1 /*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 *
7 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
8 * Added handling for CPU hotplug
9 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
10 * Fix handling for CPU hotplug -- affected CPUs
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 *
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/notifier.h>
22 #include <linux/cpufreq.h>
23 #include <linux/delay.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/device.h>
27 #include <linux/slab.h>
28 #include <linux/cpu.h>
29 #include <linux/completion.h>
30 #include <linux/mutex.h>
31
32 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_CORE, \
33 "cpufreq-core", msg)
34
35 /**
36 * The "cpufreq driver" - the arch- or hardware-dependent low
37 * level driver of CPUFreq support, and its spinlock. This lock
38 * also protects the cpufreq_cpu_data array.
39 */
40 static struct cpufreq_driver *cpufreq_driver;
41 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
42 #ifdef CONFIG_HOTPLUG_CPU
43 /* This one keeps track of the previously set governor of a removed CPU */
44 static DEFINE_PER_CPU(struct cpufreq_governor *, cpufreq_cpu_governor);
45 #endif
46 static DEFINE_SPINLOCK(cpufreq_driver_lock);
47
48 /*
49 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure
50 * all cpufreq/hotplug/workqueue/etc related lock issues.
51 *
52 * The rules for this semaphore:
53 * - Any routine that wants to read from the policy structure will
54 * do a down_read on this semaphore.
55 * - Any routine that will write to the policy structure and/or may take away
56 * the policy altogether (eg. CPU hotplug), will hold this lock in write
57 * mode before doing so.
58 *
59 * Additional rules:
60 * - All holders of the lock should check to make sure that the CPU they
61 * are concerned with are online after they get the lock.
62 * - Governor routines that can be called in cpufreq hotplug path should not
63 * take this sem as top level hotplug notifier handler takes this.
64 */
65 static DEFINE_PER_CPU(int, policy_cpu);
66 static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
67
68 #define lock_policy_rwsem(mode, cpu) \
69 int lock_policy_rwsem_##mode \
70 (int cpu) \
71 { \
72 int policy_cpu = per_cpu(policy_cpu, cpu); \
73 BUG_ON(policy_cpu == -1); \
74 down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \
75 if (unlikely(!cpu_online(cpu))) { \
76 up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \
77 return -1; \
78 } \
79 \
80 return 0; \
81 }
82
83 lock_policy_rwsem(read, cpu);
84 EXPORT_SYMBOL_GPL(lock_policy_rwsem_read);
85
86 lock_policy_rwsem(write, cpu);
87 EXPORT_SYMBOL_GPL(lock_policy_rwsem_write);
88
unlock_policy_rwsem_read(int cpu)89 void unlock_policy_rwsem_read(int cpu)
90 {
91 int policy_cpu = per_cpu(policy_cpu, cpu);
92 BUG_ON(policy_cpu == -1);
93 up_read(&per_cpu(cpu_policy_rwsem, policy_cpu));
94 }
95 EXPORT_SYMBOL_GPL(unlock_policy_rwsem_read);
96
unlock_policy_rwsem_write(int cpu)97 void unlock_policy_rwsem_write(int cpu)
98 {
99 int policy_cpu = per_cpu(policy_cpu, cpu);
100 BUG_ON(policy_cpu == -1);
101 up_write(&per_cpu(cpu_policy_rwsem, policy_cpu));
102 }
103 EXPORT_SYMBOL_GPL(unlock_policy_rwsem_write);
104
105
106 /* internal prototypes */
107 static int __cpufreq_governor(struct cpufreq_policy *policy, unsigned int event);
108 static unsigned int __cpufreq_get(unsigned int cpu);
109 static void handle_update(struct work_struct *work);
110
111 /**
112 * Two notifier lists: the "policy" list is involved in the
113 * validation process for a new CPU frequency policy; the
114 * "transition" list for kernel code that needs to handle
115 * changes to devices when the CPU clock speed changes.
116 * The mutex locks both lists.
117 */
118 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
119 static struct srcu_notifier_head cpufreq_transition_notifier_list;
120
121 static bool init_cpufreq_transition_notifier_list_called;
init_cpufreq_transition_notifier_list(void)122 static int __init init_cpufreq_transition_notifier_list(void)
123 {
124 srcu_init_notifier_head(&cpufreq_transition_notifier_list);
125 init_cpufreq_transition_notifier_list_called = true;
126 return 0;
127 }
128 pure_initcall(init_cpufreq_transition_notifier_list);
129
130 static LIST_HEAD(cpufreq_governor_list);
131 static DEFINE_MUTEX (cpufreq_governor_mutex);
132
cpufreq_cpu_get(unsigned int cpu)133 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
134 {
135 struct cpufreq_policy *data;
136 unsigned long flags;
137
138 if (cpu >= nr_cpu_ids)
139 goto err_out;
140
141 /* get the cpufreq driver */
142 spin_lock_irqsave(&cpufreq_driver_lock, flags);
143
144 if (!cpufreq_driver)
145 goto err_out_unlock;
146
147 if (!try_module_get(cpufreq_driver->owner))
148 goto err_out_unlock;
149
150
151 /* get the CPU */
152 data = per_cpu(cpufreq_cpu_data, cpu);
153
154 if (!data)
155 goto err_out_put_module;
156
157 if (!kobject_get(&data->kobj))
158 goto err_out_put_module;
159
160 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
161 return data;
162
163 err_out_put_module:
164 module_put(cpufreq_driver->owner);
165 err_out_unlock:
166 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
167 err_out:
168 return NULL;
169 }
170 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
171
172
cpufreq_cpu_put(struct cpufreq_policy * data)173 void cpufreq_cpu_put(struct cpufreq_policy *data)
174 {
175 kobject_put(&data->kobj);
176 module_put(cpufreq_driver->owner);
177 }
178 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
179
180
181 /*********************************************************************
182 * UNIFIED DEBUG HELPERS *
183 *********************************************************************/
184 #ifdef CONFIG_CPU_FREQ_DEBUG
185
186 /* what part(s) of the CPUfreq subsystem are debugged? */
187 static unsigned int debug;
188
189 /* is the debug output ratelimit'ed using printk_ratelimit? User can
190 * set or modify this value.
191 */
192 static unsigned int debug_ratelimit = 1;
193
194 /* is the printk_ratelimit'ing enabled? It's enabled after a successful
195 * loading of a cpufreq driver, temporarily disabled when a new policy
196 * is set, and disabled upon cpufreq driver removal
197 */
198 static unsigned int disable_ratelimit = 1;
199 static DEFINE_SPINLOCK(disable_ratelimit_lock);
200
cpufreq_debug_enable_ratelimit(void)201 static void cpufreq_debug_enable_ratelimit(void)
202 {
203 unsigned long flags;
204
205 spin_lock_irqsave(&disable_ratelimit_lock, flags);
206 if (disable_ratelimit)
207 disable_ratelimit--;
208 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
209 }
210
cpufreq_debug_disable_ratelimit(void)211 static void cpufreq_debug_disable_ratelimit(void)
212 {
213 unsigned long flags;
214
215 spin_lock_irqsave(&disable_ratelimit_lock, flags);
216 disable_ratelimit++;
217 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
218 }
219
cpufreq_debug_printk(unsigned int type,const char * prefix,const char * fmt,...)220 void cpufreq_debug_printk(unsigned int type, const char *prefix,
221 const char *fmt, ...)
222 {
223 char s[256];
224 va_list args;
225 unsigned int len;
226 unsigned long flags;
227
228 WARN_ON(!prefix);
229 if (type & debug) {
230 spin_lock_irqsave(&disable_ratelimit_lock, flags);
231 if (!disable_ratelimit && debug_ratelimit
232 && !printk_ratelimit()) {
233 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
234 return;
235 }
236 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
237
238 len = snprintf(s, 256, KERN_DEBUG "%s: ", prefix);
239
240 va_start(args, fmt);
241 len += vsnprintf(&s[len], (256 - len), fmt, args);
242 va_end(args);
243
244 printk(s);
245
246 WARN_ON(len < 5);
247 }
248 }
249 EXPORT_SYMBOL(cpufreq_debug_printk);
250
251
252 module_param(debug, uint, 0644);
253 MODULE_PARM_DESC(debug, "CPUfreq debugging: add 1 to debug core,"
254 " 2 to debug drivers, and 4 to debug governors.");
255
256 module_param(debug_ratelimit, uint, 0644);
257 MODULE_PARM_DESC(debug_ratelimit, "CPUfreq debugging:"
258 " set to 0 to disable ratelimiting.");
259
260 #else /* !CONFIG_CPU_FREQ_DEBUG */
261
cpufreq_debug_enable_ratelimit(void)262 static inline void cpufreq_debug_enable_ratelimit(void) { return; }
cpufreq_debug_disable_ratelimit(void)263 static inline void cpufreq_debug_disable_ratelimit(void) { return; }
264
265 #endif /* CONFIG_CPU_FREQ_DEBUG */
266
267
268 /*********************************************************************
269 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
270 *********************************************************************/
271
272 /**
273 * adjust_jiffies - adjust the system "loops_per_jiffy"
274 *
275 * This function alters the system "loops_per_jiffy" for the clock
276 * speed change. Note that loops_per_jiffy cannot be updated on SMP
277 * systems as each CPU might be scaled differently. So, use the arch
278 * per-CPU loops_per_jiffy value wherever possible.
279 */
280 #ifndef CONFIG_SMP
281 static unsigned long l_p_j_ref;
282 static unsigned int l_p_j_ref_freq;
283
adjust_jiffies(unsigned long val,struct cpufreq_freqs * ci)284 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
285 {
286 if (ci->flags & CPUFREQ_CONST_LOOPS)
287 return;
288
289 if (!l_p_j_ref_freq) {
290 l_p_j_ref = loops_per_jiffy;
291 l_p_j_ref_freq = ci->old;
292 dprintk("saving %lu as reference value for loops_per_jiffy; "
293 "freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
294 }
295 if ((val == CPUFREQ_PRECHANGE && ci->old < ci->new) ||
296 (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) ||
297 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
298 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
299 ci->new);
300 dprintk("scaling loops_per_jiffy to %lu "
301 "for frequency %u kHz\n", loops_per_jiffy, ci->new);
302 }
303 }
304 #else
adjust_jiffies(unsigned long val,struct cpufreq_freqs * ci)305 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
306 {
307 return;
308 }
309 #endif
310
311
312 /**
313 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
314 * on frequency transition.
315 *
316 * This function calls the transition notifiers and the "adjust_jiffies"
317 * function. It is called twice on all CPU frequency changes that have
318 * external effects.
319 */
cpufreq_notify_transition(struct cpufreq_freqs * freqs,unsigned int state)320 void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
321 {
322 struct cpufreq_policy *policy;
323
324 BUG_ON(irqs_disabled());
325
326 freqs->flags = cpufreq_driver->flags;
327 dprintk("notification %u of frequency transition to %u kHz\n",
328 state, freqs->new);
329
330 policy = per_cpu(cpufreq_cpu_data, freqs->cpu);
331 switch (state) {
332
333 case CPUFREQ_PRECHANGE:
334 /* detect if the driver reported a value as "old frequency"
335 * which is not equal to what the cpufreq core thinks is
336 * "old frequency".
337 */
338 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
339 if ((policy) && (policy->cpu == freqs->cpu) &&
340 (policy->cur) && (policy->cur != freqs->old)) {
341 dprintk("Warning: CPU frequency is"
342 " %u, cpufreq assumed %u kHz.\n",
343 freqs->old, policy->cur);
344 freqs->old = policy->cur;
345 }
346 }
347 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
348 CPUFREQ_PRECHANGE, freqs);
349 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
350 break;
351
352 case CPUFREQ_POSTCHANGE:
353 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
354 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
355 CPUFREQ_POSTCHANGE, freqs);
356 if (likely(policy) && likely(policy->cpu == freqs->cpu))
357 policy->cur = freqs->new;
358 break;
359 }
360 }
361 EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
362
363
364
365 /*********************************************************************
366 * SYSFS INTERFACE *
367 *********************************************************************/
368
__find_governor(const char * str_governor)369 static struct cpufreq_governor *__find_governor(const char *str_governor)
370 {
371 struct cpufreq_governor *t;
372
373 list_for_each_entry(t, &cpufreq_governor_list, governor_list)
374 if (!strnicmp(str_governor,t->name,CPUFREQ_NAME_LEN))
375 return t;
376
377 return NULL;
378 }
379
380 /**
381 * cpufreq_parse_governor - parse a governor string
382 */
cpufreq_parse_governor(char * str_governor,unsigned int * policy,struct cpufreq_governor ** governor)383 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
384 struct cpufreq_governor **governor)
385 {
386 int err = -EINVAL;
387
388 if (!cpufreq_driver)
389 goto out;
390
391 if (cpufreq_driver->setpolicy) {
392 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
393 *policy = CPUFREQ_POLICY_PERFORMANCE;
394 err = 0;
395 } else if (!strnicmp(str_governor, "powersave",
396 CPUFREQ_NAME_LEN)) {
397 *policy = CPUFREQ_POLICY_POWERSAVE;
398 err = 0;
399 }
400 } else if (cpufreq_driver->target) {
401 struct cpufreq_governor *t;
402
403 mutex_lock(&cpufreq_governor_mutex);
404
405 t = __find_governor(str_governor);
406
407 if (t == NULL) {
408 char *name = kasprintf(GFP_KERNEL, "cpufreq_%s",
409 str_governor);
410
411 if (name) {
412 int ret;
413
414 mutex_unlock(&cpufreq_governor_mutex);
415 ret = request_module("%s", name);
416 mutex_lock(&cpufreq_governor_mutex);
417
418 if (ret == 0)
419 t = __find_governor(str_governor);
420 }
421
422 kfree(name);
423 }
424
425 if (t != NULL) {
426 *governor = t;
427 err = 0;
428 }
429
430 mutex_unlock(&cpufreq_governor_mutex);
431 }
432 out:
433 return err;
434 }
435
436
437 /* drivers/base/cpu.c */
438 extern struct sysdev_class cpu_sysdev_class;
439
440
441 /**
442 * cpufreq_per_cpu_attr_read() / show_##file_name() -
443 * print out cpufreq information
444 *
445 * Write out information from cpufreq_driver->policy[cpu]; object must be
446 * "unsigned int".
447 */
448
449 #define show_one(file_name, object) \
450 static ssize_t show_##file_name \
451 (struct cpufreq_policy *policy, char *buf) \
452 { \
453 return sprintf (buf, "%u\n", policy->object); \
454 }
455
456 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
457 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
458 show_one(scaling_min_freq, min);
459 show_one(scaling_max_freq, max);
460 show_one(scaling_cur_freq, cur);
461
462 static int __cpufreq_set_policy(struct cpufreq_policy *data,
463 struct cpufreq_policy *policy);
464
465 /**
466 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
467 */
468 #define store_one(file_name, object) \
469 static ssize_t store_##file_name \
470 (struct cpufreq_policy *policy, const char *buf, size_t count) \
471 { \
472 unsigned int ret = -EINVAL; \
473 struct cpufreq_policy new_policy; \
474 \
475 ret = cpufreq_get_policy(&new_policy, policy->cpu); \
476 if (ret) \
477 return -EINVAL; \
478 \
479 ret = sscanf (buf, "%u", &new_policy.object); \
480 if (ret != 1) \
481 return -EINVAL; \
482 \
483 ret = __cpufreq_set_policy(policy, &new_policy); \
484 policy->user_policy.object = policy->object; \
485 \
486 return ret ? ret : count; \
487 }
488
489 store_one(scaling_min_freq,min);
490 store_one(scaling_max_freq,max);
491
492 /**
493 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
494 */
show_cpuinfo_cur_freq(struct cpufreq_policy * policy,char * buf)495 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
496 char *buf)
497 {
498 unsigned int cur_freq = __cpufreq_get(policy->cpu);
499 if (!cur_freq)
500 return sprintf(buf, "<unknown>");
501 return sprintf(buf, "%u\n", cur_freq);
502 }
503
504
505 /**
506 * show_scaling_governor - show the current policy for the specified CPU
507 */
show_scaling_governor(struct cpufreq_policy * policy,char * buf)508 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
509 {
510 if(policy->policy == CPUFREQ_POLICY_POWERSAVE)
511 return sprintf(buf, "powersave\n");
512 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
513 return sprintf(buf, "performance\n");
514 else if (policy->governor)
515 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", policy->governor->name);
516 return -EINVAL;
517 }
518
519
520 /**
521 * store_scaling_governor - store policy for the specified CPU
522 */
store_scaling_governor(struct cpufreq_policy * policy,const char * buf,size_t count)523 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
524 const char *buf, size_t count)
525 {
526 unsigned int ret = -EINVAL;
527 char str_governor[16];
528 struct cpufreq_policy new_policy;
529
530 ret = cpufreq_get_policy(&new_policy, policy->cpu);
531 if (ret)
532 return ret;
533
534 ret = sscanf (buf, "%15s", str_governor);
535 if (ret != 1)
536 return -EINVAL;
537
538 if (cpufreq_parse_governor(str_governor, &new_policy.policy,
539 &new_policy.governor))
540 return -EINVAL;
541
542 /* Do not use cpufreq_set_policy here or the user_policy.max
543 will be wrongly overridden */
544 ret = __cpufreq_set_policy(policy, &new_policy);
545
546 policy->user_policy.policy = policy->policy;
547 policy->user_policy.governor = policy->governor;
548
549 if (ret)
550 return ret;
551 else
552 return count;
553 }
554
555 /**
556 * show_scaling_driver - show the cpufreq driver currently loaded
557 */
show_scaling_driver(struct cpufreq_policy * policy,char * buf)558 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
559 {
560 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name);
561 }
562
563 /**
564 * show_scaling_available_governors - show the available CPUfreq governors
565 */
show_scaling_available_governors(struct cpufreq_policy * policy,char * buf)566 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
567 char *buf)
568 {
569 ssize_t i = 0;
570 struct cpufreq_governor *t;
571
572 if (!cpufreq_driver->target) {
573 i += sprintf(buf, "performance powersave");
574 goto out;
575 }
576
577 list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
578 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) - (CPUFREQ_NAME_LEN + 2)))
579 goto out;
580 i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name);
581 }
582 out:
583 i += sprintf(&buf[i], "\n");
584 return i;
585 }
586
show_cpus(const struct cpumask * mask,char * buf)587 static ssize_t show_cpus(const struct cpumask *mask, char *buf)
588 {
589 ssize_t i = 0;
590 unsigned int cpu;
591
592 for_each_cpu(cpu, mask) {
593 if (i)
594 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
595 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
596 if (i >= (PAGE_SIZE - 5))
597 break;
598 }
599 i += sprintf(&buf[i], "\n");
600 return i;
601 }
602
603 /**
604 * show_related_cpus - show the CPUs affected by each transition even if
605 * hw coordination is in use
606 */
show_related_cpus(struct cpufreq_policy * policy,char * buf)607 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
608 {
609 if (cpumask_empty(policy->related_cpus))
610 return show_cpus(policy->cpus, buf);
611 return show_cpus(policy->related_cpus, buf);
612 }
613
614 /**
615 * show_affected_cpus - show the CPUs affected by each transition
616 */
show_affected_cpus(struct cpufreq_policy * policy,char * buf)617 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
618 {
619 return show_cpus(policy->cpus, buf);
620 }
621
store_scaling_setspeed(struct cpufreq_policy * policy,const char * buf,size_t count)622 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
623 const char *buf, size_t count)
624 {
625 unsigned int freq = 0;
626 unsigned int ret;
627
628 if (!policy->governor || !policy->governor->store_setspeed)
629 return -EINVAL;
630
631 ret = sscanf(buf, "%u", &freq);
632 if (ret != 1)
633 return -EINVAL;
634
635 policy->governor->store_setspeed(policy, freq);
636
637 return count;
638 }
639
show_scaling_setspeed(struct cpufreq_policy * policy,char * buf)640 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
641 {
642 if (!policy->governor || !policy->governor->show_setspeed)
643 return sprintf(buf, "<unsupported>\n");
644
645 return policy->governor->show_setspeed(policy, buf);
646 }
647
648 #define define_one_ro(_name) \
649 static struct freq_attr _name = \
650 __ATTR(_name, 0444, show_##_name, NULL)
651
652 #define define_one_ro0400(_name) \
653 static struct freq_attr _name = \
654 __ATTR(_name, 0400, show_##_name, NULL)
655
656 #define define_one_rw(_name) \
657 static struct freq_attr _name = \
658 __ATTR(_name, 0644, show_##_name, store_##_name)
659
660 define_one_ro0400(cpuinfo_cur_freq);
661 define_one_ro(cpuinfo_min_freq);
662 define_one_ro(cpuinfo_max_freq);
663 define_one_ro(scaling_available_governors);
664 define_one_ro(scaling_driver);
665 define_one_ro(scaling_cur_freq);
666 define_one_ro(related_cpus);
667 define_one_ro(affected_cpus);
668 define_one_rw(scaling_min_freq);
669 define_one_rw(scaling_max_freq);
670 define_one_rw(scaling_governor);
671 define_one_rw(scaling_setspeed);
672
673 static struct attribute *default_attrs[] = {
674 &cpuinfo_min_freq.attr,
675 &cpuinfo_max_freq.attr,
676 &scaling_min_freq.attr,
677 &scaling_max_freq.attr,
678 &affected_cpus.attr,
679 &related_cpus.attr,
680 &scaling_governor.attr,
681 &scaling_driver.attr,
682 &scaling_available_governors.attr,
683 &scaling_setspeed.attr,
684 NULL
685 };
686
687 #define to_policy(k) container_of(k,struct cpufreq_policy,kobj)
688 #define to_attr(a) container_of(a,struct freq_attr,attr)
689
show(struct kobject * kobj,struct attribute * attr,char * buf)690 static ssize_t show(struct kobject *kobj, struct attribute *attr ,char *buf)
691 {
692 struct cpufreq_policy *policy = to_policy(kobj);
693 struct freq_attr *fattr = to_attr(attr);
694 ssize_t ret = -EINVAL;
695 policy = cpufreq_cpu_get(policy->cpu);
696 if (!policy)
697 goto no_policy;
698
699 if (lock_policy_rwsem_read(policy->cpu) < 0)
700 goto fail;
701
702 if (fattr->show)
703 ret = fattr->show(policy, buf);
704 else
705 ret = -EIO;
706
707 unlock_policy_rwsem_read(policy->cpu);
708 fail:
709 cpufreq_cpu_put(policy);
710 no_policy:
711 return ret;
712 }
713
store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)714 static ssize_t store(struct kobject *kobj, struct attribute *attr,
715 const char *buf, size_t count)
716 {
717 struct cpufreq_policy *policy = to_policy(kobj);
718 struct freq_attr *fattr = to_attr(attr);
719 ssize_t ret = -EINVAL;
720 policy = cpufreq_cpu_get(policy->cpu);
721 if (!policy)
722 goto no_policy;
723
724 if (lock_policy_rwsem_write(policy->cpu) < 0)
725 goto fail;
726
727 if (fattr->store)
728 ret = fattr->store(policy, buf, count);
729 else
730 ret = -EIO;
731
732 unlock_policy_rwsem_write(policy->cpu);
733 fail:
734 cpufreq_cpu_put(policy);
735 no_policy:
736 return ret;
737 }
738
cpufreq_sysfs_release(struct kobject * kobj)739 static void cpufreq_sysfs_release(struct kobject *kobj)
740 {
741 struct cpufreq_policy *policy = to_policy(kobj);
742 dprintk("last reference is dropped\n");
743 complete(&policy->kobj_unregister);
744 }
745
746 static struct sysfs_ops sysfs_ops = {
747 .show = show,
748 .store = store,
749 };
750
751 static struct kobj_type ktype_cpufreq = {
752 .sysfs_ops = &sysfs_ops,
753 .default_attrs = default_attrs,
754 .release = cpufreq_sysfs_release,
755 };
756
757
758 /**
759 * cpufreq_add_dev - add a CPU device
760 *
761 * Adds the cpufreq interface for a CPU device.
762 */
cpufreq_add_dev(struct sys_device * sys_dev)763 static int cpufreq_add_dev(struct sys_device *sys_dev)
764 {
765 unsigned int cpu = sys_dev->id;
766 int ret = 0;
767 struct cpufreq_policy new_policy;
768 struct cpufreq_policy *policy;
769 struct freq_attr **drv_attr;
770 struct sys_device *cpu_sys_dev;
771 unsigned long flags;
772 unsigned int j;
773 #ifdef CONFIG_SMP
774 struct cpufreq_policy *managed_policy;
775 #endif
776
777 if (cpu_is_offline(cpu))
778 return 0;
779
780 cpufreq_debug_disable_ratelimit();
781 dprintk("adding CPU %u\n", cpu);
782
783 #ifdef CONFIG_SMP
784 /* check whether a different CPU already registered this
785 * CPU because it is in the same boat. */
786 policy = cpufreq_cpu_get(cpu);
787 if (unlikely(policy)) {
788 cpufreq_cpu_put(policy);
789 cpufreq_debug_enable_ratelimit();
790 return 0;
791 }
792 #endif
793
794 if (!try_module_get(cpufreq_driver->owner)) {
795 ret = -EINVAL;
796 goto module_out;
797 }
798
799 policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL);
800 if (!policy) {
801 ret = -ENOMEM;
802 goto nomem_out;
803 }
804 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) {
805 kfree(policy);
806 ret = -ENOMEM;
807 goto nomem_out;
808 }
809 if (!alloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) {
810 free_cpumask_var(policy->cpus);
811 kfree(policy);
812 ret = -ENOMEM;
813 goto nomem_out;
814 }
815
816 policy->cpu = cpu;
817 cpumask_copy(policy->cpus, cpumask_of(cpu));
818
819 /* Initially set CPU itself as the policy_cpu */
820 per_cpu(policy_cpu, cpu) = cpu;
821 lock_policy_rwsem_write(cpu);
822
823 init_completion(&policy->kobj_unregister);
824 INIT_WORK(&policy->update, handle_update);
825
826 /* Set governor before ->init, so that driver could check it */
827 policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
828 /* call driver. From then on the cpufreq must be able
829 * to accept all calls to ->verify and ->setpolicy for this CPU
830 */
831 ret = cpufreq_driver->init(policy);
832 if (ret) {
833 dprintk("initialization failed\n");
834 goto err_out;
835 }
836 policy->user_policy.min = policy->min;
837 policy->user_policy.max = policy->max;
838
839 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
840 CPUFREQ_START, policy);
841
842 #ifdef CONFIG_SMP
843
844 #ifdef CONFIG_HOTPLUG_CPU
845 if (per_cpu(cpufreq_cpu_governor, cpu)) {
846 policy->governor = per_cpu(cpufreq_cpu_governor, cpu);
847 dprintk("Restoring governor %s for cpu %d\n",
848 policy->governor->name, cpu);
849 }
850 #endif
851
852 for_each_cpu(j, policy->cpus) {
853 if (cpu == j)
854 continue;
855
856 /* check for existing affected CPUs. They may not be aware
857 * of it due to CPU Hotplug.
858 */
859 managed_policy = cpufreq_cpu_get(j); // FIXME: Where is this released? What about error paths?
860 if (unlikely(managed_policy)) {
861
862 /* Set proper policy_cpu */
863 unlock_policy_rwsem_write(cpu);
864 per_cpu(policy_cpu, cpu) = managed_policy->cpu;
865
866 if (lock_policy_rwsem_write(cpu) < 0)
867 goto err_out_driver_exit;
868
869 spin_lock_irqsave(&cpufreq_driver_lock, flags);
870 cpumask_copy(managed_policy->cpus, policy->cpus);
871 per_cpu(cpufreq_cpu_data, cpu) = managed_policy;
872 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
873
874 dprintk("CPU already managed, adding link\n");
875 ret = sysfs_create_link(&sys_dev->kobj,
876 &managed_policy->kobj,
877 "cpufreq");
878 if (ret)
879 goto err_out_driver_exit;
880
881 cpufreq_debug_enable_ratelimit();
882 ret = 0;
883 goto err_out_driver_exit; /* call driver->exit() */
884 }
885 }
886 #endif
887 memcpy(&new_policy, policy, sizeof(struct cpufreq_policy));
888
889 /* prepare interface data */
890 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, &sys_dev->kobj,
891 "cpufreq");
892 if (ret)
893 goto err_out_driver_exit;
894
895 /* set up files for this cpu device */
896 drv_attr = cpufreq_driver->attr;
897 while ((drv_attr) && (*drv_attr)) {
898 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
899 if (ret)
900 goto err_out_driver_exit;
901 drv_attr++;
902 }
903 if (cpufreq_driver->get) {
904 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
905 if (ret)
906 goto err_out_driver_exit;
907 }
908 if (cpufreq_driver->target) {
909 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
910 if (ret)
911 goto err_out_driver_exit;
912 }
913
914 spin_lock_irqsave(&cpufreq_driver_lock, flags);
915 for_each_cpu(j, policy->cpus) {
916 per_cpu(cpufreq_cpu_data, j) = policy;
917 per_cpu(policy_cpu, j) = policy->cpu;
918 }
919 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
920
921 /* symlink affected CPUs */
922 for_each_cpu(j, policy->cpus) {
923 if (j == cpu)
924 continue;
925 if (!cpu_online(j))
926 continue;
927
928 dprintk("CPU %u already managed, adding link\n", j);
929 cpufreq_cpu_get(cpu);
930 cpu_sys_dev = get_cpu_sysdev(j);
931 ret = sysfs_create_link(&cpu_sys_dev->kobj, &policy->kobj,
932 "cpufreq");
933 if (ret)
934 goto err_out_unregister;
935 }
936
937 policy->governor = NULL; /* to assure that the starting sequence is
938 * run in cpufreq_set_policy */
939
940 /* set default policy */
941 ret = __cpufreq_set_policy(policy, &new_policy);
942 policy->user_policy.policy = policy->policy;
943 policy->user_policy.governor = policy->governor;
944
945 if (ret) {
946 dprintk("setting policy failed\n");
947 goto err_out_unregister;
948 }
949
950 unlock_policy_rwsem_write(cpu);
951
952 kobject_uevent(&policy->kobj, KOBJ_ADD);
953 module_put(cpufreq_driver->owner);
954 dprintk("initialization complete\n");
955 cpufreq_debug_enable_ratelimit();
956
957 return 0;
958
959
960 err_out_unregister:
961 spin_lock_irqsave(&cpufreq_driver_lock, flags);
962 for_each_cpu(j, policy->cpus)
963 per_cpu(cpufreq_cpu_data, j) = NULL;
964 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
965
966 kobject_put(&policy->kobj);
967 wait_for_completion(&policy->kobj_unregister);
968
969 err_out_driver_exit:
970 if (cpufreq_driver->exit)
971 cpufreq_driver->exit(policy);
972
973 err_out:
974 unlock_policy_rwsem_write(cpu);
975 kfree(policy);
976
977 nomem_out:
978 module_put(cpufreq_driver->owner);
979 module_out:
980 cpufreq_debug_enable_ratelimit();
981 return ret;
982 }
983
984
985 /**
986 * __cpufreq_remove_dev - remove a CPU device
987 *
988 * Removes the cpufreq interface for a CPU device.
989 * Caller should already have policy_rwsem in write mode for this CPU.
990 * This routine frees the rwsem before returning.
991 */
__cpufreq_remove_dev(struct sys_device * sys_dev)992 static int __cpufreq_remove_dev(struct sys_device *sys_dev)
993 {
994 unsigned int cpu = sys_dev->id;
995 unsigned long flags;
996 struct cpufreq_policy *data;
997 #ifdef CONFIG_SMP
998 struct sys_device *cpu_sys_dev;
999 unsigned int j;
1000 #endif
1001
1002 cpufreq_debug_disable_ratelimit();
1003 dprintk("unregistering CPU %u\n", cpu);
1004
1005 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1006 data = per_cpu(cpufreq_cpu_data, cpu);
1007
1008 if (!data) {
1009 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1010 cpufreq_debug_enable_ratelimit();
1011 unlock_policy_rwsem_write(cpu);
1012 return -EINVAL;
1013 }
1014 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1015
1016
1017 #ifdef CONFIG_SMP
1018 /* if this isn't the CPU which is the parent of the kobj, we
1019 * only need to unlink, put and exit
1020 */
1021 if (unlikely(cpu != data->cpu)) {
1022 dprintk("removing link\n");
1023 cpumask_clear_cpu(cpu, data->cpus);
1024 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1025 sysfs_remove_link(&sys_dev->kobj, "cpufreq");
1026 cpufreq_cpu_put(data);
1027 cpufreq_debug_enable_ratelimit();
1028 unlock_policy_rwsem_write(cpu);
1029 return 0;
1030 }
1031 #endif
1032
1033 #ifdef CONFIG_SMP
1034
1035 #ifdef CONFIG_HOTPLUG_CPU
1036 per_cpu(cpufreq_cpu_governor, cpu) = data->governor;
1037 #endif
1038
1039 /* if we have other CPUs still registered, we need to unlink them,
1040 * or else wait_for_completion below will lock up. Clean the
1041 * per_cpu(cpufreq_cpu_data) while holding the lock, and remove
1042 * the sysfs links afterwards.
1043 */
1044 if (unlikely(cpumask_weight(data->cpus) > 1)) {
1045 for_each_cpu(j, data->cpus) {
1046 if (j == cpu)
1047 continue;
1048 per_cpu(cpufreq_cpu_data, j) = NULL;
1049 }
1050 }
1051
1052 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1053
1054 if (unlikely(cpumask_weight(data->cpus) > 1)) {
1055 for_each_cpu(j, data->cpus) {
1056 if (j == cpu)
1057 continue;
1058 dprintk("removing link for cpu %u\n", j);
1059 #ifdef CONFIG_HOTPLUG_CPU
1060 per_cpu(cpufreq_cpu_governor, j) = data->governor;
1061 #endif
1062 cpu_sys_dev = get_cpu_sysdev(j);
1063 sysfs_remove_link(&cpu_sys_dev->kobj, "cpufreq");
1064 cpufreq_cpu_put(data);
1065 }
1066 }
1067 #else
1068 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1069 #endif
1070
1071 if (cpufreq_driver->target)
1072 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1073
1074 unlock_policy_rwsem_write(cpu);
1075
1076 kobject_put(&data->kobj);
1077
1078 /* we need to make sure that the underlying kobj is actually
1079 * not referenced anymore by anybody before we proceed with
1080 * unloading.
1081 */
1082 dprintk("waiting for dropping of refcount\n");
1083 wait_for_completion(&data->kobj_unregister);
1084 dprintk("wait complete\n");
1085
1086 if (cpufreq_driver->exit)
1087 cpufreq_driver->exit(data);
1088
1089 free_cpumask_var(data->related_cpus);
1090 free_cpumask_var(data->cpus);
1091 kfree(data);
1092 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1093
1094 cpufreq_debug_enable_ratelimit();
1095 return 0;
1096 }
1097
1098
cpufreq_remove_dev(struct sys_device * sys_dev)1099 static int cpufreq_remove_dev(struct sys_device *sys_dev)
1100 {
1101 unsigned int cpu = sys_dev->id;
1102 int retval;
1103
1104 if (cpu_is_offline(cpu))
1105 return 0;
1106
1107 if (unlikely(lock_policy_rwsem_write(cpu)))
1108 BUG();
1109
1110 retval = __cpufreq_remove_dev(sys_dev);
1111 return retval;
1112 }
1113
1114
handle_update(struct work_struct * work)1115 static void handle_update(struct work_struct *work)
1116 {
1117 struct cpufreq_policy *policy =
1118 container_of(work, struct cpufreq_policy, update);
1119 unsigned int cpu = policy->cpu;
1120 dprintk("handle_update for cpu %u called\n", cpu);
1121 cpufreq_update_policy(cpu);
1122 }
1123
1124 /**
1125 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble.
1126 * @cpu: cpu number
1127 * @old_freq: CPU frequency the kernel thinks the CPU runs at
1128 * @new_freq: CPU frequency the CPU actually runs at
1129 *
1130 * We adjust to current frequency first, and need to clean up later. So either call
1131 * to cpufreq_update_policy() or schedule handle_update()).
1132 */
cpufreq_out_of_sync(unsigned int cpu,unsigned int old_freq,unsigned int new_freq)1133 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1134 unsigned int new_freq)
1135 {
1136 struct cpufreq_freqs freqs;
1137
1138 dprintk("Warning: CPU frequency out of sync: cpufreq and timing "
1139 "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1140
1141 freqs.cpu = cpu;
1142 freqs.old = old_freq;
1143 freqs.new = new_freq;
1144 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1145 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1146 }
1147
1148
1149 /**
1150 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1151 * @cpu: CPU number
1152 *
1153 * This is the last known freq, without actually getting it from the driver.
1154 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1155 */
cpufreq_quick_get(unsigned int cpu)1156 unsigned int cpufreq_quick_get(unsigned int cpu)
1157 {
1158 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1159 unsigned int ret_freq = 0;
1160
1161 if (policy) {
1162 ret_freq = policy->cur;
1163 cpufreq_cpu_put(policy);
1164 }
1165
1166 return ret_freq;
1167 }
1168 EXPORT_SYMBOL(cpufreq_quick_get);
1169
1170
__cpufreq_get(unsigned int cpu)1171 static unsigned int __cpufreq_get(unsigned int cpu)
1172 {
1173 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1174 unsigned int ret_freq = 0;
1175
1176 if (!cpufreq_driver->get)
1177 return ret_freq;
1178
1179 ret_freq = cpufreq_driver->get(cpu);
1180
1181 if (ret_freq && policy->cur &&
1182 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1183 /* verify no discrepancy between actual and
1184 saved value exists */
1185 if (unlikely(ret_freq != policy->cur)) {
1186 cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1187 schedule_work(&policy->update);
1188 }
1189 }
1190
1191 return ret_freq;
1192 }
1193
1194 /**
1195 * cpufreq_get - get the current CPU frequency (in kHz)
1196 * @cpu: CPU number
1197 *
1198 * Get the CPU current (static) CPU frequency
1199 */
cpufreq_get(unsigned int cpu)1200 unsigned int cpufreq_get(unsigned int cpu)
1201 {
1202 unsigned int ret_freq = 0;
1203 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1204
1205 if (!policy)
1206 goto out;
1207
1208 if (unlikely(lock_policy_rwsem_read(cpu)))
1209 goto out_policy;
1210
1211 ret_freq = __cpufreq_get(cpu);
1212
1213 unlock_policy_rwsem_read(cpu);
1214
1215 out_policy:
1216 cpufreq_cpu_put(policy);
1217 out:
1218 return ret_freq;
1219 }
1220 EXPORT_SYMBOL(cpufreq_get);
1221
1222
1223 /**
1224 * cpufreq_suspend - let the low level driver prepare for suspend
1225 */
1226
cpufreq_suspend(struct sys_device * sysdev,pm_message_t pmsg)1227 static int cpufreq_suspend(struct sys_device *sysdev, pm_message_t pmsg)
1228 {
1229 int cpu = sysdev->id;
1230 int ret = 0;
1231 unsigned int cur_freq = 0;
1232 struct cpufreq_policy *cpu_policy;
1233
1234 dprintk("suspending cpu %u\n", cpu);
1235
1236 if (!cpu_online(cpu))
1237 return 0;
1238
1239 /* we may be lax here as interrupts are off. Nonetheless
1240 * we need to grab the correct cpu policy, as to check
1241 * whether we really run on this CPU.
1242 */
1243
1244 cpu_policy = cpufreq_cpu_get(cpu);
1245 if (!cpu_policy)
1246 return -EINVAL;
1247
1248 /* only handle each CPU group once */
1249 if (unlikely(cpu_policy->cpu != cpu))
1250 goto out;
1251
1252 if (cpufreq_driver->suspend) {
1253 ret = cpufreq_driver->suspend(cpu_policy, pmsg);
1254 if (ret) {
1255 printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1256 "step on CPU %u\n", cpu_policy->cpu);
1257 goto out;
1258 }
1259 }
1260
1261 if (cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)
1262 goto out;
1263
1264 if (cpufreq_driver->get)
1265 cur_freq = cpufreq_driver->get(cpu_policy->cpu);
1266
1267 if (!cur_freq || !cpu_policy->cur) {
1268 printk(KERN_ERR "cpufreq: suspend failed to assert current "
1269 "frequency is what timing core thinks it is.\n");
1270 goto out;
1271 }
1272
1273 if (unlikely(cur_freq != cpu_policy->cur)) {
1274 struct cpufreq_freqs freqs;
1275
1276 if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN))
1277 dprintk("Warning: CPU frequency is %u, "
1278 "cpufreq assumed %u kHz.\n",
1279 cur_freq, cpu_policy->cur);
1280
1281 freqs.cpu = cpu;
1282 freqs.old = cpu_policy->cur;
1283 freqs.new = cur_freq;
1284
1285 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
1286 CPUFREQ_SUSPENDCHANGE, &freqs);
1287 adjust_jiffies(CPUFREQ_SUSPENDCHANGE, &freqs);
1288
1289 cpu_policy->cur = cur_freq;
1290 }
1291
1292 out:
1293 cpufreq_cpu_put(cpu_policy);
1294 return ret;
1295 }
1296
1297 /**
1298 * cpufreq_resume - restore proper CPU frequency handling after resume
1299 *
1300 * 1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1301 * 2.) if ->target and !CPUFREQ_CONST_LOOPS: verify we're in sync
1302 * 3.) schedule call cpufreq_update_policy() ASAP as interrupts are
1303 * restored.
1304 */
cpufreq_resume(struct sys_device * sysdev)1305 static int cpufreq_resume(struct sys_device *sysdev)
1306 {
1307 int cpu = sysdev->id;
1308 int ret = 0;
1309 struct cpufreq_policy *cpu_policy;
1310
1311 dprintk("resuming cpu %u\n", cpu);
1312
1313 if (!cpu_online(cpu))
1314 return 0;
1315
1316 /* we may be lax here as interrupts are off. Nonetheless
1317 * we need to grab the correct cpu policy, as to check
1318 * whether we really run on this CPU.
1319 */
1320
1321 cpu_policy = cpufreq_cpu_get(cpu);
1322 if (!cpu_policy)
1323 return -EINVAL;
1324
1325 /* only handle each CPU group once */
1326 if (unlikely(cpu_policy->cpu != cpu))
1327 goto fail;
1328
1329 if (cpufreq_driver->resume) {
1330 ret = cpufreq_driver->resume(cpu_policy);
1331 if (ret) {
1332 printk(KERN_ERR "cpufreq: resume failed in ->resume "
1333 "step on CPU %u\n", cpu_policy->cpu);
1334 goto fail;
1335 }
1336 }
1337
1338 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1339 unsigned int cur_freq = 0;
1340
1341 if (cpufreq_driver->get)
1342 cur_freq = cpufreq_driver->get(cpu_policy->cpu);
1343
1344 if (!cur_freq || !cpu_policy->cur) {
1345 printk(KERN_ERR "cpufreq: resume failed to assert "
1346 "current frequency is what timing core "
1347 "thinks it is.\n");
1348 goto out;
1349 }
1350
1351 if (unlikely(cur_freq != cpu_policy->cur)) {
1352 struct cpufreq_freqs freqs;
1353
1354 if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN))
1355 dprintk("Warning: CPU frequency "
1356 "is %u, cpufreq assumed %u kHz.\n",
1357 cur_freq, cpu_policy->cur);
1358
1359 freqs.cpu = cpu;
1360 freqs.old = cpu_policy->cur;
1361 freqs.new = cur_freq;
1362
1363 srcu_notifier_call_chain(
1364 &cpufreq_transition_notifier_list,
1365 CPUFREQ_RESUMECHANGE, &freqs);
1366 adjust_jiffies(CPUFREQ_RESUMECHANGE, &freqs);
1367
1368 cpu_policy->cur = cur_freq;
1369 }
1370 }
1371
1372 out:
1373 schedule_work(&cpu_policy->update);
1374 fail:
1375 cpufreq_cpu_put(cpu_policy);
1376 return ret;
1377 }
1378
1379 static struct sysdev_driver cpufreq_sysdev_driver = {
1380 .add = cpufreq_add_dev,
1381 .remove = cpufreq_remove_dev,
1382 .suspend = cpufreq_suspend,
1383 .resume = cpufreq_resume,
1384 };
1385
1386
1387 /*********************************************************************
1388 * NOTIFIER LISTS INTERFACE *
1389 *********************************************************************/
1390
1391 /**
1392 * cpufreq_register_notifier - register a driver with cpufreq
1393 * @nb: notifier function to register
1394 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1395 *
1396 * Add a driver to one of two lists: either a list of drivers that
1397 * are notified about clock rate changes (once before and once after
1398 * the transition), or a list of drivers that are notified about
1399 * changes in cpufreq policy.
1400 *
1401 * This function may sleep, and has the same return conditions as
1402 * blocking_notifier_chain_register.
1403 */
cpufreq_register_notifier(struct notifier_block * nb,unsigned int list)1404 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1405 {
1406 int ret;
1407
1408 WARN_ON(!init_cpufreq_transition_notifier_list_called);
1409
1410 switch (list) {
1411 case CPUFREQ_TRANSITION_NOTIFIER:
1412 ret = srcu_notifier_chain_register(
1413 &cpufreq_transition_notifier_list, nb);
1414 break;
1415 case CPUFREQ_POLICY_NOTIFIER:
1416 ret = blocking_notifier_chain_register(
1417 &cpufreq_policy_notifier_list, nb);
1418 break;
1419 default:
1420 ret = -EINVAL;
1421 }
1422
1423 return ret;
1424 }
1425 EXPORT_SYMBOL(cpufreq_register_notifier);
1426
1427
1428 /**
1429 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1430 * @nb: notifier block to be unregistered
1431 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1432 *
1433 * Remove a driver from the CPU frequency notifier list.
1434 *
1435 * This function may sleep, and has the same return conditions as
1436 * blocking_notifier_chain_unregister.
1437 */
cpufreq_unregister_notifier(struct notifier_block * nb,unsigned int list)1438 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1439 {
1440 int ret;
1441
1442 switch (list) {
1443 case CPUFREQ_TRANSITION_NOTIFIER:
1444 ret = srcu_notifier_chain_unregister(
1445 &cpufreq_transition_notifier_list, nb);
1446 break;
1447 case CPUFREQ_POLICY_NOTIFIER:
1448 ret = blocking_notifier_chain_unregister(
1449 &cpufreq_policy_notifier_list, nb);
1450 break;
1451 default:
1452 ret = -EINVAL;
1453 }
1454
1455 return ret;
1456 }
1457 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1458
1459
1460 /*********************************************************************
1461 * GOVERNORS *
1462 *********************************************************************/
1463
1464
__cpufreq_driver_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)1465 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1466 unsigned int target_freq,
1467 unsigned int relation)
1468 {
1469 int retval = -EINVAL;
1470
1471 dprintk("target for CPU %u: %u kHz, relation %u\n", policy->cpu,
1472 target_freq, relation);
1473 if (cpu_online(policy->cpu) && cpufreq_driver->target)
1474 retval = cpufreq_driver->target(policy, target_freq, relation);
1475
1476 return retval;
1477 }
1478 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1479
cpufreq_driver_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)1480 int cpufreq_driver_target(struct cpufreq_policy *policy,
1481 unsigned int target_freq,
1482 unsigned int relation)
1483 {
1484 int ret = -EINVAL;
1485
1486 policy = cpufreq_cpu_get(policy->cpu);
1487 if (!policy)
1488 goto no_policy;
1489
1490 if (unlikely(lock_policy_rwsem_write(policy->cpu)))
1491 goto fail;
1492
1493 ret = __cpufreq_driver_target(policy, target_freq, relation);
1494
1495 unlock_policy_rwsem_write(policy->cpu);
1496
1497 fail:
1498 cpufreq_cpu_put(policy);
1499 no_policy:
1500 return ret;
1501 }
1502 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1503
__cpufreq_driver_getavg(struct cpufreq_policy * policy,unsigned int cpu)1504 int __cpufreq_driver_getavg(struct cpufreq_policy *policy, unsigned int cpu)
1505 {
1506 int ret = 0;
1507
1508 policy = cpufreq_cpu_get(policy->cpu);
1509 if (!policy)
1510 return -EINVAL;
1511
1512 if (cpu_online(cpu) && cpufreq_driver->getavg)
1513 ret = cpufreq_driver->getavg(policy, cpu);
1514
1515 cpufreq_cpu_put(policy);
1516 return ret;
1517 }
1518 EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg);
1519
1520 /*
1521 * when "event" is CPUFREQ_GOV_LIMITS
1522 */
1523
__cpufreq_governor(struct cpufreq_policy * policy,unsigned int event)1524 static int __cpufreq_governor(struct cpufreq_policy *policy,
1525 unsigned int event)
1526 {
1527 int ret;
1528
1529 /* Only must be defined when default governor is known to have latency
1530 restrictions, like e.g. conservative or ondemand.
1531 That this is the case is already ensured in Kconfig
1532 */
1533 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1534 struct cpufreq_governor *gov = &cpufreq_gov_performance;
1535 #else
1536 struct cpufreq_governor *gov = NULL;
1537 #endif
1538
1539 if (policy->governor->max_transition_latency &&
1540 policy->cpuinfo.transition_latency >
1541 policy->governor->max_transition_latency) {
1542 if (!gov)
1543 return -EINVAL;
1544 else {
1545 printk(KERN_WARNING "%s governor failed, too long"
1546 " transition latency of HW, fallback"
1547 " to %s governor\n",
1548 policy->governor->name,
1549 gov->name);
1550 policy->governor = gov;
1551 }
1552 }
1553
1554 if (!try_module_get(policy->governor->owner))
1555 return -EINVAL;
1556
1557 dprintk("__cpufreq_governor for CPU %u, event %u\n",
1558 policy->cpu, event);
1559 ret = policy->governor->governor(policy, event);
1560
1561 /* we keep one module reference alive for
1562 each CPU governed by this CPU */
1563 if ((event != CPUFREQ_GOV_START) || ret)
1564 module_put(policy->governor->owner);
1565 if ((event == CPUFREQ_GOV_STOP) && !ret)
1566 module_put(policy->governor->owner);
1567
1568 return ret;
1569 }
1570
1571
cpufreq_register_governor(struct cpufreq_governor * governor)1572 int cpufreq_register_governor(struct cpufreq_governor *governor)
1573 {
1574 int err;
1575
1576 if (!governor)
1577 return -EINVAL;
1578
1579 mutex_lock(&cpufreq_governor_mutex);
1580
1581 err = -EBUSY;
1582 if (__find_governor(governor->name) == NULL) {
1583 err = 0;
1584 list_add(&governor->governor_list, &cpufreq_governor_list);
1585 }
1586
1587 mutex_unlock(&cpufreq_governor_mutex);
1588 return err;
1589 }
1590 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1591
1592
cpufreq_unregister_governor(struct cpufreq_governor * governor)1593 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1594 {
1595 if (!governor)
1596 return;
1597
1598 mutex_lock(&cpufreq_governor_mutex);
1599 list_del(&governor->governor_list);
1600 mutex_unlock(&cpufreq_governor_mutex);
1601 return;
1602 }
1603 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1604
1605
1606
1607 /*********************************************************************
1608 * POLICY INTERFACE *
1609 *********************************************************************/
1610
1611 /**
1612 * cpufreq_get_policy - get the current cpufreq_policy
1613 * @policy: struct cpufreq_policy into which the current cpufreq_policy is written
1614 *
1615 * Reads the current cpufreq policy.
1616 */
cpufreq_get_policy(struct cpufreq_policy * policy,unsigned int cpu)1617 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1618 {
1619 struct cpufreq_policy *cpu_policy;
1620 if (!policy)
1621 return -EINVAL;
1622
1623 cpu_policy = cpufreq_cpu_get(cpu);
1624 if (!cpu_policy)
1625 return -EINVAL;
1626
1627 memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy));
1628
1629 cpufreq_cpu_put(cpu_policy);
1630 return 0;
1631 }
1632 EXPORT_SYMBOL(cpufreq_get_policy);
1633
1634
1635 /*
1636 * data : current policy.
1637 * policy : policy to be set.
1638 */
__cpufreq_set_policy(struct cpufreq_policy * data,struct cpufreq_policy * policy)1639 static int __cpufreq_set_policy(struct cpufreq_policy *data,
1640 struct cpufreq_policy *policy)
1641 {
1642 int ret = 0;
1643
1644 cpufreq_debug_disable_ratelimit();
1645 dprintk("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu,
1646 policy->min, policy->max);
1647
1648 memcpy(&policy->cpuinfo, &data->cpuinfo,
1649 sizeof(struct cpufreq_cpuinfo));
1650
1651 if (policy->min > data->max || policy->max < data->min) {
1652 ret = -EINVAL;
1653 goto error_out;
1654 }
1655
1656 /* verify the cpu speed can be set within this limit */
1657 ret = cpufreq_driver->verify(policy);
1658 if (ret)
1659 goto error_out;
1660
1661 /* adjust if necessary - all reasons */
1662 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1663 CPUFREQ_ADJUST, policy);
1664
1665 /* adjust if necessary - hardware incompatibility*/
1666 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1667 CPUFREQ_INCOMPATIBLE, policy);
1668
1669 /* verify the cpu speed can be set within this limit,
1670 which might be different to the first one */
1671 ret = cpufreq_driver->verify(policy);
1672 if (ret)
1673 goto error_out;
1674
1675 /* notification of the new policy */
1676 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1677 CPUFREQ_NOTIFY, policy);
1678
1679 data->min = policy->min;
1680 data->max = policy->max;
1681
1682 dprintk("new min and max freqs are %u - %u kHz\n",
1683 data->min, data->max);
1684
1685 if (cpufreq_driver->setpolicy) {
1686 data->policy = policy->policy;
1687 dprintk("setting range\n");
1688 ret = cpufreq_driver->setpolicy(policy);
1689 } else {
1690 if (policy->governor != data->governor) {
1691 /* save old, working values */
1692 struct cpufreq_governor *old_gov = data->governor;
1693
1694 dprintk("governor switch\n");
1695
1696 /* end old governor */
1697 if (data->governor)
1698 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1699
1700 /* start new governor */
1701 data->governor = policy->governor;
1702 if (__cpufreq_governor(data, CPUFREQ_GOV_START)) {
1703 /* new governor failed, so re-start old one */
1704 dprintk("starting governor %s failed\n",
1705 data->governor->name);
1706 if (old_gov) {
1707 data->governor = old_gov;
1708 __cpufreq_governor(data,
1709 CPUFREQ_GOV_START);
1710 }
1711 ret = -EINVAL;
1712 goto error_out;
1713 }
1714 /* might be a policy change, too, so fall through */
1715 }
1716 dprintk("governor: change or update limits\n");
1717 __cpufreq_governor(data, CPUFREQ_GOV_LIMITS);
1718 }
1719
1720 error_out:
1721 cpufreq_debug_enable_ratelimit();
1722 return ret;
1723 }
1724
1725 /**
1726 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
1727 * @cpu: CPU which shall be re-evaluated
1728 *
1729 * Usefull for policy notifiers which have different necessities
1730 * at different times.
1731 */
cpufreq_update_policy(unsigned int cpu)1732 int cpufreq_update_policy(unsigned int cpu)
1733 {
1734 struct cpufreq_policy *data = cpufreq_cpu_get(cpu);
1735 struct cpufreq_policy policy;
1736 int ret;
1737
1738 if (!data) {
1739 ret = -ENODEV;
1740 goto no_policy;
1741 }
1742
1743 if (unlikely(lock_policy_rwsem_write(cpu))) {
1744 ret = -EINVAL;
1745 goto fail;
1746 }
1747
1748 dprintk("updating policy for CPU %u\n", cpu);
1749 memcpy(&policy, data, sizeof(struct cpufreq_policy));
1750 policy.min = data->user_policy.min;
1751 policy.max = data->user_policy.max;
1752 policy.policy = data->user_policy.policy;
1753 policy.governor = data->user_policy.governor;
1754
1755 /* BIOS might change freq behind our back
1756 -> ask driver for current freq and notify governors about a change */
1757 if (cpufreq_driver->get) {
1758 policy.cur = cpufreq_driver->get(cpu);
1759 if (!data->cur) {
1760 dprintk("Driver did not initialize current freq");
1761 data->cur = policy.cur;
1762 } else {
1763 if (data->cur != policy.cur)
1764 cpufreq_out_of_sync(cpu, data->cur,
1765 policy.cur);
1766 }
1767 }
1768
1769 ret = __cpufreq_set_policy(data, &policy);
1770
1771 unlock_policy_rwsem_write(cpu);
1772
1773 fail:
1774 cpufreq_cpu_put(data);
1775 no_policy:
1776 return ret;
1777 }
1778 EXPORT_SYMBOL(cpufreq_update_policy);
1779
cpufreq_cpu_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)1780 static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb,
1781 unsigned long action, void *hcpu)
1782 {
1783 unsigned int cpu = (unsigned long)hcpu;
1784 struct sys_device *sys_dev;
1785
1786 sys_dev = get_cpu_sysdev(cpu);
1787 if (sys_dev) {
1788 switch (action) {
1789 case CPU_ONLINE:
1790 case CPU_ONLINE_FROZEN:
1791 cpufreq_add_dev(sys_dev);
1792 break;
1793 case CPU_DOWN_PREPARE:
1794 case CPU_DOWN_PREPARE_FROZEN:
1795 if (unlikely(lock_policy_rwsem_write(cpu)))
1796 BUG();
1797
1798 __cpufreq_remove_dev(sys_dev);
1799 break;
1800 case CPU_DOWN_FAILED:
1801 case CPU_DOWN_FAILED_FROZEN:
1802 cpufreq_add_dev(sys_dev);
1803 break;
1804 }
1805 }
1806 return NOTIFY_OK;
1807 }
1808
1809 static struct notifier_block __refdata cpufreq_cpu_notifier =
1810 {
1811 .notifier_call = cpufreq_cpu_callback,
1812 };
1813
1814 /*********************************************************************
1815 * REGISTER / UNREGISTER CPUFREQ DRIVER *
1816 *********************************************************************/
1817
1818 /**
1819 * cpufreq_register_driver - register a CPU Frequency driver
1820 * @driver_data: A struct cpufreq_driver containing the values#
1821 * submitted by the CPU Frequency driver.
1822 *
1823 * Registers a CPU Frequency driver to this core code. This code
1824 * returns zero on success, -EBUSY when another driver got here first
1825 * (and isn't unregistered in the meantime).
1826 *
1827 */
cpufreq_register_driver(struct cpufreq_driver * driver_data)1828 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
1829 {
1830 unsigned long flags;
1831 int ret;
1832
1833 if (!driver_data || !driver_data->verify || !driver_data->init ||
1834 ((!driver_data->setpolicy) && (!driver_data->target)))
1835 return -EINVAL;
1836
1837 dprintk("trying to register driver %s\n", driver_data->name);
1838
1839 if (driver_data->setpolicy)
1840 driver_data->flags |= CPUFREQ_CONST_LOOPS;
1841
1842 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1843 if (cpufreq_driver) {
1844 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1845 return -EBUSY;
1846 }
1847 cpufreq_driver = driver_data;
1848 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1849
1850 ret = sysdev_driver_register(&cpu_sysdev_class,
1851 &cpufreq_sysdev_driver);
1852
1853 if ((!ret) && !(cpufreq_driver->flags & CPUFREQ_STICKY)) {
1854 int i;
1855 ret = -ENODEV;
1856
1857 /* check for at least one working CPU */
1858 for (i = 0; i < nr_cpu_ids; i++)
1859 if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
1860 ret = 0;
1861 break;
1862 }
1863
1864 /* if all ->init() calls failed, unregister */
1865 if (ret) {
1866 dprintk("no CPU initialized for driver %s\n",
1867 driver_data->name);
1868 sysdev_driver_unregister(&cpu_sysdev_class,
1869 &cpufreq_sysdev_driver);
1870
1871 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1872 cpufreq_driver = NULL;
1873 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1874 }
1875 }
1876
1877 if (!ret) {
1878 register_hotcpu_notifier(&cpufreq_cpu_notifier);
1879 dprintk("driver %s up and running\n", driver_data->name);
1880 cpufreq_debug_enable_ratelimit();
1881 }
1882
1883 return ret;
1884 }
1885 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
1886
1887
1888 /**
1889 * cpufreq_unregister_driver - unregister the current CPUFreq driver
1890 *
1891 * Unregister the current CPUFreq driver. Only call this if you have
1892 * the right to do so, i.e. if you have succeeded in initialising before!
1893 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
1894 * currently not initialised.
1895 */
cpufreq_unregister_driver(struct cpufreq_driver * driver)1896 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
1897 {
1898 unsigned long flags;
1899
1900 cpufreq_debug_disable_ratelimit();
1901
1902 if (!cpufreq_driver || (driver != cpufreq_driver)) {
1903 cpufreq_debug_enable_ratelimit();
1904 return -EINVAL;
1905 }
1906
1907 dprintk("unregistering driver %s\n", driver->name);
1908
1909 sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver);
1910 unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
1911
1912 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1913 cpufreq_driver = NULL;
1914 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1915
1916 return 0;
1917 }
1918 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
1919
cpufreq_core_init(void)1920 static int __init cpufreq_core_init(void)
1921 {
1922 int cpu;
1923
1924 for_each_possible_cpu(cpu) {
1925 per_cpu(policy_cpu, cpu) = -1;
1926 init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
1927 }
1928 return 0;
1929 }
1930
1931 core_initcall(cpufreq_core_init);
1932