• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*P:500 Just as userspace programs request kernel operations through a system
2  * call, the Guest requests Host operations through a "hypercall".  You might
3  * notice this nomenclature doesn't really follow any logic, but the name has
4  * been around for long enough that we're stuck with it.  As you'd expect, this
5  * code is basically a one big switch statement. :*/
6 
7 /*  Copyright (C) 2006 Rusty Russell IBM Corporation
8 
9     This program is free software; you can redistribute it and/or modify
10     it under the terms of the GNU General Public License as published by
11     the Free Software Foundation; either version 2 of the License, or
12     (at your option) any later version.
13 
14     This program is distributed in the hope that it will be useful,
15     but WITHOUT ANY WARRANTY; without even the implied warranty of
16     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17     GNU General Public License for more details.
18 
19     You should have received a copy of the GNU General Public License
20     along with this program; if not, write to the Free Software
21     Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA
22 */
23 #include <linux/uaccess.h>
24 #include <linux/syscalls.h>
25 #include <linux/mm.h>
26 #include <linux/ktime.h>
27 #include <asm/page.h>
28 #include <asm/pgtable.h>
29 #include "lg.h"
30 
31 /*H:120 This is the core hypercall routine: where the Guest gets what it wants.
32  * Or gets killed.  Or, in the case of LHCALL_SHUTDOWN, both. */
do_hcall(struct lg_cpu * cpu,struct hcall_args * args)33 static void do_hcall(struct lg_cpu *cpu, struct hcall_args *args)
34 {
35 	switch (args->arg0) {
36 	case LHCALL_FLUSH_ASYNC:
37 		/* This call does nothing, except by breaking out of the Guest
38 		 * it makes us process all the asynchronous hypercalls. */
39 		break;
40 	case LHCALL_LGUEST_INIT:
41 		/* You can't get here unless you're already initialized.  Don't
42 		 * do that. */
43 		kill_guest(cpu, "already have lguest_data");
44 		break;
45 	case LHCALL_SHUTDOWN: {
46 		/* Shutdown is such a trivial hypercall that we do it in four
47 		 * lines right here. */
48 		char msg[128];
49 		/* If the lgread fails, it will call kill_guest() itself; the
50 		 * kill_guest() with the message will be ignored. */
51 		__lgread(cpu, msg, args->arg1, sizeof(msg));
52 		msg[sizeof(msg)-1] = '\0';
53 		kill_guest(cpu, "CRASH: %s", msg);
54 		if (args->arg2 == LGUEST_SHUTDOWN_RESTART)
55 			cpu->lg->dead = ERR_PTR(-ERESTART);
56 		break;
57 	}
58 	case LHCALL_FLUSH_TLB:
59 		/* FLUSH_TLB comes in two flavors, depending on the
60 		 * argument: */
61 		if (args->arg1)
62 			guest_pagetable_clear_all(cpu);
63 		else
64 			guest_pagetable_flush_user(cpu);
65 		break;
66 
67 	/* All these calls simply pass the arguments through to the right
68 	 * routines. */
69 	case LHCALL_NEW_PGTABLE:
70 		guest_new_pagetable(cpu, args->arg1);
71 		break;
72 	case LHCALL_SET_STACK:
73 		guest_set_stack(cpu, args->arg1, args->arg2, args->arg3);
74 		break;
75 	case LHCALL_SET_PTE:
76 		guest_set_pte(cpu, args->arg1, args->arg2, __pte(args->arg3));
77 		break;
78 	case LHCALL_SET_PMD:
79 		guest_set_pmd(cpu->lg, args->arg1, args->arg2);
80 		break;
81 	case LHCALL_SET_CLOCKEVENT:
82 		guest_set_clockevent(cpu, args->arg1);
83 		break;
84 	case LHCALL_TS:
85 		/* This sets the TS flag, as we saw used in run_guest(). */
86 		cpu->ts = args->arg1;
87 		break;
88 	case LHCALL_HALT:
89 		/* Similarly, this sets the halted flag for run_guest(). */
90 		cpu->halted = 1;
91 		break;
92 	case LHCALL_NOTIFY:
93 		cpu->pending_notify = args->arg1;
94 		break;
95 	default:
96 		/* It should be an architecture-specific hypercall. */
97 		if (lguest_arch_do_hcall(cpu, args))
98 			kill_guest(cpu, "Bad hypercall %li\n", args->arg0);
99 	}
100 }
101 /*:*/
102 
103 /*H:124 Asynchronous hypercalls are easy: we just look in the array in the
104  * Guest's "struct lguest_data" to see if any new ones are marked "ready".
105  *
106  * We are careful to do these in order: obviously we respect the order the
107  * Guest put them in the ring, but we also promise the Guest that they will
108  * happen before any normal hypercall (which is why we check this before
109  * checking for a normal hcall). */
do_async_hcalls(struct lg_cpu * cpu)110 static void do_async_hcalls(struct lg_cpu *cpu)
111 {
112 	unsigned int i;
113 	u8 st[LHCALL_RING_SIZE];
114 
115 	/* For simplicity, we copy the entire call status array in at once. */
116 	if (copy_from_user(&st, &cpu->lg->lguest_data->hcall_status, sizeof(st)))
117 		return;
118 
119 	/* We process "struct lguest_data"s hcalls[] ring once. */
120 	for (i = 0; i < ARRAY_SIZE(st); i++) {
121 		struct hcall_args args;
122 		/* We remember where we were up to from last time.  This makes
123 		 * sure that the hypercalls are done in the order the Guest
124 		 * places them in the ring. */
125 		unsigned int n = cpu->next_hcall;
126 
127 		/* 0xFF means there's no call here (yet). */
128 		if (st[n] == 0xFF)
129 			break;
130 
131 		/* OK, we have hypercall.  Increment the "next_hcall" cursor,
132 		 * and wrap back to 0 if we reach the end. */
133 		if (++cpu->next_hcall == LHCALL_RING_SIZE)
134 			cpu->next_hcall = 0;
135 
136 		/* Copy the hypercall arguments into a local copy of
137 		 * the hcall_args struct. */
138 		if (copy_from_user(&args, &cpu->lg->lguest_data->hcalls[n],
139 				   sizeof(struct hcall_args))) {
140 			kill_guest(cpu, "Fetching async hypercalls");
141 			break;
142 		}
143 
144 		/* Do the hypercall, same as a normal one. */
145 		do_hcall(cpu, &args);
146 
147 		/* Mark the hypercall done. */
148 		if (put_user(0xFF, &cpu->lg->lguest_data->hcall_status[n])) {
149 			kill_guest(cpu, "Writing result for async hypercall");
150 			break;
151 		}
152 
153 		/* Stop doing hypercalls if they want to notify the Launcher:
154 		 * it needs to service this first. */
155 		if (cpu->pending_notify)
156 			break;
157 	}
158 }
159 
160 /* Last of all, we look at what happens first of all.  The very first time the
161  * Guest makes a hypercall, we end up here to set things up: */
initialize(struct lg_cpu * cpu)162 static void initialize(struct lg_cpu *cpu)
163 {
164 	/* You can't do anything until you're initialized.  The Guest knows the
165 	 * rules, so we're unforgiving here. */
166 	if (cpu->hcall->arg0 != LHCALL_LGUEST_INIT) {
167 		kill_guest(cpu, "hypercall %li before INIT", cpu->hcall->arg0);
168 		return;
169 	}
170 
171 	if (lguest_arch_init_hypercalls(cpu))
172 		kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
173 
174 	/* The Guest tells us where we're not to deliver interrupts by putting
175 	 * the range of addresses into "struct lguest_data". */
176 	if (get_user(cpu->lg->noirq_start, &cpu->lg->lguest_data->noirq_start)
177 	    || get_user(cpu->lg->noirq_end, &cpu->lg->lguest_data->noirq_end))
178 		kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
179 
180 	/* We write the current time into the Guest's data page once so it can
181 	 * set its clock. */
182 	write_timestamp(cpu);
183 
184 	/* page_tables.c will also do some setup. */
185 	page_table_guest_data_init(cpu);
186 
187 	/* This is the one case where the above accesses might have been the
188 	 * first write to a Guest page.  This may have caused a copy-on-write
189 	 * fault, but the old page might be (read-only) in the Guest
190 	 * pagetable. */
191 	guest_pagetable_clear_all(cpu);
192 }
193 /*:*/
194 
195 /*M:013 If a Guest reads from a page (so creates a mapping) that it has never
196  * written to, and then the Launcher writes to it (ie. the output of a virtual
197  * device), the Guest will still see the old page.  In practice, this never
198  * happens: why would the Guest read a page which it has never written to?  But
199  * a similar scenario might one day bite us, so it's worth mentioning. :*/
200 
201 /*H:100
202  * Hypercalls
203  *
204  * Remember from the Guest, hypercalls come in two flavors: normal and
205  * asynchronous.  This file handles both of types.
206  */
do_hypercalls(struct lg_cpu * cpu)207 void do_hypercalls(struct lg_cpu *cpu)
208 {
209 	/* Not initialized yet?  This hypercall must do it. */
210 	if (unlikely(!cpu->lg->lguest_data)) {
211 		/* Set up the "struct lguest_data" */
212 		initialize(cpu);
213 		/* Hcall is done. */
214 		cpu->hcall = NULL;
215 		return;
216 	}
217 
218 	/* The Guest has initialized.
219 	 *
220 	 * Look in the hypercall ring for the async hypercalls: */
221 	do_async_hcalls(cpu);
222 
223 	/* If we stopped reading the hypercall ring because the Guest did a
224 	 * NOTIFY to the Launcher, we want to return now.  Otherwise we do
225 	 * the hypercall. */
226 	if (!cpu->pending_notify) {
227 		do_hcall(cpu, cpu->hcall);
228 		/* Tricky point: we reset the hcall pointer to mark the
229 		 * hypercall as "done".  We use the hcall pointer rather than
230 		 * the trap number to indicate a hypercall is pending.
231 		 * Normally it doesn't matter: the Guest will run again and
232 		 * update the trap number before we come back here.
233 		 *
234 		 * However, if we are signalled or the Guest sends I/O to the
235 		 * Launcher, the run_guest() loop will exit without running the
236 		 * Guest.  When it comes back it would try to re-run the
237 		 * hypercall.  Finding that bug sucked. */
238 		cpu->hcall = NULL;
239 	}
240 }
241 
242 /* This routine supplies the Guest with time: it's used for wallclock time at
243  * initial boot and as a rough time source if the TSC isn't available. */
write_timestamp(struct lg_cpu * cpu)244 void write_timestamp(struct lg_cpu *cpu)
245 {
246 	struct timespec now;
247 	ktime_get_real_ts(&now);
248 	if (copy_to_user(&cpu->lg->lguest_data->time,
249 			 &now, sizeof(struct timespec)))
250 		kill_guest(cpu, "Writing timestamp");
251 }
252