• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  cx18 ADEC audio functions
3  *
4  *  Derived from cx25840-audio.c
5  *
6  *  Copyright (C) 2007  Hans Verkuil <hverkuil@xs4all.nl>
7  *  Copyright (C) 2008  Andy Walls <awalls@radix.net>
8  *
9  *  This program is free software; you can redistribute it and/or
10  *  modify it under the terms of the GNU General Public License
11  *  as published by the Free Software Foundation; either version 2
12  *  of the License, or (at your option) any later version.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
22  *  02110-1301, USA.
23  */
24 
25 #include "cx18-driver.h"
26 
set_audclk_freq(struct cx18 * cx,u32 freq)27 static int set_audclk_freq(struct cx18 *cx, u32 freq)
28 {
29 	struct cx18_av_state *state = &cx->av_state;
30 
31 	if (freq != 32000 && freq != 44100 && freq != 48000)
32 		return -EINVAL;
33 
34 	/*
35 	 * The PLL parameters are based on the external crystal frequency that
36 	 * would ideally be:
37 	 *
38 	 * NTSC Color subcarrier freq * 8 =
39 	 * 	4.5 MHz/286 * 455/2 * 8 = 28.63636363... MHz
40 	 *
41 	 * The accidents of history and rationale that explain from where this
42 	 * combination of magic numbers originate can be found in:
43 	 *
44 	 * [1] Abrahams, I. C., "Choice of Chrominance Subcarrier Frequency in
45 	 * the NTSC Standards", Proceedings of the I-R-E, January 1954, pp 79-80
46 	 *
47 	 * [2] Abrahams, I. C., "The 'Frequency Interleaving' Principle in the
48 	 * NTSC Standards", Proceedings of the I-R-E, January 1954, pp 81-83
49 	 *
50 	 * As Mike Bradley has rightly pointed out, it's not the exact crystal
51 	 * frequency that matters, only that all parts of the driver and
52 	 * firmware are using the same value (close to the ideal value).
53 	 *
54 	 * Since I have a strong suspicion that, if the firmware ever assumes a
55 	 * crystal value at all, it will assume 28.636360 MHz, the crystal
56 	 * freq used in calculations in this driver will be:
57 	 *
58 	 *	xtal_freq = 28.636360 MHz
59 	 *
60 	 * an error of less than 0.13 ppm which is way, way better than any off
61 	 * the shelf crystal will have for accuracy anyway.
62 	 *
63 	 * Below I aim to run the PLLs' VCOs near 400 MHz to minimze error.
64 	 *
65 	 * Many thanks to Jeff Campbell and Mike Bradley for their extensive
66 	 * investigation, experimentation, testing, and suggested solutions of
67 	 * of audio/video sync problems with SVideo and CVBS captures.
68 	 */
69 
70 	if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
71 		switch (freq) {
72 		case 32000:
73 			/*
74 			 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
75 			 * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x20
76 			 */
77 			cx18_av_write4(cx, 0x108, 0x200d040f);
78 
79 			/* VID_PLL Fraction = 0x2be2fe */
80 			/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
81 			cx18_av_write4(cx, 0x10c, 0x002be2fe);
82 
83 			/* AUX_PLL Fraction = 0x176740c */
84 			/* xtal * 0xd.bb3a060/0x20 = 32000 * 384: 393 MHz p-pd*/
85 			cx18_av_write4(cx, 0x110, 0x0176740c);
86 
87 			/* src3/4/6_ctl */
88 			/* 0x1.f77f = (4 * xtal/8*2/455) / 32000 */
89 			cx18_av_write4(cx, 0x900, 0x0801f77f);
90 			cx18_av_write4(cx, 0x904, 0x0801f77f);
91 			cx18_av_write4(cx, 0x90c, 0x0801f77f);
92 
93 			/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x20 */
94 			cx18_av_write(cx, 0x127, 0x60);
95 
96 			/* AUD_COUNT = 0x2fff = 8 samples * 4 * 384 - 1 */
97 			cx18_av_write4(cx, 0x12c, 0x11202fff);
98 
99 			/*
100 			 * EN_AV_LOCK = 0
101 			 * VID_COUNT = 0x0d2ef8 = 107999.000 * 8 =
102 			 *  ((8 samples/32,000) * (13,500,000 * 8) * 4 - 1) * 8
103 			 */
104 			cx18_av_write4(cx, 0x128, 0xa00d2ef8);
105 			break;
106 
107 		case 44100:
108 			/*
109 			 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
110 			 * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x18
111 			 */
112 			cx18_av_write4(cx, 0x108, 0x180e040f);
113 
114 			/* VID_PLL Fraction = 0x2be2fe */
115 			/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
116 			cx18_av_write4(cx, 0x10c, 0x002be2fe);
117 
118 			/* AUX_PLL Fraction = 0x062a1f2 */
119 			/* xtal * 0xe.3150f90/0x18 = 44100 * 384: 406 MHz p-pd*/
120 			cx18_av_write4(cx, 0x110, 0x0062a1f2);
121 
122 			/* src3/4/6_ctl */
123 			/* 0x1.6d59 = (4 * xtal/8*2/455) / 44100 */
124 			cx18_av_write4(cx, 0x900, 0x08016d59);
125 			cx18_av_write4(cx, 0x904, 0x08016d59);
126 			cx18_av_write4(cx, 0x90c, 0x08016d59);
127 
128 			/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x18 */
129 			cx18_av_write(cx, 0x127, 0x58);
130 
131 			/* AUD_COUNT = 0x92ff = 49 samples * 2 * 384 - 1 */
132 			cx18_av_write4(cx, 0x12c, 0x112092ff);
133 
134 			/*
135 			 * EN_AV_LOCK = 0
136 			 * VID_COUNT = 0x1d4bf8 = 239999.000 * 8 =
137 			 *  ((49 samples/44,100) * (13,500,000 * 8) * 2 - 1) * 8
138 			 */
139 			cx18_av_write4(cx, 0x128, 0xa01d4bf8);
140 			break;
141 
142 		case 48000:
143 			/*
144 			 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
145 			 * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x16
146 			 */
147 			cx18_av_write4(cx, 0x108, 0x160e040f);
148 
149 			/* VID_PLL Fraction = 0x2be2fe */
150 			/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
151 			cx18_av_write4(cx, 0x10c, 0x002be2fe);
152 
153 			/* AUX_PLL Fraction = 0x05227ad */
154 			/* xtal * 0xe.2913d68/0x16 = 48000 * 384: 406 MHz p-pd*/
155 			cx18_av_write4(cx, 0x110, 0x005227ad);
156 
157 			/* src3/4/6_ctl */
158 			/* 0x1.4faa = (4 * xtal/8*2/455) / 48000 */
159 			cx18_av_write4(cx, 0x900, 0x08014faa);
160 			cx18_av_write4(cx, 0x904, 0x08014faa);
161 			cx18_av_write4(cx, 0x90c, 0x08014faa);
162 
163 			/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x16 */
164 			cx18_av_write(cx, 0x127, 0x56);
165 
166 			/* AUD_COUNT = 0x5fff = 4 samples * 16 * 384 - 1 */
167 			cx18_av_write4(cx, 0x12c, 0x11205fff);
168 
169 			/*
170 			 * EN_AV_LOCK = 0
171 			 * VID_COUNT = 0x1193f8 = 143999.000 * 8 =
172 			 *  ((4 samples/48,000) * (13,500,000 * 8) * 16 - 1) * 8
173 			 */
174 			cx18_av_write4(cx, 0x128, 0xa01193f8);
175 			break;
176 		}
177 	} else {
178 		switch (freq) {
179 		case 32000:
180 			/*
181 			 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
182 			 * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x30
183 			 */
184 			cx18_av_write4(cx, 0x108, 0x300d040f);
185 
186 			/* VID_PLL Fraction = 0x2be2fe */
187 			/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
188 			cx18_av_write4(cx, 0x10c, 0x002be2fe);
189 
190 			/* AUX_PLL Fraction = 0x176740c */
191 			/* xtal * 0xd.bb3a060/0x30 = 32000 * 256: 393 MHz p-pd*/
192 			cx18_av_write4(cx, 0x110, 0x0176740c);
193 
194 			/* src1_ctl */
195 			/* 0x1.0000 = 32000/32000 */
196 			cx18_av_write4(cx, 0x8f8, 0x08010000);
197 
198 			/* src3/4/6_ctl */
199 			/* 0x2.0000 = 2 * (32000/32000) */
200 			cx18_av_write4(cx, 0x900, 0x08020000);
201 			cx18_av_write4(cx, 0x904, 0x08020000);
202 			cx18_av_write4(cx, 0x90c, 0x08020000);
203 
204 			/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x30 */
205 			cx18_av_write(cx, 0x127, 0x70);
206 
207 			/* AUD_COUNT = 0x1fff = 8 samples * 4 * 256 - 1 */
208 			cx18_av_write4(cx, 0x12c, 0x11201fff);
209 
210 			/*
211 			 * EN_AV_LOCK = 0
212 			 * VID_COUNT = 0x0d2ef8 = 107999.000 * 8 =
213 			 *  ((8 samples/32,000) * (13,500,000 * 8) * 4 - 1) * 8
214 			 */
215 			cx18_av_write4(cx, 0x128, 0xa00d2ef8);
216 			break;
217 
218 		case 44100:
219 			/*
220 			 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
221 			 * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x24
222 			 */
223 			cx18_av_write4(cx, 0x108, 0x240e040f);
224 
225 			/* VID_PLL Fraction = 0x2be2fe */
226 			/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
227 			cx18_av_write4(cx, 0x10c, 0x002be2fe);
228 
229 			/* AUX_PLL Fraction = 0x062a1f2 */
230 			/* xtal * 0xe.3150f90/0x24 = 44100 * 256: 406 MHz p-pd*/
231 			cx18_av_write4(cx, 0x110, 0x0062a1f2);
232 
233 			/* src1_ctl */
234 			/* 0x1.60cd = 44100/32000 */
235 			cx18_av_write4(cx, 0x8f8, 0x080160cd);
236 
237 			/* src3/4/6_ctl */
238 			/* 0x1.7385 = 2 * (32000/44100) */
239 			cx18_av_write4(cx, 0x900, 0x08017385);
240 			cx18_av_write4(cx, 0x904, 0x08017385);
241 			cx18_av_write4(cx, 0x90c, 0x08017385);
242 
243 			/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x24 */
244 			cx18_av_write(cx, 0x127, 0x64);
245 
246 			/* AUD_COUNT = 0x61ff = 49 samples * 2 * 256 - 1 */
247 			cx18_av_write4(cx, 0x12c, 0x112061ff);
248 
249 			/*
250 			 * EN_AV_LOCK = 0
251 			 * VID_COUNT = 0x1d4bf8 = 239999.000 * 8 =
252 			 *  ((49 samples/44,100) * (13,500,000 * 8) * 2 - 1) * 8
253 			 */
254 			cx18_av_write4(cx, 0x128, 0xa01d4bf8);
255 			break;
256 
257 		case 48000:
258 			/*
259 			 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
260 			 * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x20
261 			 */
262 			cx18_av_write4(cx, 0x108, 0x200d040f);
263 
264 			/* VID_PLL Fraction = 0x2be2fe */
265 			/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
266 			cx18_av_write4(cx, 0x10c, 0x002be2fe);
267 
268 			/* AUX_PLL Fraction = 0x176740c */
269 			/* xtal * 0xd.bb3a060/0x20 = 48000 * 256: 393 MHz p-pd*/
270 			cx18_av_write4(cx, 0x110, 0x0176740c);
271 
272 			/* src1_ctl */
273 			/* 0x1.8000 = 48000/32000 */
274 			cx18_av_write4(cx, 0x8f8, 0x08018000);
275 
276 			/* src3/4/6_ctl */
277 			/* 0x1.5555 = 2 * (32000/48000) */
278 			cx18_av_write4(cx, 0x900, 0x08015555);
279 			cx18_av_write4(cx, 0x904, 0x08015555);
280 			cx18_av_write4(cx, 0x90c, 0x08015555);
281 
282 			/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x20 */
283 			cx18_av_write(cx, 0x127, 0x60);
284 
285 			/* AUD_COUNT = 0x3fff = 4 samples * 16 * 256 - 1 */
286 			cx18_av_write4(cx, 0x12c, 0x11203fff);
287 
288 			/*
289 			 * EN_AV_LOCK = 0
290 			 * VID_COUNT = 0x1193f8 = 143999.000 * 8 =
291 			 *  ((4 samples/48,000) * (13,500,000 * 8) * 16 - 1) * 8
292 			 */
293 			cx18_av_write4(cx, 0x128, 0xa01193f8);
294 			break;
295 		}
296 	}
297 
298 	state->audclk_freq = freq;
299 
300 	return 0;
301 }
302 
cx18_av_audio_set_path(struct cx18 * cx)303 void cx18_av_audio_set_path(struct cx18 *cx)
304 {
305 	struct cx18_av_state *state = &cx->av_state;
306 	u8 v;
307 
308 	/* stop microcontroller */
309 	v = cx18_av_read(cx, 0x803) & ~0x10;
310 	cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
311 
312 	/* assert soft reset */
313 	v = cx18_av_read(cx, 0x810) | 0x01;
314 	cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
315 
316 	/* Mute everything to prevent the PFFT! */
317 	cx18_av_write(cx, 0x8d3, 0x1f);
318 
319 	if (state->aud_input <= CX18_AV_AUDIO_SERIAL2) {
320 		/* Set Path1 to Serial Audio Input */
321 		cx18_av_write4(cx, 0x8d0, 0x01011012);
322 
323 		/* The microcontroller should not be started for the
324 		 * non-tuner inputs: autodetection is specific for
325 		 * TV audio. */
326 	} else {
327 		/* Set Path1 to Analog Demod Main Channel */
328 		cx18_av_write4(cx, 0x8d0, 0x1f063870);
329 	}
330 
331 	set_audclk_freq(cx, state->audclk_freq);
332 
333 	/* deassert soft reset */
334 	v = cx18_av_read(cx, 0x810) & ~0x01;
335 	cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
336 
337 	if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
338 		/* When the microcontroller detects the
339 		 * audio format, it will unmute the lines */
340 		v = cx18_av_read(cx, 0x803) | 0x10;
341 		cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
342 	}
343 }
344 
get_volume(struct cx18 * cx)345 static int get_volume(struct cx18 *cx)
346 {
347 	/* Volume runs +18dB to -96dB in 1/2dB steps
348 	 * change to fit the msp3400 -114dB to +12dB range */
349 
350 	/* check PATH1_VOLUME */
351 	int vol = 228 - cx18_av_read(cx, 0x8d4);
352 	vol = (vol / 2) + 23;
353 	return vol << 9;
354 }
355 
set_volume(struct cx18 * cx,int volume)356 static void set_volume(struct cx18 *cx, int volume)
357 {
358 	/* First convert the volume to msp3400 values (0-127) */
359 	int vol = volume >> 9;
360 	/* now scale it up to cx18_av values
361 	 * -114dB to -96dB maps to 0
362 	 * this should be 19, but in my testing that was 4dB too loud */
363 	if (vol <= 23)
364 		vol = 0;
365 	else
366 		vol -= 23;
367 
368 	/* PATH1_VOLUME */
369 	cx18_av_write(cx, 0x8d4, 228 - (vol * 2));
370 }
371 
get_bass(struct cx18 * cx)372 static int get_bass(struct cx18 *cx)
373 {
374 	/* bass is 49 steps +12dB to -12dB */
375 
376 	/* check PATH1_EQ_BASS_VOL */
377 	int bass = cx18_av_read(cx, 0x8d9) & 0x3f;
378 	bass = (((48 - bass) * 0xffff) + 47) / 48;
379 	return bass;
380 }
381 
set_bass(struct cx18 * cx,int bass)382 static void set_bass(struct cx18 *cx, int bass)
383 {
384 	/* PATH1_EQ_BASS_VOL */
385 	cx18_av_and_or(cx, 0x8d9, ~0x3f, 48 - (bass * 48 / 0xffff));
386 }
387 
get_treble(struct cx18 * cx)388 static int get_treble(struct cx18 *cx)
389 {
390 	/* treble is 49 steps +12dB to -12dB */
391 
392 	/* check PATH1_EQ_TREBLE_VOL */
393 	int treble = cx18_av_read(cx, 0x8db) & 0x3f;
394 	treble = (((48 - treble) * 0xffff) + 47) / 48;
395 	return treble;
396 }
397 
set_treble(struct cx18 * cx,int treble)398 static void set_treble(struct cx18 *cx, int treble)
399 {
400 	/* PATH1_EQ_TREBLE_VOL */
401 	cx18_av_and_or(cx, 0x8db, ~0x3f, 48 - (treble * 48 / 0xffff));
402 }
403 
get_balance(struct cx18 * cx)404 static int get_balance(struct cx18 *cx)
405 {
406 	/* balance is 7 bit, 0 to -96dB */
407 
408 	/* check PATH1_BAL_LEVEL */
409 	int balance = cx18_av_read(cx, 0x8d5) & 0x7f;
410 	/* check PATH1_BAL_LEFT */
411 	if ((cx18_av_read(cx, 0x8d5) & 0x80) == 0)
412 		balance = 0x80 - balance;
413 	else
414 		balance = 0x80 + balance;
415 	return balance << 8;
416 }
417 
set_balance(struct cx18 * cx,int balance)418 static void set_balance(struct cx18 *cx, int balance)
419 {
420 	int bal = balance >> 8;
421 	if (bal > 0x80) {
422 		/* PATH1_BAL_LEFT */
423 		cx18_av_and_or(cx, 0x8d5, 0x7f, 0x80);
424 		/* PATH1_BAL_LEVEL */
425 		cx18_av_and_or(cx, 0x8d5, ~0x7f, bal & 0x7f);
426 	} else {
427 		/* PATH1_BAL_LEFT */
428 		cx18_av_and_or(cx, 0x8d5, 0x7f, 0x00);
429 		/* PATH1_BAL_LEVEL */
430 		cx18_av_and_or(cx, 0x8d5, ~0x7f, 0x80 - bal);
431 	}
432 }
433 
get_mute(struct cx18 * cx)434 static int get_mute(struct cx18 *cx)
435 {
436 	/* check SRC1_MUTE_EN */
437 	return cx18_av_read(cx, 0x8d3) & 0x2 ? 1 : 0;
438 }
439 
set_mute(struct cx18 * cx,int mute)440 static void set_mute(struct cx18 *cx, int mute)
441 {
442 	struct cx18_av_state *state = &cx->av_state;
443 	u8 v;
444 
445 	if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
446 		/* Must turn off microcontroller in order to mute sound.
447 		 * Not sure if this is the best method, but it does work.
448 		 * If the microcontroller is running, then it will undo any
449 		 * changes to the mute register. */
450 		v = cx18_av_read(cx, 0x803);
451 		if (mute) {
452 			/* disable microcontroller */
453 			v &= ~0x10;
454 			cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
455 			cx18_av_write(cx, 0x8d3, 0x1f);
456 		} else {
457 			/* enable microcontroller */
458 			v |= 0x10;
459 			cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
460 		}
461 	} else {
462 		/* SRC1_MUTE_EN */
463 		cx18_av_and_or(cx, 0x8d3, ~0x2, mute ? 0x02 : 0x00);
464 	}
465 }
466 
cx18_av_audio(struct cx18 * cx,unsigned int cmd,void * arg)467 int cx18_av_audio(struct cx18 *cx, unsigned int cmd, void *arg)
468 {
469 	struct cx18_av_state *state = &cx->av_state;
470 	struct v4l2_control *ctrl = arg;
471 	int retval;
472 
473 	switch (cmd) {
474 	case VIDIOC_INT_AUDIO_CLOCK_FREQ:
475 	{
476 		u8 v;
477 		if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
478 			v = cx18_av_read(cx, 0x803) & ~0x10;
479 			cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
480 			cx18_av_write(cx, 0x8d3, 0x1f);
481 		}
482 		v = cx18_av_read(cx, 0x810) | 0x1;
483 		cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
484 
485 		retval = set_audclk_freq(cx, *(u32 *)arg);
486 
487 		v = cx18_av_read(cx, 0x810) & ~0x1;
488 		cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
489 		if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
490 			v = cx18_av_read(cx, 0x803) | 0x10;
491 			cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
492 		}
493 		return retval;
494 	}
495 
496 	case VIDIOC_G_CTRL:
497 		switch (ctrl->id) {
498 		case V4L2_CID_AUDIO_VOLUME:
499 			ctrl->value = get_volume(cx);
500 			break;
501 		case V4L2_CID_AUDIO_BASS:
502 			ctrl->value = get_bass(cx);
503 			break;
504 		case V4L2_CID_AUDIO_TREBLE:
505 			ctrl->value = get_treble(cx);
506 			break;
507 		case V4L2_CID_AUDIO_BALANCE:
508 			ctrl->value = get_balance(cx);
509 			break;
510 		case V4L2_CID_AUDIO_MUTE:
511 			ctrl->value = get_mute(cx);
512 			break;
513 		default:
514 			return -EINVAL;
515 		}
516 		break;
517 
518 	case VIDIOC_S_CTRL:
519 		switch (ctrl->id) {
520 		case V4L2_CID_AUDIO_VOLUME:
521 			set_volume(cx, ctrl->value);
522 			break;
523 		case V4L2_CID_AUDIO_BASS:
524 			set_bass(cx, ctrl->value);
525 			break;
526 		case V4L2_CID_AUDIO_TREBLE:
527 			set_treble(cx, ctrl->value);
528 			break;
529 		case V4L2_CID_AUDIO_BALANCE:
530 			set_balance(cx, ctrl->value);
531 			break;
532 		case V4L2_CID_AUDIO_MUTE:
533 			set_mute(cx, ctrl->value);
534 			break;
535 		default:
536 			return -EINVAL;
537 		}
538 		break;
539 
540 	default:
541 		return -EINVAL;
542 	}
543 
544 	return 0;
545 }
546