• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * sched_clock for unstable cpu clocks
3  *
4  *  Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
5  *
6  *  Updates and enhancements:
7  *    Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
8  *
9  * Based on code by:
10  *   Ingo Molnar <mingo@redhat.com>
11  *   Guillaume Chazarain <guichaz@gmail.com>
12  *
13  * Create a semi stable clock from a mixture of other events, including:
14  *  - gtod
15  *  - sched_clock()
16  *  - explicit idle events
17  *
18  * We use gtod as base and the unstable clock deltas. The deltas are filtered,
19  * making it monotonic and keeping it within an expected window.
20  *
21  * Furthermore, explicit sleep and wakeup hooks allow us to account for time
22  * that is otherwise invisible (TSC gets stopped).
23  *
24  * The clock: sched_clock_cpu() is monotonic per cpu, and should be somewhat
25  * consistent between cpus (never more than 2 jiffies difference).
26  */
27 #include <linux/sched.h>
28 #include <linux/percpu.h>
29 #include <linux/spinlock.h>
30 #include <linux/ktime.h>
31 #include <linux/module.h>
32 
33 /*
34  * Scheduler clock - returns current time in nanosec units.
35  * This is default implementation.
36  * Architectures and sub-architectures can override this.
37  */
sched_clock(void)38 unsigned long long __attribute__((weak)) sched_clock(void)
39 {
40 	return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
41 }
42 
43 static __read_mostly int sched_clock_running;
44 
45 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
46 
47 struct sched_clock_data {
48 	/*
49 	 * Raw spinlock - this is a special case: this might be called
50 	 * from within instrumentation code so we dont want to do any
51 	 * instrumentation ourselves.
52 	 */
53 	raw_spinlock_t		lock;
54 
55 	u64			tick_raw;
56 	u64			tick_gtod;
57 	u64			clock;
58 };
59 
60 static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
61 
this_scd(void)62 static inline struct sched_clock_data *this_scd(void)
63 {
64 	return &__get_cpu_var(sched_clock_data);
65 }
66 
cpu_sdc(int cpu)67 static inline struct sched_clock_data *cpu_sdc(int cpu)
68 {
69 	return &per_cpu(sched_clock_data, cpu);
70 }
71 
sched_clock_init(void)72 void sched_clock_init(void)
73 {
74 	u64 ktime_now = ktime_to_ns(ktime_get());
75 	int cpu;
76 
77 	for_each_possible_cpu(cpu) {
78 		struct sched_clock_data *scd = cpu_sdc(cpu);
79 
80 		scd->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
81 		scd->tick_raw = 0;
82 		scd->tick_gtod = ktime_now;
83 		scd->clock = ktime_now;
84 	}
85 
86 	sched_clock_running = 1;
87 }
88 
89 /*
90  * min,max except they take wrapping into account
91  */
92 
wrap_min(u64 x,u64 y)93 static inline u64 wrap_min(u64 x, u64 y)
94 {
95 	return (s64)(x - y) < 0 ? x : y;
96 }
97 
wrap_max(u64 x,u64 y)98 static inline u64 wrap_max(u64 x, u64 y)
99 {
100 	return (s64)(x - y) > 0 ? x : y;
101 }
102 
103 /*
104  * update the percpu scd from the raw @now value
105  *
106  *  - filter out backward motion
107  *  - use the GTOD tick value to create a window to filter crazy TSC values
108  */
__update_sched_clock(struct sched_clock_data * scd,u64 now)109 static u64 __update_sched_clock(struct sched_clock_data *scd, u64 now)
110 {
111 	s64 delta = now - scd->tick_raw;
112 	u64 clock, min_clock, max_clock;
113 
114 	WARN_ON_ONCE(!irqs_disabled());
115 
116 	if (unlikely(delta < 0))
117 		delta = 0;
118 
119 	/*
120 	 * scd->clock = clamp(scd->tick_gtod + delta,
121 	 * 		      max(scd->tick_gtod, scd->clock),
122 	 * 		      scd->tick_gtod + TICK_NSEC);
123 	 */
124 
125 	clock = scd->tick_gtod + delta;
126 	min_clock = wrap_max(scd->tick_gtod, scd->clock);
127 	max_clock = wrap_max(scd->clock, scd->tick_gtod + TICK_NSEC);
128 
129 	clock = wrap_max(clock, min_clock);
130 	clock = wrap_min(clock, max_clock);
131 
132 	scd->clock = clock;
133 
134 	return scd->clock;
135 }
136 
lock_double_clock(struct sched_clock_data * data1,struct sched_clock_data * data2)137 static void lock_double_clock(struct sched_clock_data *data1,
138 				struct sched_clock_data *data2)
139 {
140 	if (data1 < data2) {
141 		__raw_spin_lock(&data1->lock);
142 		__raw_spin_lock(&data2->lock);
143 	} else {
144 		__raw_spin_lock(&data2->lock);
145 		__raw_spin_lock(&data1->lock);
146 	}
147 }
148 
sched_clock_cpu(int cpu)149 u64 sched_clock_cpu(int cpu)
150 {
151 	struct sched_clock_data *scd = cpu_sdc(cpu);
152 	u64 now, clock, this_clock, remote_clock;
153 
154 	if (unlikely(!sched_clock_running))
155 		return 0ull;
156 
157 	WARN_ON_ONCE(!irqs_disabled());
158 	now = sched_clock();
159 
160 	if (cpu != raw_smp_processor_id()) {
161 		struct sched_clock_data *my_scd = this_scd();
162 
163 		lock_double_clock(scd, my_scd);
164 
165 		this_clock = __update_sched_clock(my_scd, now);
166 		remote_clock = scd->clock;
167 
168 		/*
169 		 * Use the opportunity that we have both locks
170 		 * taken to couple the two clocks: we take the
171 		 * larger time as the latest time for both
172 		 * runqueues. (this creates monotonic movement)
173 		 */
174 		if (likely((s64)(remote_clock - this_clock) < 0)) {
175 			clock = this_clock;
176 			scd->clock = clock;
177 		} else {
178 			/*
179 			 * Should be rare, but possible:
180 			 */
181 			clock = remote_clock;
182 			my_scd->clock = remote_clock;
183 		}
184 
185 		__raw_spin_unlock(&my_scd->lock);
186 	} else {
187 		__raw_spin_lock(&scd->lock);
188 		clock = __update_sched_clock(scd, now);
189 	}
190 
191 	__raw_spin_unlock(&scd->lock);
192 
193 	return clock;
194 }
195 
sched_clock_tick(void)196 void sched_clock_tick(void)
197 {
198 	struct sched_clock_data *scd = this_scd();
199 	u64 now, now_gtod;
200 
201 	if (unlikely(!sched_clock_running))
202 		return;
203 
204 	WARN_ON_ONCE(!irqs_disabled());
205 
206 	now_gtod = ktime_to_ns(ktime_get());
207 	now = sched_clock();
208 
209 	__raw_spin_lock(&scd->lock);
210 	scd->tick_raw = now;
211 	scd->tick_gtod = now_gtod;
212 	__update_sched_clock(scd, now);
213 	__raw_spin_unlock(&scd->lock);
214 }
215 
216 /*
217  * We are going deep-idle (irqs are disabled):
218  */
sched_clock_idle_sleep_event(void)219 void sched_clock_idle_sleep_event(void)
220 {
221 	sched_clock_cpu(smp_processor_id());
222 }
223 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
224 
225 /*
226  * We just idled delta nanoseconds (called with irqs disabled):
227  */
sched_clock_idle_wakeup_event(u64 delta_ns)228 void sched_clock_idle_wakeup_event(u64 delta_ns)
229 {
230 	if (timekeeping_suspended)
231 		return;
232 
233 	sched_clock_tick();
234 	touch_softlockup_watchdog();
235 }
236 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
237 
238 #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
239 
sched_clock_init(void)240 void sched_clock_init(void)
241 {
242 	sched_clock_running = 1;
243 }
244 
sched_clock_cpu(int cpu)245 u64 sched_clock_cpu(int cpu)
246 {
247 	if (unlikely(!sched_clock_running))
248 		return 0;
249 
250 	return sched_clock();
251 }
252 
253 #endif
254 
cpu_clock(int cpu)255 unsigned long long cpu_clock(int cpu)
256 {
257 	unsigned long long clock;
258 	unsigned long flags;
259 
260 	local_irq_save(flags);
261 	clock = sched_clock_cpu(cpu);
262 	local_irq_restore(flags);
263 
264 	return clock;
265 }
266 EXPORT_SYMBOL_GPL(cpu_clock);
267