• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/slab.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
20 
21 #include <asm/memory.h>
22 #include <asm/cacheflush.h>
23 #include <asm/tlbflush.h>
24 #include <asm/sizes.h>
25 
26 /* Sanity check size */
27 #if (CONSISTENT_DMA_SIZE % SZ_2M)
28 #error "CONSISTENT_DMA_SIZE must be multiple of 2MiB"
29 #endif
30 
31 #define CONSISTENT_END	(0xffe00000)
32 #define CONSISTENT_BASE	(CONSISTENT_END - CONSISTENT_DMA_SIZE)
33 
34 #define CONSISTENT_OFFSET(x)	(((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
35 #define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT)
36 #define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT)
37 
38 
39 /*
40  * These are the page tables (2MB each) covering uncached, DMA consistent allocations
41  */
42 static pte_t *consistent_pte[NUM_CONSISTENT_PTES];
43 static DEFINE_SPINLOCK(consistent_lock);
44 
45 /*
46  * VM region handling support.
47  *
48  * This should become something generic, handling VM region allocations for
49  * vmalloc and similar (ioremap, module space, etc).
50  *
51  * I envisage vmalloc()'s supporting vm_struct becoming:
52  *
53  *  struct vm_struct {
54  *    struct vm_region	region;
55  *    unsigned long	flags;
56  *    struct page	**pages;
57  *    unsigned int	nr_pages;
58  *    unsigned long	phys_addr;
59  *  };
60  *
61  * get_vm_area() would then call vm_region_alloc with an appropriate
62  * struct vm_region head (eg):
63  *
64  *  struct vm_region vmalloc_head = {
65  *	.vm_list	= LIST_HEAD_INIT(vmalloc_head.vm_list),
66  *	.vm_start	= VMALLOC_START,
67  *	.vm_end		= VMALLOC_END,
68  *  };
69  *
70  * However, vmalloc_head.vm_start is variable (typically, it is dependent on
71  * the amount of RAM found at boot time.)  I would imagine that get_vm_area()
72  * would have to initialise this each time prior to calling vm_region_alloc().
73  */
74 struct arm_vm_region {
75 	struct list_head	vm_list;
76 	unsigned long		vm_start;
77 	unsigned long		vm_end;
78 	struct page		*vm_pages;
79 	int			vm_active;
80 };
81 
82 static struct arm_vm_region consistent_head = {
83 	.vm_list	= LIST_HEAD_INIT(consistent_head.vm_list),
84 	.vm_start	= CONSISTENT_BASE,
85 	.vm_end		= CONSISTENT_END,
86 };
87 
88 static struct arm_vm_region *
arm_vm_region_alloc(struct arm_vm_region * head,size_t size,gfp_t gfp)89 arm_vm_region_alloc(struct arm_vm_region *head, size_t size, gfp_t gfp)
90 {
91 	unsigned long addr = head->vm_start, end = head->vm_end - size;
92 	unsigned long flags;
93 	struct arm_vm_region *c, *new;
94 
95 	new = kmalloc(sizeof(struct arm_vm_region), gfp);
96 	if (!new)
97 		goto out;
98 
99 	spin_lock_irqsave(&consistent_lock, flags);
100 
101 	list_for_each_entry(c, &head->vm_list, vm_list) {
102 		if ((addr + size) < addr)
103 			goto nospc;
104 		if ((addr + size) <= c->vm_start)
105 			goto found;
106 		addr = c->vm_end;
107 		if (addr > end)
108 			goto nospc;
109 	}
110 
111  found:
112 	/*
113 	 * Insert this entry _before_ the one we found.
114 	 */
115 	list_add_tail(&new->vm_list, &c->vm_list);
116 	new->vm_start = addr;
117 	new->vm_end = addr + size;
118 	new->vm_active = 1;
119 
120 	spin_unlock_irqrestore(&consistent_lock, flags);
121 	return new;
122 
123  nospc:
124 	spin_unlock_irqrestore(&consistent_lock, flags);
125 	kfree(new);
126  out:
127 	return NULL;
128 }
129 
arm_vm_region_find(struct arm_vm_region * head,unsigned long addr)130 static struct arm_vm_region *arm_vm_region_find(struct arm_vm_region *head, unsigned long addr)
131 {
132 	struct arm_vm_region *c;
133 
134 	list_for_each_entry(c, &head->vm_list, vm_list) {
135 		if (c->vm_active && c->vm_start == addr)
136 			goto out;
137 	}
138 	c = NULL;
139  out:
140 	return c;
141 }
142 
143 #ifdef CONFIG_HUGETLB_PAGE
144 #error ARM Coherent DMA allocator does not (yet) support huge TLB
145 #endif
146 
147 static void *
__dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp,pgprot_t prot)148 __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
149 	    pgprot_t prot)
150 {
151 	struct page *page;
152 	struct arm_vm_region *c;
153 	unsigned long order;
154 	u64 mask = ISA_DMA_THRESHOLD, limit;
155 
156 	if (!consistent_pte[0]) {
157 		printk(KERN_ERR "%s: not initialised\n", __func__);
158 		dump_stack();
159 		return NULL;
160 	}
161 
162 	if (dev) {
163 		mask = dev->coherent_dma_mask;
164 
165 		/*
166 		 * Sanity check the DMA mask - it must be non-zero, and
167 		 * must be able to be satisfied by a DMA allocation.
168 		 */
169 		if (mask == 0) {
170 			dev_warn(dev, "coherent DMA mask is unset\n");
171 			goto no_page;
172 		}
173 
174 		if ((~mask) & ISA_DMA_THRESHOLD) {
175 			dev_warn(dev, "coherent DMA mask %#llx is smaller "
176 				 "than system GFP_DMA mask %#llx\n",
177 				 mask, (unsigned long long)ISA_DMA_THRESHOLD);
178 			goto no_page;
179 		}
180 	}
181 
182 	/*
183 	 * Sanity check the allocation size.
184 	 */
185 	size = PAGE_ALIGN(size);
186 	limit = (mask + 1) & ~mask;
187 	if ((limit && size >= limit) ||
188 	    size >= (CONSISTENT_END - CONSISTENT_BASE)) {
189 		printk(KERN_WARNING "coherent allocation too big "
190 		       "(requested %#x mask %#llx)\n", size, mask);
191 		goto no_page;
192 	}
193 
194 	order = get_order(size);
195 
196 	if (mask != 0xffffffff)
197 		gfp |= GFP_DMA;
198 
199 	page = alloc_pages(gfp, order);
200 	if (!page)
201 		goto no_page;
202 
203 	/*
204 	 * Invalidate any data that might be lurking in the
205 	 * kernel direct-mapped region for device DMA.
206 	 */
207 	{
208 		void *ptr = page_address(page);
209 		memset(ptr, 0, size);
210 		dmac_flush_range(ptr, ptr + size);
211 		outer_flush_range(__pa(ptr), __pa(ptr) + size);
212 	}
213 
214 	/*
215 	 * Allocate a virtual address in the consistent mapping region.
216 	 */
217 	c = arm_vm_region_alloc(&consistent_head, size,
218 			    gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
219 	if (c) {
220 		pte_t *pte;
221 		struct page *end = page + (1 << order);
222 		int idx = CONSISTENT_PTE_INDEX(c->vm_start);
223 		u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
224 
225 		pte = consistent_pte[idx] + off;
226 		c->vm_pages = page;
227 
228 		split_page(page, order);
229 
230 		/*
231 		 * Set the "dma handle"
232 		 */
233 		*handle = page_to_dma(dev, page);
234 
235 		do {
236 			BUG_ON(!pte_none(*pte));
237 
238 			/*
239 			 * x86 does not mark the pages reserved...
240 			 */
241 			SetPageReserved(page);
242 			set_pte_ext(pte, mk_pte(page, prot), 0);
243 			page++;
244 			pte++;
245 			off++;
246 			if (off >= PTRS_PER_PTE) {
247 				off = 0;
248 				pte = consistent_pte[++idx];
249 			}
250 		} while (size -= PAGE_SIZE);
251 
252 		/*
253 		 * Free the otherwise unused pages.
254 		 */
255 		while (page < end) {
256 			__free_page(page);
257 			page++;
258 		}
259 
260 		return (void *)c->vm_start;
261 	}
262 
263 	if (page)
264 		__free_pages(page, order);
265  no_page:
266 	*handle = ~0;
267 	return NULL;
268 }
269 
270 /*
271  * Allocate DMA-coherent memory space and return both the kernel remapped
272  * virtual and bus address for that space.
273  */
274 void *
dma_alloc_coherent(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)275 dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
276 {
277 	void *memory;
278 
279 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
280 		return memory;
281 
282 	if (arch_is_coherent()) {
283 		void *virt;
284 
285 		virt = kmalloc(size, gfp);
286 		if (!virt)
287 			return NULL;
288 		*handle =  virt_to_dma(dev, virt);
289 
290 		return virt;
291 	}
292 
293 	return __dma_alloc(dev, size, handle, gfp,
294 			   pgprot_noncached(pgprot_kernel));
295 }
296 EXPORT_SYMBOL(dma_alloc_coherent);
297 
298 /*
299  * Allocate a writecombining region, in much the same way as
300  * dma_alloc_coherent above.
301  */
302 void *
dma_alloc_writecombine(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)303 dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
304 {
305 	return __dma_alloc(dev, size, handle, gfp,
306 			   pgprot_writecombine(pgprot_kernel));
307 }
308 EXPORT_SYMBOL(dma_alloc_writecombine);
309 
dma_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size)310 static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
311 		    void *cpu_addr, dma_addr_t dma_addr, size_t size)
312 {
313 	unsigned long flags, user_size, kern_size;
314 	struct arm_vm_region *c;
315 	int ret = -ENXIO;
316 
317 	user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
318 
319 	spin_lock_irqsave(&consistent_lock, flags);
320 	c = arm_vm_region_find(&consistent_head, (unsigned long)cpu_addr);
321 	spin_unlock_irqrestore(&consistent_lock, flags);
322 
323 	if (c) {
324 		unsigned long off = vma->vm_pgoff;
325 
326 		kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
327 
328 		if (off < kern_size &&
329 		    user_size <= (kern_size - off)) {
330 			ret = remap_pfn_range(vma, vma->vm_start,
331 					      page_to_pfn(c->vm_pages) + off,
332 					      user_size << PAGE_SHIFT,
333 					      vma->vm_page_prot);
334 		}
335 	}
336 
337 	return ret;
338 }
339 
dma_mmap_coherent(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size)340 int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
341 		      void *cpu_addr, dma_addr_t dma_addr, size_t size)
342 {
343 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
344 	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
345 }
346 EXPORT_SYMBOL(dma_mmap_coherent);
347 
dma_mmap_writecombine(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size)348 int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
349 			  void *cpu_addr, dma_addr_t dma_addr, size_t size)
350 {
351 	vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
352 	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
353 }
354 EXPORT_SYMBOL(dma_mmap_writecombine);
355 
356 /*
357  * free a page as defined by the above mapping.
358  * Must not be called with IRQs disabled.
359  */
dma_free_coherent(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle)360 void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
361 {
362 	struct arm_vm_region *c;
363 	unsigned long flags, addr;
364 	pte_t *ptep;
365 	int idx;
366 	u32 off;
367 
368 	WARN_ON(irqs_disabled());
369 
370 	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
371 		return;
372 
373 	if (arch_is_coherent()) {
374 		kfree(cpu_addr);
375 		return;
376 	}
377 
378 	size = PAGE_ALIGN(size);
379 
380 	spin_lock_irqsave(&consistent_lock, flags);
381 	c = arm_vm_region_find(&consistent_head, (unsigned long)cpu_addr);
382 	if (!c)
383 		goto no_area;
384 
385 	c->vm_active = 0;
386 	spin_unlock_irqrestore(&consistent_lock, flags);
387 
388 	if ((c->vm_end - c->vm_start) != size) {
389 		printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
390 		       __func__, c->vm_end - c->vm_start, size);
391 		dump_stack();
392 		size = c->vm_end - c->vm_start;
393 	}
394 
395 	idx = CONSISTENT_PTE_INDEX(c->vm_start);
396 	off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
397 	ptep = consistent_pte[idx] + off;
398 	addr = c->vm_start;
399 	do {
400 		pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
401 		unsigned long pfn;
402 
403 		ptep++;
404 		addr += PAGE_SIZE;
405 		off++;
406 		if (off >= PTRS_PER_PTE) {
407 			off = 0;
408 			ptep = consistent_pte[++idx];
409 		}
410 
411 		if (!pte_none(pte) && pte_present(pte)) {
412 			pfn = pte_pfn(pte);
413 
414 			if (pfn_valid(pfn)) {
415 				struct page *page = pfn_to_page(pfn);
416 
417 				/*
418 				 * x86 does not mark the pages reserved...
419 				 */
420 				ClearPageReserved(page);
421 
422 				__free_page(page);
423 				continue;
424 			}
425 		}
426 
427 		printk(KERN_CRIT "%s: bad page in kernel page table\n",
428 		       __func__);
429 	} while (size -= PAGE_SIZE);
430 
431 	flush_tlb_kernel_range(c->vm_start, c->vm_end);
432 
433 	spin_lock_irqsave(&consistent_lock, flags);
434 	list_del(&c->vm_list);
435 	spin_unlock_irqrestore(&consistent_lock, flags);
436 
437 	kfree(c);
438 	return;
439 
440  no_area:
441 	spin_unlock_irqrestore(&consistent_lock, flags);
442 	printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
443 	       __func__, cpu_addr);
444 	dump_stack();
445 }
446 EXPORT_SYMBOL(dma_free_coherent);
447 
448 /*
449  * Initialise the consistent memory allocation.
450  */
consistent_init(void)451 static int __init consistent_init(void)
452 {
453 	pgd_t *pgd;
454 	pmd_t *pmd;
455 	pte_t *pte;
456 	int ret = 0, i = 0;
457 	u32 base = CONSISTENT_BASE;
458 
459 	do {
460 		pgd = pgd_offset(&init_mm, base);
461 		pmd = pmd_alloc(&init_mm, pgd, base);
462 		if (!pmd) {
463 			printk(KERN_ERR "%s: no pmd tables\n", __func__);
464 			ret = -ENOMEM;
465 			break;
466 		}
467 		WARN_ON(!pmd_none(*pmd));
468 
469 		pte = pte_alloc_kernel(pmd, base);
470 		if (!pte) {
471 			printk(KERN_ERR "%s: no pte tables\n", __func__);
472 			ret = -ENOMEM;
473 			break;
474 		}
475 
476 		consistent_pte[i++] = pte;
477 		base += (1 << PGDIR_SHIFT);
478 	} while (base < CONSISTENT_END);
479 
480 	return ret;
481 }
482 
483 core_initcall(consistent_init);
484 
485 /*
486  * Make an area consistent for devices.
487  * Note: Drivers should NOT use this function directly, as it will break
488  * platforms with CONFIG_DMABOUNCE.
489  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
490  */
dma_cache_maint(const void * start,size_t size,int direction)491 void dma_cache_maint(const void *start, size_t size, int direction)
492 {
493 	void (*inner_op)(const void *, const void *);
494 	void (*outer_op)(unsigned long, unsigned long);
495 
496 	BUG_ON(!virt_addr_valid(start) || !virt_addr_valid(start + size - 1));
497 
498 	switch (direction) {
499 	case DMA_FROM_DEVICE:		/* invalidate only */
500 		inner_op = dmac_inv_range;
501 		outer_op = outer_inv_range;
502 		break;
503 	case DMA_TO_DEVICE:		/* writeback only */
504 		inner_op = dmac_clean_range;
505 		outer_op = outer_clean_range;
506 		break;
507 	case DMA_BIDIRECTIONAL:		/* writeback and invalidate */
508 		inner_op = dmac_flush_range;
509 		outer_op = outer_flush_range;
510 		break;
511 	default:
512 		BUG();
513 	}
514 
515 	inner_op(start, start + size);
516 	outer_op(__pa(start), __pa(start) + size);
517 }
518 EXPORT_SYMBOL(dma_cache_maint);
519 
520 /**
521  * dma_map_sg - map a set of SG buffers for streaming mode DMA
522  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
523  * @sg: list of buffers
524  * @nents: number of buffers to map
525  * @dir: DMA transfer direction
526  *
527  * Map a set of buffers described by scatterlist in streaming mode for DMA.
528  * This is the scatter-gather version of the dma_map_single interface.
529  * Here the scatter gather list elements are each tagged with the
530  * appropriate dma address and length.  They are obtained via
531  * sg_dma_{address,length}.
532  *
533  * Device ownership issues as mentioned for dma_map_single are the same
534  * here.
535  */
dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)536 int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
537 		enum dma_data_direction dir)
538 {
539 	struct scatterlist *s;
540 	int i, j;
541 
542 	for_each_sg(sg, s, nents, i) {
543 		s->dma_address = dma_map_page(dev, sg_page(s), s->offset,
544 						s->length, dir);
545 		if (dma_mapping_error(dev, s->dma_address))
546 			goto bad_mapping;
547 	}
548 	return nents;
549 
550  bad_mapping:
551 	for_each_sg(sg, s, i, j)
552 		dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
553 	return 0;
554 }
555 EXPORT_SYMBOL(dma_map_sg);
556 
557 /**
558  * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
559  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
560  * @sg: list of buffers
561  * @nents: number of buffers to unmap (returned from dma_map_sg)
562  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
563  *
564  * Unmap a set of streaming mode DMA translations.  Again, CPU access
565  * rules concerning calls here are the same as for dma_unmap_single().
566  */
dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)567 void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
568 		enum dma_data_direction dir)
569 {
570 	struct scatterlist *s;
571 	int i;
572 
573 	for_each_sg(sg, s, nents, i)
574 		dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
575 }
576 EXPORT_SYMBOL(dma_unmap_sg);
577 
578 /**
579  * dma_sync_sg_for_cpu
580  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
581  * @sg: list of buffers
582  * @nents: number of buffers to map (returned from dma_map_sg)
583  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
584  */
dma_sync_sg_for_cpu(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)585 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
586 			int nents, enum dma_data_direction dir)
587 {
588 	struct scatterlist *s;
589 	int i;
590 
591 	for_each_sg(sg, s, nents, i) {
592 		dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
593 					sg_dma_len(s), dir);
594 	}
595 }
596 EXPORT_SYMBOL(dma_sync_sg_for_cpu);
597 
598 /**
599  * dma_sync_sg_for_device
600  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
601  * @sg: list of buffers
602  * @nents: number of buffers to map (returned from dma_map_sg)
603  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
604  */
dma_sync_sg_for_device(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)605 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
606 			int nents, enum dma_data_direction dir)
607 {
608 	struct scatterlist *s;
609 	int i;
610 
611 	for_each_sg(sg, s, nents, i) {
612 		if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
613 					sg_dma_len(s), dir))
614 			continue;
615 
616 		if (!arch_is_coherent())
617 			dma_cache_maint(sg_virt(s), s->length, dir);
618 	}
619 }
620 EXPORT_SYMBOL(dma_sync_sg_for_device);
621