• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /***********************license start***************
2  * Author: Cavium Networks
3  *
4  * Contact: support@caviumnetworks.com
5  * This file is part of the OCTEON SDK
6  *
7  * Copyright (c) 2003-2008 Cavium Networks
8  *
9  * This file is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License, Version 2, as
11  * published by the Free Software Foundation.
12  *
13  * This file is distributed in the hope that it will be useful, but
14  * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16  * NONINFRINGEMENT.  See the GNU General Public License for more
17  * details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this file; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22  * or visit http://www.gnu.org/licenses/.
23  *
24  * This file may also be available under a different license from Cavium.
25  * Contact Cavium Networks for more information
26  ***********************license end**************************************/
27 
28 /*
29  * Simple allocate only memory allocator.  Used to allocate memory at
30  * application start time.
31  */
32 
33 #include <linux/kernel.h>
34 
35 #include <asm/octeon/cvmx.h>
36 #include <asm/octeon/cvmx-spinlock.h>
37 #include <asm/octeon/cvmx-bootmem.h>
38 
39 /*#define DEBUG */
40 
41 
42 static struct cvmx_bootmem_desc *cvmx_bootmem_desc;
43 
44 /* See header file for descriptions of functions */
45 
46 /*
47  * Wrapper functions are provided for reading/writing the size and
48  * next block values as these may not be directly addressible (in 32
49  * bit applications, for instance.)  Offsets of data elements in
50  * bootmem list, must match cvmx_bootmem_block_header_t.
51  */
52 #define NEXT_OFFSET 0
53 #define SIZE_OFFSET 8
54 
cvmx_bootmem_phy_set_size(uint64_t addr,uint64_t size)55 static void cvmx_bootmem_phy_set_size(uint64_t addr, uint64_t size)
56 {
57 	cvmx_write64_uint64((addr + SIZE_OFFSET) | (1ull << 63), size);
58 }
59 
cvmx_bootmem_phy_set_next(uint64_t addr,uint64_t next)60 static void cvmx_bootmem_phy_set_next(uint64_t addr, uint64_t next)
61 {
62 	cvmx_write64_uint64((addr + NEXT_OFFSET) | (1ull << 63), next);
63 }
64 
cvmx_bootmem_phy_get_size(uint64_t addr)65 static uint64_t cvmx_bootmem_phy_get_size(uint64_t addr)
66 {
67 	return cvmx_read64_uint64((addr + SIZE_OFFSET) | (1ull << 63));
68 }
69 
cvmx_bootmem_phy_get_next(uint64_t addr)70 static uint64_t cvmx_bootmem_phy_get_next(uint64_t addr)
71 {
72 	return cvmx_read64_uint64((addr + NEXT_OFFSET) | (1ull << 63));
73 }
74 
cvmx_bootmem_alloc_range(uint64_t size,uint64_t alignment,uint64_t min_addr,uint64_t max_addr)75 void *cvmx_bootmem_alloc_range(uint64_t size, uint64_t alignment,
76 			       uint64_t min_addr, uint64_t max_addr)
77 {
78 	int64_t address;
79 	address =
80 	    cvmx_bootmem_phy_alloc(size, min_addr, max_addr, alignment, 0);
81 
82 	if (address > 0)
83 		return cvmx_phys_to_ptr(address);
84 	else
85 		return NULL;
86 }
87 
cvmx_bootmem_alloc_address(uint64_t size,uint64_t address,uint64_t alignment)88 void *cvmx_bootmem_alloc_address(uint64_t size, uint64_t address,
89 				 uint64_t alignment)
90 {
91 	return cvmx_bootmem_alloc_range(size, alignment, address,
92 					address + size);
93 }
94 
cvmx_bootmem_alloc(uint64_t size,uint64_t alignment)95 void *cvmx_bootmem_alloc(uint64_t size, uint64_t alignment)
96 {
97 	return cvmx_bootmem_alloc_range(size, alignment, 0, 0);
98 }
99 
cvmx_bootmem_free_named(char * name)100 int cvmx_bootmem_free_named(char *name)
101 {
102 	return cvmx_bootmem_phy_named_block_free(name, 0);
103 }
104 
cvmx_bootmem_find_named_block(char * name)105 struct cvmx_bootmem_named_block_desc *cvmx_bootmem_find_named_block(char *name)
106 {
107 	return cvmx_bootmem_phy_named_block_find(name, 0);
108 }
109 
cvmx_bootmem_lock(void)110 void cvmx_bootmem_lock(void)
111 {
112 	cvmx_spinlock_lock((cvmx_spinlock_t *) &(cvmx_bootmem_desc->lock));
113 }
114 
cvmx_bootmem_unlock(void)115 void cvmx_bootmem_unlock(void)
116 {
117 	cvmx_spinlock_unlock((cvmx_spinlock_t *) &(cvmx_bootmem_desc->lock));
118 }
119 
cvmx_bootmem_init(void * mem_desc_ptr)120 int cvmx_bootmem_init(void *mem_desc_ptr)
121 {
122 	/* Here we set the global pointer to the bootmem descriptor
123 	 * block.  This pointer will be used directly, so we will set
124 	 * it up to be directly usable by the application.  It is set
125 	 * up as follows for the various runtime/ABI combinations:
126 	 *
127 	 * Linux 64 bit: Set XKPHYS bit
128 	 * Linux 32 bit: use mmap to create mapping, use virtual address
129 	 * CVMX 64 bit:  use physical address directly
130 	 * CVMX 32 bit:  use physical address directly
131 	 *
132 	 * Note that the CVMX environment assumes the use of 1-1 TLB
133 	 * mappings so that the physical addresses can be used
134 	 * directly
135 	 */
136 	if (!cvmx_bootmem_desc) {
137 #if   defined(CVMX_ABI_64)
138 		/* Set XKPHYS bit */
139 		cvmx_bootmem_desc = cvmx_phys_to_ptr(CAST64(mem_desc_ptr));
140 #else
141 		cvmx_bootmem_desc = (struct cvmx_bootmem_desc *) mem_desc_ptr;
142 #endif
143 	}
144 
145 	return 0;
146 }
147 
148 /*
149  * The cvmx_bootmem_phy* functions below return 64 bit physical
150  * addresses, and expose more features that the cvmx_bootmem_functions
151  * above.  These are required for full memory space access in 32 bit
152  * applications, as well as for using some advance features.  Most
153  * applications should not need to use these.
154  */
155 
cvmx_bootmem_phy_alloc(uint64_t req_size,uint64_t address_min,uint64_t address_max,uint64_t alignment,uint32_t flags)156 int64_t cvmx_bootmem_phy_alloc(uint64_t req_size, uint64_t address_min,
157 			       uint64_t address_max, uint64_t alignment,
158 			       uint32_t flags)
159 {
160 
161 	uint64_t head_addr;
162 	uint64_t ent_addr;
163 	/* points to previous list entry, NULL current entry is head of list */
164 	uint64_t prev_addr = 0;
165 	uint64_t new_ent_addr = 0;
166 	uint64_t desired_min_addr;
167 
168 #ifdef DEBUG
169 	cvmx_dprintf("cvmx_bootmem_phy_alloc: req_size: 0x%llx, "
170 		     "min_addr: 0x%llx, max_addr: 0x%llx, align: 0x%llx\n",
171 		     (unsigned long long)req_size,
172 		     (unsigned long long)address_min,
173 		     (unsigned long long)address_max,
174 		     (unsigned long long)alignment);
175 #endif
176 
177 	if (cvmx_bootmem_desc->major_version > 3) {
178 		cvmx_dprintf("ERROR: Incompatible bootmem descriptor "
179 			     "version: %d.%d at addr: %p\n",
180 			     (int)cvmx_bootmem_desc->major_version,
181 			     (int)cvmx_bootmem_desc->minor_version,
182 			     cvmx_bootmem_desc);
183 		goto error_out;
184 	}
185 
186 	/*
187 	 * Do a variety of checks to validate the arguments.  The
188 	 * allocator code will later assume that these checks have
189 	 * been made.  We validate that the requested constraints are
190 	 * not self-contradictory before we look through the list of
191 	 * available memory.
192 	 */
193 
194 	/* 0 is not a valid req_size for this allocator */
195 	if (!req_size)
196 		goto error_out;
197 
198 	/* Round req_size up to mult of minimum alignment bytes */
199 	req_size = (req_size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) &
200 		~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1);
201 
202 	/*
203 	 * Convert !0 address_min and 0 address_max to special case of
204 	 * range that specifies an exact memory block to allocate.  Do
205 	 * this before other checks and adjustments so that this
206 	 * tranformation will be validated.
207 	 */
208 	if (address_min && !address_max)
209 		address_max = address_min + req_size;
210 	else if (!address_min && !address_max)
211 		address_max = ~0ull;  /* If no limits given, use max limits */
212 
213 
214 	/*
215 	 * Enforce minimum alignment (this also keeps the minimum free block
216 	 * req_size the same as the alignment req_size.
217 	 */
218 	if (alignment < CVMX_BOOTMEM_ALIGNMENT_SIZE)
219 		alignment = CVMX_BOOTMEM_ALIGNMENT_SIZE;
220 
221 	/*
222 	 * Adjust address minimum based on requested alignment (round
223 	 * up to meet alignment).  Do this here so we can reject
224 	 * impossible requests up front. (NOP for address_min == 0)
225 	 */
226 	if (alignment)
227 		address_min = __ALIGN_MASK(address_min, (alignment - 1));
228 
229 	/*
230 	 * Reject inconsistent args.  We have adjusted these, so this
231 	 * may fail due to our internal changes even if this check
232 	 * would pass for the values the user supplied.
233 	 */
234 	if (req_size > address_max - address_min)
235 		goto error_out;
236 
237 	/* Walk through the list entries - first fit found is returned */
238 
239 	if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
240 		cvmx_bootmem_lock();
241 	head_addr = cvmx_bootmem_desc->head_addr;
242 	ent_addr = head_addr;
243 	for (; ent_addr;
244 	     prev_addr = ent_addr,
245 	     ent_addr = cvmx_bootmem_phy_get_next(ent_addr)) {
246 		uint64_t usable_base, usable_max;
247 		uint64_t ent_size = cvmx_bootmem_phy_get_size(ent_addr);
248 
249 		if (cvmx_bootmem_phy_get_next(ent_addr)
250 		    && ent_addr > cvmx_bootmem_phy_get_next(ent_addr)) {
251 			cvmx_dprintf("Internal bootmem_alloc() error: ent: "
252 				"0x%llx, next: 0x%llx\n",
253 				(unsigned long long)ent_addr,
254 				(unsigned long long)
255 				cvmx_bootmem_phy_get_next(ent_addr));
256 			goto error_out;
257 		}
258 
259 		/*
260 		 * Determine if this is an entry that can satisify the
261 		 * request Check to make sure entry is large enough to
262 		 * satisfy request.
263 		 */
264 		usable_base =
265 		    __ALIGN_MASK(max(address_min, ent_addr), alignment - 1);
266 		usable_max = min(address_max, ent_addr + ent_size);
267 		/*
268 		 * We should be able to allocate block at address
269 		 * usable_base.
270 		 */
271 
272 		desired_min_addr = usable_base;
273 		/*
274 		 * Determine if request can be satisfied from the
275 		 * current entry.
276 		 */
277 		if (!((ent_addr + ent_size) > usable_base
278 				&& ent_addr < address_max
279 				&& req_size <= usable_max - usable_base))
280 			continue;
281 		/*
282 		 * We have found an entry that has room to satisfy the
283 		 * request, so allocate it from this entry.  If end
284 		 * CVMX_BOOTMEM_FLAG_END_ALLOC set, then allocate from
285 		 * the end of this block rather than the beginning.
286 		 */
287 		if (flags & CVMX_BOOTMEM_FLAG_END_ALLOC) {
288 			desired_min_addr = usable_max - req_size;
289 			/*
290 			 * Align desired address down to required
291 			 * alignment.
292 			 */
293 			desired_min_addr &= ~(alignment - 1);
294 		}
295 
296 		/* Match at start of entry */
297 		if (desired_min_addr == ent_addr) {
298 			if (req_size < ent_size) {
299 				/*
300 				 * big enough to create a new block
301 				 * from top portion of block.
302 				 */
303 				new_ent_addr = ent_addr + req_size;
304 				cvmx_bootmem_phy_set_next(new_ent_addr,
305 					cvmx_bootmem_phy_get_next(ent_addr));
306 				cvmx_bootmem_phy_set_size(new_ent_addr,
307 							ent_size -
308 							req_size);
309 
310 				/*
311 				 * Adjust next pointer as following
312 				 * code uses this.
313 				 */
314 				cvmx_bootmem_phy_set_next(ent_addr,
315 							new_ent_addr);
316 			}
317 
318 			/*
319 			 * adjust prev ptr or head to remove this
320 			 * entry from list.
321 			 */
322 			if (prev_addr)
323 				cvmx_bootmem_phy_set_next(prev_addr,
324 					cvmx_bootmem_phy_get_next(ent_addr));
325 			else
326 				/*
327 				 * head of list being returned, so
328 				 * update head ptr.
329 				 */
330 				cvmx_bootmem_desc->head_addr =
331 					cvmx_bootmem_phy_get_next(ent_addr);
332 
333 			if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
334 				cvmx_bootmem_unlock();
335 			return desired_min_addr;
336 		}
337 		/*
338 		 * block returned doesn't start at beginning of entry,
339 		 * so we know that we will be splitting a block off
340 		 * the front of this one.  Create a new block from the
341 		 * beginning, add to list, and go to top of loop
342 		 * again.
343 		 *
344 		 * create new block from high portion of
345 		 * block, so that top block starts at desired
346 		 * addr.
347 		 */
348 		new_ent_addr = desired_min_addr;
349 		cvmx_bootmem_phy_set_next(new_ent_addr,
350 					cvmx_bootmem_phy_get_next
351 					(ent_addr));
352 		cvmx_bootmem_phy_set_size(new_ent_addr,
353 					cvmx_bootmem_phy_get_size
354 					(ent_addr) -
355 					(desired_min_addr -
356 						ent_addr));
357 		cvmx_bootmem_phy_set_size(ent_addr,
358 					desired_min_addr - ent_addr);
359 		cvmx_bootmem_phy_set_next(ent_addr, new_ent_addr);
360 		/* Loop again to handle actual alloc from new block */
361 	}
362 error_out:
363 	/* We didn't find anything, so return error */
364 	if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
365 		cvmx_bootmem_unlock();
366 	return -1;
367 }
368 
__cvmx_bootmem_phy_free(uint64_t phy_addr,uint64_t size,uint32_t flags)369 int __cvmx_bootmem_phy_free(uint64_t phy_addr, uint64_t size, uint32_t flags)
370 {
371 	uint64_t cur_addr;
372 	uint64_t prev_addr = 0;	/* zero is invalid */
373 	int retval = 0;
374 
375 #ifdef DEBUG
376 	cvmx_dprintf("__cvmx_bootmem_phy_free addr: 0x%llx, size: 0x%llx\n",
377 		     (unsigned long long)phy_addr, (unsigned long long)size);
378 #endif
379 	if (cvmx_bootmem_desc->major_version > 3) {
380 		cvmx_dprintf("ERROR: Incompatible bootmem descriptor "
381 			     "version: %d.%d at addr: %p\n",
382 			     (int)cvmx_bootmem_desc->major_version,
383 			     (int)cvmx_bootmem_desc->minor_version,
384 			     cvmx_bootmem_desc);
385 		return 0;
386 	}
387 
388 	/* 0 is not a valid size for this allocator */
389 	if (!size)
390 		return 0;
391 
392 	if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
393 		cvmx_bootmem_lock();
394 	cur_addr = cvmx_bootmem_desc->head_addr;
395 	if (cur_addr == 0 || phy_addr < cur_addr) {
396 		/* add at front of list - special case with changing head ptr */
397 		if (cur_addr && phy_addr + size > cur_addr)
398 			goto bootmem_free_done;	/* error, overlapping section */
399 		else if (phy_addr + size == cur_addr) {
400 			/* Add to front of existing first block */
401 			cvmx_bootmem_phy_set_next(phy_addr,
402 						  cvmx_bootmem_phy_get_next
403 						  (cur_addr));
404 			cvmx_bootmem_phy_set_size(phy_addr,
405 						  cvmx_bootmem_phy_get_size
406 						  (cur_addr) + size);
407 			cvmx_bootmem_desc->head_addr = phy_addr;
408 
409 		} else {
410 			/* New block before first block.  OK if cur_addr is 0 */
411 			cvmx_bootmem_phy_set_next(phy_addr, cur_addr);
412 			cvmx_bootmem_phy_set_size(phy_addr, size);
413 			cvmx_bootmem_desc->head_addr = phy_addr;
414 		}
415 		retval = 1;
416 		goto bootmem_free_done;
417 	}
418 
419 	/* Find place in list to add block */
420 	while (cur_addr && phy_addr > cur_addr) {
421 		prev_addr = cur_addr;
422 		cur_addr = cvmx_bootmem_phy_get_next(cur_addr);
423 	}
424 
425 	if (!cur_addr) {
426 		/*
427 		 * We have reached the end of the list, add on to end,
428 		 * checking to see if we need to combine with last
429 		 * block
430 		 */
431 		if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) ==
432 		    phy_addr) {
433 			cvmx_bootmem_phy_set_size(prev_addr,
434 						  cvmx_bootmem_phy_get_size
435 						  (prev_addr) + size);
436 		} else {
437 			cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
438 			cvmx_bootmem_phy_set_size(phy_addr, size);
439 			cvmx_bootmem_phy_set_next(phy_addr, 0);
440 		}
441 		retval = 1;
442 		goto bootmem_free_done;
443 	} else {
444 		/*
445 		 * insert between prev and cur nodes, checking for
446 		 * merge with either/both.
447 		 */
448 		if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) ==
449 		    phy_addr) {
450 			/* Merge with previous */
451 			cvmx_bootmem_phy_set_size(prev_addr,
452 						  cvmx_bootmem_phy_get_size
453 						  (prev_addr) + size);
454 			if (phy_addr + size == cur_addr) {
455 				/* Also merge with current */
456 				cvmx_bootmem_phy_set_size(prev_addr,
457 					cvmx_bootmem_phy_get_size(cur_addr) +
458 					cvmx_bootmem_phy_get_size(prev_addr));
459 				cvmx_bootmem_phy_set_next(prev_addr,
460 					cvmx_bootmem_phy_get_next(cur_addr));
461 			}
462 			retval = 1;
463 			goto bootmem_free_done;
464 		} else if (phy_addr + size == cur_addr) {
465 			/* Merge with current */
466 			cvmx_bootmem_phy_set_size(phy_addr,
467 						  cvmx_bootmem_phy_get_size
468 						  (cur_addr) + size);
469 			cvmx_bootmem_phy_set_next(phy_addr,
470 						  cvmx_bootmem_phy_get_next
471 						  (cur_addr));
472 			cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
473 			retval = 1;
474 			goto bootmem_free_done;
475 		}
476 
477 		/* It is a standalone block, add in between prev and cur */
478 		cvmx_bootmem_phy_set_size(phy_addr, size);
479 		cvmx_bootmem_phy_set_next(phy_addr, cur_addr);
480 		cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
481 
482 	}
483 	retval = 1;
484 
485 bootmem_free_done:
486 	if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
487 		cvmx_bootmem_unlock();
488 	return retval;
489 
490 }
491 
492 struct cvmx_bootmem_named_block_desc *
cvmx_bootmem_phy_named_block_find(char * name,uint32_t flags)493 	cvmx_bootmem_phy_named_block_find(char *name, uint32_t flags)
494 {
495 	unsigned int i;
496 	struct cvmx_bootmem_named_block_desc *named_block_array_ptr;
497 
498 #ifdef DEBUG
499 	cvmx_dprintf("cvmx_bootmem_phy_named_block_find: %s\n", name);
500 #endif
501 	/*
502 	 * Lock the structure to make sure that it is not being
503 	 * changed while we are examining it.
504 	 */
505 	if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
506 		cvmx_bootmem_lock();
507 
508 	/* Use XKPHYS for 64 bit linux */
509 	named_block_array_ptr = (struct cvmx_bootmem_named_block_desc *)
510 	    cvmx_phys_to_ptr(cvmx_bootmem_desc->named_block_array_addr);
511 
512 #ifdef DEBUG
513 	cvmx_dprintf
514 	    ("cvmx_bootmem_phy_named_block_find: named_block_array_ptr: %p\n",
515 	     named_block_array_ptr);
516 #endif
517 	if (cvmx_bootmem_desc->major_version == 3) {
518 		for (i = 0;
519 		     i < cvmx_bootmem_desc->named_block_num_blocks; i++) {
520 			if ((name && named_block_array_ptr[i].size
521 			     && !strncmp(name, named_block_array_ptr[i].name,
522 					 cvmx_bootmem_desc->named_block_name_len
523 					 - 1))
524 			    || (!name && !named_block_array_ptr[i].size)) {
525 				if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
526 					cvmx_bootmem_unlock();
527 
528 				return &(named_block_array_ptr[i]);
529 			}
530 		}
531 	} else {
532 		cvmx_dprintf("ERROR: Incompatible bootmem descriptor "
533 			     "version: %d.%d at addr: %p\n",
534 			     (int)cvmx_bootmem_desc->major_version,
535 			     (int)cvmx_bootmem_desc->minor_version,
536 			     cvmx_bootmem_desc);
537 	}
538 	if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
539 		cvmx_bootmem_unlock();
540 
541 	return NULL;
542 }
543 
cvmx_bootmem_phy_named_block_free(char * name,uint32_t flags)544 int cvmx_bootmem_phy_named_block_free(char *name, uint32_t flags)
545 {
546 	struct cvmx_bootmem_named_block_desc *named_block_ptr;
547 
548 	if (cvmx_bootmem_desc->major_version != 3) {
549 		cvmx_dprintf("ERROR: Incompatible bootmem descriptor version: "
550 			     "%d.%d at addr: %p\n",
551 			     (int)cvmx_bootmem_desc->major_version,
552 			     (int)cvmx_bootmem_desc->minor_version,
553 			     cvmx_bootmem_desc);
554 		return 0;
555 	}
556 #ifdef DEBUG
557 	cvmx_dprintf("cvmx_bootmem_phy_named_block_free: %s\n", name);
558 #endif
559 
560 	/*
561 	 * Take lock here, as name lookup/block free/name free need to
562 	 * be atomic.
563 	 */
564 	cvmx_bootmem_lock();
565 
566 	named_block_ptr =
567 	    cvmx_bootmem_phy_named_block_find(name,
568 					      CVMX_BOOTMEM_FLAG_NO_LOCKING);
569 	if (named_block_ptr) {
570 #ifdef DEBUG
571 		cvmx_dprintf("cvmx_bootmem_phy_named_block_free: "
572 			     "%s, base: 0x%llx, size: 0x%llx\n",
573 			     name,
574 			     (unsigned long long)named_block_ptr->base_addr,
575 			     (unsigned long long)named_block_ptr->size);
576 #endif
577 		__cvmx_bootmem_phy_free(named_block_ptr->base_addr,
578 					named_block_ptr->size,
579 					CVMX_BOOTMEM_FLAG_NO_LOCKING);
580 		named_block_ptr->size = 0;
581 		/* Set size to zero to indicate block not used. */
582 	}
583 
584 	cvmx_bootmem_unlock();
585 	return named_block_ptr != NULL;	/* 0 on failure, 1 on success */
586 }
587