• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/arch/alpha/kernel/process.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the architecture-dependent parts of process handling.
9  */
10 
11 #include <linux/errno.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/smp.h>
17 #include <linux/stddef.h>
18 #include <linux/unistd.h>
19 #include <linux/ptrace.h>
20 #include <linux/slab.h>
21 #include <linux/user.h>
22 #include <linux/utsname.h>
23 #include <linux/time.h>
24 #include <linux/major.h>
25 #include <linux/stat.h>
26 #include <linux/vt.h>
27 #include <linux/mman.h>
28 #include <linux/elfcore.h>
29 #include <linux/reboot.h>
30 #include <linux/tty.h>
31 #include <linux/console.h>
32 
33 #include <asm/reg.h>
34 #include <asm/uaccess.h>
35 #include <asm/system.h>
36 #include <asm/io.h>
37 #include <asm/pgtable.h>
38 #include <asm/hwrpb.h>
39 #include <asm/fpu.h>
40 
41 #include "proto.h"
42 #include "pci_impl.h"
43 
44 /*
45  * Power off function, if any
46  */
47 void (*pm_power_off)(void) = machine_power_off;
48 EXPORT_SYMBOL(pm_power_off);
49 
50 void
cpu_idle(void)51 cpu_idle(void)
52 {
53 	set_thread_flag(TIF_POLLING_NRFLAG);
54 
55 	while (1) {
56 		/* FIXME -- EV6 and LCA45 know how to power down
57 		   the CPU.  */
58 
59 		while (!need_resched())
60 			cpu_relax();
61 		schedule();
62 	}
63 }
64 
65 
66 struct halt_info {
67 	int mode;
68 	char *restart_cmd;
69 };
70 
71 static void
common_shutdown_1(void * generic_ptr)72 common_shutdown_1(void *generic_ptr)
73 {
74 	struct halt_info *how = (struct halt_info *)generic_ptr;
75 	struct percpu_struct *cpup;
76 	unsigned long *pflags, flags;
77 	int cpuid = smp_processor_id();
78 
79 	/* No point in taking interrupts anymore. */
80 	local_irq_disable();
81 
82 	cpup = (struct percpu_struct *)
83 			((unsigned long)hwrpb + hwrpb->processor_offset
84 			 + hwrpb->processor_size * cpuid);
85 	pflags = &cpup->flags;
86 	flags = *pflags;
87 
88 	/* Clear reason to "default"; clear "bootstrap in progress". */
89 	flags &= ~0x00ff0001UL;
90 
91 #ifdef CONFIG_SMP
92 	/* Secondaries halt here. */
93 	if (cpuid != boot_cpuid) {
94 		flags |= 0x00040000UL; /* "remain halted" */
95 		*pflags = flags;
96 		set_cpu_present(cpuid, false);
97 		set_cpu_possible(cpuid, false);
98 		halt();
99 	}
100 #endif
101 
102 	if (how->mode == LINUX_REBOOT_CMD_RESTART) {
103 		if (!how->restart_cmd) {
104 			flags |= 0x00020000UL; /* "cold bootstrap" */
105 		} else {
106 			/* For SRM, we could probably set environment
107 			   variables to get this to work.  We'd have to
108 			   delay this until after srm_paging_stop unless
109 			   we ever got srm_fixup working.
110 
111 			   At the moment, SRM will use the last boot device,
112 			   but the file and flags will be the defaults, when
113 			   doing a "warm" bootstrap.  */
114 			flags |= 0x00030000UL; /* "warm bootstrap" */
115 		}
116 	} else {
117 		flags |= 0x00040000UL; /* "remain halted" */
118 	}
119 	*pflags = flags;
120 
121 #ifdef CONFIG_SMP
122 	/* Wait for the secondaries to halt. */
123 	set_cpu_present(boot_cpuid, false);
124 	set_cpu_possible(boot_cpuid, false);
125 	while (cpus_weight(cpu_present_map))
126 		barrier();
127 #endif
128 
129 	/* If booted from SRM, reset some of the original environment. */
130 	if (alpha_using_srm) {
131 #ifdef CONFIG_DUMMY_CONSOLE
132 		/* If we've gotten here after SysRq-b, leave interrupt
133 		   context before taking over the console. */
134 		if (in_interrupt())
135 			irq_exit();
136 		/* This has the effect of resetting the VGA video origin.  */
137 		take_over_console(&dummy_con, 0, MAX_NR_CONSOLES-1, 1);
138 #endif
139 		pci_restore_srm_config();
140 		set_hae(srm_hae);
141 	}
142 
143 	if (alpha_mv.kill_arch)
144 		alpha_mv.kill_arch(how->mode);
145 
146 	if (! alpha_using_srm && how->mode != LINUX_REBOOT_CMD_RESTART) {
147 		/* Unfortunately, since MILO doesn't currently understand
148 		   the hwrpb bits above, we can't reliably halt the
149 		   processor and keep it halted.  So just loop.  */
150 		return;
151 	}
152 
153 	if (alpha_using_srm)
154 		srm_paging_stop();
155 
156 	halt();
157 }
158 
159 static void
common_shutdown(int mode,char * restart_cmd)160 common_shutdown(int mode, char *restart_cmd)
161 {
162 	struct halt_info args;
163 	args.mode = mode;
164 	args.restart_cmd = restart_cmd;
165 	on_each_cpu(common_shutdown_1, &args, 0);
166 }
167 
168 void
machine_restart(char * restart_cmd)169 machine_restart(char *restart_cmd)
170 {
171 	common_shutdown(LINUX_REBOOT_CMD_RESTART, restart_cmd);
172 }
173 
174 
175 void
machine_halt(void)176 machine_halt(void)
177 {
178 	common_shutdown(LINUX_REBOOT_CMD_HALT, NULL);
179 }
180 
181 
182 void
machine_power_off(void)183 machine_power_off(void)
184 {
185 	common_shutdown(LINUX_REBOOT_CMD_POWER_OFF, NULL);
186 }
187 
188 
189 /* Used by sysrq-p, among others.  I don't believe r9-r15 are ever
190    saved in the context it's used.  */
191 
192 void
show_regs(struct pt_regs * regs)193 show_regs(struct pt_regs *regs)
194 {
195 	dik_show_regs(regs, NULL);
196 }
197 
198 /*
199  * Re-start a thread when doing execve()
200  */
201 void
start_thread(struct pt_regs * regs,unsigned long pc,unsigned long sp)202 start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
203 {
204 	set_fs(USER_DS);
205 	regs->pc = pc;
206 	regs->ps = 8;
207 	wrusp(sp);
208 }
209 EXPORT_SYMBOL(start_thread);
210 
211 /*
212  * Free current thread data structures etc..
213  */
214 void
exit_thread(void)215 exit_thread(void)
216 {
217 }
218 
219 void
flush_thread(void)220 flush_thread(void)
221 {
222 	/* Arrange for each exec'ed process to start off with a clean slate
223 	   with respect to the FPU.  This is all exceptions disabled.  */
224 	current_thread_info()->ieee_state = 0;
225 	wrfpcr(FPCR_DYN_NORMAL | ieee_swcr_to_fpcr(0));
226 
227 	/* Clean slate for TLS.  */
228 	current_thread_info()->pcb.unique = 0;
229 }
230 
231 void
release_thread(struct task_struct * dead_task)232 release_thread(struct task_struct *dead_task)
233 {
234 }
235 
236 /*
237  * "alpha_clone()".. By the time we get here, the
238  * non-volatile registers have also been saved on the
239  * stack. We do some ugly pointer stuff here.. (see
240  * also copy_thread)
241  *
242  * Notice that "fork()" is implemented in terms of clone,
243  * with parameters (SIGCHLD, 0).
244  */
245 int
alpha_clone(unsigned long clone_flags,unsigned long usp,int __user * parent_tid,int __user * child_tid,unsigned long tls_value,struct pt_regs * regs)246 alpha_clone(unsigned long clone_flags, unsigned long usp,
247 	    int __user *parent_tid, int __user *child_tid,
248 	    unsigned long tls_value, struct pt_regs *regs)
249 {
250 	if (!usp)
251 		usp = rdusp();
252 
253 	return do_fork(clone_flags, usp, regs, 0, parent_tid, child_tid);
254 }
255 
256 int
alpha_vfork(struct pt_regs * regs)257 alpha_vfork(struct pt_regs *regs)
258 {
259 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(),
260 		       regs, 0, NULL, NULL);
261 }
262 
263 /*
264  * Copy an alpha thread..
265  *
266  * Note the "stack_offset" stuff: when returning to kernel mode, we need
267  * to have some extra stack-space for the kernel stack that still exists
268  * after the "ret_from_fork".  When returning to user mode, we only want
269  * the space needed by the syscall stack frame (ie "struct pt_regs").
270  * Use the passed "regs" pointer to determine how much space we need
271  * for a kernel fork().
272  */
273 
274 int
copy_thread(int nr,unsigned long clone_flags,unsigned long usp,unsigned long unused,struct task_struct * p,struct pt_regs * regs)275 copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
276 	    unsigned long unused,
277 	    struct task_struct * p, struct pt_regs * regs)
278 {
279 	extern void ret_from_fork(void);
280 
281 	struct thread_info *childti = task_thread_info(p);
282 	struct pt_regs * childregs;
283 	struct switch_stack * childstack, *stack;
284 	unsigned long stack_offset, settls;
285 
286 	stack_offset = PAGE_SIZE - sizeof(struct pt_regs);
287 	if (!(regs->ps & 8))
288 		stack_offset = (PAGE_SIZE-1) & (unsigned long) regs;
289 	childregs = (struct pt_regs *)
290 	  (stack_offset + PAGE_SIZE + task_stack_page(p));
291 
292 	*childregs = *regs;
293 	settls = regs->r20;
294 	childregs->r0 = 0;
295 	childregs->r19 = 0;
296 	childregs->r20 = 1;	/* OSF/1 has some strange fork() semantics.  */
297 	regs->r20 = 0;
298 	stack = ((struct switch_stack *) regs) - 1;
299 	childstack = ((struct switch_stack *) childregs) - 1;
300 	*childstack = *stack;
301 	childstack->r26 = (unsigned long) ret_from_fork;
302 	childti->pcb.usp = usp;
303 	childti->pcb.ksp = (unsigned long) childstack;
304 	childti->pcb.flags = 1;	/* set FEN, clear everything else */
305 
306 	/* Set a new TLS for the child thread?  Peek back into the
307 	   syscall arguments that we saved on syscall entry.  Oops,
308 	   except we'd have clobbered it with the parent/child set
309 	   of r20.  Read the saved copy.  */
310 	/* Note: if CLONE_SETTLS is not set, then we must inherit the
311 	   value from the parent, which will have been set by the block
312 	   copy in dup_task_struct.  This is non-intuitive, but is
313 	   required for proper operation in the case of a threaded
314 	   application calling fork.  */
315 	if (clone_flags & CLONE_SETTLS)
316 		childti->pcb.unique = settls;
317 
318 	return 0;
319 }
320 
321 /*
322  * Fill in the user structure for a ELF core dump.
323  */
324 void
dump_elf_thread(elf_greg_t * dest,struct pt_regs * pt,struct thread_info * ti)325 dump_elf_thread(elf_greg_t *dest, struct pt_regs *pt, struct thread_info *ti)
326 {
327 	/* switch stack follows right below pt_regs: */
328 	struct switch_stack * sw = ((struct switch_stack *) pt) - 1;
329 
330 	dest[ 0] = pt->r0;
331 	dest[ 1] = pt->r1;
332 	dest[ 2] = pt->r2;
333 	dest[ 3] = pt->r3;
334 	dest[ 4] = pt->r4;
335 	dest[ 5] = pt->r5;
336 	dest[ 6] = pt->r6;
337 	dest[ 7] = pt->r7;
338 	dest[ 8] = pt->r8;
339 	dest[ 9] = sw->r9;
340 	dest[10] = sw->r10;
341 	dest[11] = sw->r11;
342 	dest[12] = sw->r12;
343 	dest[13] = sw->r13;
344 	dest[14] = sw->r14;
345 	dest[15] = sw->r15;
346 	dest[16] = pt->r16;
347 	dest[17] = pt->r17;
348 	dest[18] = pt->r18;
349 	dest[19] = pt->r19;
350 	dest[20] = pt->r20;
351 	dest[21] = pt->r21;
352 	dest[22] = pt->r22;
353 	dest[23] = pt->r23;
354 	dest[24] = pt->r24;
355 	dest[25] = pt->r25;
356 	dest[26] = pt->r26;
357 	dest[27] = pt->r27;
358 	dest[28] = pt->r28;
359 	dest[29] = pt->gp;
360 	dest[30] = rdusp();
361 	dest[31] = pt->pc;
362 
363 	/* Once upon a time this was the PS value.  Which is stupid
364 	   since that is always 8 for usermode.  Usurped for the more
365 	   useful value of the thread's UNIQUE field.  */
366 	dest[32] = ti->pcb.unique;
367 }
368 EXPORT_SYMBOL(dump_elf_thread);
369 
370 int
dump_elf_task(elf_greg_t * dest,struct task_struct * task)371 dump_elf_task(elf_greg_t *dest, struct task_struct *task)
372 {
373 	dump_elf_thread(dest, task_pt_regs(task), task_thread_info(task));
374 	return 1;
375 }
376 EXPORT_SYMBOL(dump_elf_task);
377 
378 int
dump_elf_task_fp(elf_fpreg_t * dest,struct task_struct * task)379 dump_elf_task_fp(elf_fpreg_t *dest, struct task_struct *task)
380 {
381 	struct switch_stack *sw = (struct switch_stack *)task_pt_regs(task) - 1;
382 	memcpy(dest, sw->fp, 32 * 8);
383 	return 1;
384 }
385 EXPORT_SYMBOL(dump_elf_task_fp);
386 
387 /*
388  * sys_execve() executes a new program.
389  */
390 asmlinkage int
do_sys_execve(char __user * ufilename,char __user * __user * argv,char __user * __user * envp,struct pt_regs * regs)391 do_sys_execve(char __user *ufilename, char __user * __user *argv,
392 	      char __user * __user *envp, struct pt_regs *regs)
393 {
394 	int error;
395 	char *filename;
396 
397 	filename = getname(ufilename);
398 	error = PTR_ERR(filename);
399 	if (IS_ERR(filename))
400 		goto out;
401 	error = do_execve(filename, argv, envp, regs);
402 	putname(filename);
403 out:
404 	return error;
405 }
406 
407 /*
408  * Return saved PC of a blocked thread.  This assumes the frame
409  * pointer is the 6th saved long on the kernel stack and that the
410  * saved return address is the first long in the frame.  This all
411  * holds provided the thread blocked through a call to schedule() ($15
412  * is the frame pointer in schedule() and $15 is saved at offset 48 by
413  * entry.S:do_switch_stack).
414  *
415  * Under heavy swap load I've seen this lose in an ugly way.  So do
416  * some extra sanity checking on the ranges we expect these pointers
417  * to be in so that we can fail gracefully.  This is just for ps after
418  * all.  -- r~
419  */
420 
421 unsigned long
thread_saved_pc(struct task_struct * t)422 thread_saved_pc(struct task_struct *t)
423 {
424 	unsigned long base = (unsigned long)task_stack_page(t);
425 	unsigned long fp, sp = task_thread_info(t)->pcb.ksp;
426 
427 	if (sp > base && sp+6*8 < base + 16*1024) {
428 		fp = ((unsigned long*)sp)[6];
429 		if (fp > sp && fp < base + 16*1024)
430 			return *(unsigned long *)fp;
431 	}
432 
433 	return 0;
434 }
435 
436 unsigned long
get_wchan(struct task_struct * p)437 get_wchan(struct task_struct *p)
438 {
439 	unsigned long schedule_frame;
440 	unsigned long pc;
441 	if (!p || p == current || p->state == TASK_RUNNING)
442 		return 0;
443 	/*
444 	 * This one depends on the frame size of schedule().  Do a
445 	 * "disass schedule" in gdb to find the frame size.  Also, the
446 	 * code assumes that sleep_on() follows immediately after
447 	 * interruptible_sleep_on() and that add_timer() follows
448 	 * immediately after interruptible_sleep().  Ugly, isn't it?
449 	 * Maybe adding a wchan field to task_struct would be better,
450 	 * after all...
451 	 */
452 
453 	pc = thread_saved_pc(p);
454 	if (in_sched_functions(pc)) {
455 		schedule_frame = ((unsigned long *)task_thread_info(p)->pcb.ksp)[6];
456 		return ((unsigned long *)schedule_frame)[12];
457 	}
458 	return pc;
459 }
460