1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23 * enough at me, Linus for the original (flawed) idea, Matthew
24 * Kirkwood for proof-of-concept implementation.
25 *
26 * "The futexes are also cursed."
27 * "But they come in a choice of three flavours!"
28 *
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation; either version 2 of the License, or
32 * (at your option) any later version.
33 *
34 * This program is distributed in the hope that it will be useful,
35 * but WITHOUT ANY WARRANTY; without even the implied warranty of
36 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
37 * GNU General Public License for more details.
38 *
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
42 */
43 #include <linux/slab.h>
44 #include <linux/poll.h>
45 #include <linux/fs.h>
46 #include <linux/file.h>
47 #include <linux/jhash.h>
48 #include <linux/init.h>
49 #include <linux/futex.h>
50 #include <linux/mount.h>
51 #include <linux/pagemap.h>
52 #include <linux/syscalls.h>
53 #include <linux/signal.h>
54 #include <linux/module.h>
55 #include <linux/magic.h>
56 #include <linux/pid.h>
57 #include <linux/nsproxy.h>
58
59 #include <asm/futex.h>
60
61 #include "rtmutex_common.h"
62
63 int __read_mostly futex_cmpxchg_enabled;
64
65 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
66
67 /*
68 * Priority Inheritance state:
69 */
70 struct futex_pi_state {
71 /*
72 * list of 'owned' pi_state instances - these have to be
73 * cleaned up in do_exit() if the task exits prematurely:
74 */
75 struct list_head list;
76
77 /*
78 * The PI object:
79 */
80 struct rt_mutex pi_mutex;
81
82 struct task_struct *owner;
83 atomic_t refcount;
84
85 union futex_key key;
86 };
87
88 /*
89 * We use this hashed waitqueue instead of a normal wait_queue_t, so
90 * we can wake only the relevant ones (hashed queues may be shared).
91 *
92 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
93 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
94 * The order of wakup is always to make the first condition true, then
95 * wake up q->waiter, then make the second condition true.
96 */
97 struct futex_q {
98 struct plist_node list;
99 /* There can only be a single waiter */
100 wait_queue_head_t waiter;
101
102 /* Which hash list lock to use: */
103 spinlock_t *lock_ptr;
104
105 /* Key which the futex is hashed on: */
106 union futex_key key;
107
108 /* Optional priority inheritance state: */
109 struct futex_pi_state *pi_state;
110 struct task_struct *task;
111
112 /* Bitset for the optional bitmasked wakeup */
113 u32 bitset;
114 };
115
116 /*
117 * Split the global futex_lock into every hash list lock.
118 */
119 struct futex_hash_bucket {
120 spinlock_t lock;
121 struct plist_head chain;
122 };
123
124 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
125
126 /*
127 * We hash on the keys returned from get_futex_key (see below).
128 */
hash_futex(union futex_key * key)129 static struct futex_hash_bucket *hash_futex(union futex_key *key)
130 {
131 u32 hash = jhash2((u32*)&key->both.word,
132 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
133 key->both.offset);
134 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
135 }
136
137 /*
138 * Return 1 if two futex_keys are equal, 0 otherwise.
139 */
match_futex(union futex_key * key1,union futex_key * key2)140 static inline int match_futex(union futex_key *key1, union futex_key *key2)
141 {
142 return (key1->both.word == key2->both.word
143 && key1->both.ptr == key2->both.ptr
144 && key1->both.offset == key2->both.offset);
145 }
146
147 /*
148 * Take a reference to the resource addressed by a key.
149 * Can be called while holding spinlocks.
150 *
151 */
get_futex_key_refs(union futex_key * key)152 static void get_futex_key_refs(union futex_key *key)
153 {
154 if (!key->both.ptr)
155 return;
156
157 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
158 case FUT_OFF_INODE:
159 atomic_inc(&key->shared.inode->i_count);
160 break;
161 case FUT_OFF_MMSHARED:
162 atomic_inc(&key->private.mm->mm_count);
163 break;
164 }
165 }
166
167 /*
168 * Drop a reference to the resource addressed by a key.
169 * The hash bucket spinlock must not be held.
170 */
drop_futex_key_refs(union futex_key * key)171 static void drop_futex_key_refs(union futex_key *key)
172 {
173 if (!key->both.ptr) {
174 /* If we're here then we tried to put a key we failed to get */
175 WARN_ON_ONCE(1);
176 return;
177 }
178
179 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
180 case FUT_OFF_INODE:
181 iput(key->shared.inode);
182 break;
183 case FUT_OFF_MMSHARED:
184 mmdrop(key->private.mm);
185 break;
186 }
187 }
188
189 /**
190 * get_futex_key - Get parameters which are the keys for a futex.
191 * @uaddr: virtual address of the futex
192 * @shared: NULL for a PROCESS_PRIVATE futex,
193 * ¤t->mm->mmap_sem for a PROCESS_SHARED futex
194 * @key: address where result is stored.
195 *
196 * Returns a negative error code or 0
197 * The key words are stored in *key on success.
198 *
199 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
200 * offset_within_page). For private mappings, it's (uaddr, current->mm).
201 * We can usually work out the index without swapping in the page.
202 *
203 * fshared is NULL for PROCESS_PRIVATE futexes
204 * For other futexes, it points to ¤t->mm->mmap_sem and
205 * caller must have taken the reader lock. but NOT any spinlocks.
206 */
get_futex_key(u32 __user * uaddr,int fshared,union futex_key * key)207 static int get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
208 {
209 unsigned long address = (unsigned long)uaddr;
210 struct mm_struct *mm = current->mm;
211 struct page *page;
212 int err;
213 struct vm_area_struct *vma;
214
215 /*
216 * The futex address must be "naturally" aligned.
217 */
218 key->both.offset = address % PAGE_SIZE;
219 if (unlikely((address % sizeof(u32)) != 0))
220 return -EINVAL;
221 address -= key->both.offset;
222
223 /*
224 * PROCESS_PRIVATE futexes are fast.
225 * As the mm cannot disappear under us and the 'key' only needs
226 * virtual address, we dont even have to find the underlying vma.
227 * Note : We do have to check 'uaddr' is a valid user address,
228 * but access_ok() should be faster than find_vma()
229 */
230 if (!fshared) {
231 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
232 return -EFAULT;
233 key->private.mm = mm;
234 key->private.address = address;
235 get_futex_key_refs(key);
236 return 0;
237 }
238
239 /*
240 * The futex is hashed differently depending on whether
241 * it's in a shared or private mapping. So check vma first.
242 */
243 vma = find_extend_vma(mm, address);
244 if (unlikely(!vma))
245 return -EFAULT;
246
247 /*
248 * Permissions.
249 */
250 if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
251 return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
252
253 /*
254 * Private mappings are handled in a simple way.
255 *
256 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
257 * it's a read-only handle, it's expected that futexes attach to
258 * the object not the particular process. Therefore we use
259 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
260 * mappings of _writable_ handles.
261 */
262 if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
263 key->both.offset |= FUT_OFF_MMSHARED; /* reference taken on mm */
264 key->private.mm = mm;
265 key->private.address = address;
266 get_futex_key_refs(key);
267 return 0;
268 }
269
270 again:
271 err = get_user_pages_fast(address, 1, 0, &page);
272 if (err < 0)
273 return err;
274
275 lock_page(page);
276 if (!page->mapping) {
277 unlock_page(page);
278 put_page(page);
279 goto again;
280 }
281
282 /*
283 * Private mappings are handled in a simple way.
284 *
285 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
286 * it's a read-only handle, it's expected that futexes attach to
287 * the object not the particular process.
288 */
289 if (PageAnon(page)) {
290 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
291 key->private.mm = mm;
292 key->private.address = address;
293 } else {
294 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
295 key->shared.inode = page->mapping->host;
296 key->shared.pgoff = page->index;
297 }
298
299 get_futex_key_refs(key);
300
301 unlock_page(page);
302 put_page(page);
303 return 0;
304 }
305
306 static inline
put_futex_key(int fshared,union futex_key * key)307 void put_futex_key(int fshared, union futex_key *key)
308 {
309 drop_futex_key_refs(key);
310 }
311
cmpxchg_futex_value_locked(u32 __user * uaddr,u32 uval,u32 newval)312 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
313 {
314 u32 curval;
315
316 pagefault_disable();
317 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
318 pagefault_enable();
319
320 return curval;
321 }
322
get_futex_value_locked(u32 * dest,u32 __user * from)323 static int get_futex_value_locked(u32 *dest, u32 __user *from)
324 {
325 int ret;
326
327 pagefault_disable();
328 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
329 pagefault_enable();
330
331 return ret ? -EFAULT : 0;
332 }
333
334 /*
335 * Fault handling.
336 */
futex_handle_fault(unsigned long address,int attempt)337 static int futex_handle_fault(unsigned long address, int attempt)
338 {
339 struct vm_area_struct * vma;
340 struct mm_struct *mm = current->mm;
341 int ret = -EFAULT;
342
343 if (attempt > 2)
344 return ret;
345
346 down_read(&mm->mmap_sem);
347 vma = find_vma(mm, address);
348 if (vma && address >= vma->vm_start &&
349 (vma->vm_flags & VM_WRITE)) {
350 int fault;
351 fault = handle_mm_fault(mm, vma, address, 1);
352 if (unlikely((fault & VM_FAULT_ERROR))) {
353 #if 0
354 /* XXX: let's do this when we verify it is OK */
355 if (ret & VM_FAULT_OOM)
356 ret = -ENOMEM;
357 #endif
358 } else {
359 ret = 0;
360 if (fault & VM_FAULT_MAJOR)
361 current->maj_flt++;
362 else
363 current->min_flt++;
364 }
365 }
366 up_read(&mm->mmap_sem);
367 return ret;
368 }
369
370 /*
371 * PI code:
372 */
refill_pi_state_cache(void)373 static int refill_pi_state_cache(void)
374 {
375 struct futex_pi_state *pi_state;
376
377 if (likely(current->pi_state_cache))
378 return 0;
379
380 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
381
382 if (!pi_state)
383 return -ENOMEM;
384
385 INIT_LIST_HEAD(&pi_state->list);
386 /* pi_mutex gets initialized later */
387 pi_state->owner = NULL;
388 atomic_set(&pi_state->refcount, 1);
389 pi_state->key = FUTEX_KEY_INIT;
390
391 current->pi_state_cache = pi_state;
392
393 return 0;
394 }
395
alloc_pi_state(void)396 static struct futex_pi_state * alloc_pi_state(void)
397 {
398 struct futex_pi_state *pi_state = current->pi_state_cache;
399
400 WARN_ON(!pi_state);
401 current->pi_state_cache = NULL;
402
403 return pi_state;
404 }
405
free_pi_state(struct futex_pi_state * pi_state)406 static void free_pi_state(struct futex_pi_state *pi_state)
407 {
408 if (!atomic_dec_and_test(&pi_state->refcount))
409 return;
410
411 /*
412 * If pi_state->owner is NULL, the owner is most probably dying
413 * and has cleaned up the pi_state already
414 */
415 if (pi_state->owner) {
416 spin_lock_irq(&pi_state->owner->pi_lock);
417 list_del_init(&pi_state->list);
418 spin_unlock_irq(&pi_state->owner->pi_lock);
419
420 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
421 }
422
423 if (current->pi_state_cache)
424 kfree(pi_state);
425 else {
426 /*
427 * pi_state->list is already empty.
428 * clear pi_state->owner.
429 * refcount is at 0 - put it back to 1.
430 */
431 pi_state->owner = NULL;
432 atomic_set(&pi_state->refcount, 1);
433 current->pi_state_cache = pi_state;
434 }
435 }
436
437 /*
438 * Look up the task based on what TID userspace gave us.
439 * We dont trust it.
440 */
futex_find_get_task(pid_t pid)441 static struct task_struct * futex_find_get_task(pid_t pid)
442 {
443 struct task_struct *p;
444 const struct cred *cred = current_cred(), *pcred;
445
446 rcu_read_lock();
447 p = find_task_by_vpid(pid);
448 if (!p) {
449 p = ERR_PTR(-ESRCH);
450 } else {
451 pcred = __task_cred(p);
452 if (cred->euid != pcred->euid &&
453 cred->euid != pcred->uid)
454 p = ERR_PTR(-ESRCH);
455 else
456 get_task_struct(p);
457 }
458
459 rcu_read_unlock();
460
461 return p;
462 }
463
464 /*
465 * This task is holding PI mutexes at exit time => bad.
466 * Kernel cleans up PI-state, but userspace is likely hosed.
467 * (Robust-futex cleanup is separate and might save the day for userspace.)
468 */
exit_pi_state_list(struct task_struct * curr)469 void exit_pi_state_list(struct task_struct *curr)
470 {
471 struct list_head *next, *head = &curr->pi_state_list;
472 struct futex_pi_state *pi_state;
473 struct futex_hash_bucket *hb;
474 union futex_key key = FUTEX_KEY_INIT;
475
476 if (!futex_cmpxchg_enabled)
477 return;
478 /*
479 * We are a ZOMBIE and nobody can enqueue itself on
480 * pi_state_list anymore, but we have to be careful
481 * versus waiters unqueueing themselves:
482 */
483 spin_lock_irq(&curr->pi_lock);
484 while (!list_empty(head)) {
485
486 next = head->next;
487 pi_state = list_entry(next, struct futex_pi_state, list);
488 key = pi_state->key;
489 hb = hash_futex(&key);
490 spin_unlock_irq(&curr->pi_lock);
491
492 spin_lock(&hb->lock);
493
494 spin_lock_irq(&curr->pi_lock);
495 /*
496 * We dropped the pi-lock, so re-check whether this
497 * task still owns the PI-state:
498 */
499 if (head->next != next) {
500 spin_unlock(&hb->lock);
501 continue;
502 }
503
504 WARN_ON(pi_state->owner != curr);
505 WARN_ON(list_empty(&pi_state->list));
506 list_del_init(&pi_state->list);
507 pi_state->owner = NULL;
508 spin_unlock_irq(&curr->pi_lock);
509
510 rt_mutex_unlock(&pi_state->pi_mutex);
511
512 spin_unlock(&hb->lock);
513
514 spin_lock_irq(&curr->pi_lock);
515 }
516 spin_unlock_irq(&curr->pi_lock);
517 }
518
519 static int
lookup_pi_state(u32 uval,struct futex_hash_bucket * hb,union futex_key * key,struct futex_pi_state ** ps)520 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
521 union futex_key *key, struct futex_pi_state **ps)
522 {
523 struct futex_pi_state *pi_state = NULL;
524 struct futex_q *this, *next;
525 struct plist_head *head;
526 struct task_struct *p;
527 pid_t pid = uval & FUTEX_TID_MASK;
528
529 head = &hb->chain;
530
531 plist_for_each_entry_safe(this, next, head, list) {
532 if (match_futex(&this->key, key)) {
533 /*
534 * Another waiter already exists - bump up
535 * the refcount and return its pi_state:
536 */
537 pi_state = this->pi_state;
538 /*
539 * Userspace might have messed up non PI and PI futexes
540 */
541 if (unlikely(!pi_state))
542 return -EINVAL;
543
544 WARN_ON(!atomic_read(&pi_state->refcount));
545 WARN_ON(pid && pi_state->owner &&
546 pi_state->owner->pid != pid);
547
548 atomic_inc(&pi_state->refcount);
549 *ps = pi_state;
550
551 return 0;
552 }
553 }
554
555 /*
556 * We are the first waiter - try to look up the real owner and attach
557 * the new pi_state to it, but bail out when TID = 0
558 */
559 if (!pid)
560 return -ESRCH;
561 p = futex_find_get_task(pid);
562 if (IS_ERR(p))
563 return PTR_ERR(p);
564
565 /*
566 * We need to look at the task state flags to figure out,
567 * whether the task is exiting. To protect against the do_exit
568 * change of the task flags, we do this protected by
569 * p->pi_lock:
570 */
571 spin_lock_irq(&p->pi_lock);
572 if (unlikely(p->flags & PF_EXITING)) {
573 /*
574 * The task is on the way out. When PF_EXITPIDONE is
575 * set, we know that the task has finished the
576 * cleanup:
577 */
578 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
579
580 spin_unlock_irq(&p->pi_lock);
581 put_task_struct(p);
582 return ret;
583 }
584
585 pi_state = alloc_pi_state();
586
587 /*
588 * Initialize the pi_mutex in locked state and make 'p'
589 * the owner of it:
590 */
591 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
592
593 /* Store the key for possible exit cleanups: */
594 pi_state->key = *key;
595
596 WARN_ON(!list_empty(&pi_state->list));
597 list_add(&pi_state->list, &p->pi_state_list);
598 pi_state->owner = p;
599 spin_unlock_irq(&p->pi_lock);
600
601 put_task_struct(p);
602
603 *ps = pi_state;
604
605 return 0;
606 }
607
608 /*
609 * The hash bucket lock must be held when this is called.
610 * Afterwards, the futex_q must not be accessed.
611 */
wake_futex(struct futex_q * q)612 static void wake_futex(struct futex_q *q)
613 {
614 plist_del(&q->list, &q->list.plist);
615 /*
616 * The lock in wake_up_all() is a crucial memory barrier after the
617 * plist_del() and also before assigning to q->lock_ptr.
618 */
619 wake_up(&q->waiter);
620 /*
621 * The waiting task can free the futex_q as soon as this is written,
622 * without taking any locks. This must come last.
623 *
624 * A memory barrier is required here to prevent the following store
625 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
626 * at the end of wake_up_all() does not prevent this store from
627 * moving.
628 */
629 smp_wmb();
630 q->lock_ptr = NULL;
631 }
632
wake_futex_pi(u32 __user * uaddr,u32 uval,struct futex_q * this)633 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
634 {
635 struct task_struct *new_owner;
636 struct futex_pi_state *pi_state = this->pi_state;
637 u32 curval, newval;
638
639 if (!pi_state)
640 return -EINVAL;
641
642 spin_lock(&pi_state->pi_mutex.wait_lock);
643 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
644
645 /*
646 * This happens when we have stolen the lock and the original
647 * pending owner did not enqueue itself back on the rt_mutex.
648 * Thats not a tragedy. We know that way, that a lock waiter
649 * is on the fly. We make the futex_q waiter the pending owner.
650 */
651 if (!new_owner)
652 new_owner = this->task;
653
654 /*
655 * We pass it to the next owner. (The WAITERS bit is always
656 * kept enabled while there is PI state around. We must also
657 * preserve the owner died bit.)
658 */
659 if (!(uval & FUTEX_OWNER_DIED)) {
660 int ret = 0;
661
662 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
663
664 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
665
666 if (curval == -EFAULT)
667 ret = -EFAULT;
668 else if (curval != uval)
669 ret = -EINVAL;
670 if (ret) {
671 spin_unlock(&pi_state->pi_mutex.wait_lock);
672 return ret;
673 }
674 }
675
676 spin_lock_irq(&pi_state->owner->pi_lock);
677 WARN_ON(list_empty(&pi_state->list));
678 list_del_init(&pi_state->list);
679 spin_unlock_irq(&pi_state->owner->pi_lock);
680
681 spin_lock_irq(&new_owner->pi_lock);
682 WARN_ON(!list_empty(&pi_state->list));
683 list_add(&pi_state->list, &new_owner->pi_state_list);
684 pi_state->owner = new_owner;
685 spin_unlock_irq(&new_owner->pi_lock);
686
687 spin_unlock(&pi_state->pi_mutex.wait_lock);
688 rt_mutex_unlock(&pi_state->pi_mutex);
689
690 return 0;
691 }
692
unlock_futex_pi(u32 __user * uaddr,u32 uval)693 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
694 {
695 u32 oldval;
696
697 /*
698 * There is no waiter, so we unlock the futex. The owner died
699 * bit has not to be preserved here. We are the owner:
700 */
701 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
702
703 if (oldval == -EFAULT)
704 return oldval;
705 if (oldval != uval)
706 return -EAGAIN;
707
708 return 0;
709 }
710
711 /*
712 * Express the locking dependencies for lockdep:
713 */
714 static inline void
double_lock_hb(struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2)715 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
716 {
717 if (hb1 <= hb2) {
718 spin_lock(&hb1->lock);
719 if (hb1 < hb2)
720 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
721 } else { /* hb1 > hb2 */
722 spin_lock(&hb2->lock);
723 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
724 }
725 }
726
727 /*
728 * Wake up all waiters hashed on the physical page that is mapped
729 * to this virtual address:
730 */
futex_wake(u32 __user * uaddr,int fshared,int nr_wake,u32 bitset)731 static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
732 {
733 struct futex_hash_bucket *hb;
734 struct futex_q *this, *next;
735 struct plist_head *head;
736 union futex_key key = FUTEX_KEY_INIT;
737 int ret;
738
739 if (!bitset)
740 return -EINVAL;
741
742 ret = get_futex_key(uaddr, fshared, &key);
743 if (unlikely(ret != 0))
744 goto out;
745
746 hb = hash_futex(&key);
747 spin_lock(&hb->lock);
748 head = &hb->chain;
749
750 plist_for_each_entry_safe(this, next, head, list) {
751 if (match_futex (&this->key, &key)) {
752 if (this->pi_state) {
753 ret = -EINVAL;
754 break;
755 }
756
757 /* Check if one of the bits is set in both bitsets */
758 if (!(this->bitset & bitset))
759 continue;
760
761 wake_futex(this);
762 if (++ret >= nr_wake)
763 break;
764 }
765 }
766
767 spin_unlock(&hb->lock);
768 put_futex_key(fshared, &key);
769 out:
770 return ret;
771 }
772
773 /*
774 * Wake up all waiters hashed on the physical page that is mapped
775 * to this virtual address:
776 */
777 static int
futex_wake_op(u32 __user * uaddr1,int fshared,u32 __user * uaddr2,int nr_wake,int nr_wake2,int op)778 futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
779 int nr_wake, int nr_wake2, int op)
780 {
781 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
782 struct futex_hash_bucket *hb1, *hb2;
783 struct plist_head *head;
784 struct futex_q *this, *next;
785 int ret, op_ret, attempt = 0;
786
787 retryfull:
788 ret = get_futex_key(uaddr1, fshared, &key1);
789 if (unlikely(ret != 0))
790 goto out;
791 ret = get_futex_key(uaddr2, fshared, &key2);
792 if (unlikely(ret != 0))
793 goto out_put_key1;
794
795 hb1 = hash_futex(&key1);
796 hb2 = hash_futex(&key2);
797
798 retry:
799 double_lock_hb(hb1, hb2);
800
801 op_ret = futex_atomic_op_inuser(op, uaddr2);
802 if (unlikely(op_ret < 0)) {
803 u32 dummy;
804
805 spin_unlock(&hb1->lock);
806 if (hb1 != hb2)
807 spin_unlock(&hb2->lock);
808
809 #ifndef CONFIG_MMU
810 /*
811 * we don't get EFAULT from MMU faults if we don't have an MMU,
812 * but we might get them from range checking
813 */
814 ret = op_ret;
815 goto out_put_keys;
816 #endif
817
818 if (unlikely(op_ret != -EFAULT)) {
819 ret = op_ret;
820 goto out_put_keys;
821 }
822
823 /*
824 * futex_atomic_op_inuser needs to both read and write
825 * *(int __user *)uaddr2, but we can't modify it
826 * non-atomically. Therefore, if get_user below is not
827 * enough, we need to handle the fault ourselves, while
828 * still holding the mmap_sem.
829 */
830 if (attempt++) {
831 ret = futex_handle_fault((unsigned long)uaddr2,
832 attempt);
833 if (ret)
834 goto out_put_keys;
835 goto retry;
836 }
837
838 ret = get_user(dummy, uaddr2);
839 if (ret)
840 return ret;
841
842 goto retryfull;
843 }
844
845 head = &hb1->chain;
846
847 plist_for_each_entry_safe(this, next, head, list) {
848 if (match_futex (&this->key, &key1)) {
849 wake_futex(this);
850 if (++ret >= nr_wake)
851 break;
852 }
853 }
854
855 if (op_ret > 0) {
856 head = &hb2->chain;
857
858 op_ret = 0;
859 plist_for_each_entry_safe(this, next, head, list) {
860 if (match_futex (&this->key, &key2)) {
861 wake_futex(this);
862 if (++op_ret >= nr_wake2)
863 break;
864 }
865 }
866 ret += op_ret;
867 }
868
869 spin_unlock(&hb1->lock);
870 if (hb1 != hb2)
871 spin_unlock(&hb2->lock);
872 out_put_keys:
873 put_futex_key(fshared, &key2);
874 out_put_key1:
875 put_futex_key(fshared, &key1);
876 out:
877 return ret;
878 }
879
880 /*
881 * Requeue all waiters hashed on one physical page to another
882 * physical page.
883 */
futex_requeue(u32 __user * uaddr1,int fshared,u32 __user * uaddr2,int nr_wake,int nr_requeue,u32 * cmpval)884 static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
885 int nr_wake, int nr_requeue, u32 *cmpval)
886 {
887 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
888 struct futex_hash_bucket *hb1, *hb2;
889 struct plist_head *head1;
890 struct futex_q *this, *next;
891 int ret, drop_count = 0;
892
893 retry:
894 ret = get_futex_key(uaddr1, fshared, &key1);
895 if (unlikely(ret != 0))
896 goto out;
897 ret = get_futex_key(uaddr2, fshared, &key2);
898 if (unlikely(ret != 0))
899 goto out_put_key1;
900
901 hb1 = hash_futex(&key1);
902 hb2 = hash_futex(&key2);
903
904 double_lock_hb(hb1, hb2);
905
906 if (likely(cmpval != NULL)) {
907 u32 curval;
908
909 ret = get_futex_value_locked(&curval, uaddr1);
910
911 if (unlikely(ret)) {
912 spin_unlock(&hb1->lock);
913 if (hb1 != hb2)
914 spin_unlock(&hb2->lock);
915
916 ret = get_user(curval, uaddr1);
917
918 if (!ret)
919 goto retry;
920
921 goto out_put_keys;
922 }
923 if (curval != *cmpval) {
924 ret = -EAGAIN;
925 goto out_unlock;
926 }
927 }
928
929 head1 = &hb1->chain;
930 plist_for_each_entry_safe(this, next, head1, list) {
931 if (!match_futex (&this->key, &key1))
932 continue;
933 if (++ret <= nr_wake) {
934 wake_futex(this);
935 } else {
936 /*
937 * If key1 and key2 hash to the same bucket, no need to
938 * requeue.
939 */
940 if (likely(head1 != &hb2->chain)) {
941 plist_del(&this->list, &hb1->chain);
942 plist_add(&this->list, &hb2->chain);
943 this->lock_ptr = &hb2->lock;
944 #ifdef CONFIG_DEBUG_PI_LIST
945 this->list.plist.lock = &hb2->lock;
946 #endif
947 }
948 this->key = key2;
949 get_futex_key_refs(&key2);
950 drop_count++;
951
952 if (ret - nr_wake >= nr_requeue)
953 break;
954 }
955 }
956
957 out_unlock:
958 spin_unlock(&hb1->lock);
959 if (hb1 != hb2)
960 spin_unlock(&hb2->lock);
961
962 /* drop_futex_key_refs() must be called outside the spinlocks. */
963 while (--drop_count >= 0)
964 drop_futex_key_refs(&key1);
965
966 out_put_keys:
967 put_futex_key(fshared, &key2);
968 out_put_key1:
969 put_futex_key(fshared, &key1);
970 out:
971 return ret;
972 }
973
974 /* The key must be already stored in q->key. */
queue_lock(struct futex_q * q)975 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
976 {
977 struct futex_hash_bucket *hb;
978
979 init_waitqueue_head(&q->waiter);
980
981 get_futex_key_refs(&q->key);
982 hb = hash_futex(&q->key);
983 q->lock_ptr = &hb->lock;
984
985 spin_lock(&hb->lock);
986 return hb;
987 }
988
queue_me(struct futex_q * q,struct futex_hash_bucket * hb)989 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
990 {
991 int prio;
992
993 /*
994 * The priority used to register this element is
995 * - either the real thread-priority for the real-time threads
996 * (i.e. threads with a priority lower than MAX_RT_PRIO)
997 * - or MAX_RT_PRIO for non-RT threads.
998 * Thus, all RT-threads are woken first in priority order, and
999 * the others are woken last, in FIFO order.
1000 */
1001 prio = min(current->normal_prio, MAX_RT_PRIO);
1002
1003 plist_node_init(&q->list, prio);
1004 #ifdef CONFIG_DEBUG_PI_LIST
1005 q->list.plist.lock = &hb->lock;
1006 #endif
1007 plist_add(&q->list, &hb->chain);
1008 q->task = current;
1009 spin_unlock(&hb->lock);
1010 }
1011
1012 static inline void
queue_unlock(struct futex_q * q,struct futex_hash_bucket * hb)1013 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1014 {
1015 spin_unlock(&hb->lock);
1016 drop_futex_key_refs(&q->key);
1017 }
1018
1019 /*
1020 * queue_me and unqueue_me must be called as a pair, each
1021 * exactly once. They are called with the hashed spinlock held.
1022 */
1023
1024 /* Return 1 if we were still queued (ie. 0 means we were woken) */
unqueue_me(struct futex_q * q)1025 static int unqueue_me(struct futex_q *q)
1026 {
1027 spinlock_t *lock_ptr;
1028 int ret = 0;
1029
1030 /* In the common case we don't take the spinlock, which is nice. */
1031 retry:
1032 lock_ptr = q->lock_ptr;
1033 barrier();
1034 if (lock_ptr != NULL) {
1035 spin_lock(lock_ptr);
1036 /*
1037 * q->lock_ptr can change between reading it and
1038 * spin_lock(), causing us to take the wrong lock. This
1039 * corrects the race condition.
1040 *
1041 * Reasoning goes like this: if we have the wrong lock,
1042 * q->lock_ptr must have changed (maybe several times)
1043 * between reading it and the spin_lock(). It can
1044 * change again after the spin_lock() but only if it was
1045 * already changed before the spin_lock(). It cannot,
1046 * however, change back to the original value. Therefore
1047 * we can detect whether we acquired the correct lock.
1048 */
1049 if (unlikely(lock_ptr != q->lock_ptr)) {
1050 spin_unlock(lock_ptr);
1051 goto retry;
1052 }
1053 WARN_ON(plist_node_empty(&q->list));
1054 plist_del(&q->list, &q->list.plist);
1055
1056 BUG_ON(q->pi_state);
1057
1058 spin_unlock(lock_ptr);
1059 ret = 1;
1060 }
1061
1062 drop_futex_key_refs(&q->key);
1063 return ret;
1064 }
1065
1066 /*
1067 * PI futexes can not be requeued and must remove themself from the
1068 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1069 * and dropped here.
1070 */
unqueue_me_pi(struct futex_q * q)1071 static void unqueue_me_pi(struct futex_q *q)
1072 {
1073 WARN_ON(plist_node_empty(&q->list));
1074 plist_del(&q->list, &q->list.plist);
1075
1076 BUG_ON(!q->pi_state);
1077 free_pi_state(q->pi_state);
1078 q->pi_state = NULL;
1079
1080 spin_unlock(q->lock_ptr);
1081
1082 drop_futex_key_refs(&q->key);
1083 }
1084
1085 /*
1086 * Fixup the pi_state owner with the new owner.
1087 *
1088 * Must be called with hash bucket lock held and mm->sem held for non
1089 * private futexes.
1090 */
fixup_pi_state_owner(u32 __user * uaddr,struct futex_q * q,struct task_struct * newowner,int fshared)1091 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1092 struct task_struct *newowner, int fshared)
1093 {
1094 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1095 struct futex_pi_state *pi_state = q->pi_state;
1096 struct task_struct *oldowner = pi_state->owner;
1097 u32 uval, curval, newval;
1098 int ret, attempt = 0;
1099
1100 /* Owner died? */
1101 if (!pi_state->owner)
1102 newtid |= FUTEX_OWNER_DIED;
1103
1104 /*
1105 * We are here either because we stole the rtmutex from the
1106 * pending owner or we are the pending owner which failed to
1107 * get the rtmutex. We have to replace the pending owner TID
1108 * in the user space variable. This must be atomic as we have
1109 * to preserve the owner died bit here.
1110 *
1111 * Note: We write the user space value _before_ changing the
1112 * pi_state because we can fault here. Imagine swapped out
1113 * pages or a fork, which was running right before we acquired
1114 * mmap_sem, that marked all the anonymous memory readonly for
1115 * cow.
1116 *
1117 * Modifying pi_state _before_ the user space value would
1118 * leave the pi_state in an inconsistent state when we fault
1119 * here, because we need to drop the hash bucket lock to
1120 * handle the fault. This might be observed in the PID check
1121 * in lookup_pi_state.
1122 */
1123 retry:
1124 if (get_futex_value_locked(&uval, uaddr))
1125 goto handle_fault;
1126
1127 while (1) {
1128 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1129
1130 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1131
1132 if (curval == -EFAULT)
1133 goto handle_fault;
1134 if (curval == uval)
1135 break;
1136 uval = curval;
1137 }
1138
1139 /*
1140 * We fixed up user space. Now we need to fix the pi_state
1141 * itself.
1142 */
1143 if (pi_state->owner != NULL) {
1144 spin_lock_irq(&pi_state->owner->pi_lock);
1145 WARN_ON(list_empty(&pi_state->list));
1146 list_del_init(&pi_state->list);
1147 spin_unlock_irq(&pi_state->owner->pi_lock);
1148 }
1149
1150 pi_state->owner = newowner;
1151
1152 spin_lock_irq(&newowner->pi_lock);
1153 WARN_ON(!list_empty(&pi_state->list));
1154 list_add(&pi_state->list, &newowner->pi_state_list);
1155 spin_unlock_irq(&newowner->pi_lock);
1156 return 0;
1157
1158 /*
1159 * To handle the page fault we need to drop the hash bucket
1160 * lock here. That gives the other task (either the pending
1161 * owner itself or the task which stole the rtmutex) the
1162 * chance to try the fixup of the pi_state. So once we are
1163 * back from handling the fault we need to check the pi_state
1164 * after reacquiring the hash bucket lock and before trying to
1165 * do another fixup. When the fixup has been done already we
1166 * simply return.
1167 */
1168 handle_fault:
1169 spin_unlock(q->lock_ptr);
1170
1171 ret = futex_handle_fault((unsigned long)uaddr, attempt++);
1172
1173 spin_lock(q->lock_ptr);
1174
1175 /*
1176 * Check if someone else fixed it for us:
1177 */
1178 if (pi_state->owner != oldowner)
1179 return 0;
1180
1181 if (ret)
1182 return ret;
1183
1184 goto retry;
1185 }
1186
1187 /*
1188 * In case we must use restart_block to restart a futex_wait,
1189 * we encode in the 'flags' shared capability
1190 */
1191 #define FLAGS_SHARED 0x01
1192 #define FLAGS_CLOCKRT 0x02
1193
1194 static long futex_wait_restart(struct restart_block *restart);
1195
futex_wait(u32 __user * uaddr,int fshared,u32 val,ktime_t * abs_time,u32 bitset,int clockrt)1196 static int futex_wait(u32 __user *uaddr, int fshared,
1197 u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1198 {
1199 struct task_struct *curr = current;
1200 struct restart_block *restart;
1201 DECLARE_WAITQUEUE(wait, curr);
1202 struct futex_hash_bucket *hb;
1203 struct futex_q q;
1204 u32 uval;
1205 int ret;
1206 struct hrtimer_sleeper t;
1207 int rem = 0;
1208
1209 if (!bitset)
1210 return -EINVAL;
1211
1212 q.pi_state = NULL;
1213 q.bitset = bitset;
1214 retry:
1215 q.key = FUTEX_KEY_INIT;
1216 ret = get_futex_key(uaddr, fshared, &q.key);
1217 if (unlikely(ret != 0))
1218 goto out;
1219
1220 hb = queue_lock(&q);
1221
1222 /*
1223 * Access the page AFTER the futex is queued.
1224 * Order is important:
1225 *
1226 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1227 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1228 *
1229 * The basic logical guarantee of a futex is that it blocks ONLY
1230 * if cond(var) is known to be true at the time of blocking, for
1231 * any cond. If we queued after testing *uaddr, that would open
1232 * a race condition where we could block indefinitely with
1233 * cond(var) false, which would violate the guarantee.
1234 *
1235 * A consequence is that futex_wait() can return zero and absorb
1236 * a wakeup when *uaddr != val on entry to the syscall. This is
1237 * rare, but normal.
1238 *
1239 * for shared futexes, we hold the mmap semaphore, so the mapping
1240 * cannot have changed since we looked it up in get_futex_key.
1241 */
1242 ret = get_futex_value_locked(&uval, uaddr);
1243
1244 if (unlikely(ret)) {
1245 queue_unlock(&q, hb);
1246 put_futex_key(fshared, &q.key);
1247
1248 ret = get_user(uval, uaddr);
1249
1250 if (!ret)
1251 goto retry;
1252 goto out;
1253 }
1254 ret = -EWOULDBLOCK;
1255 if (unlikely(uval != val)) {
1256 queue_unlock(&q, hb);
1257 goto out_put_key;
1258 }
1259
1260 /* Only actually queue if *uaddr contained val. */
1261 queue_me(&q, hb);
1262
1263 /*
1264 * There might have been scheduling since the queue_me(), as we
1265 * cannot hold a spinlock across the get_user() in case it
1266 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1267 * queueing ourselves into the futex hash. This code thus has to
1268 * rely on the futex_wake() code removing us from hash when it
1269 * wakes us up.
1270 */
1271
1272 /* add_wait_queue is the barrier after __set_current_state. */
1273 __set_current_state(TASK_INTERRUPTIBLE);
1274 add_wait_queue(&q.waiter, &wait);
1275 /*
1276 * !plist_node_empty() is safe here without any lock.
1277 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1278 */
1279 if (likely(!plist_node_empty(&q.list))) {
1280 if (!abs_time)
1281 schedule();
1282 else {
1283 unsigned long slack;
1284 slack = current->timer_slack_ns;
1285 if (rt_task(current))
1286 slack = 0;
1287 hrtimer_init_on_stack(&t.timer,
1288 clockrt ? CLOCK_REALTIME :
1289 CLOCK_MONOTONIC,
1290 HRTIMER_MODE_ABS);
1291 hrtimer_init_sleeper(&t, current);
1292 hrtimer_set_expires_range_ns(&t.timer, *abs_time, slack);
1293
1294 hrtimer_start_expires(&t.timer, HRTIMER_MODE_ABS);
1295 if (!hrtimer_active(&t.timer))
1296 t.task = NULL;
1297
1298 /*
1299 * the timer could have already expired, in which
1300 * case current would be flagged for rescheduling.
1301 * Don't bother calling schedule.
1302 */
1303 if (likely(t.task))
1304 schedule();
1305
1306 hrtimer_cancel(&t.timer);
1307
1308 /* Flag if a timeout occured */
1309 rem = (t.task == NULL);
1310
1311 destroy_hrtimer_on_stack(&t.timer);
1312 }
1313 }
1314 __set_current_state(TASK_RUNNING);
1315
1316 /*
1317 * NOTE: we don't remove ourselves from the waitqueue because
1318 * we are the only user of it.
1319 */
1320
1321 /* If we were woken (and unqueued), we succeeded, whatever. */
1322 ret = 0;
1323 if (!unqueue_me(&q))
1324 goto out_put_key;
1325 ret = -ETIMEDOUT;
1326 if (rem)
1327 goto out_put_key;
1328
1329 /*
1330 * We expect signal_pending(current), but another thread may
1331 * have handled it for us already.
1332 */
1333 ret = -ERESTARTSYS;
1334 if (!abs_time)
1335 goto out_put_key;
1336
1337 restart = ¤t_thread_info()->restart_block;
1338 restart->fn = futex_wait_restart;
1339 restart->futex.uaddr = (u32 *)uaddr;
1340 restart->futex.val = val;
1341 restart->futex.time = abs_time->tv64;
1342 restart->futex.bitset = bitset;
1343 restart->futex.flags = 0;
1344
1345 if (fshared)
1346 restart->futex.flags |= FLAGS_SHARED;
1347 if (clockrt)
1348 restart->futex.flags |= FLAGS_CLOCKRT;
1349
1350 ret = -ERESTART_RESTARTBLOCK;
1351
1352 out_put_key:
1353 put_futex_key(fshared, &q.key);
1354 out:
1355 return ret;
1356 }
1357
1358
futex_wait_restart(struct restart_block * restart)1359 static long futex_wait_restart(struct restart_block *restart)
1360 {
1361 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1362 int fshared = 0;
1363 ktime_t t;
1364
1365 t.tv64 = restart->futex.time;
1366 restart->fn = do_no_restart_syscall;
1367 if (restart->futex.flags & FLAGS_SHARED)
1368 fshared = 1;
1369 return (long)futex_wait(uaddr, fshared, restart->futex.val, &t,
1370 restart->futex.bitset,
1371 restart->futex.flags & FLAGS_CLOCKRT);
1372 }
1373
1374
1375 /*
1376 * Userspace tried a 0 -> TID atomic transition of the futex value
1377 * and failed. The kernel side here does the whole locking operation:
1378 * if there are waiters then it will block, it does PI, etc. (Due to
1379 * races the kernel might see a 0 value of the futex too.)
1380 */
futex_lock_pi(u32 __user * uaddr,int fshared,int detect,ktime_t * time,int trylock)1381 static int futex_lock_pi(u32 __user *uaddr, int fshared,
1382 int detect, ktime_t *time, int trylock)
1383 {
1384 struct hrtimer_sleeper timeout, *to = NULL;
1385 struct task_struct *curr = current;
1386 struct futex_hash_bucket *hb;
1387 u32 uval, newval, curval;
1388 struct futex_q q;
1389 int ret, lock_taken, ownerdied = 0, attempt = 0;
1390
1391 if (refill_pi_state_cache())
1392 return -ENOMEM;
1393
1394 if (time) {
1395 to = &timeout;
1396 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1397 HRTIMER_MODE_ABS);
1398 hrtimer_init_sleeper(to, current);
1399 hrtimer_set_expires(&to->timer, *time);
1400 }
1401
1402 q.pi_state = NULL;
1403 retry:
1404 q.key = FUTEX_KEY_INIT;
1405 ret = get_futex_key(uaddr, fshared, &q.key);
1406 if (unlikely(ret != 0))
1407 goto out;
1408
1409 retry_unlocked:
1410 hb = queue_lock(&q);
1411
1412 retry_locked:
1413 ret = lock_taken = 0;
1414
1415 /*
1416 * To avoid races, we attempt to take the lock here again
1417 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1418 * the locks. It will most likely not succeed.
1419 */
1420 newval = task_pid_vnr(current);
1421
1422 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
1423
1424 if (unlikely(curval == -EFAULT))
1425 goto uaddr_faulted;
1426
1427 /*
1428 * Detect deadlocks. In case of REQUEUE_PI this is a valid
1429 * situation and we return success to user space.
1430 */
1431 if (unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(current))) {
1432 ret = -EDEADLK;
1433 goto out_unlock_put_key;
1434 }
1435
1436 /*
1437 * Surprise - we got the lock. Just return to userspace:
1438 */
1439 if (unlikely(!curval))
1440 goto out_unlock_put_key;
1441
1442 uval = curval;
1443
1444 /*
1445 * Set the WAITERS flag, so the owner will know it has someone
1446 * to wake at next unlock
1447 */
1448 newval = curval | FUTEX_WAITERS;
1449
1450 /*
1451 * There are two cases, where a futex might have no owner (the
1452 * owner TID is 0): OWNER_DIED. We take over the futex in this
1453 * case. We also do an unconditional take over, when the owner
1454 * of the futex died.
1455 *
1456 * This is safe as we are protected by the hash bucket lock !
1457 */
1458 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
1459 /* Keep the OWNER_DIED bit */
1460 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(current);
1461 ownerdied = 0;
1462 lock_taken = 1;
1463 }
1464
1465 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1466
1467 if (unlikely(curval == -EFAULT))
1468 goto uaddr_faulted;
1469 if (unlikely(curval != uval))
1470 goto retry_locked;
1471
1472 /*
1473 * We took the lock due to owner died take over.
1474 */
1475 if (unlikely(lock_taken))
1476 goto out_unlock_put_key;
1477
1478 /*
1479 * We dont have the lock. Look up the PI state (or create it if
1480 * we are the first waiter):
1481 */
1482 ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
1483
1484 if (unlikely(ret)) {
1485 switch (ret) {
1486
1487 case -EAGAIN:
1488 /*
1489 * Task is exiting and we just wait for the
1490 * exit to complete.
1491 */
1492 queue_unlock(&q, hb);
1493 cond_resched();
1494 goto retry;
1495
1496 case -ESRCH:
1497 /*
1498 * No owner found for this futex. Check if the
1499 * OWNER_DIED bit is set to figure out whether
1500 * this is a robust futex or not.
1501 */
1502 if (get_futex_value_locked(&curval, uaddr))
1503 goto uaddr_faulted;
1504
1505 /*
1506 * We simply start over in case of a robust
1507 * futex. The code above will take the futex
1508 * and return happy.
1509 */
1510 if (curval & FUTEX_OWNER_DIED) {
1511 ownerdied = 1;
1512 goto retry_locked;
1513 }
1514 default:
1515 goto out_unlock_put_key;
1516 }
1517 }
1518
1519 /*
1520 * Only actually queue now that the atomic ops are done:
1521 */
1522 queue_me(&q, hb);
1523
1524 WARN_ON(!q.pi_state);
1525 /*
1526 * Block on the PI mutex:
1527 */
1528 if (!trylock)
1529 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1530 else {
1531 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1532 /* Fixup the trylock return value: */
1533 ret = ret ? 0 : -EWOULDBLOCK;
1534 }
1535
1536 spin_lock(q.lock_ptr);
1537
1538 if (!ret) {
1539 /*
1540 * Got the lock. We might not be the anticipated owner
1541 * if we did a lock-steal - fix up the PI-state in
1542 * that case:
1543 */
1544 if (q.pi_state->owner != curr)
1545 ret = fixup_pi_state_owner(uaddr, &q, curr, fshared);
1546 } else {
1547 /*
1548 * Catch the rare case, where the lock was released
1549 * when we were on the way back before we locked the
1550 * hash bucket.
1551 */
1552 if (q.pi_state->owner == curr) {
1553 /*
1554 * Try to get the rt_mutex now. This might
1555 * fail as some other task acquired the
1556 * rt_mutex after we removed ourself from the
1557 * rt_mutex waiters list.
1558 */
1559 if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1560 ret = 0;
1561 else {
1562 /*
1563 * pi_state is incorrect, some other
1564 * task did a lock steal and we
1565 * returned due to timeout or signal
1566 * without taking the rt_mutex. Too
1567 * late. We can access the
1568 * rt_mutex_owner without locking, as
1569 * the other task is now blocked on
1570 * the hash bucket lock. Fix the state
1571 * up.
1572 */
1573 struct task_struct *owner;
1574 int res;
1575
1576 owner = rt_mutex_owner(&q.pi_state->pi_mutex);
1577 res = fixup_pi_state_owner(uaddr, &q, owner,
1578 fshared);
1579
1580 /* propagate -EFAULT, if the fixup failed */
1581 if (res)
1582 ret = res;
1583 }
1584 } else {
1585 /*
1586 * Paranoia check. If we did not take the lock
1587 * in the trylock above, then we should not be
1588 * the owner of the rtmutex, neither the real
1589 * nor the pending one:
1590 */
1591 if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
1592 printk(KERN_ERR "futex_lock_pi: ret = %d "
1593 "pi-mutex: %p pi-state %p\n", ret,
1594 q.pi_state->pi_mutex.owner,
1595 q.pi_state->owner);
1596 }
1597 }
1598
1599 /* Unqueue and drop the lock */
1600 unqueue_me_pi(&q);
1601
1602 if (to)
1603 destroy_hrtimer_on_stack(&to->timer);
1604 return ret != -EINTR ? ret : -ERESTARTNOINTR;
1605
1606 out_unlock_put_key:
1607 queue_unlock(&q, hb);
1608
1609 out_put_key:
1610 put_futex_key(fshared, &q.key);
1611 out:
1612 if (to)
1613 destroy_hrtimer_on_stack(&to->timer);
1614 return ret;
1615
1616 uaddr_faulted:
1617 /*
1618 * We have to r/w *(int __user *)uaddr, and we have to modify it
1619 * atomically. Therefore, if we continue to fault after get_user()
1620 * below, we need to handle the fault ourselves, while still holding
1621 * the mmap_sem. This can occur if the uaddr is under contention as
1622 * we have to drop the mmap_sem in order to call get_user().
1623 */
1624 queue_unlock(&q, hb);
1625
1626 if (attempt++) {
1627 ret = futex_handle_fault((unsigned long)uaddr, attempt);
1628 if (ret)
1629 goto out_put_key;
1630 goto retry_unlocked;
1631 }
1632
1633 ret = get_user(uval, uaddr);
1634 if (!ret)
1635 goto retry;
1636
1637 if (to)
1638 destroy_hrtimer_on_stack(&to->timer);
1639 return ret;
1640 }
1641
1642 /*
1643 * Userspace attempted a TID -> 0 atomic transition, and failed.
1644 * This is the in-kernel slowpath: we look up the PI state (if any),
1645 * and do the rt-mutex unlock.
1646 */
futex_unlock_pi(u32 __user * uaddr,int fshared)1647 static int futex_unlock_pi(u32 __user *uaddr, int fshared)
1648 {
1649 struct futex_hash_bucket *hb;
1650 struct futex_q *this, *next;
1651 u32 uval;
1652 struct plist_head *head;
1653 union futex_key key = FUTEX_KEY_INIT;
1654 int ret, attempt = 0;
1655
1656 retry:
1657 if (get_user(uval, uaddr))
1658 return -EFAULT;
1659 /*
1660 * We release only a lock we actually own:
1661 */
1662 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
1663 return -EPERM;
1664
1665 ret = get_futex_key(uaddr, fshared, &key);
1666 if (unlikely(ret != 0))
1667 goto out;
1668
1669 hb = hash_futex(&key);
1670 retry_unlocked:
1671 spin_lock(&hb->lock);
1672
1673 /*
1674 * To avoid races, try to do the TID -> 0 atomic transition
1675 * again. If it succeeds then we can return without waking
1676 * anyone else up:
1677 */
1678 if (!(uval & FUTEX_OWNER_DIED))
1679 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
1680
1681
1682 if (unlikely(uval == -EFAULT))
1683 goto pi_faulted;
1684 /*
1685 * Rare case: we managed to release the lock atomically,
1686 * no need to wake anyone else up:
1687 */
1688 if (unlikely(uval == task_pid_vnr(current)))
1689 goto out_unlock;
1690
1691 /*
1692 * Ok, other tasks may need to be woken up - check waiters
1693 * and do the wakeup if necessary:
1694 */
1695 head = &hb->chain;
1696
1697 plist_for_each_entry_safe(this, next, head, list) {
1698 if (!match_futex (&this->key, &key))
1699 continue;
1700 ret = wake_futex_pi(uaddr, uval, this);
1701 /*
1702 * The atomic access to the futex value
1703 * generated a pagefault, so retry the
1704 * user-access and the wakeup:
1705 */
1706 if (ret == -EFAULT)
1707 goto pi_faulted;
1708 goto out_unlock;
1709 }
1710 /*
1711 * No waiters - kernel unlocks the futex:
1712 */
1713 if (!(uval & FUTEX_OWNER_DIED)) {
1714 ret = unlock_futex_pi(uaddr, uval);
1715 if (ret == -EFAULT)
1716 goto pi_faulted;
1717 }
1718
1719 out_unlock:
1720 spin_unlock(&hb->lock);
1721 put_futex_key(fshared, &key);
1722
1723 out:
1724 return ret;
1725
1726 pi_faulted:
1727 /*
1728 * We have to r/w *(int __user *)uaddr, and we have to modify it
1729 * atomically. Therefore, if we continue to fault after get_user()
1730 * below, we need to handle the fault ourselves, while still holding
1731 * the mmap_sem. This can occur if the uaddr is under contention as
1732 * we have to drop the mmap_sem in order to call get_user().
1733 */
1734 spin_unlock(&hb->lock);
1735
1736 if (attempt++) {
1737 ret = futex_handle_fault((unsigned long)uaddr, attempt);
1738 if (ret)
1739 goto out;
1740 uval = 0;
1741 goto retry_unlocked;
1742 }
1743
1744 ret = get_user(uval, uaddr);
1745 if (!ret)
1746 goto retry;
1747
1748 return ret;
1749 }
1750
1751 /*
1752 * Support for robust futexes: the kernel cleans up held futexes at
1753 * thread exit time.
1754 *
1755 * Implementation: user-space maintains a per-thread list of locks it
1756 * is holding. Upon do_exit(), the kernel carefully walks this list,
1757 * and marks all locks that are owned by this thread with the
1758 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1759 * always manipulated with the lock held, so the list is private and
1760 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1761 * field, to allow the kernel to clean up if the thread dies after
1762 * acquiring the lock, but just before it could have added itself to
1763 * the list. There can only be one such pending lock.
1764 */
1765
1766 /**
1767 * sys_set_robust_list - set the robust-futex list head of a task
1768 * @head: pointer to the list-head
1769 * @len: length of the list-head, as userspace expects
1770 */
SYSCALL_DEFINE2(set_robust_list,struct robust_list_head __user *,head,size_t,len)1771 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
1772 size_t, len)
1773 {
1774 if (!futex_cmpxchg_enabled)
1775 return -ENOSYS;
1776 /*
1777 * The kernel knows only one size for now:
1778 */
1779 if (unlikely(len != sizeof(*head)))
1780 return -EINVAL;
1781
1782 current->robust_list = head;
1783
1784 return 0;
1785 }
1786
1787 /**
1788 * sys_get_robust_list - get the robust-futex list head of a task
1789 * @pid: pid of the process [zero for current task]
1790 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1791 * @len_ptr: pointer to a length field, the kernel fills in the header size
1792 */
SYSCALL_DEFINE3(get_robust_list,int,pid,struct robust_list_head __user * __user *,head_ptr,size_t __user *,len_ptr)1793 SYSCALL_DEFINE3(get_robust_list, int, pid,
1794 struct robust_list_head __user * __user *, head_ptr,
1795 size_t __user *, len_ptr)
1796 {
1797 struct robust_list_head __user *head;
1798 unsigned long ret;
1799 const struct cred *cred = current_cred(), *pcred;
1800
1801 if (!futex_cmpxchg_enabled)
1802 return -ENOSYS;
1803
1804 if (!pid)
1805 head = current->robust_list;
1806 else {
1807 struct task_struct *p;
1808
1809 ret = -ESRCH;
1810 rcu_read_lock();
1811 p = find_task_by_vpid(pid);
1812 if (!p)
1813 goto err_unlock;
1814 ret = -EPERM;
1815 pcred = __task_cred(p);
1816 if (cred->euid != pcred->euid &&
1817 cred->euid != pcred->uid &&
1818 !capable(CAP_SYS_PTRACE))
1819 goto err_unlock;
1820 head = p->robust_list;
1821 rcu_read_unlock();
1822 }
1823
1824 if (put_user(sizeof(*head), len_ptr))
1825 return -EFAULT;
1826 return put_user(head, head_ptr);
1827
1828 err_unlock:
1829 rcu_read_unlock();
1830
1831 return ret;
1832 }
1833
1834 /*
1835 * Process a futex-list entry, check whether it's owned by the
1836 * dying task, and do notification if so:
1837 */
handle_futex_death(u32 __user * uaddr,struct task_struct * curr,int pi)1838 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
1839 {
1840 u32 uval, nval, mval;
1841
1842 retry:
1843 if (get_user(uval, uaddr))
1844 return -1;
1845
1846 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
1847 /*
1848 * Ok, this dying thread is truly holding a futex
1849 * of interest. Set the OWNER_DIED bit atomically
1850 * via cmpxchg, and if the value had FUTEX_WAITERS
1851 * set, wake up a waiter (if any). (We have to do a
1852 * futex_wake() even if OWNER_DIED is already set -
1853 * to handle the rare but possible case of recursive
1854 * thread-death.) The rest of the cleanup is done in
1855 * userspace.
1856 */
1857 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1858 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1859
1860 if (nval == -EFAULT)
1861 return -1;
1862
1863 if (nval != uval)
1864 goto retry;
1865
1866 /*
1867 * Wake robust non-PI futexes here. The wakeup of
1868 * PI futexes happens in exit_pi_state():
1869 */
1870 if (!pi && (uval & FUTEX_WAITERS))
1871 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
1872 }
1873 return 0;
1874 }
1875
1876 /*
1877 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1878 */
fetch_robust_entry(struct robust_list __user ** entry,struct robust_list __user * __user * head,int * pi)1879 static inline int fetch_robust_entry(struct robust_list __user **entry,
1880 struct robust_list __user * __user *head,
1881 int *pi)
1882 {
1883 unsigned long uentry;
1884
1885 if (get_user(uentry, (unsigned long __user *)head))
1886 return -EFAULT;
1887
1888 *entry = (void __user *)(uentry & ~1UL);
1889 *pi = uentry & 1;
1890
1891 return 0;
1892 }
1893
1894 /*
1895 * Walk curr->robust_list (very carefully, it's a userspace list!)
1896 * and mark any locks found there dead, and notify any waiters.
1897 *
1898 * We silently return on any sign of list-walking problem.
1899 */
exit_robust_list(struct task_struct * curr)1900 void exit_robust_list(struct task_struct *curr)
1901 {
1902 struct robust_list_head __user *head = curr->robust_list;
1903 struct robust_list __user *entry, *next_entry, *pending;
1904 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
1905 unsigned long futex_offset;
1906 int rc;
1907
1908 if (!futex_cmpxchg_enabled)
1909 return;
1910
1911 /*
1912 * Fetch the list head (which was registered earlier, via
1913 * sys_set_robust_list()):
1914 */
1915 if (fetch_robust_entry(&entry, &head->list.next, &pi))
1916 return;
1917 /*
1918 * Fetch the relative futex offset:
1919 */
1920 if (get_user(futex_offset, &head->futex_offset))
1921 return;
1922 /*
1923 * Fetch any possibly pending lock-add first, and handle it
1924 * if it exists:
1925 */
1926 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
1927 return;
1928
1929 next_entry = NULL; /* avoid warning with gcc */
1930 while (entry != &head->list) {
1931 /*
1932 * Fetch the next entry in the list before calling
1933 * handle_futex_death:
1934 */
1935 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
1936 /*
1937 * A pending lock might already be on the list, so
1938 * don't process it twice:
1939 */
1940 if (entry != pending)
1941 if (handle_futex_death((void __user *)entry + futex_offset,
1942 curr, pi))
1943 return;
1944 if (rc)
1945 return;
1946 entry = next_entry;
1947 pi = next_pi;
1948 /*
1949 * Avoid excessively long or circular lists:
1950 */
1951 if (!--limit)
1952 break;
1953
1954 cond_resched();
1955 }
1956
1957 if (pending)
1958 handle_futex_death((void __user *)pending + futex_offset,
1959 curr, pip);
1960 }
1961
do_futex(u32 __user * uaddr,int op,u32 val,ktime_t * timeout,u32 __user * uaddr2,u32 val2,u32 val3)1962 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
1963 u32 __user *uaddr2, u32 val2, u32 val3)
1964 {
1965 int clockrt, ret = -ENOSYS;
1966 int cmd = op & FUTEX_CMD_MASK;
1967 int fshared = 0;
1968
1969 if (!(op & FUTEX_PRIVATE_FLAG))
1970 fshared = 1;
1971
1972 clockrt = op & FUTEX_CLOCK_REALTIME;
1973 if (clockrt && cmd != FUTEX_WAIT_BITSET)
1974 return -ENOSYS;
1975
1976 switch (cmd) {
1977 case FUTEX_WAIT:
1978 val3 = FUTEX_BITSET_MATCH_ANY;
1979 case FUTEX_WAIT_BITSET:
1980 ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
1981 break;
1982 case FUTEX_WAKE:
1983 val3 = FUTEX_BITSET_MATCH_ANY;
1984 case FUTEX_WAKE_BITSET:
1985 ret = futex_wake(uaddr, fshared, val, val3);
1986 break;
1987 case FUTEX_REQUEUE:
1988 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
1989 break;
1990 case FUTEX_CMP_REQUEUE:
1991 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
1992 break;
1993 case FUTEX_WAKE_OP:
1994 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
1995 break;
1996 case FUTEX_LOCK_PI:
1997 if (futex_cmpxchg_enabled)
1998 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
1999 break;
2000 case FUTEX_UNLOCK_PI:
2001 if (futex_cmpxchg_enabled)
2002 ret = futex_unlock_pi(uaddr, fshared);
2003 break;
2004 case FUTEX_TRYLOCK_PI:
2005 if (futex_cmpxchg_enabled)
2006 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2007 break;
2008 default:
2009 ret = -ENOSYS;
2010 }
2011 return ret;
2012 }
2013
2014
SYSCALL_DEFINE6(futex,u32 __user *,uaddr,int,op,u32,val,struct timespec __user *,utime,u32 __user *,uaddr2,u32,val3)2015 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2016 struct timespec __user *, utime, u32 __user *, uaddr2,
2017 u32, val3)
2018 {
2019 struct timespec ts;
2020 ktime_t t, *tp = NULL;
2021 u32 val2 = 0;
2022 int cmd = op & FUTEX_CMD_MASK;
2023
2024 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2025 cmd == FUTEX_WAIT_BITSET)) {
2026 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2027 return -EFAULT;
2028 if (!timespec_valid(&ts))
2029 return -EINVAL;
2030
2031 t = timespec_to_ktime(ts);
2032 if (cmd == FUTEX_WAIT)
2033 t = ktime_add_safe(ktime_get(), t);
2034 tp = &t;
2035 }
2036 /*
2037 * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
2038 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2039 */
2040 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2041 cmd == FUTEX_WAKE_OP)
2042 val2 = (u32) (unsigned long) utime;
2043
2044 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2045 }
2046
futex_init(void)2047 static int __init futex_init(void)
2048 {
2049 u32 curval;
2050 int i;
2051
2052 /*
2053 * This will fail and we want it. Some arch implementations do
2054 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2055 * functionality. We want to know that before we call in any
2056 * of the complex code paths. Also we want to prevent
2057 * registration of robust lists in that case. NULL is
2058 * guaranteed to fault and we get -EFAULT on functional
2059 * implementation, the non functional ones will return
2060 * -ENOSYS.
2061 */
2062 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2063 if (curval == -EFAULT)
2064 futex_cmpxchg_enabled = 1;
2065
2066 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2067 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2068 spin_lock_init(&futex_queues[i].lock);
2069 }
2070
2071 return 0;
2072 }
2073 __initcall(futex_init);
2074