• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8 
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/proc_fs.h>
25 #include <linux/pci.h>
26 #include <linux/pfn.h>
27 #include <linux/poison.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/module.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/nmi.h>
32 
33 #include <asm/processor.h>
34 #include <asm/bios_ebda.h>
35 #include <asm/system.h>
36 #include <asm/uaccess.h>
37 #include <asm/pgtable.h>
38 #include <asm/pgalloc.h>
39 #include <asm/dma.h>
40 #include <asm/fixmap.h>
41 #include <asm/e820.h>
42 #include <asm/apic.h>
43 #include <asm/tlb.h>
44 #include <asm/mmu_context.h>
45 #include <asm/proto.h>
46 #include <asm/smp.h>
47 #include <asm/sections.h>
48 #include <asm/kdebug.h>
49 #include <asm/numa.h>
50 #include <asm/cacheflush.h>
51 
52 /*
53  * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
54  * The direct mapping extends to max_pfn_mapped, so that we can directly access
55  * apertures, ACPI and other tables without having to play with fixmaps.
56  */
57 unsigned long max_low_pfn_mapped;
58 unsigned long max_pfn_mapped;
59 
60 static unsigned long dma_reserve __initdata;
61 
62 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
63 
64 int direct_gbpages
65 #ifdef CONFIG_DIRECT_GBPAGES
66 				= 1
67 #endif
68 ;
69 
parse_direct_gbpages_off(char * arg)70 static int __init parse_direct_gbpages_off(char *arg)
71 {
72 	direct_gbpages = 0;
73 	return 0;
74 }
75 early_param("nogbpages", parse_direct_gbpages_off);
76 
parse_direct_gbpages_on(char * arg)77 static int __init parse_direct_gbpages_on(char *arg)
78 {
79 	direct_gbpages = 1;
80 	return 0;
81 }
82 early_param("gbpages", parse_direct_gbpages_on);
83 
84 /*
85  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
86  * physical space so we can cache the place of the first one and move
87  * around without checking the pgd every time.
88  */
89 
90 int after_bootmem;
91 
92 pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
93 EXPORT_SYMBOL_GPL(__supported_pte_mask);
94 
95 static int do_not_nx __cpuinitdata;
96 
97 /*
98  * noexec=on|off
99  * Control non-executable mappings for 64-bit processes.
100  *
101  * on	Enable (default)
102  * off	Disable
103  */
nonx_setup(char * str)104 static int __init nonx_setup(char *str)
105 {
106 	if (!str)
107 		return -EINVAL;
108 	if (!strncmp(str, "on", 2)) {
109 		__supported_pte_mask |= _PAGE_NX;
110 		do_not_nx = 0;
111 	} else if (!strncmp(str, "off", 3)) {
112 		do_not_nx = 1;
113 		__supported_pte_mask &= ~_PAGE_NX;
114 	}
115 	return 0;
116 }
117 early_param("noexec", nonx_setup);
118 
check_efer(void)119 void __cpuinit check_efer(void)
120 {
121 	unsigned long efer;
122 
123 	rdmsrl(MSR_EFER, efer);
124 	if (!(efer & EFER_NX) || do_not_nx)
125 		__supported_pte_mask &= ~_PAGE_NX;
126 }
127 
128 int force_personality32;
129 
130 /*
131  * noexec32=on|off
132  * Control non executable heap for 32bit processes.
133  * To control the stack too use noexec=off
134  *
135  * on	PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
136  * off	PROT_READ implies PROT_EXEC
137  */
nonx32_setup(char * str)138 static int __init nonx32_setup(char *str)
139 {
140 	if (!strcmp(str, "on"))
141 		force_personality32 &= ~READ_IMPLIES_EXEC;
142 	else if (!strcmp(str, "off"))
143 		force_personality32 |= READ_IMPLIES_EXEC;
144 	return 1;
145 }
146 __setup("noexec32=", nonx32_setup);
147 
148 /*
149  * NOTE: This function is marked __ref because it calls __init function
150  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
151  */
spp_getpage(void)152 static __ref void *spp_getpage(void)
153 {
154 	void *ptr;
155 
156 	if (after_bootmem)
157 		ptr = (void *) get_zeroed_page(GFP_ATOMIC);
158 	else
159 		ptr = alloc_bootmem_pages(PAGE_SIZE);
160 
161 	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
162 		panic("set_pte_phys: cannot allocate page data %s\n",
163 			after_bootmem ? "after bootmem" : "");
164 	}
165 
166 	pr_debug("spp_getpage %p\n", ptr);
167 
168 	return ptr;
169 }
170 
171 void
set_pte_vaddr_pud(pud_t * pud_page,unsigned long vaddr,pte_t new_pte)172 set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
173 {
174 	pud_t *pud;
175 	pmd_t *pmd;
176 	pte_t *pte;
177 
178 	pud = pud_page + pud_index(vaddr);
179 	if (pud_none(*pud)) {
180 		pmd = (pmd_t *) spp_getpage();
181 		pud_populate(&init_mm, pud, pmd);
182 		if (pmd != pmd_offset(pud, 0)) {
183 			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
184 				pmd, pmd_offset(pud, 0));
185 			return;
186 		}
187 	}
188 	pmd = pmd_offset(pud, vaddr);
189 	if (pmd_none(*pmd)) {
190 		pte = (pte_t *) spp_getpage();
191 		pmd_populate_kernel(&init_mm, pmd, pte);
192 		if (pte != pte_offset_kernel(pmd, 0)) {
193 			printk(KERN_ERR "PAGETABLE BUG #02!\n");
194 			return;
195 		}
196 	}
197 
198 	pte = pte_offset_kernel(pmd, vaddr);
199 	set_pte(pte, new_pte);
200 
201 	/*
202 	 * It's enough to flush this one mapping.
203 	 * (PGE mappings get flushed as well)
204 	 */
205 	__flush_tlb_one(vaddr);
206 }
207 
208 void
set_pte_vaddr(unsigned long vaddr,pte_t pteval)209 set_pte_vaddr(unsigned long vaddr, pte_t pteval)
210 {
211 	pgd_t *pgd;
212 	pud_t *pud_page;
213 
214 	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
215 
216 	pgd = pgd_offset_k(vaddr);
217 	if (pgd_none(*pgd)) {
218 		printk(KERN_ERR
219 			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
220 		return;
221 	}
222 	pud_page = (pud_t*)pgd_page_vaddr(*pgd);
223 	set_pte_vaddr_pud(pud_page, vaddr, pteval);
224 }
225 
226 /*
227  * Create large page table mappings for a range of physical addresses.
228  */
__init_extra_mapping(unsigned long phys,unsigned long size,pgprot_t prot)229 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
230 						pgprot_t prot)
231 {
232 	pgd_t *pgd;
233 	pud_t *pud;
234 	pmd_t *pmd;
235 
236 	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
237 	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
238 		pgd = pgd_offset_k((unsigned long)__va(phys));
239 		if (pgd_none(*pgd)) {
240 			pud = (pud_t *) spp_getpage();
241 			set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
242 						_PAGE_USER));
243 		}
244 		pud = pud_offset(pgd, (unsigned long)__va(phys));
245 		if (pud_none(*pud)) {
246 			pmd = (pmd_t *) spp_getpage();
247 			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
248 						_PAGE_USER));
249 		}
250 		pmd = pmd_offset(pud, phys);
251 		BUG_ON(!pmd_none(*pmd));
252 		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
253 	}
254 }
255 
init_extra_mapping_wb(unsigned long phys,unsigned long size)256 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
257 {
258 	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
259 }
260 
init_extra_mapping_uc(unsigned long phys,unsigned long size)261 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
262 {
263 	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
264 }
265 
266 /*
267  * The head.S code sets up the kernel high mapping:
268  *
269  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
270  *
271  * phys_addr holds the negative offset to the kernel, which is added
272  * to the compile time generated pmds. This results in invalid pmds up
273  * to the point where we hit the physaddr 0 mapping.
274  *
275  * We limit the mappings to the region from _text to _end.  _end is
276  * rounded up to the 2MB boundary. This catches the invalid pmds as
277  * well, as they are located before _text:
278  */
cleanup_highmap(void)279 void __init cleanup_highmap(void)
280 {
281 	unsigned long vaddr = __START_KERNEL_map;
282 	unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
283 	pmd_t *pmd = level2_kernel_pgt;
284 	pmd_t *last_pmd = pmd + PTRS_PER_PMD;
285 
286 	for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
287 		if (pmd_none(*pmd))
288 			continue;
289 		if (vaddr < (unsigned long) _text || vaddr > end)
290 			set_pmd(pmd, __pmd(0));
291 	}
292 }
293 
294 static unsigned long __initdata table_start;
295 static unsigned long __meminitdata table_end;
296 static unsigned long __meminitdata table_top;
297 
alloc_low_page(unsigned long * phys)298 static __ref void *alloc_low_page(unsigned long *phys)
299 {
300 	unsigned long pfn = table_end++;
301 	void *adr;
302 
303 	if (after_bootmem) {
304 		adr = (void *)get_zeroed_page(GFP_ATOMIC);
305 		*phys = __pa(adr);
306 
307 		return adr;
308 	}
309 
310 	if (pfn >= table_top)
311 		panic("alloc_low_page: ran out of memory");
312 
313 	adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
314 	memset(adr, 0, PAGE_SIZE);
315 	*phys  = pfn * PAGE_SIZE;
316 	return adr;
317 }
318 
unmap_low_page(void * adr)319 static __ref void unmap_low_page(void *adr)
320 {
321 	if (after_bootmem)
322 		return;
323 
324 	early_iounmap(adr, PAGE_SIZE);
325 }
326 
327 static unsigned long __meminit
phys_pte_init(pte_t * pte_page,unsigned long addr,unsigned long end,pgprot_t prot)328 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
329 	      pgprot_t prot)
330 {
331 	unsigned pages = 0;
332 	unsigned long last_map_addr = end;
333 	int i;
334 
335 	pte_t *pte = pte_page + pte_index(addr);
336 
337 	for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
338 
339 		if (addr >= end) {
340 			if (!after_bootmem) {
341 				for(; i < PTRS_PER_PTE; i++, pte++)
342 					set_pte(pte, __pte(0));
343 			}
344 			break;
345 		}
346 
347 		/*
348 		 * We will re-use the existing mapping.
349 		 * Xen for example has some special requirements, like mapping
350 		 * pagetable pages as RO. So assume someone who pre-setup
351 		 * these mappings are more intelligent.
352 		 */
353 		if (pte_val(*pte)) {
354 			pages++;
355 			continue;
356 		}
357 
358 		if (0)
359 			printk("   pte=%p addr=%lx pte=%016lx\n",
360 			       pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
361 		pages++;
362 		set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
363 		last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
364 	}
365 
366 	update_page_count(PG_LEVEL_4K, pages);
367 
368 	return last_map_addr;
369 }
370 
371 static unsigned long __meminit
phys_pte_update(pmd_t * pmd,unsigned long address,unsigned long end,pgprot_t prot)372 phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end,
373 		pgprot_t prot)
374 {
375 	pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
376 
377 	return phys_pte_init(pte, address, end, prot);
378 }
379 
380 static unsigned long __meminit
phys_pmd_init(pmd_t * pmd_page,unsigned long address,unsigned long end,unsigned long page_size_mask,pgprot_t prot)381 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
382 	      unsigned long page_size_mask, pgprot_t prot)
383 {
384 	unsigned long pages = 0;
385 	unsigned long last_map_addr = end;
386 
387 	int i = pmd_index(address);
388 
389 	for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
390 		unsigned long pte_phys;
391 		pmd_t *pmd = pmd_page + pmd_index(address);
392 		pte_t *pte;
393 		pgprot_t new_prot = prot;
394 
395 		if (address >= end) {
396 			if (!after_bootmem) {
397 				for (; i < PTRS_PER_PMD; i++, pmd++)
398 					set_pmd(pmd, __pmd(0));
399 			}
400 			break;
401 		}
402 
403 		if (pmd_val(*pmd)) {
404 			if (!pmd_large(*pmd)) {
405 				spin_lock(&init_mm.page_table_lock);
406 				last_map_addr = phys_pte_update(pmd, address,
407 								end, prot);
408 				spin_unlock(&init_mm.page_table_lock);
409 				continue;
410 			}
411 			/*
412 			 * If we are ok with PG_LEVEL_2M mapping, then we will
413 			 * use the existing mapping,
414 			 *
415 			 * Otherwise, we will split the large page mapping but
416 			 * use the same existing protection bits except for
417 			 * large page, so that we don't violate Intel's TLB
418 			 * Application note (317080) which says, while changing
419 			 * the page sizes, new and old translations should
420 			 * not differ with respect to page frame and
421 			 * attributes.
422 			 */
423 			if (page_size_mask & (1 << PG_LEVEL_2M)) {
424 				pages++;
425 				continue;
426 			}
427 			new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
428 		}
429 
430 		if (page_size_mask & (1<<PG_LEVEL_2M)) {
431 			pages++;
432 			spin_lock(&init_mm.page_table_lock);
433 			set_pte((pte_t *)pmd,
434 				pfn_pte(address >> PAGE_SHIFT,
435 					__pgprot(pgprot_val(prot) | _PAGE_PSE)));
436 			spin_unlock(&init_mm.page_table_lock);
437 			last_map_addr = (address & PMD_MASK) + PMD_SIZE;
438 			continue;
439 		}
440 
441 		pte = alloc_low_page(&pte_phys);
442 		last_map_addr = phys_pte_init(pte, address, end, new_prot);
443 		unmap_low_page(pte);
444 
445 		spin_lock(&init_mm.page_table_lock);
446 		pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
447 		spin_unlock(&init_mm.page_table_lock);
448 	}
449 	update_page_count(PG_LEVEL_2M, pages);
450 	return last_map_addr;
451 }
452 
453 static unsigned long __meminit
phys_pmd_update(pud_t * pud,unsigned long address,unsigned long end,unsigned long page_size_mask,pgprot_t prot)454 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
455 		unsigned long page_size_mask, pgprot_t prot)
456 {
457 	pmd_t *pmd = pmd_offset(pud, 0);
458 	unsigned long last_map_addr;
459 
460 	last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask, prot);
461 	__flush_tlb_all();
462 	return last_map_addr;
463 }
464 
465 static unsigned long __meminit
phys_pud_init(pud_t * pud_page,unsigned long addr,unsigned long end,unsigned long page_size_mask)466 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
467 			 unsigned long page_size_mask)
468 {
469 	unsigned long pages = 0;
470 	unsigned long last_map_addr = end;
471 	int i = pud_index(addr);
472 
473 	for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
474 		unsigned long pmd_phys;
475 		pud_t *pud = pud_page + pud_index(addr);
476 		pmd_t *pmd;
477 		pgprot_t prot = PAGE_KERNEL;
478 
479 		if (addr >= end)
480 			break;
481 
482 		if (!after_bootmem &&
483 				!e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
484 			set_pud(pud, __pud(0));
485 			continue;
486 		}
487 
488 		if (pud_val(*pud)) {
489 			if (!pud_large(*pud)) {
490 				last_map_addr = phys_pmd_update(pud, addr, end,
491 							 page_size_mask, prot);
492 				continue;
493 			}
494 			/*
495 			 * If we are ok with PG_LEVEL_1G mapping, then we will
496 			 * use the existing mapping.
497 			 *
498 			 * Otherwise, we will split the gbpage mapping but use
499 			 * the same existing protection  bits except for large
500 			 * page, so that we don't violate Intel's TLB
501 			 * Application note (317080) which says, while changing
502 			 * the page sizes, new and old translations should
503 			 * not differ with respect to page frame and
504 			 * attributes.
505 			 */
506 			if (page_size_mask & (1 << PG_LEVEL_1G)) {
507 				pages++;
508 				continue;
509 			}
510 			prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
511 		}
512 
513 		if (page_size_mask & (1<<PG_LEVEL_1G)) {
514 			pages++;
515 			spin_lock(&init_mm.page_table_lock);
516 			set_pte((pte_t *)pud,
517 				pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
518 			spin_unlock(&init_mm.page_table_lock);
519 			last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
520 			continue;
521 		}
522 
523 		pmd = alloc_low_page(&pmd_phys);
524 		last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
525 					      prot);
526 		unmap_low_page(pmd);
527 
528 		spin_lock(&init_mm.page_table_lock);
529 		pud_populate(&init_mm, pud, __va(pmd_phys));
530 		spin_unlock(&init_mm.page_table_lock);
531 	}
532 	__flush_tlb_all();
533 
534 	update_page_count(PG_LEVEL_1G, pages);
535 
536 	return last_map_addr;
537 }
538 
539 static unsigned long __meminit
phys_pud_update(pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long page_size_mask)540 phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
541 		 unsigned long page_size_mask)
542 {
543 	pud_t *pud;
544 
545 	pud = (pud_t *)pgd_page_vaddr(*pgd);
546 
547 	return phys_pud_init(pud, addr, end, page_size_mask);
548 }
549 
find_early_table_space(unsigned long end,int use_pse,int use_gbpages)550 static void __init find_early_table_space(unsigned long end, int use_pse,
551 					  int use_gbpages)
552 {
553 	unsigned long puds, pmds, ptes, tables, start;
554 
555 	puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
556 	tables = roundup(puds * sizeof(pud_t), PAGE_SIZE);
557 	if (use_gbpages) {
558 		unsigned long extra;
559 		extra = end - ((end>>PUD_SHIFT) << PUD_SHIFT);
560 		pmds = (extra + PMD_SIZE - 1) >> PMD_SHIFT;
561 	} else
562 		pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
563 	tables += roundup(pmds * sizeof(pmd_t), PAGE_SIZE);
564 
565 	if (use_pse) {
566 		unsigned long extra;
567 		extra = end - ((end>>PMD_SHIFT) << PMD_SHIFT);
568 		ptes = (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
569 	} else
570 		ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
571 	tables += roundup(ptes * sizeof(pte_t), PAGE_SIZE);
572 
573 	/*
574 	 * RED-PEN putting page tables only on node 0 could
575 	 * cause a hotspot and fill up ZONE_DMA. The page tables
576 	 * need roughly 0.5KB per GB.
577 	 */
578 	start = 0x8000;
579 	table_start = find_e820_area(start, end, tables, PAGE_SIZE);
580 	if (table_start == -1UL)
581 		panic("Cannot find space for the kernel page tables");
582 
583 	table_start >>= PAGE_SHIFT;
584 	table_end = table_start;
585 	table_top = table_start + (tables >> PAGE_SHIFT);
586 
587 	printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
588 		end, table_start << PAGE_SHIFT, table_top << PAGE_SHIFT);
589 }
590 
init_gbpages(void)591 static void __init init_gbpages(void)
592 {
593 	if (direct_gbpages && cpu_has_gbpages)
594 		printk(KERN_INFO "Using GB pages for direct mapping\n");
595 	else
596 		direct_gbpages = 0;
597 }
598 
kernel_physical_mapping_init(unsigned long start,unsigned long end,unsigned long page_size_mask)599 static unsigned long __meminit kernel_physical_mapping_init(unsigned long start,
600 						unsigned long end,
601 						unsigned long page_size_mask)
602 {
603 
604 	unsigned long next, last_map_addr = end;
605 
606 	start = (unsigned long)__va(start);
607 	end = (unsigned long)__va(end);
608 
609 	for (; start < end; start = next) {
610 		pgd_t *pgd = pgd_offset_k(start);
611 		unsigned long pud_phys;
612 		pud_t *pud;
613 
614 		next = (start + PGDIR_SIZE) & PGDIR_MASK;
615 		if (next > end)
616 			next = end;
617 
618 		if (pgd_val(*pgd)) {
619 			last_map_addr = phys_pud_update(pgd, __pa(start),
620 						 __pa(end), page_size_mask);
621 			continue;
622 		}
623 
624 		pud = alloc_low_page(&pud_phys);
625 		last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
626 						 page_size_mask);
627 		unmap_low_page(pud);
628 
629 		spin_lock(&init_mm.page_table_lock);
630 		pgd_populate(&init_mm, pgd, __va(pud_phys));
631 		spin_unlock(&init_mm.page_table_lock);
632 	}
633 	__flush_tlb_all();
634 
635 	return last_map_addr;
636 }
637 
638 struct map_range {
639 	unsigned long start;
640 	unsigned long end;
641 	unsigned page_size_mask;
642 };
643 
644 #define NR_RANGE_MR 5
645 
save_mr(struct map_range * mr,int nr_range,unsigned long start_pfn,unsigned long end_pfn,unsigned long page_size_mask)646 static int save_mr(struct map_range *mr, int nr_range,
647 		   unsigned long start_pfn, unsigned long end_pfn,
648 		   unsigned long page_size_mask)
649 {
650 
651 	if (start_pfn < end_pfn) {
652 		if (nr_range >= NR_RANGE_MR)
653 			panic("run out of range for init_memory_mapping\n");
654 		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
655 		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
656 		mr[nr_range].page_size_mask = page_size_mask;
657 		nr_range++;
658 	}
659 
660 	return nr_range;
661 }
662 
663 /*
664  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
665  * This runs before bootmem is initialized and gets pages directly from
666  * the physical memory. To access them they are temporarily mapped.
667  */
init_memory_mapping(unsigned long start,unsigned long end)668 unsigned long __init_refok init_memory_mapping(unsigned long start,
669 					       unsigned long end)
670 {
671 	unsigned long last_map_addr = 0;
672 	unsigned long page_size_mask = 0;
673 	unsigned long start_pfn, end_pfn;
674 	unsigned long pos;
675 
676 	struct map_range mr[NR_RANGE_MR];
677 	int nr_range, i;
678 	int use_pse, use_gbpages;
679 
680 	printk(KERN_INFO "init_memory_mapping: %016lx-%016lx\n", start, end);
681 
682 	/*
683 	 * Find space for the kernel direct mapping tables.
684 	 *
685 	 * Later we should allocate these tables in the local node of the
686 	 * memory mapped. Unfortunately this is done currently before the
687 	 * nodes are discovered.
688 	 */
689 	if (!after_bootmem)
690 		init_gbpages();
691 
692 #ifdef CONFIG_DEBUG_PAGEALLOC
693 	/*
694 	 * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
695 	 * This will simplify cpa(), which otherwise needs to support splitting
696 	 * large pages into small in interrupt context, etc.
697 	 */
698 	use_pse = use_gbpages = 0;
699 #else
700 	use_pse = cpu_has_pse;
701 	use_gbpages = direct_gbpages;
702 #endif
703 
704 	if (use_gbpages)
705 		page_size_mask |= 1 << PG_LEVEL_1G;
706 	if (use_pse)
707 		page_size_mask |= 1 << PG_LEVEL_2M;
708 
709 	memset(mr, 0, sizeof(mr));
710 	nr_range = 0;
711 
712 	/* head if not big page alignment ?*/
713 	start_pfn = start >> PAGE_SHIFT;
714 	pos = start_pfn << PAGE_SHIFT;
715 	end_pfn = ((pos + (PMD_SIZE - 1)) >> PMD_SHIFT)
716 			<< (PMD_SHIFT - PAGE_SHIFT);
717 	if (end_pfn > (end >> PAGE_SHIFT))
718 		end_pfn = end >> PAGE_SHIFT;
719 	if (start_pfn < end_pfn) {
720 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
721 		pos = end_pfn << PAGE_SHIFT;
722 	}
723 
724 	/* big page (2M) range*/
725 	start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
726 			 << (PMD_SHIFT - PAGE_SHIFT);
727 	end_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
728 			 << (PUD_SHIFT - PAGE_SHIFT);
729 	if (end_pfn > ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT)))
730 		end_pfn = ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT));
731 	if (start_pfn < end_pfn) {
732 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
733 				page_size_mask & (1<<PG_LEVEL_2M));
734 		pos = end_pfn << PAGE_SHIFT;
735 	}
736 
737 	/* big page (1G) range */
738 	start_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
739 			 << (PUD_SHIFT - PAGE_SHIFT);
740 	end_pfn = (end >> PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
741 	if (start_pfn < end_pfn) {
742 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
743 				page_size_mask &
744 				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
745 		pos = end_pfn << PAGE_SHIFT;
746 	}
747 
748 	/* tail is not big page (1G) alignment */
749 	start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
750 			 << (PMD_SHIFT - PAGE_SHIFT);
751 	end_pfn = (end >> PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
752 	if (start_pfn < end_pfn) {
753 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
754 				page_size_mask & (1<<PG_LEVEL_2M));
755 		pos = end_pfn << PAGE_SHIFT;
756 	}
757 
758 	/* tail is not big page (2M) alignment */
759 	start_pfn = pos>>PAGE_SHIFT;
760 	end_pfn = end>>PAGE_SHIFT;
761 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
762 
763 	/* try to merge same page size and continuous */
764 	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
765 		unsigned long old_start;
766 		if (mr[i].end != mr[i+1].start ||
767 		    mr[i].page_size_mask != mr[i+1].page_size_mask)
768 			continue;
769 		/* move it */
770 		old_start = mr[i].start;
771 		memmove(&mr[i], &mr[i+1],
772 			 (nr_range - 1 - i) * sizeof (struct map_range));
773 		mr[i--].start = old_start;
774 		nr_range--;
775 	}
776 
777 	for (i = 0; i < nr_range; i++)
778 		printk(KERN_DEBUG " %010lx - %010lx page %s\n",
779 				mr[i].start, mr[i].end,
780 			(mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
781 			 (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
782 
783 	if (!after_bootmem)
784 		find_early_table_space(end, use_pse, use_gbpages);
785 
786 	for (i = 0; i < nr_range; i++)
787 		last_map_addr = kernel_physical_mapping_init(
788 					mr[i].start, mr[i].end,
789 					mr[i].page_size_mask);
790 
791 	if (!after_bootmem)
792 		mmu_cr4_features = read_cr4();
793 	__flush_tlb_all();
794 
795 	if (!after_bootmem && table_end > table_start)
796 		reserve_early(table_start << PAGE_SHIFT,
797 				 table_end << PAGE_SHIFT, "PGTABLE");
798 
799 	printk(KERN_INFO "last_map_addr: %lx end: %lx\n",
800 			 last_map_addr, end);
801 
802 	if (!after_bootmem)
803 		early_memtest(start, end);
804 
805 	return last_map_addr >> PAGE_SHIFT;
806 }
807 
808 #ifndef CONFIG_NUMA
initmem_init(unsigned long start_pfn,unsigned long end_pfn)809 void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
810 {
811 	unsigned long bootmap_size, bootmap;
812 
813 	bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
814 	bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
815 				 PAGE_SIZE);
816 	if (bootmap == -1L)
817 		panic("Cannot find bootmem map of size %ld\n", bootmap_size);
818 	/* don't touch min_low_pfn */
819 	bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
820 					 0, end_pfn);
821 	e820_register_active_regions(0, start_pfn, end_pfn);
822 	free_bootmem_with_active_regions(0, end_pfn);
823 	early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
824 	reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
825 }
826 
paging_init(void)827 void __init paging_init(void)
828 {
829 	unsigned long max_zone_pfns[MAX_NR_ZONES];
830 
831 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
832 	max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
833 	max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
834 	max_zone_pfns[ZONE_NORMAL] = max_pfn;
835 
836 	memory_present(0, 0, max_pfn);
837 	sparse_init();
838 	free_area_init_nodes(max_zone_pfns);
839 }
840 #endif
841 
842 /*
843  * Memory hotplug specific functions
844  */
845 #ifdef CONFIG_MEMORY_HOTPLUG
846 /*
847  * Memory is added always to NORMAL zone. This means you will never get
848  * additional DMA/DMA32 memory.
849  */
arch_add_memory(int nid,u64 start,u64 size)850 int arch_add_memory(int nid, u64 start, u64 size)
851 {
852 	struct pglist_data *pgdat = NODE_DATA(nid);
853 	struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
854 	unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
855 	unsigned long nr_pages = size >> PAGE_SHIFT;
856 	int ret;
857 
858 	last_mapped_pfn = init_memory_mapping(start, start + size);
859 	if (last_mapped_pfn > max_pfn_mapped)
860 		max_pfn_mapped = last_mapped_pfn;
861 
862 	ret = __add_pages(nid, zone, start_pfn, nr_pages);
863 	WARN_ON_ONCE(ret);
864 
865 	return ret;
866 }
867 EXPORT_SYMBOL_GPL(arch_add_memory);
868 
869 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
memory_add_physaddr_to_nid(u64 start)870 int memory_add_physaddr_to_nid(u64 start)
871 {
872 	return 0;
873 }
874 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
875 #endif
876 
877 #endif /* CONFIG_MEMORY_HOTPLUG */
878 
879 /*
880  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
881  * is valid. The argument is a physical page number.
882  *
883  *
884  * On x86, access has to be given to the first megabyte of ram because that area
885  * contains bios code and data regions used by X and dosemu and similar apps.
886  * Access has to be given to non-kernel-ram areas as well, these contain the PCI
887  * mmio resources as well as potential bios/acpi data regions.
888  */
devmem_is_allowed(unsigned long pagenr)889 int devmem_is_allowed(unsigned long pagenr)
890 {
891 	if (pagenr <= 256)
892 		return 1;
893 	if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
894 		return 0;
895 	if (!page_is_ram(pagenr))
896 		return 1;
897 	return 0;
898 }
899 
900 
901 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
902 			 kcore_modules, kcore_vsyscall;
903 
mem_init(void)904 void __init mem_init(void)
905 {
906 	long codesize, reservedpages, datasize, initsize;
907 	unsigned long absent_pages;
908 
909 	pci_iommu_alloc();
910 
911 	/* clear_bss() already clear the empty_zero_page */
912 
913 	reservedpages = 0;
914 
915 	/* this will put all low memory onto the freelists */
916 #ifdef CONFIG_NUMA
917 	totalram_pages = numa_free_all_bootmem();
918 #else
919 	totalram_pages = free_all_bootmem();
920 #endif
921 
922 	absent_pages = absent_pages_in_range(0, max_pfn);
923 	reservedpages = max_pfn - totalram_pages - absent_pages;
924 	after_bootmem = 1;
925 
926 	codesize =  (unsigned long) &_etext - (unsigned long) &_text;
927 	datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
928 	initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
929 
930 	/* Register memory areas for /proc/kcore */
931 	kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
932 	kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
933 		   VMALLOC_END-VMALLOC_START);
934 	kclist_add(&kcore_kernel, &_stext, _end - _stext);
935 	kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
936 	kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
937 				 VSYSCALL_END - VSYSCALL_START);
938 
939 	printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
940 			 "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
941 		(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
942 		max_pfn << (PAGE_SHIFT-10),
943 		codesize >> 10,
944 		absent_pages << (PAGE_SHIFT-10),
945 		reservedpages << (PAGE_SHIFT-10),
946 		datasize >> 10,
947 		initsize >> 10);
948 }
949 
free_init_pages(char * what,unsigned long begin,unsigned long end)950 void free_init_pages(char *what, unsigned long begin, unsigned long end)
951 {
952 	unsigned long addr = begin;
953 
954 	if (addr >= end)
955 		return;
956 
957 	/*
958 	 * If debugging page accesses then do not free this memory but
959 	 * mark them not present - any buggy init-section access will
960 	 * create a kernel page fault:
961 	 */
962 #ifdef CONFIG_DEBUG_PAGEALLOC
963 	printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
964 		begin, PAGE_ALIGN(end));
965 	set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
966 #else
967 	printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
968 
969 	for (; addr < end; addr += PAGE_SIZE) {
970 		ClearPageReserved(virt_to_page(addr));
971 		init_page_count(virt_to_page(addr));
972 		memset((void *)(addr & ~(PAGE_SIZE-1)),
973 			POISON_FREE_INITMEM, PAGE_SIZE);
974 		free_page(addr);
975 		totalram_pages++;
976 	}
977 #endif
978 }
979 
free_initmem(void)980 void free_initmem(void)
981 {
982 	free_init_pages("unused kernel memory",
983 			(unsigned long)(&__init_begin),
984 			(unsigned long)(&__init_end));
985 }
986 
987 #ifdef CONFIG_DEBUG_RODATA
988 const int rodata_test_data = 0xC3;
989 EXPORT_SYMBOL_GPL(rodata_test_data);
990 
mark_rodata_ro(void)991 void mark_rodata_ro(void)
992 {
993 	unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
994 	unsigned long rodata_start =
995 		((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
996 
997 #ifdef CONFIG_DYNAMIC_FTRACE
998 	/* Dynamic tracing modifies the kernel text section */
999 	start = rodata_start;
1000 #endif
1001 
1002 	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1003 	       (end - start) >> 10);
1004 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1005 
1006 	/*
1007 	 * The rodata section (but not the kernel text!) should also be
1008 	 * not-executable.
1009 	 */
1010 	set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
1011 
1012 	rodata_test();
1013 
1014 #ifdef CONFIG_CPA_DEBUG
1015 	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1016 	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1017 
1018 	printk(KERN_INFO "Testing CPA: again\n");
1019 	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1020 #endif
1021 }
1022 
1023 #endif
1024 
1025 #ifdef CONFIG_BLK_DEV_INITRD
free_initrd_mem(unsigned long start,unsigned long end)1026 void free_initrd_mem(unsigned long start, unsigned long end)
1027 {
1028 	free_init_pages("initrd memory", start, end);
1029 }
1030 #endif
1031 
reserve_bootmem_generic(unsigned long phys,unsigned long len,int flags)1032 int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
1033 				   int flags)
1034 {
1035 #ifdef CONFIG_NUMA
1036 	int nid, next_nid;
1037 	int ret;
1038 #endif
1039 	unsigned long pfn = phys >> PAGE_SHIFT;
1040 
1041 	if (pfn >= max_pfn) {
1042 		/*
1043 		 * This can happen with kdump kernels when accessing
1044 		 * firmware tables:
1045 		 */
1046 		if (pfn < max_pfn_mapped)
1047 			return -EFAULT;
1048 
1049 		printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
1050 				phys, len);
1051 		return -EFAULT;
1052 	}
1053 
1054 	/* Should check here against the e820 map to avoid double free */
1055 #ifdef CONFIG_NUMA
1056 	nid = phys_to_nid(phys);
1057 	next_nid = phys_to_nid(phys + len - 1);
1058 	if (nid == next_nid)
1059 		ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
1060 	else
1061 		ret = reserve_bootmem(phys, len, flags);
1062 
1063 	if (ret != 0)
1064 		return ret;
1065 
1066 #else
1067 	reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
1068 #endif
1069 
1070 	if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
1071 		dma_reserve += len / PAGE_SIZE;
1072 		set_dma_reserve(dma_reserve);
1073 	}
1074 
1075 	return 0;
1076 }
1077 
kern_addr_valid(unsigned long addr)1078 int kern_addr_valid(unsigned long addr)
1079 {
1080 	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1081 	pgd_t *pgd;
1082 	pud_t *pud;
1083 	pmd_t *pmd;
1084 	pte_t *pte;
1085 
1086 	if (above != 0 && above != -1UL)
1087 		return 0;
1088 
1089 	pgd = pgd_offset_k(addr);
1090 	if (pgd_none(*pgd))
1091 		return 0;
1092 
1093 	pud = pud_offset(pgd, addr);
1094 	if (pud_none(*pud))
1095 		return 0;
1096 
1097 	pmd = pmd_offset(pud, addr);
1098 	if (pmd_none(*pmd))
1099 		return 0;
1100 
1101 	if (pmd_large(*pmd))
1102 		return pfn_valid(pmd_pfn(*pmd));
1103 
1104 	pte = pte_offset_kernel(pmd, addr);
1105 	if (pte_none(*pte))
1106 		return 0;
1107 
1108 	return pfn_valid(pte_pfn(*pte));
1109 }
1110 
1111 /*
1112  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
1113  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
1114  * not need special handling anymore:
1115  */
1116 static struct vm_area_struct gate_vma = {
1117 	.vm_start	= VSYSCALL_START,
1118 	.vm_end		= VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
1119 	.vm_page_prot	= PAGE_READONLY_EXEC,
1120 	.vm_flags	= VM_READ | VM_EXEC
1121 };
1122 
get_gate_vma(struct task_struct * tsk)1123 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
1124 {
1125 #ifdef CONFIG_IA32_EMULATION
1126 	if (test_tsk_thread_flag(tsk, TIF_IA32))
1127 		return NULL;
1128 #endif
1129 	return &gate_vma;
1130 }
1131 
in_gate_area(struct task_struct * task,unsigned long addr)1132 int in_gate_area(struct task_struct *task, unsigned long addr)
1133 {
1134 	struct vm_area_struct *vma = get_gate_vma(task);
1135 
1136 	if (!vma)
1137 		return 0;
1138 
1139 	return (addr >= vma->vm_start) && (addr < vma->vm_end);
1140 }
1141 
1142 /*
1143  * Use this when you have no reliable task/vma, typically from interrupt
1144  * context. It is less reliable than using the task's vma and may give
1145  * false positives:
1146  */
in_gate_area_no_task(unsigned long addr)1147 int in_gate_area_no_task(unsigned long addr)
1148 {
1149 	return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
1150 }
1151 
arch_vma_name(struct vm_area_struct * vma)1152 const char *arch_vma_name(struct vm_area_struct *vma)
1153 {
1154 	if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
1155 		return "[vdso]";
1156 	if (vma == &gate_vma)
1157 		return "[vsyscall]";
1158 	return NULL;
1159 }
1160 
1161 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1162 /*
1163  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1164  */
1165 static long __meminitdata addr_start, addr_end;
1166 static void __meminitdata *p_start, *p_end;
1167 static int __meminitdata node_start;
1168 
1169 int __meminit
vmemmap_populate(struct page * start_page,unsigned long size,int node)1170 vmemmap_populate(struct page *start_page, unsigned long size, int node)
1171 {
1172 	unsigned long addr = (unsigned long)start_page;
1173 	unsigned long end = (unsigned long)(start_page + size);
1174 	unsigned long next;
1175 	pgd_t *pgd;
1176 	pud_t *pud;
1177 	pmd_t *pmd;
1178 
1179 	for (; addr < end; addr = next) {
1180 		void *p = NULL;
1181 
1182 		pgd = vmemmap_pgd_populate(addr, node);
1183 		if (!pgd)
1184 			return -ENOMEM;
1185 
1186 		pud = vmemmap_pud_populate(pgd, addr, node);
1187 		if (!pud)
1188 			return -ENOMEM;
1189 
1190 		if (!cpu_has_pse) {
1191 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1192 			pmd = vmemmap_pmd_populate(pud, addr, node);
1193 
1194 			if (!pmd)
1195 				return -ENOMEM;
1196 
1197 			p = vmemmap_pte_populate(pmd, addr, node);
1198 
1199 			if (!p)
1200 				return -ENOMEM;
1201 
1202 			addr_end = addr + PAGE_SIZE;
1203 			p_end = p + PAGE_SIZE;
1204 		} else {
1205 			next = pmd_addr_end(addr, end);
1206 
1207 			pmd = pmd_offset(pud, addr);
1208 			if (pmd_none(*pmd)) {
1209 				pte_t entry;
1210 
1211 				p = vmemmap_alloc_block(PMD_SIZE, node);
1212 				if (!p)
1213 					return -ENOMEM;
1214 
1215 				entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1216 						PAGE_KERNEL_LARGE);
1217 				set_pmd(pmd, __pmd(pte_val(entry)));
1218 
1219 				/* check to see if we have contiguous blocks */
1220 				if (p_end != p || node_start != node) {
1221 					if (p_start)
1222 						printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1223 						       addr_start, addr_end-1, p_start, p_end-1, node_start);
1224 					addr_start = addr;
1225 					node_start = node;
1226 					p_start = p;
1227 				}
1228 
1229 				addr_end = addr + PMD_SIZE;
1230 				p_end = p + PMD_SIZE;
1231 			} else
1232 				vmemmap_verify((pte_t *)pmd, node, addr, next);
1233 		}
1234 
1235 	}
1236 	return 0;
1237 }
1238 
vmemmap_populate_print_last(void)1239 void __meminit vmemmap_populate_print_last(void)
1240 {
1241 	if (p_start) {
1242 		printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1243 			addr_start, addr_end-1, p_start, p_end-1, node_start);
1244 		p_start = NULL;
1245 		p_end = NULL;
1246 		node_start = 0;
1247 	}
1248 }
1249 #endif
1250