052 	if (!hrtimer_hres_active()) {
1053 		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1054 			struct hrtimer *timer;
1055 
1056 			if (!base->first)
1057 				continue;
1058 
1059 			timer = rb_entry(base->first, struct hrtimer, node);
1060 			delta.tv64 = hrtimer_get_expires_tv64(timer);
1061 			delta = ktime_sub(delta, base->get_time());
1062 			if (delta.tv64 < mindelta.tv64)
1063 				mindelta.tv64 = delta.tv64;
1064 		}
1065 	}
1066 
1067 	spin_unlock_irqrestore(&cpu_base->lock, flags);
1068 
1069 	if (mindelta.tv64 < 0)
1070 		mindelta.tv64 = 0;
1071 	return mindelta;
1072 }
1073 #endif
1074 
__hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1075 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1076 			   enum hrtimer_mode mode)
1077 {
1078 	struct hrtimer_cpu_base *cpu_base;
1079 
1080 	memset(timer, 0, sizeof(struct hrtimer));
1081 
1082 	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1083 
1084 	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1085 		clock_id = CLOCK_MONOTONIC;
1086 
1087 	timer->base = &cpu_base->clock_base[clock_id];
1088 	INIT_LIST_HEAD(&timer->cb_entry);
1089 	hrtimer_init_timer_hres(timer);
1090 
1091 #ifdef CONFIG_TIMER_STATS
1092 	timer->start_site = NULL;
1093 	timer->start_pid = -1;
1094 	memset(timer->start_comm, 0, TASK_COMM_LEN);
1095 #endif
1096 }
1097 
1098 /**
1099  * hrtimer_init - initialize a timer to the given clock
1100  * @timer:	the timer to be initialized
1101  * @clock_id:	the clock to be used
1102  * @mode:	timer mode abs/rel
1103  */
hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1104 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1105 		  enum hrtimer_mode mode)
1106 {
1107 	debug_hrtimer_init(timer);
1108 	__hrtimer_init(timer, clock_id, mode);
1109 }
1110 EXPORT_SYMBOL_GPL(hrtimer_init);
1111 
1112 /**
1113  * hrtimer_get_res - get the timer resolution for a clock
1114  * @which_clock: which clock to query
1115  * @tp:		 pointer to timespec variable to store the resolution
1116  *
1117  * Store the resolution of the clock selected by @which_clock in the
1118  * variable pointed to by @tp.
1119  */
hrtimer_get_res(const clockid_t which_clock,struct timespec * tp)1120 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1121 {
1122 	struct hrtimer_cpu_base *cpu_base;
1123 
1124 	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1125 	*tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1126 
1127 	return 0;
1128 }
1129 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1130 
__run_hrtimer(struct hrtimer * timer)1131 static void __run_hrtimer(struct hrtimer *timer)
1132 {
1133 	struct hrtimer_clock_base *base = timer->base;
1134 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1135 	enum hrtimer_restart (*fn)(struct hrtimer *);
1136 	int restart;
1137 
1138 	WARN_ON(!irqs_disabled());
1139 
1140 	debug_hrtimer_deactivate(timer);
1141 	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1142 	timer_stats_account_hrtimer(timer);
1143 	fn = timer->function;
1144 
1145 	/*
1146 	 * Because we run timers from hardirq context, there is no chance
1147 	 * they get migrated to another cpu, therefore its safe to unlock
1148 	 * the timer base.
1149 	 */
1150 	spin_unlock(&cpu_base->lock);
1151 	restart = fn(timer);
1152 	spin_lock(&cpu_base->lock);
1153 
1154 	/*
1155 	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1156 	 * we do not reprogramm the event hardware. Happens either in
1157 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1158 	 */
1159 	if (restart != HRTIMER_NORESTART) {
1160 		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1161 		enqueue_hrtimer(timer, base);
1162 	}
1163 	timer->state &= ~HRTIMER_STATE_CALLBACK;
1164 }
1165 
1166 #ifdef CONFIG_HIGH_RES_TIMERS
1167 
1168 static int force_clock_reprogram;
1169 
1170 /*
1171  * After 5 iteration's attempts, we consider that hrtimer_interrupt()
1172  * is hanging, which could happen with something that slows the interrupt
1173  * such as the tracing. Then we force the clock reprogramming for each future
1174  * hrtimer interrupts to avoid infinite loops and use the min_delta_ns
1175  * threshold that we will overwrite.
1176  * The next tick event will be scheduled to 3 times we currently spend on
1177  * hrtimer_interrupt(). This gives a good compromise, the cpus will spend
1178  * 1/4 of their time to process the hrtimer interrupts. This is enough to
1179  * let it running without serious starvation.
1180  */
1181 
1182 static inline void
hrtimer_interrupt_hanging(struct clock_event_device * dev,ktime_t try_time)1183 hrtimer_interrupt_hanging(struct clock_event_device *dev,
1184 			ktime_t try_time)
1185 {
1186 	force_clock_reprogram = 1;
1187 	dev->min_delta_ns = (unsigned long)try_time.tv64 * 3;
1188 	printk(KERN_WARNING "hrtimer: interrupt too slow, "
1189 		"forcing clock min delta to %lu ns\n", dev->min_delta_ns);
1190 }
1191 /*
1192  * High resolution timer interrupt
1193  * Called with interrupts disabled
1194  */
hrtimer_interrupt(struct clock_event_device * dev)1195 void hrtimer_interrupt(struct clock_event_device *dev)
1196 {
1197 	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1198 	struct hrtimer_clock_base *base;
1199 	ktime_t expires_next, now;
1200 	int nr_retries = 0;
1201 	int i;
1202 
1203 	BUG_ON(!cpu_base->hres_active);
1204 	cpu_base->nr_events++;
1205 	dev->next_event.tv64 = KTIME_MAX;
1206 
1207  retry:
1208 	/* 5 retries is enough to notice a hang */
1209 	if (!(++nr_retries % 5))
1210 		hrtimer_interrupt_hanging(dev, ktime_sub(ktime_get(), now));
1211 
1212 	now = ktime_get();
1213 
1214 	expires_next.tv64 = KTIME_MAX;
1215 
1216 	base = cpu_base->clock_base;
1217 
1218 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1219 		ktime_t basenow;
1220 		struct rb_node *node;
1221 
1222 		spin_lock(&cpu_base->lock);
1223 
1224 		basenow = ktime_add(now, base->offset);
1225 
1226 		while ((node = base->first)) {
1227 			struct hrtimer *timer;
1228 
1229 			timer = rb_entry(node, struct hrtimer, node);
1230 
1231 			/*
1232 			 * The immediate goal for using the softexpires is
1233 			 * minimizing wakeups, not running timers at the
1234 			 * earliest interrupt after their soft expiration.
1235 			 * This allows us to avoid using a Priority Search
1236 			 * Tree, which can answer a stabbing querry for
1237 			 * overlapping intervals and instead use the simple
1238 			 * BST we already have.
1239 			 * We don't add extra wakeups by delaying timers that
1240 			 * are right-of a not yet expired timer, because that
1241 			 * timer will have to trigger a wakeup anyway.
1242 			 */
1243 
1244 			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1245 				ktime_t expires;
1246 
1247 				expires = ktime_sub(hrtimer_get_expires(timer),
1248 						    base->offset);
1249 				if (expires.tv64 < expires_next.tv64)
1250 					expires_next = expires;
1251 				break;
1252 			}
1253 
1254 			__run_hrtimer(timer);
1255 		}
1256 		spin_unlock(&cpu_base->lock);
1257 		base++;
1258 	}
1259 
1260 	cpu_base->expires_next = expires_next;
1261 
1262 	/* Reprogramming necessary ? */
1263 	if (expires_next.tv64 != KTIME_MAX) {
1264 		if (tick_program_event(expires_next, force_clock_reprogram))
1265 			goto retry;
1266 	}
1267 }
1268 
1269 /*
1270  * local version of hrtimer_peek_ahead_timers() called with interrupts
1271  * disabled.
1272  */
__hrtimer_peek_ahead_timers(void)1273 static void __hrtimer_peek_ahead_timers(void)
1274 {
1275 	struct tick_device *td;
1276 
1277 	if (!hrtimer_hres_active())
1278 		return;
1279 
1280 	td = &__get_cpu_var(tick_cpu_device);
1281 	if (td && td->evtdev)
1282 		hrtimer_interrupt(td->evtdev);
1283 }
1284 
1285 /**
1286  * hrtimer_peek_ahead_timers -- run soft-expired timers now
1287  *
1288  * hrtimer_peek_ahead_timers will peek at the timer queue of
1289  * the current cpu and check if there are any timers for which
1290  * the soft expires time has passed. If any such timers exist,
1291  * they are run immediately and then removed from the timer queue.
1292  *
1293  */
hrtimer_peek_ahead_timers(void)1294 void hrtimer_peek_ahead_timers(void)
1295 {
1296 	unsigned long flags;
1297 
1298 	local_irq_save(flags);
1299 	__hrtimer_peek_ahead_timers();
1300 	local_irq_restore(flags);
1301 }
1302 
run_hrtimer_softirq(struct softirq_action * h)1303 static void run_hrtimer_softirq(struct softirq_action *h)
1304 {
1305 	hrtimer_peek_ahead_timers();
1306 }
1307 
1308 #else /* CONFIG_HIGH_RES_TIMERS */
1309 
__hrtimer_peek_ahead_timers(void)1310 static inline void __hrtimer_peek_ahead_timers(void) { }
1311 
1312 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1313 
1314 /*
1315  * Called from timer softirq every jiffy, expire hrtimers:
1316  *
1317  * For HRT its the fall back code to run the softirq in the timer
1318  * softirq context in case the hrtimer initialization failed or has
1319  * not been done yet.
1320  */
hrtimer_run_pending(void)1321 void hrtimer_run_pending(void)
1322 {
1323 	if (hrtimer_hres_active())
1324 		return;
1325 
1326 	/*
1327 	 * This _is_ ugly: We have to check in the softirq context,
1328 	 * whether we can switch to highres and / or nohz mode. The
1329 	 * clocksource switch happens in the timer interrupt with
1330 	 * xtime_lock held. Notification from there only sets the
1331 	 * check bit in the tick_oneshot code, otherwise we might
1332 	 * deadlock vs. xtime_lock.
1333 	 */
1334 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1335 		hrtimer_switch_to_hres();
1336 }
1337 
1338 /*
1339  * Called from hardirq context every jiffy
1340  */
hrtimer_run_queues(void)1341 void hrtimer_run_queues(void)
1342 {
1343 	struct rb_node *node;
1344 	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1345 	struct hrtimer_clock_base *base;
1346 	int index, gettime = 1;
1347 
1348 	if (hrtimer_hres_active())
1349 		return;
1350 
1351 	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1352 		base = &cpu_base->clock_base[index];
1353 
1354 		if (!base->first)
1355 			continue;
1356 
1357 		if (gettime) {
1358 			hrtimer_get_softirq_time(cpu_base);
1359 			gettime = 0;
1360 		}
1361 
1362 		spin_lock(&cpu_base->lock);
1363 
1364 		while ((node = base->first)) {
1365 			struct hrtimer *timer;
1366 
1367 			timer = rb_entry(node, struct hrtimer, node);
1368 			if (base->softirq_time.tv64 <=
1369 					hrtimer_get_expires_tv64(timer))
1370 				break;
1371 
1372 			__run_hrtimer(timer);
1373 		}
1374 		spin_unlock(&cpu_base->lock);
1375 	}
1376 }
1377 
1378 /*
1379  * Sleep related functions:
1380  */
hrtimer_wakeup(struct hrtimer * timer)1381 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1382 {
1383 	struct hrtimer_sleeper *t =
1384 		container_of(timer, struct hrtimer_sleeper, timer);
1385 	struct task_struct *task = t->task;
1386 
1387 	t->task = NULL;
1388 	if (task)
1389 		wake_up_process(task);
1390 
1391 	return HRTIMER_NORESTART;
1392 }
1393 
hrtimer_init_sleeper(struct hrtimer_sleeper * sl,struct task_struct * task)1394 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1395 {
1396 	sl->timer.function = hrtimer_wakeup;
1397 	sl->task = task;
1398 }
1399 
do_nanosleep(struct hrtimer_sleeper * t,enum hrtimer_mode mode)1400 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1401 {
1402 	hrtimer_init_sleeper(t, current);
1403 
1404 	do {
1405 		set_current_state(TASK_INTERRUPTIBLE);
1406 		hrtimer_start_expires(&t->timer, mode);
1407 		if (!hrtimer_active(&t->timer))
1408 			t->task = NULL;
1409 
1410 		if (likely(t->task))
1411 			schedule();
1412 
1413 		hrtimer_cancel(&t->timer);
1414 		mode = HRTIMER_MODE_ABS;
1415 
1416 	} while (t->task && !signal_pending(current));
1417 
1418 	__set_current_state(TASK_RUNNING);
1419 
1420 	return t->task == NULL;
1421 }
1422 
update_rmtp(struct hrtimer * timer,struct timespec __user * rmtp)1423 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1424 {
1425 	struct timespec rmt;
1426 	ktime_t rem;
1427 
1428 	rem = hrtimer_expires_remaining(timer);
1429 	if (rem.tv64 <= 0)
1430 		return 0;
1431 	rmt = ktime_to_timespec(rem);
1432 
1433 	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1434 		return -EFAULT;
1435 
1436 	return 1;
1437 }
1438 
hrtimer_nanosleep_restart(struct restart_block * restart)1439 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1440 {
1441 	struct hrtimer_sleeper t;
1442 	struct timespec __user  *rmtp;
1443 	int ret = 0;
1444 
1445 	hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1446 				HRTIMER_MODE_ABS);
1447 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1448 
1449 	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1450 		goto out;
1451 
1452 	rmtp = restart->nanosleep.rmtp;
1453 	if (rmtp) {
1454 		ret = update_rmtp(&t.timer, rmtp);
1455 		if (ret <= 0)
1456 			goto out;
1457 	}
1458 
1459 	/* The other values in restart are already filled in */
1460 	ret = -ERESTART_RESTARTBLOCK;
1461 out:
1462 	destroy_hrtimer_on_stack(&t.timer);
1463 	return ret;
1464 }
1465 
hrtimer_nanosleep(struct timespec * rqtp,struct timespec __user * rmtp,const enum hrtimer_mode mode,const clockid_t clockid)1466 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1467 		       const enum hrtimer_mode mode, const clockid_t clockid)
1468 {
1469 	struct restart_block *restart;
1470 	struct hrtimer_sleeper t;
1471 	int ret = 0;
1472 	unsigned long slack;
1473 
1474 	slack = current->timer_slack_ns;
1475 	if (rt_task(current))
1476 		slack = 0;
1477 
1478 	hrtimer_init_on_stack(&t.timer, clockid, mode);
1479 	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1480 	if (do_nanosleep(&t, mode))
1481 		goto out;
1482 
1483 	/* Absolute timers do not update the rmtp value and restart: */
1484 	if (mode == HRTIMER_MODE_ABS) {
1485 		ret = -ERESTARTNOHAND;
1486 		goto out;
1487 	}
1488 
1489 	if (rmtp) {
1490 		ret = update_rmtp(&t.timer, rmtp);
1491 		if (ret <= 0)
1492 			goto out;
1493 	}
1494 
1495 	restart = &current_thread_info()->restart_block;
1496 	restart->fn = hrtimer_nanosleep_restart;
1497 	restart->nanosleep.index = t.timer.base->index;
1498 	restart->nanosleep.rmtp = rmtp;
1499 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1500 
1501 	ret = -ERESTART_RESTARTBLOCK;
1502 out:
1503 	destroy_hrtimer_on_stack(&t.timer);
1504 	return ret;
1505 }
1506 
SYSCALL_DEFINE2(nanosleep,struct timespec __user *,rqtp,struct timespec __user *,rmtp)1507 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1508 		struct timespec __user *, rmtp)
1509 {
1510 	struct timespec tu;
1511 
1512 	if (copy_from_user(&tu, rqtp, sizeof(tu)))
1513 		return -EFAULT;
1514 
1515 	if (!timespec_valid(&tu))
1516 		return -EINVAL;
1517 
1518 	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1519 }
1520 
1521 /*
1522  * Functions related to boot-time initialization:
1523  */
init_hrtimers_cpu(int cpu)1524 static void __cpuinit init_hrtimers_cpu(int cpu)
1525 {
1526 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1527 	int i;
1528 
1529 	spin_lock_init(&cpu_base->lock);
1530 
1531 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1532 		cpu_base->clock_base[i].cpu_base = cpu_base;
1533 
1534 	hrtimer_init_hres(cpu_base);
1535 }
1536 
1537 #ifdef CONFIG_HOTPLUG_CPU
1538 
migrate_hrtimer_list(struct hrtimer_clock_base * old_base,struct hrtimer_clock_base * new_base)1539 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1540 				struct hrtimer_clock_base *new_base)
1541 {
1542 	struct hrtimer *timer;
1543 	struct rb_node *node;
1544 
1545 	while ((node = rb_first(&old_base->active))) {
1546 		timer = rb_entry(node, struct hrtimer, node);
1547 		BUG_ON(hrtimer_callback_running(timer));
1548 		debug_hrtimer_deactivate(timer);
1549 
1550 		/*
1551 		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1552 		 * timer could be seen as !active and just vanish away
1553 		 * under us on another CPU
1554 		 */
1555 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1556 		timer->base = new_base;
1557 		/*
1558 		 * Enqueue the timers on the new cpu. This does not
1559 		 * reprogram the event device in case the timer
1560 		 * expires before the earliest on this CPU, but we run
1561 		 * hrtimer_interrupt after we migrated everything to
1562 		 * sort out already expired timers and reprogram the
1563 		 * event device.
1564 		 */
1565 		enqueue_hrtimer(timer, new_base);
1566 
1567 		/* Clear the migration state bit */
1568 		timer->state &= ~HRTIMER_STATE_MIGRATE;
1569 	}
1570 }
1571 
migrate_hrtimers(int scpu)1572 static void migrate_hrtimers(int scpu)
1573 {
1574 	struct hrtimer_cpu_base *old_base, *new_base;
1575 	int i;
1576 
1577 	BUG_ON(cpu_online(scpu));
1578 	tick_cancel_sched_timer(scpu);
1579 
1580 	local_irq_disable();
1581 	old_base = &per_cpu(hrtimer_bases, scpu);
1582 	new_base = &__get_cpu_var(hrtimer_bases);
1583 	/*
1584 	 * The caller is globally serialized and nobody else
1585 	 * takes two locks at once, deadlock is not possible.
1586 	 */
1587 	spin_lock(&new_base->lock);
1588 	spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1589 
1590 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1591 		migrate_hrtimer_list(&old_base->clock_base[i],
1592 				     &new_base->clock_base[i]);
1593 	}
1594 
1595 	spin_unlock(&old_base->lock);
1596 	spin_unlock(&new_base->lock);
1597 
1598 	/* Check, if we got expired work to do */
1599 	__hrtimer_peek_ahead_timers();
1600 	local_irq_enable();
1601 }
1602 
1603 #endif /* CONFIG_HOTPLUG_CPU */
1604 
hrtimer_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)1605 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1606 					unsigned long action, void *hcpu)
1607 {
1608 	int scpu = (long)hcpu;
1609 
1610 	switch (action) {
1611 
1612 	case CPU_UP_PREPARE:
1613 	case CPU_UP_PREPARE_FROZEN:
1614 		init_hrtimers_cpu(scpu);
1615 		break;
1616 
1617 #ifdef CONFIG_HOTPLUG_CPU
1618 	case CPU_DYING:
1619 	case CPU_DYING_FROZEN:
1620 		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1621 		break;
1622 	case CPU_DEAD:
1623 	case CPU_DEAD_FROZEN:
1624 	{
1625 		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1626 		migrate_hrtimers(scpu);
1627 		break;
1628 	}
1629 #endif
1630 
1631 	default:
1632 		break;
1633 	}
1634 
1635 	return NOTIFY_OK;
1636 }
1637 
1638 static struct notifier_block __cpuinitdata hrtimers_nb = {
1639 	.notifier_call = hrtimer_cpu_notify,
1640 };
1641 
hrtimers_init(void)1642 void __init hrtimers_init(void)
1643 {
1644 	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1645 			  (void *)(long)smp_processor_id());
1646 	register_cpu_notifier(&hrtimers_nb);
1647 #ifdef CONFIG_HIGH_RES_TIMERS
1648 	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1649 #endif
1650 }
1651 
1652 /**
1653  * schedule_hrtimeout_range - sleep until timeout
1654  * @expires:	timeout value (ktime_t)
1655  * @delta:	slack in expires timeout (ktime_t)
1656  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1657  *
1658  * Make the current task sleep until the given expiry time has
1659  * elapsed. The routine will return immediately unless
1660  * the current task state has been set (see set_current_state()).
1661  *
1662  * The @delta argument gives the kernel the freedom to schedule the
1663  * actual wakeup to a time that is both power and performance friendly.
1664  * The kernel give the normal best effort behavior for "@expires+@delta",
1665  * but may decide to fire the timer earlier, but no earlier than @expires.
1666  *
1667  * You can set the task state as follows -
1668  *
1669  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1670  * pass before the routine returns.
1671  *
1672  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1673  * delivered to the current task.
1674  *
1675  * The current task state is guaranteed to be TASK_RUNNING when this
1676  * routine returns.
1677  *
1678  * Returns 0 when the timer has expired otherwise -EINTR
1679  */
schedule_hrtimeout_range(ktime_t * expires,unsigned long delta,const enum hrtimer_mode mode)1680 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1681 			       const enum hrtimer_mode mode)
1682 {
1683 	struct hrtimer_sleeper t;
1684 
1685 	/*
1686 	 * Optimize when a zero timeout value is given. It does not
1687 	 * matter whether this is an absolute or a relative time.
1688 	 */
1689 	if (expires && !expires->tv64) {
1690 		__set_current_state(TASK_RUNNING);
1691 		return 0;
1692 	}
1693 
1694 	/*
1695 	 * A NULL parameter means "inifinte"
1696 	 */
1697 	if (!expires) {
1698 		schedule();
1699 		__set_current_state(TASK_RUNNING);
1700 		return -EINTR;
1701 	}
1702 
1703 	hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
1704 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1705 
1706 	hrtimer_init_sleeper(&t, current);
1707 
1708 	hrtimer_start_expires(&t.timer, mode);
1709 	if (!hrtimer_active(&t.timer))
1710 		t.task = NULL;
1711 
1712 	if (likely(t.task))
1713 		schedule();
1714 
1715 	hrtimer_cancel(&t.timer);
1716 	destroy_hrtimer_on_stack(&t.timer);
1717 
1718 	__set_current_state(TASK_RUNNING);
1719 
1720 	return !t.task ? 0 : -EINTR;
1721 }
1722 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1723 
1724 /**
1725  * schedule_hrtimeout - sleep until timeout
1726  * @expires:	timeout value (ktime_t)
1727  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1728  *
1729  * Make the current task sleep until the given expiry time has
1730  * elapsed. The routine will return immediately unless
1731  * the current task state has been set (see set_current_state()).
1732  *
1733  * You can set the task state as follows -
1734  *
1735  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1736  * pass before the routine returns.
1737  *
1738  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1739  * delivered to the current task.
1740  *
1741  * The current task state is guaranteed to be TASK_RUNNING when this
1742  * routine returns.
1743  *
1744  * Returns 0 when the timer has expired otherwise -EINTR
1745  */
schedule_hrtimeout(ktime_t * expires,const enum hrtimer_mode mode)1746 int __sched schedule_hrtimeout(ktime_t *expires,
1747 			       const enum hrtimer_mode mode)
1748 {
1749 	return schedule_hrtimeout_range(expires, 0, mode);
1750 }
1751 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1752