• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48 #include <linux/tracehook.h>
49 #include <linux/init_task.h>
50 #include <trace/sched.h>
51 
52 #include <asm/uaccess.h>
53 #include <asm/unistd.h>
54 #include <asm/pgtable.h>
55 #include <asm/mmu_context.h>
56 #include "cred-internals.h"
57 
58 DEFINE_TRACE(sched_process_free);
59 DEFINE_TRACE(sched_process_exit);
60 DEFINE_TRACE(sched_process_wait);
61 
62 #ifdef CONFIG_QEMU_TRACE
63 void qemu_trace_thread_name(char *name);
64 void qemu_trace_exit(int code);
65 #endif
66 
67 static void exit_mm(struct task_struct * tsk);
68 
task_detached(struct task_struct * p)69 static inline int task_detached(struct task_struct *p)
70 {
71 	return p->exit_signal == -1;
72 }
73 
__unhash_process(struct task_struct * p)74 static void __unhash_process(struct task_struct *p)
75 {
76 	nr_threads--;
77 	detach_pid(p, PIDTYPE_PID);
78 	if (thread_group_leader(p)) {
79 		detach_pid(p, PIDTYPE_PGID);
80 		detach_pid(p, PIDTYPE_SID);
81 
82 		list_del_rcu(&p->tasks);
83 		__get_cpu_var(process_counts)--;
84 	}
85 	list_del_rcu(&p->thread_group);
86 	list_del_init(&p->sibling);
87 }
88 
89 /*
90  * This function expects the tasklist_lock write-locked.
91  */
__exit_signal(struct task_struct * tsk)92 static void __exit_signal(struct task_struct *tsk)
93 {
94 	struct signal_struct *sig = tsk->signal;
95 	struct sighand_struct *sighand;
96 
97 	BUG_ON(!sig);
98 	BUG_ON(!atomic_read(&sig->count));
99 
100 	sighand = rcu_dereference(tsk->sighand);
101 	spin_lock(&sighand->siglock);
102 
103 	posix_cpu_timers_exit(tsk);
104 	if (atomic_dec_and_test(&sig->count))
105 		posix_cpu_timers_exit_group(tsk);
106 	else {
107 		/*
108 		 * If there is any task waiting for the group exit
109 		 * then notify it:
110 		 */
111 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
112 			wake_up_process(sig->group_exit_task);
113 
114 		if (tsk == sig->curr_target)
115 			sig->curr_target = next_thread(tsk);
116 		/*
117 		 * Accumulate here the counters for all threads but the
118 		 * group leader as they die, so they can be added into
119 		 * the process-wide totals when those are taken.
120 		 * The group leader stays around as a zombie as long
121 		 * as there are other threads.  When it gets reaped,
122 		 * the exit.c code will add its counts into these totals.
123 		 * We won't ever get here for the group leader, since it
124 		 * will have been the last reference on the signal_struct.
125 		 */
126 		sig->utime = cputime_add(sig->utime, task_utime(tsk));
127 		sig->stime = cputime_add(sig->stime, task_stime(tsk));
128 		sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
129 		sig->min_flt += tsk->min_flt;
130 		sig->maj_flt += tsk->maj_flt;
131 		sig->nvcsw += tsk->nvcsw;
132 		sig->nivcsw += tsk->nivcsw;
133 		sig->inblock += task_io_get_inblock(tsk);
134 		sig->oublock += task_io_get_oublock(tsk);
135 		task_io_accounting_add(&sig->ioac, &tsk->ioac);
136 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
137 		sig = NULL; /* Marker for below. */
138 	}
139 
140 	__unhash_process(tsk);
141 
142 	/*
143 	 * Do this under ->siglock, we can race with another thread
144 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
145 	 */
146 	flush_sigqueue(&tsk->pending);
147 
148 	tsk->signal = NULL;
149 	tsk->sighand = NULL;
150 	spin_unlock(&sighand->siglock);
151 
152 	__cleanup_sighand(sighand);
153 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
154 	if (sig) {
155 		flush_sigqueue(&sig->shared_pending);
156 		taskstats_tgid_free(sig);
157 		/*
158 		 * Make sure ->signal can't go away under rq->lock,
159 		 * see account_group_exec_runtime().
160 		 */
161 		task_rq_unlock_wait(tsk);
162 		__cleanup_signal(sig);
163 	}
164 }
165 
delayed_put_task_struct(struct rcu_head * rhp)166 static void delayed_put_task_struct(struct rcu_head *rhp)
167 {
168 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
169 
170 	trace_sched_process_free(tsk);
171 	put_task_struct(tsk);
172 }
173 
174 
release_task(struct task_struct * p)175 void release_task(struct task_struct * p)
176 {
177 	struct task_struct *leader;
178 	int zap_leader;
179 repeat:
180 	tracehook_prepare_release_task(p);
181 	/* don't need to get the RCU readlock here - the process is dead and
182 	 * can't be modifying its own credentials */
183 	atomic_dec(&__task_cred(p)->user->processes);
184 
185 	proc_flush_task(p);
186 	write_lock_irq(&tasklist_lock);
187 	tracehook_finish_release_task(p);
188 	__exit_signal(p);
189 
190 	/*
191 	 * If we are the last non-leader member of the thread
192 	 * group, and the leader is zombie, then notify the
193 	 * group leader's parent process. (if it wants notification.)
194 	 */
195 	zap_leader = 0;
196 	leader = p->group_leader;
197 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
198 		BUG_ON(task_detached(leader));
199 		do_notify_parent(leader, leader->exit_signal);
200 		/*
201 		 * If we were the last child thread and the leader has
202 		 * exited already, and the leader's parent ignores SIGCHLD,
203 		 * then we are the one who should release the leader.
204 		 *
205 		 * do_notify_parent() will have marked it self-reaping in
206 		 * that case.
207 		 */
208 		zap_leader = task_detached(leader);
209 
210 		/*
211 		 * This maintains the invariant that release_task()
212 		 * only runs on a task in EXIT_DEAD, just for sanity.
213 		 */
214 		if (zap_leader)
215 			leader->exit_state = EXIT_DEAD;
216 	}
217 
218 	write_unlock_irq(&tasklist_lock);
219 	release_thread(p);
220 	call_rcu(&p->rcu, delayed_put_task_struct);
221 
222 	p = leader;
223 	if (unlikely(zap_leader))
224 		goto repeat;
225 }
226 
227 /*
228  * This checks not only the pgrp, but falls back on the pid if no
229  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
230  * without this...
231  *
232  * The caller must hold rcu lock or the tasklist lock.
233  */
session_of_pgrp(struct pid * pgrp)234 struct pid *session_of_pgrp(struct pid *pgrp)
235 {
236 	struct task_struct *p;
237 	struct pid *sid = NULL;
238 
239 	p = pid_task(pgrp, PIDTYPE_PGID);
240 	if (p == NULL)
241 		p = pid_task(pgrp, PIDTYPE_PID);
242 	if (p != NULL)
243 		sid = task_session(p);
244 
245 	return sid;
246 }
247 
248 /*
249  * Determine if a process group is "orphaned", according to the POSIX
250  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
251  * by terminal-generated stop signals.  Newly orphaned process groups are
252  * to receive a SIGHUP and a SIGCONT.
253  *
254  * "I ask you, have you ever known what it is to be an orphan?"
255  */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)256 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
257 {
258 	struct task_struct *p;
259 
260 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
261 		if ((p == ignored_task) ||
262 		    (p->exit_state && thread_group_empty(p)) ||
263 		    is_global_init(p->real_parent))
264 			continue;
265 
266 		if (task_pgrp(p->real_parent) != pgrp &&
267 		    task_session(p->real_parent) == task_session(p))
268 			return 0;
269 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
270 
271 	return 1;
272 }
273 
is_current_pgrp_orphaned(void)274 int is_current_pgrp_orphaned(void)
275 {
276 	int retval;
277 
278 	read_lock(&tasklist_lock);
279 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
280 	read_unlock(&tasklist_lock);
281 
282 	return retval;
283 }
284 
has_stopped_jobs(struct pid * pgrp)285 static int has_stopped_jobs(struct pid *pgrp)
286 {
287 	int retval = 0;
288 	struct task_struct *p;
289 
290 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
291 		if (!task_is_stopped(p))
292 			continue;
293 		retval = 1;
294 		break;
295 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
296 	return retval;
297 }
298 
299 /*
300  * Check to see if any process groups have become orphaned as
301  * a result of our exiting, and if they have any stopped jobs,
302  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
303  */
304 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)305 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
306 {
307 	struct pid *pgrp = task_pgrp(tsk);
308 	struct task_struct *ignored_task = tsk;
309 
310 	if (!parent)
311 		 /* exit: our father is in a different pgrp than
312 		  * we are and we were the only connection outside.
313 		  */
314 		parent = tsk->real_parent;
315 	else
316 		/* reparent: our child is in a different pgrp than
317 		 * we are, and it was the only connection outside.
318 		 */
319 		ignored_task = NULL;
320 
321 	if (task_pgrp(parent) != pgrp &&
322 	    task_session(parent) == task_session(tsk) &&
323 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
324 	    has_stopped_jobs(pgrp)) {
325 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
326 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
327 	}
328 }
329 
330 /**
331  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
332  *
333  * If a kernel thread is launched as a result of a system call, or if
334  * it ever exits, it should generally reparent itself to kthreadd so it
335  * isn't in the way of other processes and is correctly cleaned up on exit.
336  *
337  * The various task state such as scheduling policy and priority may have
338  * been inherited from a user process, so we reset them to sane values here.
339  *
340  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
341  */
reparent_to_kthreadd(void)342 static void reparent_to_kthreadd(void)
343 {
344 	write_lock_irq(&tasklist_lock);
345 
346 	ptrace_unlink(current);
347 	/* Reparent to init */
348 	current->real_parent = current->parent = kthreadd_task;
349 	list_move_tail(&current->sibling, &current->real_parent->children);
350 
351 	/* Set the exit signal to SIGCHLD so we signal init on exit */
352 	current->exit_signal = SIGCHLD;
353 
354 	if (task_nice(current) < 0)
355 		set_user_nice(current, 0);
356 	/* cpus_allowed? */
357 	/* rt_priority? */
358 	/* signals? */
359 	memcpy(current->signal->rlim, init_task.signal->rlim,
360 	       sizeof(current->signal->rlim));
361 
362 	atomic_inc(&init_cred.usage);
363 	commit_creds(&init_cred);
364 	write_unlock_irq(&tasklist_lock);
365 }
366 
__set_special_pids(struct pid * pid)367 void __set_special_pids(struct pid *pid)
368 {
369 	struct task_struct *curr = current->group_leader;
370 	pid_t nr = pid_nr(pid);
371 
372 	if (task_session(curr) != pid) {
373 		change_pid(curr, PIDTYPE_SID, pid);
374 		set_task_session(curr, nr);
375 	}
376 	if (task_pgrp(curr) != pid) {
377 		change_pid(curr, PIDTYPE_PGID, pid);
378 		set_task_pgrp(curr, nr);
379 	}
380 }
381 
set_special_pids(struct pid * pid)382 static void set_special_pids(struct pid *pid)
383 {
384 	write_lock_irq(&tasklist_lock);
385 	__set_special_pids(pid);
386 	write_unlock_irq(&tasklist_lock);
387 }
388 
389 /*
390  * Let kernel threads use this to say that they
391  * allow a certain signal (since daemonize() will
392  * have disabled all of them by default).
393  */
allow_signal(int sig)394 int allow_signal(int sig)
395 {
396 	if (!valid_signal(sig) || sig < 1)
397 		return -EINVAL;
398 
399 	spin_lock_irq(&current->sighand->siglock);
400 	sigdelset(&current->blocked, sig);
401 	if (!current->mm) {
402 		/* Kernel threads handle their own signals.
403 		   Let the signal code know it'll be handled, so
404 		   that they don't get converted to SIGKILL or
405 		   just silently dropped */
406 		current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
407 	}
408 	recalc_sigpending();
409 	spin_unlock_irq(&current->sighand->siglock);
410 	return 0;
411 }
412 
413 EXPORT_SYMBOL(allow_signal);
414 
disallow_signal(int sig)415 int disallow_signal(int sig)
416 {
417 	if (!valid_signal(sig) || sig < 1)
418 		return -EINVAL;
419 
420 	spin_lock_irq(&current->sighand->siglock);
421 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
422 	recalc_sigpending();
423 	spin_unlock_irq(&current->sighand->siglock);
424 	return 0;
425 }
426 
427 EXPORT_SYMBOL(disallow_signal);
428 
429 /*
430  *	Put all the gunge required to become a kernel thread without
431  *	attached user resources in one place where it belongs.
432  */
433 
daemonize(const char * name,...)434 void daemonize(const char *name, ...)
435 {
436 	va_list args;
437 	struct fs_struct *fs;
438 	sigset_t blocked;
439 
440 	va_start(args, name);
441 	vsnprintf(current->comm, sizeof(current->comm), name, args);
442 	va_end(args);
443 #ifdef CONFIG_QEMU_TRACE
444 	qemu_trace_thread_name(current->comm);
445 #endif
446 
447 	/*
448 	 * If we were started as result of loading a module, close all of the
449 	 * user space pages.  We don't need them, and if we didn't close them
450 	 * they would be locked into memory.
451 	 */
452 	exit_mm(current);
453 	/*
454 	 * We don't want to have TIF_FREEZE set if the system-wide hibernation
455 	 * or suspend transition begins right now.
456 	 */
457 	current->flags |= (PF_NOFREEZE | PF_KTHREAD);
458 
459 	if (current->nsproxy != &init_nsproxy) {
460 		get_nsproxy(&init_nsproxy);
461 		switch_task_namespaces(current, &init_nsproxy);
462 	}
463 	set_special_pids(&init_struct_pid);
464 	proc_clear_tty(current);
465 
466 	/* Block and flush all signals */
467 	sigfillset(&blocked);
468 	sigprocmask(SIG_BLOCK, &blocked, NULL);
469 	flush_signals(current);
470 
471 	/* Become as one with the init task */
472 
473 	exit_fs(current);	/* current->fs->count--; */
474 	fs = init_task.fs;
475 	current->fs = fs;
476 	atomic_inc(&fs->count);
477 
478 	exit_files(current);
479 	current->files = init_task.files;
480 	atomic_inc(&current->files->count);
481 
482 	reparent_to_kthreadd();
483 }
484 
485 EXPORT_SYMBOL(daemonize);
486 
close_files(struct files_struct * files)487 static void close_files(struct files_struct * files)
488 {
489 	int i, j;
490 	struct fdtable *fdt;
491 
492 	j = 0;
493 
494 	/*
495 	 * It is safe to dereference the fd table without RCU or
496 	 * ->file_lock because this is the last reference to the
497 	 * files structure.
498 	 */
499 	fdt = files_fdtable(files);
500 	for (;;) {
501 		unsigned long set;
502 		i = j * __NFDBITS;
503 		if (i >= fdt->max_fds)
504 			break;
505 		set = fdt->open_fds->fds_bits[j++];
506 		while (set) {
507 			if (set & 1) {
508 				struct file * file = xchg(&fdt->fd[i], NULL);
509 				if (file) {
510 					filp_close(file, files);
511 					cond_resched();
512 				}
513 			}
514 			i++;
515 			set >>= 1;
516 		}
517 	}
518 }
519 
get_files_struct(struct task_struct * task)520 struct files_struct *get_files_struct(struct task_struct *task)
521 {
522 	struct files_struct *files;
523 
524 	task_lock(task);
525 	files = task->files;
526 	if (files)
527 		atomic_inc(&files->count);
528 	task_unlock(task);
529 
530 	return files;
531 }
532 
put_files_struct(struct files_struct * files)533 void put_files_struct(struct files_struct *files)
534 {
535 	struct fdtable *fdt;
536 
537 	if (atomic_dec_and_test(&files->count)) {
538 		close_files(files);
539 		/*
540 		 * Free the fd and fdset arrays if we expanded them.
541 		 * If the fdtable was embedded, pass files for freeing
542 		 * at the end of the RCU grace period. Otherwise,
543 		 * you can free files immediately.
544 		 */
545 		fdt = files_fdtable(files);
546 		if (fdt != &files->fdtab)
547 			kmem_cache_free(files_cachep, files);
548 		free_fdtable(fdt);
549 	}
550 }
551 
reset_files_struct(struct files_struct * files)552 void reset_files_struct(struct files_struct *files)
553 {
554 	struct task_struct *tsk = current;
555 	struct files_struct *old;
556 
557 	old = tsk->files;
558 	task_lock(tsk);
559 	tsk->files = files;
560 	task_unlock(tsk);
561 	put_files_struct(old);
562 }
563 
exit_files(struct task_struct * tsk)564 void exit_files(struct task_struct *tsk)
565 {
566 	struct files_struct * files = tsk->files;
567 
568 	if (files) {
569 		task_lock(tsk);
570 		tsk->files = NULL;
571 		task_unlock(tsk);
572 		put_files_struct(files);
573 	}
574 }
575 
put_fs_struct(struct fs_struct * fs)576 void put_fs_struct(struct fs_struct *fs)
577 {
578 	/* No need to hold fs->lock if we are killing it */
579 	if (atomic_dec_and_test(&fs->count)) {
580 		path_put(&fs->root);
581 		path_put(&fs->pwd);
582 		kmem_cache_free(fs_cachep, fs);
583 	}
584 }
585 
exit_fs(struct task_struct * tsk)586 void exit_fs(struct task_struct *tsk)
587 {
588 	struct fs_struct * fs = tsk->fs;
589 
590 	if (fs) {
591 		task_lock(tsk);
592 		tsk->fs = NULL;
593 		task_unlock(tsk);
594 		put_fs_struct(fs);
595 	}
596 }
597 
598 EXPORT_SYMBOL_GPL(exit_fs);
599 
600 #ifdef CONFIG_MM_OWNER
601 /*
602  * Task p is exiting and it owned mm, lets find a new owner for it
603  */
604 static inline int
mm_need_new_owner(struct mm_struct * mm,struct task_struct * p)605 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
606 {
607 	/*
608 	 * If there are other users of the mm and the owner (us) is exiting
609 	 * we need to find a new owner to take on the responsibility.
610 	 */
611 	if (atomic_read(&mm->mm_users) <= 1)
612 		return 0;
613 	if (mm->owner != p)
614 		return 0;
615 	return 1;
616 }
617 
mm_update_next_owner(struct mm_struct * mm)618 void mm_update_next_owner(struct mm_struct *mm)
619 {
620 	struct task_struct *c, *g, *p = current;
621 
622 retry:
623 	if (!mm_need_new_owner(mm, p))
624 		return;
625 
626 	read_lock(&tasklist_lock);
627 	/*
628 	 * Search in the children
629 	 */
630 	list_for_each_entry(c, &p->children, sibling) {
631 		if (c->mm == mm)
632 			goto assign_new_owner;
633 	}
634 
635 	/*
636 	 * Search in the siblings
637 	 */
638 	list_for_each_entry(c, &p->parent->children, sibling) {
639 		if (c->mm == mm)
640 			goto assign_new_owner;
641 	}
642 
643 	/*
644 	 * Search through everything else. We should not get
645 	 * here often
646 	 */
647 	do_each_thread(g, c) {
648 		if (c->mm == mm)
649 			goto assign_new_owner;
650 	} while_each_thread(g, c);
651 
652 	read_unlock(&tasklist_lock);
653 	/*
654 	 * We found no owner yet mm_users > 1: this implies that we are
655 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
656 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
657 	 */
658 	mm->owner = NULL;
659 	return;
660 
661 assign_new_owner:
662 	BUG_ON(c == p);
663 	get_task_struct(c);
664 	/*
665 	 * The task_lock protects c->mm from changing.
666 	 * We always want mm->owner->mm == mm
667 	 */
668 	task_lock(c);
669 	/*
670 	 * Delay read_unlock() till we have the task_lock()
671 	 * to ensure that c does not slip away underneath us
672 	 */
673 	read_unlock(&tasklist_lock);
674 	if (c->mm != mm) {
675 		task_unlock(c);
676 		put_task_struct(c);
677 		goto retry;
678 	}
679 	mm->owner = c;
680 	task_unlock(c);
681 	put_task_struct(c);
682 }
683 #endif /* CONFIG_MM_OWNER */
684 
685 /*
686  * Turn us into a lazy TLB process if we
687  * aren't already..
688  */
exit_mm(struct task_struct * tsk)689 static void exit_mm(struct task_struct * tsk)
690 {
691 	struct mm_struct *mm = tsk->mm;
692 	struct core_state *core_state;
693 
694 	mm_release(tsk, mm);
695 	if (!mm)
696 		return;
697 	/*
698 	 * Serialize with any possible pending coredump.
699 	 * We must hold mmap_sem around checking core_state
700 	 * and clearing tsk->mm.  The core-inducing thread
701 	 * will increment ->nr_threads for each thread in the
702 	 * group with ->mm != NULL.
703 	 */
704 	down_read(&mm->mmap_sem);
705 	core_state = mm->core_state;
706 	if (core_state) {
707 		struct core_thread self;
708 		up_read(&mm->mmap_sem);
709 
710 		self.task = tsk;
711 		self.next = xchg(&core_state->dumper.next, &self);
712 		/*
713 		 * Implies mb(), the result of xchg() must be visible
714 		 * to core_state->dumper.
715 		 */
716 		if (atomic_dec_and_test(&core_state->nr_threads))
717 			complete(&core_state->startup);
718 
719 		for (;;) {
720 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
721 			if (!self.task) /* see coredump_finish() */
722 				break;
723 			schedule();
724 		}
725 		__set_task_state(tsk, TASK_RUNNING);
726 		down_read(&mm->mmap_sem);
727 	}
728 	atomic_inc(&mm->mm_count);
729 	BUG_ON(mm != tsk->active_mm);
730 	/* more a memory barrier than a real lock */
731 	task_lock(tsk);
732 	tsk->mm = NULL;
733 	up_read(&mm->mmap_sem);
734 	enter_lazy_tlb(mm, current);
735 	/* We don't want this task to be frozen prematurely */
736 	clear_freeze_flag(tsk);
737 	task_unlock(tsk);
738 	mm_update_next_owner(mm);
739 	mmput(mm);
740 }
741 
742 /*
743  * Return nonzero if @parent's children should reap themselves.
744  *
745  * Called with write_lock_irq(&tasklist_lock) held.
746  */
ignoring_children(struct task_struct * parent)747 static int ignoring_children(struct task_struct *parent)
748 {
749 	int ret;
750 	struct sighand_struct *psig = parent->sighand;
751 	unsigned long flags;
752 	spin_lock_irqsave(&psig->siglock, flags);
753 	ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
754 	       (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT));
755 	spin_unlock_irqrestore(&psig->siglock, flags);
756 	return ret;
757 }
758 
759 /*
760  * Detach all tasks we were using ptrace on.
761  * Any that need to be release_task'd are put on the @dead list.
762  *
763  * Called with write_lock(&tasklist_lock) held.
764  */
ptrace_exit(struct task_struct * parent,struct list_head * dead)765 static void ptrace_exit(struct task_struct *parent, struct list_head *dead)
766 {
767 	struct task_struct *p, *n;
768 	int ign = -1;
769 
770 	list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) {
771 		__ptrace_unlink(p);
772 
773 		if (p->exit_state != EXIT_ZOMBIE)
774 			continue;
775 
776 		/*
777 		 * If it's a zombie, our attachedness prevented normal
778 		 * parent notification or self-reaping.  Do notification
779 		 * now if it would have happened earlier.  If it should
780 		 * reap itself, add it to the @dead list.  We can't call
781 		 * release_task() here because we already hold tasklist_lock.
782 		 *
783 		 * If it's our own child, there is no notification to do.
784 		 * But if our normal children self-reap, then this child
785 		 * was prevented by ptrace and we must reap it now.
786 		 */
787 		if (!task_detached(p) && thread_group_empty(p)) {
788 			if (!same_thread_group(p->real_parent, parent))
789 				do_notify_parent(p, p->exit_signal);
790 			else {
791 				if (ign < 0)
792 					ign = ignoring_children(parent);
793 				if (ign)
794 					p->exit_signal = -1;
795 			}
796 		}
797 
798 		if (task_detached(p)) {
799 			/*
800 			 * Mark it as in the process of being reaped.
801 			 */
802 			p->exit_state = EXIT_DEAD;
803 			list_add(&p->ptrace_entry, dead);
804 		}
805 	}
806 }
807 
808 /*
809  * Finish up exit-time ptrace cleanup.
810  *
811  * Called without locks.
812  */
ptrace_exit_finish(struct task_struct * parent,struct list_head * dead)813 static void ptrace_exit_finish(struct task_struct *parent,
814 			       struct list_head *dead)
815 {
816 	struct task_struct *p, *n;
817 
818 	BUG_ON(!list_empty(&parent->ptraced));
819 
820 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
821 		list_del_init(&p->ptrace_entry);
822 		release_task(p);
823 	}
824 }
825 
reparent_thread(struct task_struct * p,struct task_struct * father)826 static void reparent_thread(struct task_struct *p, struct task_struct *father)
827 {
828 	if (p->pdeath_signal)
829 		/* We already hold the tasklist_lock here.  */
830 		group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
831 
832 	list_move_tail(&p->sibling, &p->real_parent->children);
833 
834 	/* If this is a threaded reparent there is no need to
835 	 * notify anyone anything has happened.
836 	 */
837 	if (same_thread_group(p->real_parent, father))
838 		return;
839 
840 	/* We don't want people slaying init.  */
841 	if (!task_detached(p))
842 		p->exit_signal = SIGCHLD;
843 
844 	/* If we'd notified the old parent about this child's death,
845 	 * also notify the new parent.
846 	 */
847 	if (!ptrace_reparented(p) &&
848 	    p->exit_state == EXIT_ZOMBIE &&
849 	    !task_detached(p) && thread_group_empty(p))
850 		do_notify_parent(p, p->exit_signal);
851 
852 	kill_orphaned_pgrp(p, father);
853 }
854 
855 /*
856  * When we die, we re-parent all our children.
857  * Try to give them to another thread in our thread
858  * group, and if no such member exists, give it to
859  * the child reaper process (ie "init") in our pid
860  * space.
861  */
find_new_reaper(struct task_struct * father)862 static struct task_struct *find_new_reaper(struct task_struct *father)
863 {
864 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
865 	struct task_struct *thread;
866 
867 	thread = father;
868 	while_each_thread(father, thread) {
869 		if (thread->flags & PF_EXITING)
870 			continue;
871 		if (unlikely(pid_ns->child_reaper == father))
872 			pid_ns->child_reaper = thread;
873 		return thread;
874 	}
875 
876 	if (unlikely(pid_ns->child_reaper == father)) {
877 		write_unlock_irq(&tasklist_lock);
878 		if (unlikely(pid_ns == &init_pid_ns))
879 			panic("Attempted to kill init!");
880 
881 		zap_pid_ns_processes(pid_ns);
882 		write_lock_irq(&tasklist_lock);
883 		/*
884 		 * We can not clear ->child_reaper or leave it alone.
885 		 * There may by stealth EXIT_DEAD tasks on ->children,
886 		 * forget_original_parent() must move them somewhere.
887 		 */
888 		pid_ns->child_reaper = init_pid_ns.child_reaper;
889 	}
890 
891 	return pid_ns->child_reaper;
892 }
893 
forget_original_parent(struct task_struct * father)894 static void forget_original_parent(struct task_struct *father)
895 {
896 	struct task_struct *p, *n, *reaper;
897 	LIST_HEAD(ptrace_dead);
898 
899 	write_lock_irq(&tasklist_lock);
900 	reaper = find_new_reaper(father);
901 	/*
902 	 * First clean up ptrace if we were using it.
903 	 */
904 	ptrace_exit(father, &ptrace_dead);
905 
906 	list_for_each_entry_safe(p, n, &father->children, sibling) {
907 		p->real_parent = reaper;
908 		if (p->parent == father) {
909 			BUG_ON(p->ptrace);
910 			p->parent = p->real_parent;
911 		}
912 		reparent_thread(p, father);
913 	}
914 
915 	write_unlock_irq(&tasklist_lock);
916 	BUG_ON(!list_empty(&father->children));
917 
918 	ptrace_exit_finish(father, &ptrace_dead);
919 }
920 
921 /*
922  * Send signals to all our closest relatives so that they know
923  * to properly mourn us..
924  */
exit_notify(struct task_struct * tsk,int group_dead)925 static void exit_notify(struct task_struct *tsk, int group_dead)
926 {
927 	int signal;
928 	void *cookie;
929 
930 	/*
931 	 * This does two things:
932 	 *
933   	 * A.  Make init inherit all the child processes
934 	 * B.  Check to see if any process groups have become orphaned
935 	 *	as a result of our exiting, and if they have any stopped
936 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
937 	 */
938 	forget_original_parent(tsk);
939 	exit_task_namespaces(tsk);
940 
941 	write_lock_irq(&tasklist_lock);
942 	if (group_dead)
943 		kill_orphaned_pgrp(tsk->group_leader, NULL);
944 
945 	/* Let father know we died
946 	 *
947 	 * Thread signals are configurable, but you aren't going to use
948 	 * that to send signals to arbitary processes.
949 	 * That stops right now.
950 	 *
951 	 * If the parent exec id doesn't match the exec id we saved
952 	 * when we started then we know the parent has changed security
953 	 * domain.
954 	 *
955 	 * If our self_exec id doesn't match our parent_exec_id then
956 	 * we have changed execution domain as these two values started
957 	 * the same after a fork.
958 	 */
959 	if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
960 	    (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
961 	     tsk->self_exec_id != tsk->parent_exec_id) &&
962 	    !capable(CAP_KILL))
963 		tsk->exit_signal = SIGCHLD;
964 
965 	signal = tracehook_notify_death(tsk, &cookie, group_dead);
966 	if (signal >= 0)
967 		signal = do_notify_parent(tsk, signal);
968 
969 	tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
970 
971 	/* mt-exec, de_thread() is waiting for us */
972 	if (thread_group_leader(tsk) &&
973 	    tsk->signal->group_exit_task &&
974 	    tsk->signal->notify_count < 0)
975 		wake_up_process(tsk->signal->group_exit_task);
976 
977 	write_unlock_irq(&tasklist_lock);
978 
979 	tracehook_report_death(tsk, signal, cookie, group_dead);
980 
981 	/* If the process is dead, release it - nobody will wait for it */
982 	if (signal == DEATH_REAP)
983 		release_task(tsk);
984 }
985 
986 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)987 static void check_stack_usage(void)
988 {
989 	static DEFINE_SPINLOCK(low_water_lock);
990 	static int lowest_to_date = THREAD_SIZE;
991 	unsigned long *n = end_of_stack(current);
992 	unsigned long free;
993 
994 	while (*n == 0)
995 		n++;
996 	free = (unsigned long)n - (unsigned long)end_of_stack(current);
997 
998 	if (free >= lowest_to_date)
999 		return;
1000 
1001 	spin_lock(&low_water_lock);
1002 	if (free < lowest_to_date) {
1003 		printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
1004 				"left\n",
1005 				current->comm, free);
1006 		lowest_to_date = free;
1007 	}
1008 	spin_unlock(&low_water_lock);
1009 }
1010 #else
check_stack_usage(void)1011 static inline void check_stack_usage(void) {}
1012 #endif
1013 
do_exit(long code)1014 NORET_TYPE void do_exit(long code)
1015 {
1016 	struct task_struct *tsk = current;
1017 	int group_dead;
1018 
1019 	profile_task_exit(tsk);
1020 
1021 	WARN_ON(atomic_read(&tsk->fs_excl));
1022 
1023 	if (unlikely(in_interrupt()))
1024 		panic("Aiee, killing interrupt handler!");
1025 	if (unlikely(!tsk->pid))
1026 		panic("Attempted to kill the idle task!");
1027 
1028 	tracehook_report_exit(&code);
1029 
1030 	/*
1031 	 * We're taking recursive faults here in do_exit. Safest is to just
1032 	 * leave this task alone and wait for reboot.
1033 	 */
1034 	if (unlikely(tsk->flags & PF_EXITING)) {
1035 		printk(KERN_ALERT
1036 			"Fixing recursive fault but reboot is needed!\n");
1037 		/*
1038 		 * We can do this unlocked here. The futex code uses
1039 		 * this flag just to verify whether the pi state
1040 		 * cleanup has been done or not. In the worst case it
1041 		 * loops once more. We pretend that the cleanup was
1042 		 * done as there is no way to return. Either the
1043 		 * OWNER_DIED bit is set by now or we push the blocked
1044 		 * task into the wait for ever nirwana as well.
1045 		 */
1046 		tsk->flags |= PF_EXITPIDONE;
1047 		set_current_state(TASK_UNINTERRUPTIBLE);
1048 		schedule();
1049 	}
1050 
1051 	exit_signals(tsk);  /* sets PF_EXITING */
1052 	/*
1053 	 * tsk->flags are checked in the futex code to protect against
1054 	 * an exiting task cleaning up the robust pi futexes.
1055 	 */
1056 	smp_mb();
1057 	spin_unlock_wait(&tsk->pi_lock);
1058 
1059 	if (unlikely(in_atomic()))
1060 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1061 				current->comm, task_pid_nr(current),
1062 				preempt_count());
1063 
1064 	acct_update_integrals(tsk);
1065 
1066 	group_dead = atomic_dec_and_test(&tsk->signal->live);
1067 	if (group_dead) {
1068 		hrtimer_cancel(&tsk->signal->real_timer);
1069 		exit_itimers(tsk->signal);
1070 	}
1071 	acct_collect(code, group_dead);
1072 	if (group_dead)
1073 		tty_audit_exit();
1074 	if (unlikely(tsk->audit_context))
1075 		audit_free(tsk);
1076 
1077 	tsk->exit_code = code;
1078 	taskstats_exit(tsk, group_dead);
1079 
1080 	exit_mm(tsk);
1081 
1082 	if (group_dead)
1083 		acct_process();
1084 	trace_sched_process_exit(tsk);
1085 
1086 	exit_sem(tsk);
1087 	exit_files(tsk);
1088 	exit_fs(tsk);
1089 	check_stack_usage();
1090 	exit_thread();
1091 	cgroup_exit(tsk, 1);
1092 
1093 	if (group_dead && tsk->signal->leader)
1094 		disassociate_ctty(1);
1095 
1096 	module_put(task_thread_info(tsk)->exec_domain->module);
1097 	if (tsk->binfmt)
1098 		module_put(tsk->binfmt->module);
1099 
1100 	proc_exit_connector(tsk);
1101 	exit_notify(tsk, group_dead);
1102 #ifdef CONFIG_NUMA
1103 	mpol_put(tsk->mempolicy);
1104 	tsk->mempolicy = NULL;
1105 #endif
1106 #ifdef CONFIG_FUTEX
1107 	/*
1108 	 * This must happen late, after the PID is not
1109 	 * hashed anymore:
1110 	 */
1111 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1112 		exit_pi_state_list(tsk);
1113 	if (unlikely(current->pi_state_cache))
1114 		kfree(current->pi_state_cache);
1115 #endif
1116 	/*
1117 	 * Make sure we are holding no locks:
1118 	 */
1119 	debug_check_no_locks_held(tsk);
1120 	/*
1121 	 * We can do this unlocked here. The futex code uses this flag
1122 	 * just to verify whether the pi state cleanup has been done
1123 	 * or not. In the worst case it loops once more.
1124 	 */
1125 	tsk->flags |= PF_EXITPIDONE;
1126 
1127 	if (tsk->io_context)
1128 		exit_io_context();
1129 
1130 	if (tsk->splice_pipe)
1131 		__free_pipe_info(tsk->splice_pipe);
1132 
1133 	preempt_disable();
1134 	/* causes final put_task_struct in finish_task_switch(). */
1135 	tsk->state = TASK_DEAD;
1136 
1137 #ifdef CONFIG_QEMU_TRACE
1138 	/* Emit a trace record for the exit() call. */
1139 	qemu_trace_exit(code);
1140 #endif
1141 
1142 	schedule();
1143 	BUG();
1144 	/* Avoid "noreturn function does return".  */
1145 	for (;;)
1146 		cpu_relax();	/* For when BUG is null */
1147 }
1148 
1149 EXPORT_SYMBOL_GPL(do_exit);
1150 
complete_and_exit(struct completion * comp,long code)1151 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1152 {
1153 	if (comp)
1154 		complete(comp);
1155 
1156 	do_exit(code);
1157 }
1158 
1159 EXPORT_SYMBOL(complete_and_exit);
1160 
SYSCALL_DEFINE1(exit,int,error_code)1161 SYSCALL_DEFINE1(exit, int, error_code)
1162 {
1163 	do_exit((error_code&0xff)<<8);
1164 }
1165 
1166 /*
1167  * Take down every thread in the group.  This is called by fatal signals
1168  * as well as by sys_exit_group (below).
1169  */
1170 NORET_TYPE void
do_group_exit(int exit_code)1171 do_group_exit(int exit_code)
1172 {
1173 	struct signal_struct *sig = current->signal;
1174 
1175 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1176 
1177 	if (signal_group_exit(sig))
1178 		exit_code = sig->group_exit_code;
1179 	else if (!thread_group_empty(current)) {
1180 		struct sighand_struct *const sighand = current->sighand;
1181 		spin_lock_irq(&sighand->siglock);
1182 		if (signal_group_exit(sig))
1183 			/* Another thread got here before we took the lock.  */
1184 			exit_code = sig->group_exit_code;
1185 		else {
1186 			sig->group_exit_code = exit_code;
1187 			sig->flags = SIGNAL_GROUP_EXIT;
1188 			zap_other_threads(current);
1189 		}
1190 		spin_unlock_irq(&sighand->siglock);
1191 	}
1192 
1193 	do_exit(exit_code);
1194 	/* NOTREACHED */
1195 }
1196 
1197 /*
1198  * this kills every thread in the thread group. Note that any externally
1199  * wait4()-ing process will get the correct exit code - even if this
1200  * thread is not the thread group leader.
1201  */
SYSCALL_DEFINE1(exit_group,int,error_code)1202 SYSCALL_DEFINE1(exit_group, int, error_code)
1203 {
1204 	do_group_exit((error_code & 0xff) << 8);
1205 	/* NOTREACHED */
1206 	return 0;
1207 }
1208 
task_pid_type(struct task_struct * task,enum pid_type type)1209 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1210 {
1211 	struct pid *pid = NULL;
1212 	if (type == PIDTYPE_PID)
1213 		pid = task->pids[type].pid;
1214 	else if (type < PIDTYPE_MAX)
1215 		pid = task->group_leader->pids[type].pid;
1216 	return pid;
1217 }
1218 
eligible_child(enum pid_type type,struct pid * pid,int options,struct task_struct * p)1219 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1220 			  struct task_struct *p)
1221 {
1222 	int err;
1223 
1224 	if (type < PIDTYPE_MAX) {
1225 		if (task_pid_type(p, type) != pid)
1226 			return 0;
1227 	}
1228 
1229 	/* Wait for all children (clone and not) if __WALL is set;
1230 	 * otherwise, wait for clone children *only* if __WCLONE is
1231 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1232 	 * A "clone" child here is one that reports to its parent
1233 	 * using a signal other than SIGCHLD.) */
1234 	if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1235 	    && !(options & __WALL))
1236 		return 0;
1237 
1238 	err = security_task_wait(p);
1239 	if (err)
1240 		return err;
1241 
1242 	return 1;
1243 }
1244 
wait_noreap_copyout(struct task_struct * p,pid_t pid,uid_t uid,int why,int status,struct siginfo __user * infop,struct rusage __user * rusagep)1245 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1246 			       int why, int status,
1247 			       struct siginfo __user *infop,
1248 			       struct rusage __user *rusagep)
1249 {
1250 	int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1251 
1252 	put_task_struct(p);
1253 	if (!retval)
1254 		retval = put_user(SIGCHLD, &infop->si_signo);
1255 	if (!retval)
1256 		retval = put_user(0, &infop->si_errno);
1257 	if (!retval)
1258 		retval = put_user((short)why, &infop->si_code);
1259 	if (!retval)
1260 		retval = put_user(pid, &infop->si_pid);
1261 	if (!retval)
1262 		retval = put_user(uid, &infop->si_uid);
1263 	if (!retval)
1264 		retval = put_user(status, &infop->si_status);
1265 	if (!retval)
1266 		retval = pid;
1267 	return retval;
1268 }
1269 
1270 /*
1271  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1272  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1273  * the lock and this task is uninteresting.  If we return nonzero, we have
1274  * released the lock and the system call should return.
1275  */
wait_task_zombie(struct task_struct * p,int options,struct siginfo __user * infop,int __user * stat_addr,struct rusage __user * ru)1276 static int wait_task_zombie(struct task_struct *p, int options,
1277 			    struct siginfo __user *infop,
1278 			    int __user *stat_addr, struct rusage __user *ru)
1279 {
1280 	unsigned long state;
1281 	int retval, status, traced;
1282 	pid_t pid = task_pid_vnr(p);
1283 	uid_t uid = __task_cred(p)->uid;
1284 
1285 	if (!likely(options & WEXITED))
1286 		return 0;
1287 
1288 	if (unlikely(options & WNOWAIT)) {
1289 		int exit_code = p->exit_code;
1290 		int why, status;
1291 
1292 		get_task_struct(p);
1293 		read_unlock(&tasklist_lock);
1294 		if ((exit_code & 0x7f) == 0) {
1295 			why = CLD_EXITED;
1296 			status = exit_code >> 8;
1297 		} else {
1298 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1299 			status = exit_code & 0x7f;
1300 		}
1301 		return wait_noreap_copyout(p, pid, uid, why,
1302 					   status, infop, ru);
1303 	}
1304 
1305 	/*
1306 	 * Try to move the task's state to DEAD
1307 	 * only one thread is allowed to do this:
1308 	 */
1309 	state = xchg(&p->exit_state, EXIT_DEAD);
1310 	if (state != EXIT_ZOMBIE) {
1311 		BUG_ON(state != EXIT_DEAD);
1312 		return 0;
1313 	}
1314 
1315 	traced = ptrace_reparented(p);
1316 
1317 	if (likely(!traced)) {
1318 		struct signal_struct *psig;
1319 		struct signal_struct *sig;
1320 		struct task_cputime cputime;
1321 
1322 		/*
1323 		 * The resource counters for the group leader are in its
1324 		 * own task_struct.  Those for dead threads in the group
1325 		 * are in its signal_struct, as are those for the child
1326 		 * processes it has previously reaped.  All these
1327 		 * accumulate in the parent's signal_struct c* fields.
1328 		 *
1329 		 * We don't bother to take a lock here to protect these
1330 		 * p->signal fields, because they are only touched by
1331 		 * __exit_signal, which runs with tasklist_lock
1332 		 * write-locked anyway, and so is excluded here.  We do
1333 		 * need to protect the access to p->parent->signal fields,
1334 		 * as other threads in the parent group can be right
1335 		 * here reaping other children at the same time.
1336 		 *
1337 		 * We use thread_group_cputime() to get times for the thread
1338 		 * group, which consolidates times for all threads in the
1339 		 * group including the group leader.
1340 		 */
1341 		thread_group_cputime(p, &cputime);
1342 		spin_lock_irq(&p->parent->sighand->siglock);
1343 		psig = p->parent->signal;
1344 		sig = p->signal;
1345 		psig->cutime =
1346 			cputime_add(psig->cutime,
1347 			cputime_add(cputime.utime,
1348 				    sig->cutime));
1349 		psig->cstime =
1350 			cputime_add(psig->cstime,
1351 			cputime_add(cputime.stime,
1352 				    sig->cstime));
1353 		psig->cgtime =
1354 			cputime_add(psig->cgtime,
1355 			cputime_add(p->gtime,
1356 			cputime_add(sig->gtime,
1357 				    sig->cgtime)));
1358 		psig->cmin_flt +=
1359 			p->min_flt + sig->min_flt + sig->cmin_flt;
1360 		psig->cmaj_flt +=
1361 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1362 		psig->cnvcsw +=
1363 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1364 		psig->cnivcsw +=
1365 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1366 		psig->cinblock +=
1367 			task_io_get_inblock(p) +
1368 			sig->inblock + sig->cinblock;
1369 		psig->coublock +=
1370 			task_io_get_oublock(p) +
1371 			sig->oublock + sig->coublock;
1372 		task_io_accounting_add(&psig->ioac, &p->ioac);
1373 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1374 		spin_unlock_irq(&p->parent->sighand->siglock);
1375 	}
1376 
1377 	/*
1378 	 * Now we are sure this task is interesting, and no other
1379 	 * thread can reap it because we set its state to EXIT_DEAD.
1380 	 */
1381 	read_unlock(&tasklist_lock);
1382 
1383 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1384 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1385 		? p->signal->group_exit_code : p->exit_code;
1386 	if (!retval && stat_addr)
1387 		retval = put_user(status, stat_addr);
1388 	if (!retval && infop)
1389 		retval = put_user(SIGCHLD, &infop->si_signo);
1390 	if (!retval && infop)
1391 		retval = put_user(0, &infop->si_errno);
1392 	if (!retval && infop) {
1393 		int why;
1394 
1395 		if ((status & 0x7f) == 0) {
1396 			why = CLD_EXITED;
1397 			status >>= 8;
1398 		} else {
1399 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1400 			status &= 0x7f;
1401 		}
1402 		retval = put_user((short)why, &infop->si_code);
1403 		if (!retval)
1404 			retval = put_user(status, &infop->si_status);
1405 	}
1406 	if (!retval && infop)
1407 		retval = put_user(pid, &infop->si_pid);
1408 	if (!retval && infop)
1409 		retval = put_user(uid, &infop->si_uid);
1410 	if (!retval)
1411 		retval = pid;
1412 
1413 	if (traced) {
1414 		write_lock_irq(&tasklist_lock);
1415 		/* We dropped tasklist, ptracer could die and untrace */
1416 		ptrace_unlink(p);
1417 		/*
1418 		 * If this is not a detached task, notify the parent.
1419 		 * If it's still not detached after that, don't release
1420 		 * it now.
1421 		 */
1422 		if (!task_detached(p)) {
1423 			do_notify_parent(p, p->exit_signal);
1424 			if (!task_detached(p)) {
1425 				p->exit_state = EXIT_ZOMBIE;
1426 				p = NULL;
1427 			}
1428 		}
1429 		write_unlock_irq(&tasklist_lock);
1430 	}
1431 	if (p != NULL)
1432 		release_task(p);
1433 
1434 	return retval;
1435 }
1436 
1437 /*
1438  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1439  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1440  * the lock and this task is uninteresting.  If we return nonzero, we have
1441  * released the lock and the system call should return.
1442  */
wait_task_stopped(int ptrace,struct task_struct * p,int options,struct siginfo __user * infop,int __user * stat_addr,struct rusage __user * ru)1443 static int wait_task_stopped(int ptrace, struct task_struct *p,
1444 			     int options, struct siginfo __user *infop,
1445 			     int __user *stat_addr, struct rusage __user *ru)
1446 {
1447 	int retval, exit_code, why;
1448 	uid_t uid = 0; /* unneeded, required by compiler */
1449 	pid_t pid;
1450 
1451 	if (!(options & WUNTRACED))
1452 		return 0;
1453 
1454 	exit_code = 0;
1455 	spin_lock_irq(&p->sighand->siglock);
1456 
1457 	if (unlikely(!task_is_stopped_or_traced(p)))
1458 		goto unlock_sig;
1459 
1460 	if (!ptrace && p->signal->group_stop_count > 0)
1461 		/*
1462 		 * A group stop is in progress and this is the group leader.
1463 		 * We won't report until all threads have stopped.
1464 		 */
1465 		goto unlock_sig;
1466 
1467 	exit_code = p->exit_code;
1468 	if (!exit_code)
1469 		goto unlock_sig;
1470 
1471 	if (!unlikely(options & WNOWAIT))
1472 		p->exit_code = 0;
1473 
1474 	/* don't need the RCU readlock here as we're holding a spinlock */
1475 	uid = __task_cred(p)->uid;
1476 unlock_sig:
1477 	spin_unlock_irq(&p->sighand->siglock);
1478 	if (!exit_code)
1479 		return 0;
1480 
1481 	/*
1482 	 * Now we are pretty sure this task is interesting.
1483 	 * Make sure it doesn't get reaped out from under us while we
1484 	 * give up the lock and then examine it below.  We don't want to
1485 	 * keep holding onto the tasklist_lock while we call getrusage and
1486 	 * possibly take page faults for user memory.
1487 	 */
1488 	get_task_struct(p);
1489 	pid = task_pid_vnr(p);
1490 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1491 	read_unlock(&tasklist_lock);
1492 
1493 	if (unlikely(options & WNOWAIT))
1494 		return wait_noreap_copyout(p, pid, uid,
1495 					   why, exit_code,
1496 					   infop, ru);
1497 
1498 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1499 	if (!retval && stat_addr)
1500 		retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1501 	if (!retval && infop)
1502 		retval = put_user(SIGCHLD, &infop->si_signo);
1503 	if (!retval && infop)
1504 		retval = put_user(0, &infop->si_errno);
1505 	if (!retval && infop)
1506 		retval = put_user((short)why, &infop->si_code);
1507 	if (!retval && infop)
1508 		retval = put_user(exit_code, &infop->si_status);
1509 	if (!retval && infop)
1510 		retval = put_user(pid, &infop->si_pid);
1511 	if (!retval && infop)
1512 		retval = put_user(uid, &infop->si_uid);
1513 	if (!retval)
1514 		retval = pid;
1515 	put_task_struct(p);
1516 
1517 	BUG_ON(!retval);
1518 	return retval;
1519 }
1520 
1521 /*
1522  * Handle do_wait work for one task in a live, non-stopped state.
1523  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1524  * the lock and this task is uninteresting.  If we return nonzero, we have
1525  * released the lock and the system call should return.
1526  */
wait_task_continued(struct task_struct * p,int options,struct siginfo __user * infop,int __user * stat_addr,struct rusage __user * ru)1527 static int wait_task_continued(struct task_struct *p, int options,
1528 			       struct siginfo __user *infop,
1529 			       int __user *stat_addr, struct rusage __user *ru)
1530 {
1531 	int retval;
1532 	pid_t pid;
1533 	uid_t uid;
1534 
1535 	if (!unlikely(options & WCONTINUED))
1536 		return 0;
1537 
1538 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1539 		return 0;
1540 
1541 	spin_lock_irq(&p->sighand->siglock);
1542 	/* Re-check with the lock held.  */
1543 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1544 		spin_unlock_irq(&p->sighand->siglock);
1545 		return 0;
1546 	}
1547 	if (!unlikely(options & WNOWAIT))
1548 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1549 	uid = __task_cred(p)->uid;
1550 	spin_unlock_irq(&p->sighand->siglock);
1551 
1552 	pid = task_pid_vnr(p);
1553 	get_task_struct(p);
1554 	read_unlock(&tasklist_lock);
1555 
1556 	if (!infop) {
1557 		retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1558 		put_task_struct(p);
1559 		if (!retval && stat_addr)
1560 			retval = put_user(0xffff, stat_addr);
1561 		if (!retval)
1562 			retval = pid;
1563 	} else {
1564 		retval = wait_noreap_copyout(p, pid, uid,
1565 					     CLD_CONTINUED, SIGCONT,
1566 					     infop, ru);
1567 		BUG_ON(retval == 0);
1568 	}
1569 
1570 	return retval;
1571 }
1572 
1573 /*
1574  * Consider @p for a wait by @parent.
1575  *
1576  * -ECHILD should be in *@notask_error before the first call.
1577  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1578  * Returns zero if the search for a child should continue;
1579  * then *@notask_error is 0 if @p is an eligible child,
1580  * or another error from security_task_wait(), or still -ECHILD.
1581  */
wait_consider_task(struct task_struct * parent,int ptrace,struct task_struct * p,int * notask_error,enum pid_type type,struct pid * pid,int options,struct siginfo __user * infop,int __user * stat_addr,struct rusage __user * ru)1582 static int wait_consider_task(struct task_struct *parent, int ptrace,
1583 			      struct task_struct *p, int *notask_error,
1584 			      enum pid_type type, struct pid *pid, int options,
1585 			      struct siginfo __user *infop,
1586 			      int __user *stat_addr, struct rusage __user *ru)
1587 {
1588 	int ret = eligible_child(type, pid, options, p);
1589 	if (!ret)
1590 		return ret;
1591 
1592 	if (unlikely(ret < 0)) {
1593 		/*
1594 		 * If we have not yet seen any eligible child,
1595 		 * then let this error code replace -ECHILD.
1596 		 * A permission error will give the user a clue
1597 		 * to look for security policy problems, rather
1598 		 * than for mysterious wait bugs.
1599 		 */
1600 		if (*notask_error)
1601 			*notask_error = ret;
1602 	}
1603 
1604 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1605 		/*
1606 		 * This child is hidden by ptrace.
1607 		 * We aren't allowed to see it now, but eventually we will.
1608 		 */
1609 		*notask_error = 0;
1610 		return 0;
1611 	}
1612 
1613 	if (p->exit_state == EXIT_DEAD)
1614 		return 0;
1615 
1616 	/*
1617 	 * We don't reap group leaders with subthreads.
1618 	 */
1619 	if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1620 		return wait_task_zombie(p, options, infop, stat_addr, ru);
1621 
1622 	/*
1623 	 * It's stopped or running now, so it might
1624 	 * later continue, exit, or stop again.
1625 	 */
1626 	*notask_error = 0;
1627 
1628 	if (task_is_stopped_or_traced(p))
1629 		return wait_task_stopped(ptrace, p, options,
1630 					 infop, stat_addr, ru);
1631 
1632 	return wait_task_continued(p, options, infop, stat_addr, ru);
1633 }
1634 
1635 /*
1636  * Do the work of do_wait() for one thread in the group, @tsk.
1637  *
1638  * -ECHILD should be in *@notask_error before the first call.
1639  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1640  * Returns zero if the search for a child should continue; then
1641  * *@notask_error is 0 if there were any eligible children,
1642  * or another error from security_task_wait(), or still -ECHILD.
1643  */
do_wait_thread(struct task_struct * tsk,int * notask_error,enum pid_type type,struct pid * pid,int options,struct siginfo __user * infop,int __user * stat_addr,struct rusage __user * ru)1644 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1645 			  enum pid_type type, struct pid *pid, int options,
1646 			  struct siginfo __user *infop, int __user *stat_addr,
1647 			  struct rusage __user *ru)
1648 {
1649 	struct task_struct *p;
1650 
1651 	list_for_each_entry(p, &tsk->children, sibling) {
1652 		/*
1653 		 * Do not consider detached threads.
1654 		 */
1655 		if (!task_detached(p)) {
1656 			int ret = wait_consider_task(tsk, 0, p, notask_error,
1657 						     type, pid, options,
1658 						     infop, stat_addr, ru);
1659 			if (ret)
1660 				return ret;
1661 		}
1662 	}
1663 
1664 	return 0;
1665 }
1666 
ptrace_do_wait(struct task_struct * tsk,int * notask_error,enum pid_type type,struct pid * pid,int options,struct siginfo __user * infop,int __user * stat_addr,struct rusage __user * ru)1667 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1668 			  enum pid_type type, struct pid *pid, int options,
1669 			  struct siginfo __user *infop, int __user *stat_addr,
1670 			  struct rusage __user *ru)
1671 {
1672 	struct task_struct *p;
1673 
1674 	/*
1675 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1676 	 */
1677 	options |= WUNTRACED;
1678 
1679 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1680 		int ret = wait_consider_task(tsk, 1, p, notask_error,
1681 					     type, pid, options,
1682 					     infop, stat_addr, ru);
1683 		if (ret)
1684 			return ret;
1685 	}
1686 
1687 	return 0;
1688 }
1689 
do_wait(enum pid_type type,struct pid * pid,int options,struct siginfo __user * infop,int __user * stat_addr,struct rusage __user * ru)1690 static long do_wait(enum pid_type type, struct pid *pid, int options,
1691 		    struct siginfo __user *infop, int __user *stat_addr,
1692 		    struct rusage __user *ru)
1693 {
1694 	DECLARE_WAITQUEUE(wait, current);
1695 	struct task_struct *tsk;
1696 	int retval;
1697 
1698 	trace_sched_process_wait(pid);
1699 
1700 	add_wait_queue(&current->signal->wait_chldexit,&wait);
1701 repeat:
1702 	/*
1703 	 * If there is nothing that can match our critiera just get out.
1704 	 * We will clear @retval to zero if we see any child that might later
1705 	 * match our criteria, even if we are not able to reap it yet.
1706 	 */
1707 	retval = -ECHILD;
1708 	if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1709 		goto end;
1710 
1711 	current->state = TASK_INTERRUPTIBLE;
1712 	read_lock(&tasklist_lock);
1713 	tsk = current;
1714 	do {
1715 		int tsk_result = do_wait_thread(tsk, &retval,
1716 						type, pid, options,
1717 						infop, stat_addr, ru);
1718 		if (!tsk_result)
1719 			tsk_result = ptrace_do_wait(tsk, &retval,
1720 						    type, pid, options,
1721 						    infop, stat_addr, ru);
1722 		if (tsk_result) {
1723 			/*
1724 			 * tasklist_lock is unlocked and we have a final result.
1725 			 */
1726 			retval = tsk_result;
1727 			goto end;
1728 		}
1729 
1730 		if (options & __WNOTHREAD)
1731 			break;
1732 		tsk = next_thread(tsk);
1733 		BUG_ON(tsk->signal != current->signal);
1734 	} while (tsk != current);
1735 	read_unlock(&tasklist_lock);
1736 
1737 	if (!retval && !(options & WNOHANG)) {
1738 		retval = -ERESTARTSYS;
1739 		if (!signal_pending(current)) {
1740 			schedule();
1741 			goto repeat;
1742 		}
1743 	}
1744 
1745 end:
1746 	current->state = TASK_RUNNING;
1747 	remove_wait_queue(&current->signal->wait_chldexit,&wait);
1748 	if (infop) {
1749 		if (retval > 0)
1750 			retval = 0;
1751 		else {
1752 			/*
1753 			 * For a WNOHANG return, clear out all the fields
1754 			 * we would set so the user can easily tell the
1755 			 * difference.
1756 			 */
1757 			if (!retval)
1758 				retval = put_user(0, &infop->si_signo);
1759 			if (!retval)
1760 				retval = put_user(0, &infop->si_errno);
1761 			if (!retval)
1762 				retval = put_user(0, &infop->si_code);
1763 			if (!retval)
1764 				retval = put_user(0, &infop->si_pid);
1765 			if (!retval)
1766 				retval = put_user(0, &infop->si_uid);
1767 			if (!retval)
1768 				retval = put_user(0, &infop->si_status);
1769 		}
1770 	}
1771 	return retval;
1772 }
1773 
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1774 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1775 		infop, int, options, struct rusage __user *, ru)
1776 {
1777 	struct pid *pid = NULL;
1778 	enum pid_type type;
1779 	long ret;
1780 
1781 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1782 		return -EINVAL;
1783 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1784 		return -EINVAL;
1785 
1786 	switch (which) {
1787 	case P_ALL:
1788 		type = PIDTYPE_MAX;
1789 		break;
1790 	case P_PID:
1791 		type = PIDTYPE_PID;
1792 		if (upid <= 0)
1793 			return -EINVAL;
1794 		break;
1795 	case P_PGID:
1796 		type = PIDTYPE_PGID;
1797 		if (upid <= 0)
1798 			return -EINVAL;
1799 		break;
1800 	default:
1801 		return -EINVAL;
1802 	}
1803 
1804 	if (type < PIDTYPE_MAX)
1805 		pid = find_get_pid(upid);
1806 	ret = do_wait(type, pid, options, infop, NULL, ru);
1807 	put_pid(pid);
1808 
1809 	/* avoid REGPARM breakage on x86: */
1810 	asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1811 	return ret;
1812 }
1813 
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1814 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1815 		int, options, struct rusage __user *, ru)
1816 {
1817 	struct pid *pid = NULL;
1818 	enum pid_type type;
1819 	long ret;
1820 
1821 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1822 			__WNOTHREAD|__WCLONE|__WALL))
1823 		return -EINVAL;
1824 
1825 	if (upid == -1)
1826 		type = PIDTYPE_MAX;
1827 	else if (upid < 0) {
1828 		type = PIDTYPE_PGID;
1829 		pid = find_get_pid(-upid);
1830 	} else if (upid == 0) {
1831 		type = PIDTYPE_PGID;
1832 		pid = get_pid(task_pgrp(current));
1833 	} else /* upid > 0 */ {
1834 		type = PIDTYPE_PID;
1835 		pid = find_get_pid(upid);
1836 	}
1837 
1838 	ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1839 	put_pid(pid);
1840 
1841 	/* avoid REGPARM breakage on x86: */
1842 	asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1843 	return ret;
1844 }
1845 
1846 #ifdef __ARCH_WANT_SYS_WAITPID
1847 
1848 /*
1849  * sys_waitpid() remains for compatibility. waitpid() should be
1850  * implemented by calling sys_wait4() from libc.a.
1851  */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1852 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1853 {
1854 	return sys_wait4(pid, stat_addr, options, NULL);
1855 }
1856 
1857 #endif
1858