1 /*
2 * linux/arch/arm/kernel/setup.c
3 *
4 * Copyright (C) 1995-2001 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/stddef.h>
13 #include <linux/ioport.h>
14 #include <linux/delay.h>
15 #include <linux/utsname.h>
16 #include <linux/initrd.h>
17 #include <linux/console.h>
18 #include <linux/bootmem.h>
19 #include <linux/seq_file.h>
20 #include <linux/screen_info.h>
21 #include <linux/init.h>
22 #include <linux/root_dev.h>
23 #include <linux/cpu.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
26 #include <linux/fs.h>
27
28 #include <asm/cpu.h>
29 #include <asm/cputype.h>
30 #include <asm/elf.h>
31 #include <asm/procinfo.h>
32 #include <asm/sections.h>
33 #include <asm/setup.h>
34 #include <asm/mach-types.h>
35 #include <asm/cacheflush.h>
36 #include <asm/cachetype.h>
37 #include <asm/tlbflush.h>
38
39 #include <asm/mach/arch.h>
40 #include <asm/mach/irq.h>
41 #include <asm/mach/time.h>
42 #include <asm/traps.h>
43
44 #include "compat.h"
45 #include "atags.h"
46
47 #ifndef MEM_SIZE
48 #define MEM_SIZE (16*1024*1024)
49 #endif
50
51 #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
52 char fpe_type[8];
53
fpe_setup(char * line)54 static int __init fpe_setup(char *line)
55 {
56 memcpy(fpe_type, line, 8);
57 return 1;
58 }
59
60 __setup("fpe=", fpe_setup);
61 #endif
62
63 extern void paging_init(struct machine_desc *desc);
64 extern void reboot_setup(char *str);
65
66 unsigned int processor_id;
67 EXPORT_SYMBOL(processor_id);
68 unsigned int __machine_arch_type;
69 EXPORT_SYMBOL(__machine_arch_type);
70 unsigned int cacheid;
71 EXPORT_SYMBOL(cacheid);
72
73 unsigned int __atags_pointer __initdata;
74
75 unsigned int system_rev;
76 EXPORT_SYMBOL(system_rev);
77
78 unsigned int system_serial_low;
79 EXPORT_SYMBOL(system_serial_low);
80
81 unsigned int system_serial_high;
82 EXPORT_SYMBOL(system_serial_high);
83
84 unsigned int elf_hwcap;
85 EXPORT_SYMBOL(elf_hwcap);
86
87
88 #ifdef MULTI_CPU
89 struct processor processor;
90 #endif
91 #ifdef MULTI_TLB
92 struct cpu_tlb_fns cpu_tlb;
93 #endif
94 #ifdef MULTI_USER
95 struct cpu_user_fns cpu_user;
96 #endif
97 #ifdef MULTI_CACHE
98 struct cpu_cache_fns cpu_cache;
99 #endif
100 #ifdef CONFIG_OUTER_CACHE
101 struct outer_cache_fns outer_cache;
102 #endif
103
104 struct stack {
105 u32 irq[3];
106 u32 abt[3];
107 u32 und[3];
108 } ____cacheline_aligned;
109
110 static struct stack stacks[NR_CPUS];
111
112 char elf_platform[ELF_PLATFORM_SIZE];
113 EXPORT_SYMBOL(elf_platform);
114
115 static const char *cpu_name;
116 static const char *machine_name;
117 static char __initdata command_line[COMMAND_LINE_SIZE];
118
119 static char default_command_line[COMMAND_LINE_SIZE] __initdata = CONFIG_CMDLINE;
120 static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
121 #define ENDIANNESS ((char)endian_test.l)
122
123 DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
124
125 /*
126 * Standard memory resources
127 */
128 static struct resource mem_res[] = {
129 {
130 .name = "Video RAM",
131 .start = 0,
132 .end = 0,
133 .flags = IORESOURCE_MEM
134 },
135 {
136 .name = "Kernel text",
137 .start = 0,
138 .end = 0,
139 .flags = IORESOURCE_MEM
140 },
141 {
142 .name = "Kernel data",
143 .start = 0,
144 .end = 0,
145 .flags = IORESOURCE_MEM
146 }
147 };
148
149 #define video_ram mem_res[0]
150 #define kernel_code mem_res[1]
151 #define kernel_data mem_res[2]
152
153 static struct resource io_res[] = {
154 {
155 .name = "reserved",
156 .start = 0x3bc,
157 .end = 0x3be,
158 .flags = IORESOURCE_IO | IORESOURCE_BUSY
159 },
160 {
161 .name = "reserved",
162 .start = 0x378,
163 .end = 0x37f,
164 .flags = IORESOURCE_IO | IORESOURCE_BUSY
165 },
166 {
167 .name = "reserved",
168 .start = 0x278,
169 .end = 0x27f,
170 .flags = IORESOURCE_IO | IORESOURCE_BUSY
171 }
172 };
173
174 #define lp0 io_res[0]
175 #define lp1 io_res[1]
176 #define lp2 io_res[2]
177
178 static const char *proc_arch[] = {
179 "undefined/unknown",
180 "3",
181 "4",
182 "4T",
183 "5",
184 "5T",
185 "5TE",
186 "5TEJ",
187 "6TEJ",
188 "7",
189 "?(11)",
190 "?(12)",
191 "?(13)",
192 "?(14)",
193 "?(15)",
194 "?(16)",
195 "?(17)",
196 };
197
cpu_architecture(void)198 int cpu_architecture(void)
199 {
200 int cpu_arch;
201
202 if ((read_cpuid_id() & 0x0008f000) == 0) {
203 cpu_arch = CPU_ARCH_UNKNOWN;
204 } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
205 cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
206 } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
207 cpu_arch = (read_cpuid_id() >> 16) & 7;
208 if (cpu_arch)
209 cpu_arch += CPU_ARCH_ARMv3;
210 } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
211 unsigned int mmfr0;
212
213 /* Revised CPUID format. Read the Memory Model Feature
214 * Register 0 and check for VMSAv7 or PMSAv7 */
215 asm("mrc p15, 0, %0, c0, c1, 4"
216 : "=r" (mmfr0));
217 if ((mmfr0 & 0x0000000f) == 0x00000003 ||
218 (mmfr0 & 0x000000f0) == 0x00000030)
219 cpu_arch = CPU_ARCH_ARMv7;
220 else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
221 (mmfr0 & 0x000000f0) == 0x00000020)
222 cpu_arch = CPU_ARCH_ARMv6;
223 else
224 cpu_arch = CPU_ARCH_UNKNOWN;
225 } else
226 cpu_arch = CPU_ARCH_UNKNOWN;
227
228 return cpu_arch;
229 }
230
cacheid_init(void)231 static void __init cacheid_init(void)
232 {
233 unsigned int cachetype = read_cpuid_cachetype();
234 unsigned int arch = cpu_architecture();
235
236 if (arch >= CPU_ARCH_ARMv6) {
237 if ((cachetype & (7 << 29)) == 4 << 29) {
238 /* ARMv7 register format */
239 cacheid = CACHEID_VIPT_NONALIASING;
240 if ((cachetype & (3 << 14)) == 1 << 14)
241 cacheid |= CACHEID_ASID_TAGGED;
242 } else if (cachetype & (1 << 23))
243 cacheid = CACHEID_VIPT_ALIASING;
244 else
245 cacheid = CACHEID_VIPT_NONALIASING;
246 } else {
247 cacheid = CACHEID_VIVT;
248 }
249
250 printk("CPU: %s data cache, %s instruction cache\n",
251 cache_is_vivt() ? "VIVT" :
252 cache_is_vipt_aliasing() ? "VIPT aliasing" :
253 cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown",
254 cache_is_vivt() ? "VIVT" :
255 icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
256 cache_is_vipt_aliasing() ? "VIPT aliasing" :
257 cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
258 }
259
260 /*
261 * These functions re-use the assembly code in head.S, which
262 * already provide the required functionality.
263 */
264 extern struct proc_info_list *lookup_processor_type(unsigned int);
265 extern struct machine_desc *lookup_machine_type(unsigned int);
266
setup_processor(void)267 static void __init setup_processor(void)
268 {
269 struct proc_info_list *list;
270
271 /*
272 * locate processor in the list of supported processor
273 * types. The linker builds this table for us from the
274 * entries in arch/arm/mm/proc-*.S
275 */
276 list = lookup_processor_type(read_cpuid_id());
277 if (!list) {
278 printk("CPU configuration botched (ID %08x), unable "
279 "to continue.\n", read_cpuid_id());
280 while (1);
281 }
282
283 cpu_name = list->cpu_name;
284
285 #ifdef MULTI_CPU
286 processor = *list->proc;
287 #endif
288 #ifdef MULTI_TLB
289 cpu_tlb = *list->tlb;
290 #endif
291 #ifdef MULTI_USER
292 cpu_user = *list->user;
293 #endif
294 #ifdef MULTI_CACHE
295 cpu_cache = *list->cache;
296 #endif
297
298 printk("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
299 cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
300 proc_arch[cpu_architecture()], cr_alignment);
301
302 sprintf(init_utsname()->machine, "%s%c", list->arch_name, ENDIANNESS);
303 sprintf(elf_platform, "%s%c", list->elf_name, ENDIANNESS);
304 elf_hwcap = list->elf_hwcap;
305 #ifndef CONFIG_ARM_THUMB
306 elf_hwcap &= ~HWCAP_THUMB;
307 #endif
308
309 cacheid_init();
310 cpu_proc_init();
311 }
312
313 /*
314 * cpu_init - initialise one CPU.
315 *
316 * cpu_init sets up the per-CPU stacks.
317 */
cpu_init(void)318 void cpu_init(void)
319 {
320 unsigned int cpu = smp_processor_id();
321 struct stack *stk = &stacks[cpu];
322
323 if (cpu >= NR_CPUS) {
324 printk(KERN_CRIT "CPU%u: bad primary CPU number\n", cpu);
325 BUG();
326 }
327
328 /*
329 * setup stacks for re-entrant exception handlers
330 */
331 __asm__ (
332 "msr cpsr_c, %1\n\t"
333 "add sp, %0, %2\n\t"
334 "msr cpsr_c, %3\n\t"
335 "add sp, %0, %4\n\t"
336 "msr cpsr_c, %5\n\t"
337 "add sp, %0, %6\n\t"
338 "msr cpsr_c, %7"
339 :
340 : "r" (stk),
341 "I" (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
342 "I" (offsetof(struct stack, irq[0])),
343 "I" (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
344 "I" (offsetof(struct stack, abt[0])),
345 "I" (PSR_F_BIT | PSR_I_BIT | UND_MODE),
346 "I" (offsetof(struct stack, und[0])),
347 "I" (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
348 : "r14");
349 }
350
setup_machine(unsigned int nr)351 static struct machine_desc * __init setup_machine(unsigned int nr)
352 {
353 struct machine_desc *list;
354
355 /*
356 * locate machine in the list of supported machines.
357 */
358 list = lookup_machine_type(nr);
359 if (!list) {
360 printk("Machine configuration botched (nr %d), unable "
361 "to continue.\n", nr);
362 while (1);
363 }
364
365 printk("Machine: %s\n", list->name);
366
367 return list;
368 }
369
arm_add_memory(unsigned long start,unsigned long size)370 static int __init arm_add_memory(unsigned long start, unsigned long size)
371 {
372 struct membank *bank = &meminfo.bank[meminfo.nr_banks];
373
374 if (meminfo.nr_banks >= NR_BANKS) {
375 printk(KERN_CRIT "NR_BANKS too low, "
376 "ignoring memory at %#lx\n", start);
377 return -EINVAL;
378 }
379
380 /*
381 * Ensure that start/size are aligned to a page boundary.
382 * Size is appropriately rounded down, start is rounded up.
383 */
384 size -= start & ~PAGE_MASK;
385 bank->start = PAGE_ALIGN(start);
386 bank->size = size & PAGE_MASK;
387 bank->node = PHYS_TO_NID(start);
388
389 /*
390 * Check whether this memory region has non-zero size or
391 * invalid node number.
392 */
393 if (bank->size == 0 || bank->node >= MAX_NUMNODES)
394 return -EINVAL;
395
396 meminfo.nr_banks++;
397 return 0;
398 }
399
400 /*
401 * Pick out the memory size. We look for mem=size@start,
402 * where start and size are "size[KkMm]"
403 */
early_mem(char ** p)404 static void __init early_mem(char **p)
405 {
406 static int usermem __initdata = 0;
407 unsigned long size, start;
408
409 /*
410 * If the user specifies memory size, we
411 * blow away any automatically generated
412 * size.
413 */
414 if (usermem == 0) {
415 usermem = 1;
416 meminfo.nr_banks = 0;
417 }
418
419 start = PHYS_OFFSET;
420 size = memparse(*p, p);
421 if (**p == '@')
422 start = memparse(*p + 1, p);
423
424 arm_add_memory(start, size);
425 }
426 __early_param("mem=", early_mem);
427
428 /*
429 * Initial parsing of the command line.
430 */
parse_cmdline(char ** cmdline_p,char * from)431 static void __init parse_cmdline(char **cmdline_p, char *from)
432 {
433 char c = ' ', *to = command_line;
434 int len = 0;
435
436 for (;;) {
437 if (c == ' ') {
438 extern struct early_params __early_begin, __early_end;
439 struct early_params *p;
440
441 for (p = &__early_begin; p < &__early_end; p++) {
442 int arglen = strlen(p->arg);
443
444 if (memcmp(from, p->arg, arglen) == 0) {
445 if (to != command_line)
446 to -= 1;
447 from += arglen;
448 p->fn(&from);
449
450 while (*from != ' ' && *from != '\0')
451 from++;
452 break;
453 }
454 }
455 }
456 c = *from++;
457 if (!c)
458 break;
459 if (COMMAND_LINE_SIZE <= ++len)
460 break;
461 *to++ = c;
462 }
463 *to = '\0';
464 *cmdline_p = command_line;
465 }
466
467 static void __init
setup_ramdisk(int doload,int prompt,int image_start,unsigned int rd_sz)468 setup_ramdisk(int doload, int prompt, int image_start, unsigned int rd_sz)
469 {
470 #ifdef CONFIG_BLK_DEV_RAM
471 extern int rd_size, rd_image_start, rd_prompt, rd_doload;
472
473 rd_image_start = image_start;
474 rd_prompt = prompt;
475 rd_doload = doload;
476
477 if (rd_sz)
478 rd_size = rd_sz;
479 #endif
480 }
481
482 static void __init
request_standard_resources(struct meminfo * mi,struct machine_desc * mdesc)483 request_standard_resources(struct meminfo *mi, struct machine_desc *mdesc)
484 {
485 struct resource *res;
486 int i;
487
488 kernel_code.start = virt_to_phys(_text);
489 kernel_code.end = virt_to_phys(_etext - 1);
490 kernel_data.start = virt_to_phys(_data);
491 kernel_data.end = virt_to_phys(_end - 1);
492
493 for (i = 0; i < mi->nr_banks; i++) {
494 if (mi->bank[i].size == 0)
495 continue;
496
497 res = alloc_bootmem_low(sizeof(*res));
498 res->name = "System RAM";
499 res->start = mi->bank[i].start;
500 res->end = mi->bank[i].start + mi->bank[i].size - 1;
501 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
502
503 request_resource(&iomem_resource, res);
504
505 if (kernel_code.start >= res->start &&
506 kernel_code.end <= res->end)
507 request_resource(res, &kernel_code);
508 if (kernel_data.start >= res->start &&
509 kernel_data.end <= res->end)
510 request_resource(res, &kernel_data);
511 }
512
513 if (mdesc->video_start) {
514 video_ram.start = mdesc->video_start;
515 video_ram.end = mdesc->video_end;
516 request_resource(&iomem_resource, &video_ram);
517 }
518
519 /*
520 * Some machines don't have the possibility of ever
521 * possessing lp0, lp1 or lp2
522 */
523 if (mdesc->reserve_lp0)
524 request_resource(&ioport_resource, &lp0);
525 if (mdesc->reserve_lp1)
526 request_resource(&ioport_resource, &lp1);
527 if (mdesc->reserve_lp2)
528 request_resource(&ioport_resource, &lp2);
529 }
530
531 /*
532 * Tag parsing.
533 *
534 * This is the new way of passing data to the kernel at boot time. Rather
535 * than passing a fixed inflexible structure to the kernel, we pass a list
536 * of variable-sized tags to the kernel. The first tag must be a ATAG_CORE
537 * tag for the list to be recognised (to distinguish the tagged list from
538 * a param_struct). The list is terminated with a zero-length tag (this tag
539 * is not parsed in any way).
540 */
parse_tag_core(const struct tag * tag)541 static int __init parse_tag_core(const struct tag *tag)
542 {
543 if (tag->hdr.size > 2) {
544 if ((tag->u.core.flags & 1) == 0)
545 root_mountflags &= ~MS_RDONLY;
546 ROOT_DEV = old_decode_dev(tag->u.core.rootdev);
547 }
548 return 0;
549 }
550
551 __tagtable(ATAG_CORE, parse_tag_core);
552
parse_tag_mem32(const struct tag * tag)553 static int __init parse_tag_mem32(const struct tag *tag)
554 {
555 return arm_add_memory(tag->u.mem.start, tag->u.mem.size);
556 }
557
558 __tagtable(ATAG_MEM, parse_tag_mem32);
559
560 #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
561 struct screen_info screen_info = {
562 .orig_video_lines = 30,
563 .orig_video_cols = 80,
564 .orig_video_mode = 0,
565 .orig_video_ega_bx = 0,
566 .orig_video_isVGA = 1,
567 .orig_video_points = 8
568 };
569
parse_tag_videotext(const struct tag * tag)570 static int __init parse_tag_videotext(const struct tag *tag)
571 {
572 screen_info.orig_x = tag->u.videotext.x;
573 screen_info.orig_y = tag->u.videotext.y;
574 screen_info.orig_video_page = tag->u.videotext.video_page;
575 screen_info.orig_video_mode = tag->u.videotext.video_mode;
576 screen_info.orig_video_cols = tag->u.videotext.video_cols;
577 screen_info.orig_video_ega_bx = tag->u.videotext.video_ega_bx;
578 screen_info.orig_video_lines = tag->u.videotext.video_lines;
579 screen_info.orig_video_isVGA = tag->u.videotext.video_isvga;
580 screen_info.orig_video_points = tag->u.videotext.video_points;
581 return 0;
582 }
583
584 __tagtable(ATAG_VIDEOTEXT, parse_tag_videotext);
585 #endif
586
parse_tag_ramdisk(const struct tag * tag)587 static int __init parse_tag_ramdisk(const struct tag *tag)
588 {
589 setup_ramdisk((tag->u.ramdisk.flags & 1) == 0,
590 (tag->u.ramdisk.flags & 2) == 0,
591 tag->u.ramdisk.start, tag->u.ramdisk.size);
592 return 0;
593 }
594
595 __tagtable(ATAG_RAMDISK, parse_tag_ramdisk);
596
parse_tag_serialnr(const struct tag * tag)597 static int __init parse_tag_serialnr(const struct tag *tag)
598 {
599 system_serial_low = tag->u.serialnr.low;
600 system_serial_high = tag->u.serialnr.high;
601 return 0;
602 }
603
604 __tagtable(ATAG_SERIAL, parse_tag_serialnr);
605
parse_tag_revision(const struct tag * tag)606 static int __init parse_tag_revision(const struct tag *tag)
607 {
608 system_rev = tag->u.revision.rev;
609 return 0;
610 }
611
612 __tagtable(ATAG_REVISION, parse_tag_revision);
613
parse_tag_cmdline(const struct tag * tag)614 static int __init parse_tag_cmdline(const struct tag *tag)
615 {
616 strlcpy(default_command_line, tag->u.cmdline.cmdline, COMMAND_LINE_SIZE);
617 return 0;
618 }
619
620 __tagtable(ATAG_CMDLINE, parse_tag_cmdline);
621
622 /*
623 * Scan the tag table for this tag, and call its parse function.
624 * The tag table is built by the linker from all the __tagtable
625 * declarations.
626 */
parse_tag(const struct tag * tag)627 static int __init parse_tag(const struct tag *tag)
628 {
629 extern struct tagtable __tagtable_begin, __tagtable_end;
630 struct tagtable *t;
631
632 for (t = &__tagtable_begin; t < &__tagtable_end; t++)
633 if (tag->hdr.tag == t->tag) {
634 t->parse(tag);
635 break;
636 }
637
638 return t < &__tagtable_end;
639 }
640
641 /*
642 * Parse all tags in the list, checking both the global and architecture
643 * specific tag tables.
644 */
parse_tags(const struct tag * t)645 static void __init parse_tags(const struct tag *t)
646 {
647 for (; t->hdr.size; t = tag_next(t))
648 if (!parse_tag(t))
649 printk(KERN_WARNING
650 "Ignoring unrecognised tag 0x%08x\n",
651 t->hdr.tag);
652 }
653
654 /*
655 * This holds our defaults.
656 */
657 static struct init_tags {
658 struct tag_header hdr1;
659 struct tag_core core;
660 struct tag_header hdr2;
661 struct tag_mem32 mem;
662 struct tag_header hdr3;
663 } init_tags __initdata = {
664 { tag_size(tag_core), ATAG_CORE },
665 { 1, PAGE_SIZE, 0xff },
666 { tag_size(tag_mem32), ATAG_MEM },
667 { MEM_SIZE, PHYS_OFFSET },
668 { 0, ATAG_NONE }
669 };
670
671 static void (*init_machine)(void) __initdata;
672
customize_machine(void)673 static int __init customize_machine(void)
674 {
675 /* customizes platform devices, or adds new ones */
676 if (init_machine)
677 init_machine();
678 return 0;
679 }
680 arch_initcall(customize_machine);
681
setup_arch(char ** cmdline_p)682 void __init setup_arch(char **cmdline_p)
683 {
684 struct tag *tags = (struct tag *)&init_tags;
685 struct machine_desc *mdesc;
686 char *from = default_command_line;
687
688 setup_processor();
689 mdesc = setup_machine(machine_arch_type);
690 machine_name = mdesc->name;
691
692 if (mdesc->soft_reboot)
693 reboot_setup("s");
694
695 if (__atags_pointer)
696 tags = phys_to_virt(__atags_pointer);
697 else if (mdesc->boot_params)
698 tags = phys_to_virt(mdesc->boot_params);
699
700 /*
701 * If we have the old style parameters, convert them to
702 * a tag list.
703 */
704 if (tags->hdr.tag != ATAG_CORE)
705 convert_to_tag_list(tags);
706 if (tags->hdr.tag != ATAG_CORE)
707 tags = (struct tag *)&init_tags;
708
709 if (mdesc->fixup)
710 mdesc->fixup(mdesc, tags, &from, &meminfo);
711
712 if (tags->hdr.tag == ATAG_CORE) {
713 if (meminfo.nr_banks != 0)
714 squash_mem_tags(tags);
715 save_atags(tags);
716 parse_tags(tags);
717 }
718
719 init_mm.start_code = (unsigned long) _text;
720 init_mm.end_code = (unsigned long) _etext;
721 init_mm.end_data = (unsigned long) _edata;
722 init_mm.brk = (unsigned long) _end;
723
724 memcpy(boot_command_line, from, COMMAND_LINE_SIZE);
725 boot_command_line[COMMAND_LINE_SIZE-1] = '\0';
726 parse_cmdline(cmdline_p, from);
727 paging_init(mdesc);
728 request_standard_resources(&meminfo, mdesc);
729
730 #ifdef CONFIG_SMP
731 smp_init_cpus();
732 #endif
733
734 cpu_init();
735
736 /*
737 * Set up various architecture-specific pointers
738 */
739 init_arch_irq = mdesc->init_irq;
740 system_timer = mdesc->timer;
741 init_machine = mdesc->init_machine;
742
743 #ifdef CONFIG_VT
744 #if defined(CONFIG_VGA_CONSOLE)
745 conswitchp = &vga_con;
746 #elif defined(CONFIG_DUMMY_CONSOLE)
747 conswitchp = &dummy_con;
748 #endif
749 #endif
750 early_trap_init();
751 }
752
753
topology_init(void)754 static int __init topology_init(void)
755 {
756 int cpu;
757
758 for_each_possible_cpu(cpu) {
759 struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
760 cpuinfo->cpu.hotpluggable = 1;
761 register_cpu(&cpuinfo->cpu, cpu);
762 }
763
764 return 0;
765 }
766
767 subsys_initcall(topology_init);
768
769 static const char *hwcap_str[] = {
770 "swp",
771 "half",
772 "thumb",
773 "26bit",
774 "fastmult",
775 "fpa",
776 "vfp",
777 "edsp",
778 "java",
779 "iwmmxt",
780 "crunch",
781 "thumbee",
782 "neon",
783 "vfpv3",
784 "vfpv3d16",
785 NULL
786 };
787
c_show(struct seq_file * m,void * v)788 static int c_show(struct seq_file *m, void *v)
789 {
790 int i;
791
792 seq_printf(m, "Processor\t: %s rev %d (%s)\n",
793 cpu_name, read_cpuid_id() & 15, elf_platform);
794
795 #if defined(CONFIG_SMP)
796 for_each_online_cpu(i) {
797 /*
798 * glibc reads /proc/cpuinfo to determine the number of
799 * online processors, looking for lines beginning with
800 * "processor". Give glibc what it expects.
801 */
802 seq_printf(m, "processor\t: %d\n", i);
803 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n\n",
804 per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
805 (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
806 }
807 #else /* CONFIG_SMP */
808 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
809 loops_per_jiffy / (500000/HZ),
810 (loops_per_jiffy / (5000/HZ)) % 100);
811 #endif
812
813 /* dump out the processor features */
814 seq_puts(m, "Features\t: ");
815
816 for (i = 0; hwcap_str[i]; i++)
817 if (elf_hwcap & (1 << i))
818 seq_printf(m, "%s ", hwcap_str[i]);
819
820 seq_printf(m, "\nCPU implementer\t: 0x%02x\n", read_cpuid_id() >> 24);
821 seq_printf(m, "CPU architecture: %s\n", proc_arch[cpu_architecture()]);
822
823 if ((read_cpuid_id() & 0x0008f000) == 0x00000000) {
824 /* pre-ARM7 */
825 seq_printf(m, "CPU part\t: %07x\n", read_cpuid_id() >> 4);
826 } else {
827 if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
828 /* ARM7 */
829 seq_printf(m, "CPU variant\t: 0x%02x\n",
830 (read_cpuid_id() >> 16) & 127);
831 } else {
832 /* post-ARM7 */
833 seq_printf(m, "CPU variant\t: 0x%x\n",
834 (read_cpuid_id() >> 20) & 15);
835 }
836 seq_printf(m, "CPU part\t: 0x%03x\n",
837 (read_cpuid_id() >> 4) & 0xfff);
838 }
839 seq_printf(m, "CPU revision\t: %d\n", read_cpuid_id() & 15);
840
841 seq_puts(m, "\n");
842
843 seq_printf(m, "Hardware\t: %s\n", machine_name);
844 seq_printf(m, "Revision\t: %04x\n", system_rev);
845 seq_printf(m, "Serial\t\t: %08x%08x\n",
846 system_serial_high, system_serial_low);
847
848 return 0;
849 }
850
c_start(struct seq_file * m,loff_t * pos)851 static void *c_start(struct seq_file *m, loff_t *pos)
852 {
853 return *pos < 1 ? (void *)1 : NULL;
854 }
855
c_next(struct seq_file * m,void * v,loff_t * pos)856 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
857 {
858 ++*pos;
859 return NULL;
860 }
861
c_stop(struct seq_file * m,void * v)862 static void c_stop(struct seq_file *m, void *v)
863 {
864 }
865
866 const struct seq_operations cpuinfo_op = {
867 .start = c_start,
868 .next = c_next,
869 .stop = c_stop,
870 .show = c_show
871 };
872