1 #include <linux/types.h>
2 #include <linux/string.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/dmi.h>
6 #include <linux/efi.h>
7 #include <linux/bootmem.h>
8 #include <linux/slab.h>
9 #include <asm/dmi.h>
10
11 /*
12 * DMI stands for "Desktop Management Interface". It is part
13 * of and an antecedent to, SMBIOS, which stands for System
14 * Management BIOS. See further: http://www.dmtf.org/standards
15 */
16 static char dmi_empty_string[] = " ";
17
18 /*
19 * Catch too early calls to dmi_check_system():
20 */
21 static int dmi_initialized;
22
dmi_string_nosave(const struct dmi_header * dm,u8 s)23 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
24 {
25 const u8 *bp = ((u8 *) dm) + dm->length;
26
27 if (s) {
28 s--;
29 while (s > 0 && *bp) {
30 bp += strlen(bp) + 1;
31 s--;
32 }
33
34 if (*bp != 0) {
35 size_t len = strlen(bp)+1;
36 size_t cmp_len = len > 8 ? 8 : len;
37
38 if (!memcmp(bp, dmi_empty_string, cmp_len))
39 return dmi_empty_string;
40 return bp;
41 }
42 }
43
44 return "";
45 }
46
dmi_string(const struct dmi_header * dm,u8 s)47 static char * __init dmi_string(const struct dmi_header *dm, u8 s)
48 {
49 const char *bp = dmi_string_nosave(dm, s);
50 char *str;
51 size_t len;
52
53 if (bp == dmi_empty_string)
54 return dmi_empty_string;
55
56 len = strlen(bp) + 1;
57 str = dmi_alloc(len);
58 if (str != NULL)
59 strcpy(str, bp);
60 else
61 printk(KERN_ERR "dmi_string: cannot allocate %Zu bytes.\n", len);
62
63 return str;
64 }
65
66 /*
67 * We have to be cautious here. We have seen BIOSes with DMI pointers
68 * pointing to completely the wrong place for example
69 */
dmi_table(u8 * buf,int len,int num,void (* decode)(const struct dmi_header *))70 static void dmi_table(u8 *buf, int len, int num,
71 void (*decode)(const struct dmi_header *))
72 {
73 u8 *data = buf;
74 int i = 0;
75
76 /*
77 * Stop when we see all the items the table claimed to have
78 * OR we run off the end of the table (also happens)
79 */
80 while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
81 const struct dmi_header *dm = (const struct dmi_header *)data;
82
83 /*
84 * We want to know the total length (formatted area and
85 * strings) before decoding to make sure we won't run off the
86 * table in dmi_decode or dmi_string
87 */
88 data += dm->length;
89 while ((data - buf < len - 1) && (data[0] || data[1]))
90 data++;
91 if (data - buf < len - 1)
92 decode(dm);
93 data += 2;
94 i++;
95 }
96 }
97
98 static u32 dmi_base;
99 static u16 dmi_len;
100 static u16 dmi_num;
101
dmi_walk_early(void (* decode)(const struct dmi_header *))102 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *))
103 {
104 u8 *buf;
105
106 buf = dmi_ioremap(dmi_base, dmi_len);
107 if (buf == NULL)
108 return -1;
109
110 dmi_table(buf, dmi_len, dmi_num, decode);
111
112 dmi_iounmap(buf, dmi_len);
113 return 0;
114 }
115
dmi_checksum(const u8 * buf)116 static int __init dmi_checksum(const u8 *buf)
117 {
118 u8 sum = 0;
119 int a;
120
121 for (a = 0; a < 15; a++)
122 sum += buf[a];
123
124 return sum == 0;
125 }
126
127 static char *dmi_ident[DMI_STRING_MAX];
128 static LIST_HEAD(dmi_devices);
129 int dmi_available;
130
131 /*
132 * Save a DMI string
133 */
dmi_save_ident(const struct dmi_header * dm,int slot,int string)134 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, int string)
135 {
136 const char *d = (const char*) dm;
137 char *p;
138
139 if (dmi_ident[slot])
140 return;
141
142 p = dmi_string(dm, d[string]);
143 if (p == NULL)
144 return;
145
146 dmi_ident[slot] = p;
147 }
148
dmi_save_uuid(const struct dmi_header * dm,int slot,int index)149 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, int index)
150 {
151 const u8 *d = (u8*) dm + index;
152 char *s;
153 int is_ff = 1, is_00 = 1, i;
154
155 if (dmi_ident[slot])
156 return;
157
158 for (i = 0; i < 16 && (is_ff || is_00); i++) {
159 if(d[i] != 0x00) is_ff = 0;
160 if(d[i] != 0xFF) is_00 = 0;
161 }
162
163 if (is_ff || is_00)
164 return;
165
166 s = dmi_alloc(16*2+4+1);
167 if (!s)
168 return;
169
170 sprintf(s,
171 "%02X%02X%02X%02X-%02X%02X-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
172 d[0], d[1], d[2], d[3], d[4], d[5], d[6], d[7],
173 d[8], d[9], d[10], d[11], d[12], d[13], d[14], d[15]);
174
175 dmi_ident[slot] = s;
176 }
177
dmi_save_type(const struct dmi_header * dm,int slot,int index)178 static void __init dmi_save_type(const struct dmi_header *dm, int slot, int index)
179 {
180 const u8 *d = (u8*) dm + index;
181 char *s;
182
183 if (dmi_ident[slot])
184 return;
185
186 s = dmi_alloc(4);
187 if (!s)
188 return;
189
190 sprintf(s, "%u", *d & 0x7F);
191 dmi_ident[slot] = s;
192 }
193
dmi_save_one_device(int type,const char * name)194 static void __init dmi_save_one_device(int type, const char *name)
195 {
196 struct dmi_device *dev;
197
198 /* No duplicate device */
199 if (dmi_find_device(type, name, NULL))
200 return;
201
202 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
203 if (!dev) {
204 printk(KERN_ERR "dmi_save_one_device: out of memory.\n");
205 return;
206 }
207
208 dev->type = type;
209 strcpy((char *)(dev + 1), name);
210 dev->name = (char *)(dev + 1);
211 dev->device_data = NULL;
212 list_add(&dev->list, &dmi_devices);
213 }
214
dmi_save_devices(const struct dmi_header * dm)215 static void __init dmi_save_devices(const struct dmi_header *dm)
216 {
217 int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
218
219 for (i = 0; i < count; i++) {
220 const char *d = (char *)(dm + 1) + (i * 2);
221
222 /* Skip disabled device */
223 if ((*d & 0x80) == 0)
224 continue;
225
226 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
227 }
228 }
229
dmi_save_oem_strings_devices(const struct dmi_header * dm)230 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
231 {
232 int i, count = *(u8 *)(dm + 1);
233 struct dmi_device *dev;
234
235 for (i = 1; i <= count; i++) {
236 char *devname = dmi_string(dm, i);
237
238 if (devname == dmi_empty_string)
239 continue;
240
241 dev = dmi_alloc(sizeof(*dev));
242 if (!dev) {
243 printk(KERN_ERR
244 "dmi_save_oem_strings_devices: out of memory.\n");
245 break;
246 }
247
248 dev->type = DMI_DEV_TYPE_OEM_STRING;
249 dev->name = devname;
250 dev->device_data = NULL;
251
252 list_add(&dev->list, &dmi_devices);
253 }
254 }
255
dmi_save_ipmi_device(const struct dmi_header * dm)256 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
257 {
258 struct dmi_device *dev;
259 void * data;
260
261 data = dmi_alloc(dm->length);
262 if (data == NULL) {
263 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
264 return;
265 }
266
267 memcpy(data, dm, dm->length);
268
269 dev = dmi_alloc(sizeof(*dev));
270 if (!dev) {
271 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
272 return;
273 }
274
275 dev->type = DMI_DEV_TYPE_IPMI;
276 dev->name = "IPMI controller";
277 dev->device_data = data;
278
279 list_add_tail(&dev->list, &dmi_devices);
280 }
281
dmi_save_extended_devices(const struct dmi_header * dm)282 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
283 {
284 const u8 *d = (u8*) dm + 5;
285
286 /* Skip disabled device */
287 if ((*d & 0x80) == 0)
288 return;
289
290 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
291 }
292
293 /*
294 * Process a DMI table entry. Right now all we care about are the BIOS
295 * and machine entries. For 2.5 we should pull the smbus controller info
296 * out of here.
297 */
dmi_decode(const struct dmi_header * dm)298 static void __init dmi_decode(const struct dmi_header *dm)
299 {
300 switch(dm->type) {
301 case 0: /* BIOS Information */
302 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
303 dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
304 dmi_save_ident(dm, DMI_BIOS_DATE, 8);
305 break;
306 case 1: /* System Information */
307 dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
308 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
309 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
310 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
311 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
312 break;
313 case 2: /* Base Board Information */
314 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
315 dmi_save_ident(dm, DMI_BOARD_NAME, 5);
316 dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
317 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
318 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
319 break;
320 case 3: /* Chassis Information */
321 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
322 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
323 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
324 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
325 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
326 break;
327 case 10: /* Onboard Devices Information */
328 dmi_save_devices(dm);
329 break;
330 case 11: /* OEM Strings */
331 dmi_save_oem_strings_devices(dm);
332 break;
333 case 38: /* IPMI Device Information */
334 dmi_save_ipmi_device(dm);
335 break;
336 case 41: /* Onboard Devices Extended Information */
337 dmi_save_extended_devices(dm);
338 }
339 }
340
dmi_present(const char __iomem * p)341 static int __init dmi_present(const char __iomem *p)
342 {
343 u8 buf[15];
344
345 memcpy_fromio(buf, p, 15);
346 if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) {
347 dmi_num = (buf[13] << 8) | buf[12];
348 dmi_len = (buf[7] << 8) | buf[6];
349 dmi_base = (buf[11] << 24) | (buf[10] << 16) |
350 (buf[9] << 8) | buf[8];
351
352 /*
353 * DMI version 0.0 means that the real version is taken from
354 * the SMBIOS version, which we don't know at this point.
355 */
356 if (buf[14] != 0)
357 printk(KERN_INFO "DMI %d.%d present.\n",
358 buf[14] >> 4, buf[14] & 0xF);
359 else
360 printk(KERN_INFO "DMI present.\n");
361 if (dmi_walk_early(dmi_decode) == 0)
362 return 0;
363 }
364 return 1;
365 }
366
dmi_scan_machine(void)367 void __init dmi_scan_machine(void)
368 {
369 char __iomem *p, *q;
370 int rc;
371
372 if (efi_enabled) {
373 if (efi.smbios == EFI_INVALID_TABLE_ADDR)
374 goto error;
375
376 /* This is called as a core_initcall() because it isn't
377 * needed during early boot. This also means we can
378 * iounmap the space when we're done with it.
379 */
380 p = dmi_ioremap(efi.smbios, 32);
381 if (p == NULL)
382 goto error;
383
384 rc = dmi_present(p + 0x10); /* offset of _DMI_ string */
385 dmi_iounmap(p, 32);
386 if (!rc) {
387 dmi_available = 1;
388 goto out;
389 }
390 }
391 else {
392 /*
393 * no iounmap() for that ioremap(); it would be a no-op, but
394 * it's so early in setup that sucker gets confused into doing
395 * what it shouldn't if we actually call it.
396 */
397 p = dmi_ioremap(0xF0000, 0x10000);
398 if (p == NULL)
399 goto error;
400
401 for (q = p; q < p + 0x10000; q += 16) {
402 rc = dmi_present(q);
403 if (!rc) {
404 dmi_available = 1;
405 dmi_iounmap(p, 0x10000);
406 goto out;
407 }
408 }
409 dmi_iounmap(p, 0x10000);
410 }
411 error:
412 printk(KERN_INFO "DMI not present or invalid.\n");
413 out:
414 dmi_initialized = 1;
415 }
416
417 /**
418 * dmi_matches - check if dmi_system_id structure matches system DMI data
419 * @dmi: pointer to the dmi_system_id structure to check
420 */
dmi_matches(const struct dmi_system_id * dmi)421 static bool dmi_matches(const struct dmi_system_id *dmi)
422 {
423 int i;
424
425 WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
426
427 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
428 int s = dmi->matches[i].slot;
429 if (s == DMI_NONE)
430 continue;
431 if (dmi_ident[s]
432 && strstr(dmi_ident[s], dmi->matches[i].substr))
433 continue;
434 /* No match */
435 return false;
436 }
437 return true;
438 }
439
440 /**
441 * dmi_check_system - check system DMI data
442 * @list: array of dmi_system_id structures to match against
443 * All non-null elements of the list must match
444 * their slot's (field index's) data (i.e., each
445 * list string must be a substring of the specified
446 * DMI slot's string data) to be considered a
447 * successful match.
448 *
449 * Walk the blacklist table running matching functions until someone
450 * returns non zero or we hit the end. Callback function is called for
451 * each successful match. Returns the number of matches.
452 */
dmi_check_system(const struct dmi_system_id * list)453 int dmi_check_system(const struct dmi_system_id *list)
454 {
455 int count = 0;
456 const struct dmi_system_id *d;
457
458 for (d = list; d->ident; d++)
459 if (dmi_matches(d)) {
460 count++;
461 if (d->callback && d->callback(d))
462 break;
463 }
464
465 return count;
466 }
467 EXPORT_SYMBOL(dmi_check_system);
468
469 /**
470 * dmi_first_match - find dmi_system_id structure matching system DMI data
471 * @list: array of dmi_system_id structures to match against
472 * All non-null elements of the list must match
473 * their slot's (field index's) data (i.e., each
474 * list string must be a substring of the specified
475 * DMI slot's string data) to be considered a
476 * successful match.
477 *
478 * Walk the blacklist table until the first match is found. Return the
479 * pointer to the matching entry or NULL if there's no match.
480 */
dmi_first_match(const struct dmi_system_id * list)481 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
482 {
483 const struct dmi_system_id *d;
484
485 for (d = list; d->ident; d++)
486 if (dmi_matches(d))
487 return d;
488
489 return NULL;
490 }
491 EXPORT_SYMBOL(dmi_first_match);
492
493 /**
494 * dmi_get_system_info - return DMI data value
495 * @field: data index (see enum dmi_field)
496 *
497 * Returns one DMI data value, can be used to perform
498 * complex DMI data checks.
499 */
dmi_get_system_info(int field)500 const char *dmi_get_system_info(int field)
501 {
502 return dmi_ident[field];
503 }
504 EXPORT_SYMBOL(dmi_get_system_info);
505
506 /**
507 * dmi_name_in_serial - Check if string is in the DMI product serial information
508 * @str: string to check for
509 */
dmi_name_in_serial(const char * str)510 int dmi_name_in_serial(const char *str)
511 {
512 int f = DMI_PRODUCT_SERIAL;
513 if (dmi_ident[f] && strstr(dmi_ident[f], str))
514 return 1;
515 return 0;
516 }
517
518 /**
519 * dmi_name_in_vendors - Check if string is anywhere in the DMI vendor information.
520 * @str: Case sensitive Name
521 */
dmi_name_in_vendors(const char * str)522 int dmi_name_in_vendors(const char *str)
523 {
524 static int fields[] = { DMI_BIOS_VENDOR, DMI_BIOS_VERSION, DMI_SYS_VENDOR,
525 DMI_PRODUCT_NAME, DMI_PRODUCT_VERSION, DMI_BOARD_VENDOR,
526 DMI_BOARD_NAME, DMI_BOARD_VERSION, DMI_NONE };
527 int i;
528 for (i = 0; fields[i] != DMI_NONE; i++) {
529 int f = fields[i];
530 if (dmi_ident[f] && strstr(dmi_ident[f], str))
531 return 1;
532 }
533 return 0;
534 }
535 EXPORT_SYMBOL(dmi_name_in_vendors);
536
537 /**
538 * dmi_find_device - find onboard device by type/name
539 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
540 * @name: device name string or %NULL to match all
541 * @from: previous device found in search, or %NULL for new search.
542 *
543 * Iterates through the list of known onboard devices. If a device is
544 * found with a matching @vendor and @device, a pointer to its device
545 * structure is returned. Otherwise, %NULL is returned.
546 * A new search is initiated by passing %NULL as the @from argument.
547 * If @from is not %NULL, searches continue from next device.
548 */
dmi_find_device(int type,const char * name,const struct dmi_device * from)549 const struct dmi_device * dmi_find_device(int type, const char *name,
550 const struct dmi_device *from)
551 {
552 const struct list_head *head = from ? &from->list : &dmi_devices;
553 struct list_head *d;
554
555 for(d = head->next; d != &dmi_devices; d = d->next) {
556 const struct dmi_device *dev =
557 list_entry(d, struct dmi_device, list);
558
559 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
560 ((name == NULL) || (strcmp(dev->name, name) == 0)))
561 return dev;
562 }
563
564 return NULL;
565 }
566 EXPORT_SYMBOL(dmi_find_device);
567
568 /**
569 * dmi_get_year - Return year of a DMI date
570 * @field: data index (like dmi_get_system_info)
571 *
572 * Returns -1 when the field doesn't exist. 0 when it is broken.
573 */
dmi_get_year(int field)574 int dmi_get_year(int field)
575 {
576 int year;
577 const char *s = dmi_get_system_info(field);
578
579 if (!s)
580 return -1;
581 if (*s == '\0')
582 return 0;
583 s = strrchr(s, '/');
584 if (!s)
585 return 0;
586
587 s += 1;
588 year = simple_strtoul(s, NULL, 0);
589 if (year && year < 100) { /* 2-digit year */
590 year += 1900;
591 if (year < 1996) /* no dates < spec 1.0 */
592 year += 100;
593 }
594
595 return year;
596 }
597
598 /**
599 * dmi_walk - Walk the DMI table and get called back for every record
600 * @decode: Callback function
601 *
602 * Returns -1 when the DMI table can't be reached, 0 on success.
603 */
dmi_walk(void (* decode)(const struct dmi_header *))604 int dmi_walk(void (*decode)(const struct dmi_header *))
605 {
606 u8 *buf;
607
608 if (!dmi_available)
609 return -1;
610
611 buf = ioremap(dmi_base, dmi_len);
612 if (buf == NULL)
613 return -1;
614
615 dmi_table(buf, dmi_len, dmi_num, decode);
616
617 iounmap(buf);
618 return 0;
619 }
620 EXPORT_SYMBOL_GPL(dmi_walk);
621
622 /**
623 * dmi_match - compare a string to the dmi field (if exists)
624 * @f: DMI field identifier
625 * @str: string to compare the DMI field to
626 *
627 * Returns true if the requested field equals to the str (including NULL).
628 */
dmi_match(enum dmi_field f,const char * str)629 bool dmi_match(enum dmi_field f, const char *str)
630 {
631 const char *info = dmi_get_system_info(f);
632
633 if (info == NULL || str == NULL)
634 return info == str;
635
636 return !strcmp(info, str);
637 }
638 EXPORT_SYMBOL_GPL(dmi_match);
639