1 /*
2 * File: arch/blackfin/kernel/traps.c
3 * Based on:
4 * Author: Hamish Macdonald
5 *
6 * Created:
7 * Description: uses S/W interrupt 15 for the system calls
8 *
9 * Modified:
10 * Copyright 2004-2006 Analog Devices Inc.
11 *
12 * Bugs: Enter bugs at http://blackfin.uclinux.org/
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with this program; if not, see the file COPYING, or write
26 * to the Free Software Foundation, Inc.,
27 * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
28 */
29
30 #include <linux/uaccess.h>
31 #include <linux/interrupt.h>
32 #include <linux/module.h>
33 #include <linux/kallsyms.h>
34 #include <linux/fs.h>
35 #include <linux/rbtree.h>
36 #include <asm/traps.h>
37 #include <asm/cacheflush.h>
38 #include <asm/cplb.h>
39 #include <asm/blackfin.h>
40 #include <asm/irq_handler.h>
41 #include <linux/irq.h>
42 #include <asm/trace.h>
43 #include <asm/fixed_code.h>
44
45 #ifdef CONFIG_KGDB
46 # include <linux/kgdb.h>
47
48 # define CHK_DEBUGGER_TRAP() \
49 do { \
50 kgdb_handle_exception(trapnr, sig, info.si_code, fp); \
51 } while (0)
52 # define CHK_DEBUGGER_TRAP_MAYBE() \
53 do { \
54 if (kgdb_connected) \
55 CHK_DEBUGGER_TRAP(); \
56 } while (0)
57 #else
58 # define CHK_DEBUGGER_TRAP() do { } while (0)
59 # define CHK_DEBUGGER_TRAP_MAYBE() do { } while (0)
60 #endif
61
62
63 #ifdef CONFIG_DEBUG_VERBOSE
64 #define verbose_printk(fmt, arg...) \
65 printk(fmt, ##arg)
66 #else
67 #define verbose_printk(fmt, arg...) \
68 ({ if (0) printk(fmt, ##arg); 0; })
69 #endif
70
71 /* Initiate the event table handler */
trap_init(void)72 void __init trap_init(void)
73 {
74 CSYNC();
75 bfin_write_EVT3(trap);
76 CSYNC();
77 }
78
decode_address(char * buf,unsigned long address)79 static void decode_address(char *buf, unsigned long address)
80 {
81 #ifdef CONFIG_DEBUG_VERBOSE
82 struct vm_list_struct *vml;
83 struct task_struct *p;
84 struct mm_struct *mm;
85 unsigned long flags, offset;
86 unsigned char in_atomic = (bfin_read_IPEND() & 0x10) || in_atomic();
87 struct rb_node *n;
88
89 #ifdef CONFIG_KALLSYMS
90 unsigned long symsize;
91 const char *symname;
92 char *modname;
93 char *delim = ":";
94 char namebuf[128];
95
96 /* look up the address and see if we are in kernel space */
97 symname = kallsyms_lookup(address, &symsize, &offset, &modname, namebuf);
98
99 if (symname) {
100 /* yeah! kernel space! */
101 if (!modname)
102 modname = delim = "";
103 sprintf(buf, "<0x%p> { %s%s%s%s + 0x%lx }",
104 (void *)address, delim, modname, delim, symname,
105 (unsigned long)offset);
106 return;
107
108 }
109 #endif
110
111 /* Problem in fixed code section? */
112 if (address >= FIXED_CODE_START && address < FIXED_CODE_END) {
113 sprintf(buf, "<0x%p> /* Maybe fixed code section */", (void *)address);
114 return;
115 }
116
117 /* Problem somewhere before the kernel start address */
118 if (address < CONFIG_BOOT_LOAD) {
119 sprintf(buf, "<0x%p> /* Maybe null pointer? */", (void *)address);
120 return;
121 }
122
123 /* looks like we're off in user-land, so let's walk all the
124 * mappings of all our processes and see if we can't be a whee
125 * bit more specific
126 */
127 write_lock_irqsave(&tasklist_lock, flags);
128 for_each_process(p) {
129 mm = (in_atomic ? p->mm : get_task_mm(p));
130 if (!mm)
131 continue;
132
133 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
134 struct vm_area_struct *vma;
135
136 vma = rb_entry(n, struct vm_area_struct, vm_rb);
137
138 if (address >= vma->vm_start && address < vma->vm_end) {
139 char _tmpbuf[256];
140 char *name = p->comm;
141 struct file *file = vma->vm_file;
142
143 if (file) {
144 char *d_name = d_path(&file->f_path, _tmpbuf,
145 sizeof(_tmpbuf));
146 if (!IS_ERR(d_name))
147 name = d_name;
148 }
149
150 /* FLAT does not have its text aligned to the start of
151 * the map while FDPIC ELF does ...
152 */
153
154 /* before we can check flat/fdpic, we need to
155 * make sure current is valid
156 */
157 if ((unsigned long)current >= FIXED_CODE_START &&
158 !((unsigned long)current & 0x3)) {
159 if (current->mm &&
160 (address > current->mm->start_code) &&
161 (address < current->mm->end_code))
162 offset = address - current->mm->start_code;
163 else
164 offset = (address - vma->vm_start) +
165 (vma->vm_pgoff << PAGE_SHIFT);
166
167 sprintf(buf, "<0x%p> [ %s + 0x%lx ]",
168 (void *)address, name, offset);
169 } else
170 sprintf(buf, "<0x%p> [ %s vma:0x%lx-0x%lx]",
171 (void *)address, name,
172 vma->vm_start, vma->vm_end);
173
174 if (!in_atomic)
175 mmput(mm);
176
177 if (!strlen(buf))
178 sprintf(buf, "<0x%p> [ %s ] dynamic memory", (void *)address, name);
179
180 goto done;
181 }
182 }
183 if (!in_atomic)
184 mmput(mm);
185 }
186
187 /* we were unable to find this address anywhere */
188 sprintf(buf, "<0x%p> /* kernel dynamic memory */", (void *)address);
189
190 done:
191 write_unlock_irqrestore(&tasklist_lock, flags);
192 #else
193 sprintf(buf, " ");
194 #endif
195 }
196
double_fault_c(struct pt_regs * fp)197 asmlinkage void double_fault_c(struct pt_regs *fp)
198 {
199 console_verbose();
200 oops_in_progress = 1;
201 #ifdef CONFIG_DEBUG_VERBOSE
202 printk(KERN_EMERG "\n" KERN_EMERG "Double Fault\n");
203 #ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
204 if (((long)fp->seqstat & SEQSTAT_EXCAUSE) == VEC_UNCOV) {
205 unsigned int cpu = smp_processor_id();
206 char buf[150];
207 decode_address(buf, cpu_pda[cpu].retx);
208 printk(KERN_EMERG "While handling exception (EXCAUSE = 0x%x) at %s:\n",
209 (unsigned int)cpu_pda[cpu].seqstat & SEQSTAT_EXCAUSE, buf);
210 decode_address(buf, cpu_pda[cpu].dcplb_fault_addr);
211 printk(KERN_NOTICE " DCPLB_FAULT_ADDR: %s\n", buf);
212 decode_address(buf, cpu_pda[cpu].icplb_fault_addr);
213 printk(KERN_NOTICE " ICPLB_FAULT_ADDR: %s\n", buf);
214
215 decode_address(buf, fp->retx);
216 printk(KERN_NOTICE "The instruction at %s caused a double exception\n", buf);
217 } else
218 #endif
219 {
220 dump_bfin_process(fp);
221 dump_bfin_mem(fp);
222 show_regs(fp);
223 }
224 #endif
225 panic("Double Fault - unrecoverable event\n");
226
227 }
228
trap_c(struct pt_regs * fp)229 asmlinkage void trap_c(struct pt_regs *fp)
230 {
231 #ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON
232 int j;
233 #endif
234 #ifdef CONFIG_DEBUG_HUNT_FOR_ZERO
235 unsigned int cpu = smp_processor_id();
236 #endif
237 int sig = 0;
238 siginfo_t info;
239 unsigned long trapnr = fp->seqstat & SEQSTAT_EXCAUSE;
240
241 trace_buffer_save(j);
242
243 /* Important - be very careful dereferncing pointers - will lead to
244 * double faults if the stack has become corrupt
245 */
246
247 /* If the fault was caused by a kernel thread, or interrupt handler
248 * we will kernel panic, so the system reboots.
249 * If KGDB is enabled, don't set this for kernel breakpoints
250 */
251
252 /* TODO: check to see if we are in some sort of deferred HWERR
253 * that we should be able to recover from, not kernel panic
254 */
255 if ((bfin_read_IPEND() & 0xFFC0) && (trapnr != VEC_STEP)
256 #ifdef CONFIG_KGDB
257 && (trapnr != VEC_EXCPT02)
258 #endif
259 ){
260 console_verbose();
261 oops_in_progress = 1;
262 } else if (current) {
263 if (current->mm == NULL) {
264 console_verbose();
265 oops_in_progress = 1;
266 }
267 }
268
269 /* trap_c() will be called for exceptions. During exceptions
270 * processing, the pc value should be set with retx value.
271 * With this change we can cleanup some code in signal.c- TODO
272 */
273 fp->orig_pc = fp->retx;
274 /* printk("exception: 0x%x, ipend=%x, reti=%x, retx=%x\n",
275 trapnr, fp->ipend, fp->pc, fp->retx); */
276
277 /* send the appropriate signal to the user program */
278 switch (trapnr) {
279
280 /* This table works in conjuction with the one in ./mach-common/entry.S
281 * Some exceptions are handled there (in assembly, in exception space)
282 * Some are handled here, (in C, in interrupt space)
283 * Some, like CPLB, are handled in both, where the normal path is
284 * handled in assembly/exception space, and the error path is handled
285 * here
286 */
287
288 /* 0x00 - Linux Syscall, getting here is an error */
289 /* 0x01 - userspace gdb breakpoint, handled here */
290 case VEC_EXCPT01:
291 info.si_code = TRAP_ILLTRAP;
292 sig = SIGTRAP;
293 CHK_DEBUGGER_TRAP_MAYBE();
294 /* Check if this is a breakpoint in kernel space */
295 if (fp->ipend & 0xffc0)
296 return;
297 else
298 break;
299 /* 0x03 - User Defined, userspace stack overflow */
300 case VEC_EXCPT03:
301 info.si_code = SEGV_STACKFLOW;
302 sig = SIGSEGV;
303 verbose_printk(KERN_NOTICE EXC_0x03(KERN_NOTICE));
304 CHK_DEBUGGER_TRAP_MAYBE();
305 break;
306 /* 0x02 - KGDB initial connection and break signal trap */
307 case VEC_EXCPT02:
308 #ifdef CONFIG_KGDB
309 info.si_code = TRAP_ILLTRAP;
310 sig = SIGTRAP;
311 CHK_DEBUGGER_TRAP();
312 return;
313 #endif
314 /* 0x04 - User Defined */
315 /* 0x05 - User Defined */
316 /* 0x06 - User Defined */
317 /* 0x07 - User Defined */
318 /* 0x08 - User Defined */
319 /* 0x09 - User Defined */
320 /* 0x0A - User Defined */
321 /* 0x0B - User Defined */
322 /* 0x0C - User Defined */
323 /* 0x0D - User Defined */
324 /* 0x0E - User Defined */
325 /* 0x0F - User Defined */
326 /* If we got here, it is most likely that someone was trying to use a
327 * custom exception handler, and it is not actually installed properly
328 */
329 case VEC_EXCPT04 ... VEC_EXCPT15:
330 info.si_code = ILL_ILLPARAOP;
331 sig = SIGILL;
332 verbose_printk(KERN_NOTICE EXC_0x04(KERN_NOTICE));
333 CHK_DEBUGGER_TRAP_MAYBE();
334 break;
335 /* 0x10 HW Single step, handled here */
336 case VEC_STEP:
337 info.si_code = TRAP_STEP;
338 sig = SIGTRAP;
339 CHK_DEBUGGER_TRAP_MAYBE();
340 /* Check if this is a single step in kernel space */
341 if (fp->ipend & 0xffc0)
342 return;
343 else
344 break;
345 /* 0x11 - Trace Buffer Full, handled here */
346 case VEC_OVFLOW:
347 info.si_code = TRAP_TRACEFLOW;
348 sig = SIGTRAP;
349 verbose_printk(KERN_NOTICE EXC_0x11(KERN_NOTICE));
350 CHK_DEBUGGER_TRAP_MAYBE();
351 break;
352 /* 0x12 - Reserved, Caught by default */
353 /* 0x13 - Reserved, Caught by default */
354 /* 0x14 - Reserved, Caught by default */
355 /* 0x15 - Reserved, Caught by default */
356 /* 0x16 - Reserved, Caught by default */
357 /* 0x17 - Reserved, Caught by default */
358 /* 0x18 - Reserved, Caught by default */
359 /* 0x19 - Reserved, Caught by default */
360 /* 0x1A - Reserved, Caught by default */
361 /* 0x1B - Reserved, Caught by default */
362 /* 0x1C - Reserved, Caught by default */
363 /* 0x1D - Reserved, Caught by default */
364 /* 0x1E - Reserved, Caught by default */
365 /* 0x1F - Reserved, Caught by default */
366 /* 0x20 - Reserved, Caught by default */
367 /* 0x21 - Undefined Instruction, handled here */
368 case VEC_UNDEF_I:
369 info.si_code = ILL_ILLOPC;
370 sig = SIGILL;
371 verbose_printk(KERN_NOTICE EXC_0x21(KERN_NOTICE));
372 CHK_DEBUGGER_TRAP_MAYBE();
373 break;
374 /* 0x22 - Illegal Instruction Combination, handled here */
375 case VEC_ILGAL_I:
376 info.si_code = ILL_ILLPARAOP;
377 sig = SIGILL;
378 verbose_printk(KERN_NOTICE EXC_0x22(KERN_NOTICE));
379 CHK_DEBUGGER_TRAP_MAYBE();
380 break;
381 /* 0x23 - Data CPLB protection violation, handled here */
382 case VEC_CPLB_VL:
383 info.si_code = ILL_CPLB_VI;
384 sig = SIGBUS;
385 verbose_printk(KERN_NOTICE EXC_0x23(KERN_NOTICE));
386 CHK_DEBUGGER_TRAP_MAYBE();
387 break;
388 /* 0x24 - Data access misaligned, handled here */
389 case VEC_MISALI_D:
390 info.si_code = BUS_ADRALN;
391 sig = SIGBUS;
392 verbose_printk(KERN_NOTICE EXC_0x24(KERN_NOTICE));
393 CHK_DEBUGGER_TRAP_MAYBE();
394 break;
395 /* 0x25 - Unrecoverable Event, handled here */
396 case VEC_UNCOV:
397 info.si_code = ILL_ILLEXCPT;
398 sig = SIGILL;
399 verbose_printk(KERN_NOTICE EXC_0x25(KERN_NOTICE));
400 CHK_DEBUGGER_TRAP_MAYBE();
401 break;
402 /* 0x26 - Data CPLB Miss, normal case is handled in _cplb_hdr,
403 error case is handled here */
404 case VEC_CPLB_M:
405 info.si_code = BUS_ADRALN;
406 sig = SIGBUS;
407 verbose_printk(KERN_NOTICE EXC_0x26(KERN_NOTICE));
408 break;
409 /* 0x27 - Data CPLB Multiple Hits - Linux Trap Zero, handled here */
410 case VEC_CPLB_MHIT:
411 info.si_code = ILL_CPLB_MULHIT;
412 sig = SIGSEGV;
413 #ifdef CONFIG_DEBUG_HUNT_FOR_ZERO
414 if (cpu_pda[cpu].dcplb_fault_addr < FIXED_CODE_START)
415 verbose_printk(KERN_NOTICE "NULL pointer access\n");
416 else
417 #endif
418 verbose_printk(KERN_NOTICE EXC_0x27(KERN_NOTICE));
419 CHK_DEBUGGER_TRAP_MAYBE();
420 break;
421 /* 0x28 - Emulation Watchpoint, handled here */
422 case VEC_WATCH:
423 info.si_code = TRAP_WATCHPT;
424 sig = SIGTRAP;
425 pr_debug(EXC_0x28(KERN_DEBUG));
426 CHK_DEBUGGER_TRAP_MAYBE();
427 /* Check if this is a watchpoint in kernel space */
428 if (fp->ipend & 0xffc0)
429 return;
430 else
431 break;
432 #ifdef CONFIG_BF535
433 /* 0x29 - Instruction fetch access error (535 only) */
434 case VEC_ISTRU_VL: /* ADSP-BF535 only (MH) */
435 info.si_code = BUS_OPFETCH;
436 sig = SIGBUS;
437 verbose_printk(KERN_NOTICE "BF535: VEC_ISTRU_VL\n");
438 CHK_DEBUGGER_TRAP_MAYBE();
439 break;
440 #else
441 /* 0x29 - Reserved, Caught by default */
442 #endif
443 /* 0x2A - Instruction fetch misaligned, handled here */
444 case VEC_MISALI_I:
445 info.si_code = BUS_ADRALN;
446 sig = SIGBUS;
447 verbose_printk(KERN_NOTICE EXC_0x2A(KERN_NOTICE));
448 CHK_DEBUGGER_TRAP_MAYBE();
449 break;
450 /* 0x2B - Instruction CPLB protection violation, handled here */
451 case VEC_CPLB_I_VL:
452 info.si_code = ILL_CPLB_VI;
453 sig = SIGBUS;
454 verbose_printk(KERN_NOTICE EXC_0x2B(KERN_NOTICE));
455 CHK_DEBUGGER_TRAP_MAYBE();
456 break;
457 /* 0x2C - Instruction CPLB miss, handled in _cplb_hdr */
458 case VEC_CPLB_I_M:
459 info.si_code = ILL_CPLB_MISS;
460 sig = SIGBUS;
461 verbose_printk(KERN_NOTICE EXC_0x2C(KERN_NOTICE));
462 break;
463 /* 0x2D - Instruction CPLB Multiple Hits, handled here */
464 case VEC_CPLB_I_MHIT:
465 info.si_code = ILL_CPLB_MULHIT;
466 sig = SIGSEGV;
467 #ifdef CONFIG_DEBUG_HUNT_FOR_ZERO
468 if (cpu_pda[cpu].icplb_fault_addr < FIXED_CODE_START)
469 verbose_printk(KERN_NOTICE "Jump to NULL address\n");
470 else
471 #endif
472 verbose_printk(KERN_NOTICE EXC_0x2D(KERN_NOTICE));
473 CHK_DEBUGGER_TRAP_MAYBE();
474 break;
475 /* 0x2E - Illegal use of Supervisor Resource, handled here */
476 case VEC_ILL_RES:
477 info.si_code = ILL_PRVOPC;
478 sig = SIGILL;
479 verbose_printk(KERN_NOTICE EXC_0x2E(KERN_NOTICE));
480 CHK_DEBUGGER_TRAP_MAYBE();
481 break;
482 /* 0x2F - Reserved, Caught by default */
483 /* 0x30 - Reserved, Caught by default */
484 /* 0x31 - Reserved, Caught by default */
485 /* 0x32 - Reserved, Caught by default */
486 /* 0x33 - Reserved, Caught by default */
487 /* 0x34 - Reserved, Caught by default */
488 /* 0x35 - Reserved, Caught by default */
489 /* 0x36 - Reserved, Caught by default */
490 /* 0x37 - Reserved, Caught by default */
491 /* 0x38 - Reserved, Caught by default */
492 /* 0x39 - Reserved, Caught by default */
493 /* 0x3A - Reserved, Caught by default */
494 /* 0x3B - Reserved, Caught by default */
495 /* 0x3C - Reserved, Caught by default */
496 /* 0x3D - Reserved, Caught by default */
497 /* 0x3E - Reserved, Caught by default */
498 /* 0x3F - Reserved, Caught by default */
499 case VEC_HWERR:
500 info.si_code = BUS_ADRALN;
501 sig = SIGBUS;
502 switch (fp->seqstat & SEQSTAT_HWERRCAUSE) {
503 /* System MMR Error */
504 case (SEQSTAT_HWERRCAUSE_SYSTEM_MMR):
505 info.si_code = BUS_ADRALN;
506 sig = SIGBUS;
507 verbose_printk(KERN_NOTICE HWC_x2(KERN_NOTICE));
508 break;
509 /* External Memory Addressing Error */
510 case (SEQSTAT_HWERRCAUSE_EXTERN_ADDR):
511 info.si_code = BUS_ADRERR;
512 sig = SIGBUS;
513 verbose_printk(KERN_NOTICE HWC_x3(KERN_NOTICE));
514 break;
515 /* Performance Monitor Overflow */
516 case (SEQSTAT_HWERRCAUSE_PERF_FLOW):
517 verbose_printk(KERN_NOTICE HWC_x12(KERN_NOTICE));
518 break;
519 /* RAISE 5 instruction */
520 case (SEQSTAT_HWERRCAUSE_RAISE_5):
521 printk(KERN_NOTICE HWC_x18(KERN_NOTICE));
522 break;
523 default: /* Reserved */
524 printk(KERN_NOTICE HWC_default(KERN_NOTICE));
525 break;
526 }
527 CHK_DEBUGGER_TRAP_MAYBE();
528 break;
529 /*
530 * We should be handling all known exception types above,
531 * if we get here we hit a reserved one, so panic
532 */
533 default:
534 oops_in_progress = 1;
535 info.si_code = ILL_ILLPARAOP;
536 sig = SIGILL;
537 verbose_printk(KERN_EMERG "Caught Unhandled Exception, code = %08lx\n",
538 (fp->seqstat & SEQSTAT_EXCAUSE));
539 CHK_DEBUGGER_TRAP_MAYBE();
540 break;
541 }
542
543 BUG_ON(sig == 0);
544
545 if (sig != SIGTRAP) {
546 dump_bfin_process(fp);
547 dump_bfin_mem(fp);
548 show_regs(fp);
549
550 /* Print out the trace buffer if it makes sense */
551 #ifndef CONFIG_DEBUG_BFIN_NO_KERN_HWTRACE
552 if (trapnr == VEC_CPLB_I_M || trapnr == VEC_CPLB_M)
553 verbose_printk(KERN_NOTICE "No trace since you do not have "
554 "CONFIG_DEBUG_BFIN_NO_KERN_HWTRACE enabled\n"
555 KERN_NOTICE "\n");
556 else
557 #endif
558 dump_bfin_trace_buffer();
559
560 if (oops_in_progress) {
561 /* Dump the current kernel stack */
562 verbose_printk(KERN_NOTICE "\n" KERN_NOTICE "Kernel Stack\n");
563 show_stack(current, NULL);
564 print_modules();
565 #ifndef CONFIG_ACCESS_CHECK
566 verbose_printk(KERN_EMERG "Please turn on "
567 "CONFIG_ACCESS_CHECK\n");
568 #endif
569 panic("Kernel exception");
570 } else {
571 #ifdef CONFIG_DEBUG_VERBOSE
572 unsigned long *stack;
573 /* Dump the user space stack */
574 stack = (unsigned long *)rdusp();
575 verbose_printk(KERN_NOTICE "Userspace Stack\n");
576 show_stack(NULL, stack);
577 #endif
578 }
579 }
580
581 #ifdef CONFIG_IPIPE
582 if (!ipipe_trap_notify(fp->seqstat & 0x3f, fp))
583 #endif
584 {
585 info.si_signo = sig;
586 info.si_errno = 0;
587 info.si_addr = (void __user *)fp->pc;
588 force_sig_info(sig, &info, current);
589 }
590
591 trace_buffer_restore(j);
592 return;
593 }
594
595 /* Typical exception handling routines */
596
597 #define EXPAND_LEN ((1 << CONFIG_DEBUG_BFIN_HWTRACE_EXPAND_LEN) * 256 - 1)
598
599 /*
600 * Similar to get_user, do some address checking, then dereference
601 * Return true on sucess, false on bad address
602 */
get_instruction(unsigned short * val,unsigned short * address)603 static bool get_instruction(unsigned short *val, unsigned short *address)
604 {
605
606 unsigned long addr;
607
608 addr = (unsigned long)address;
609
610 /* Check for odd addresses */
611 if (addr & 0x1)
612 return false;
613
614 /* Check that things do not wrap around */
615 if (addr > (addr + 2))
616 return false;
617
618 /*
619 * Since we are in exception context, we need to do a little address checking
620 * We need to make sure we are only accessing valid memory, and
621 * we don't read something in the async space that can hang forever
622 */
623 if ((addr >= FIXED_CODE_START && (addr + 2) <= physical_mem_end) ||
624 #if L2_LENGTH != 0
625 (addr >= L2_START && (addr + 2) <= (L2_START + L2_LENGTH)) ||
626 #endif
627 (addr >= BOOT_ROM_START && (addr + 2) <= (BOOT_ROM_START + BOOT_ROM_LENGTH)) ||
628 #if L1_DATA_A_LENGTH != 0
629 (addr >= L1_DATA_A_START && (addr + 2) <= (L1_DATA_A_START + L1_DATA_A_LENGTH)) ||
630 #endif
631 #if L1_DATA_B_LENGTH != 0
632 (addr >= L1_DATA_B_START && (addr + 2) <= (L1_DATA_B_START + L1_DATA_B_LENGTH)) ||
633 #endif
634 (addr >= L1_SCRATCH_START && (addr + 2) <= (L1_SCRATCH_START + L1_SCRATCH_LENGTH)) ||
635 (!(bfin_read_EBIU_AMBCTL0() & B0RDYEN) &&
636 addr >= ASYNC_BANK0_BASE && (addr + 2) <= (ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE)) ||
637 (!(bfin_read_EBIU_AMBCTL0() & B1RDYEN) &&
638 addr >= ASYNC_BANK1_BASE && (addr + 2) <= (ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE)) ||
639 (!(bfin_read_EBIU_AMBCTL1() & B2RDYEN) &&
640 addr >= ASYNC_BANK2_BASE && (addr + 2) <= (ASYNC_BANK2_BASE + ASYNC_BANK1_SIZE)) ||
641 (!(bfin_read_EBIU_AMBCTL1() & B3RDYEN) &&
642 addr >= ASYNC_BANK3_BASE && (addr + 2) <= (ASYNC_BANK3_BASE + ASYNC_BANK1_SIZE))) {
643 *val = *address;
644 return true;
645 }
646
647 #if L1_CODE_LENGTH != 0
648 if (addr >= L1_CODE_START && (addr + 2) <= (L1_CODE_START + L1_CODE_LENGTH)) {
649 isram_memcpy(val, address, 2);
650 return true;
651 }
652 #endif
653
654
655 return false;
656 }
657
658 /*
659 * decode the instruction if we are printing out the trace, as it
660 * makes things easier to follow, without running it through objdump
661 * These are the normal instructions which cause change of flow, which
662 * would be at the source of the trace buffer
663 */
664 #if defined(CONFIG_DEBUG_VERBOSE) && defined(CONFIG_DEBUG_BFIN_HWTRACE_ON)
decode_instruction(unsigned short * address)665 static void decode_instruction(unsigned short *address)
666 {
667 unsigned short opcode;
668
669 if (get_instruction(&opcode, address)) {
670 if (opcode == 0x0010)
671 verbose_printk("RTS");
672 else if (opcode == 0x0011)
673 verbose_printk("RTI");
674 else if (opcode == 0x0012)
675 verbose_printk("RTX");
676 else if (opcode == 0x0013)
677 verbose_printk("RTN");
678 else if (opcode == 0x0014)
679 verbose_printk("RTE");
680 else if (opcode == 0x0025)
681 verbose_printk("EMUEXCPT");
682 else if (opcode == 0x0040 && opcode <= 0x0047)
683 verbose_printk("STI R%i", opcode & 7);
684 else if (opcode >= 0x0050 && opcode <= 0x0057)
685 verbose_printk("JUMP (P%i)", opcode & 7);
686 else if (opcode >= 0x0060 && opcode <= 0x0067)
687 verbose_printk("CALL (P%i)", opcode & 7);
688 else if (opcode >= 0x0070 && opcode <= 0x0077)
689 verbose_printk("CALL (PC+P%i)", opcode & 7);
690 else if (opcode >= 0x0080 && opcode <= 0x0087)
691 verbose_printk("JUMP (PC+P%i)", opcode & 7);
692 else if (opcode >= 0x0090 && opcode <= 0x009F)
693 verbose_printk("RAISE 0x%x", opcode & 0xF);
694 else if (opcode >= 0x00A0 && opcode <= 0x00AF)
695 verbose_printk("EXCPT 0x%x", opcode & 0xF);
696 else if ((opcode >= 0x1000 && opcode <= 0x13FF) || (opcode >= 0x1800 && opcode <= 0x1BFF))
697 verbose_printk("IF !CC JUMP");
698 else if ((opcode >= 0x1400 && opcode <= 0x17ff) || (opcode >= 0x1c00 && opcode <= 0x1fff))
699 verbose_printk("IF CC JUMP");
700 else if (opcode >= 0x2000 && opcode <= 0x2fff)
701 verbose_printk("JUMP.S");
702 else if (opcode >= 0xe080 && opcode <= 0xe0ff)
703 verbose_printk("LSETUP");
704 else if (opcode >= 0xe200 && opcode <= 0xe2ff)
705 verbose_printk("JUMP.L");
706 else if (opcode >= 0xe300 && opcode <= 0xe3ff)
707 verbose_printk("CALL pcrel");
708 else
709 verbose_printk("0x%04x", opcode);
710 }
711
712 }
713 #endif
714
dump_bfin_trace_buffer(void)715 void dump_bfin_trace_buffer(void)
716 {
717 #ifdef CONFIG_DEBUG_VERBOSE
718 #ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON
719 int tflags, i = 0;
720 char buf[150];
721 unsigned short *addr;
722 #ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND
723 int j, index;
724 #endif
725
726 trace_buffer_save(tflags);
727
728 printk(KERN_NOTICE "Hardware Trace:\n");
729
730 #ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND
731 printk(KERN_NOTICE "WARNING: Expanded trace turned on - can not trace exceptions\n");
732 #endif
733
734 if (likely(bfin_read_TBUFSTAT() & TBUFCNT)) {
735 for (; bfin_read_TBUFSTAT() & TBUFCNT; i++) {
736 decode_address(buf, (unsigned long)bfin_read_TBUF());
737 printk(KERN_NOTICE "%4i Target : %s\n", i, buf);
738 addr = (unsigned short *)bfin_read_TBUF();
739 decode_address(buf, (unsigned long)addr);
740 printk(KERN_NOTICE " Source : %s ", buf);
741 decode_instruction(addr);
742 printk("\n");
743 }
744 }
745
746 #ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND
747 if (trace_buff_offset)
748 index = trace_buff_offset / 4;
749 else
750 index = EXPAND_LEN;
751
752 j = (1 << CONFIG_DEBUG_BFIN_HWTRACE_EXPAND_LEN) * 128;
753 while (j) {
754 decode_address(buf, software_trace_buff[index]);
755 printk(KERN_NOTICE "%4i Target : %s\n", i, buf);
756 index -= 1;
757 if (index < 0 )
758 index = EXPAND_LEN;
759 decode_address(buf, software_trace_buff[index]);
760 printk(KERN_NOTICE " Source : %s ", buf);
761 decode_instruction((unsigned short *)software_trace_buff[index]);
762 printk("\n");
763 index -= 1;
764 if (index < 0)
765 index = EXPAND_LEN;
766 j--;
767 i++;
768 }
769 #endif
770
771 trace_buffer_restore(tflags);
772 #endif
773 #endif
774 }
775 EXPORT_SYMBOL(dump_bfin_trace_buffer);
776
777 /*
778 * Checks to see if the address pointed to is either a
779 * 16-bit CALL instruction, or a 32-bit CALL instruction
780 */
is_bfin_call(unsigned short * addr)781 static bool is_bfin_call(unsigned short *addr)
782 {
783 unsigned short opcode = 0, *ins_addr;
784 ins_addr = (unsigned short *)addr;
785
786 if (!get_instruction(&opcode, ins_addr))
787 return false;
788
789 if ((opcode >= 0x0060 && opcode <= 0x0067) ||
790 (opcode >= 0x0070 && opcode <= 0x0077))
791 return true;
792
793 ins_addr--;
794 if (!get_instruction(&opcode, ins_addr))
795 return false;
796
797 if (opcode >= 0xE300 && opcode <= 0xE3FF)
798 return true;
799
800 return false;
801
802 }
803
show_stack(struct task_struct * task,unsigned long * stack)804 void show_stack(struct task_struct *task, unsigned long *stack)
805 {
806 #ifdef CONFIG_PRINTK
807 unsigned int *addr, *endstack, *fp = 0, *frame;
808 unsigned short *ins_addr;
809 char buf[150];
810 unsigned int i, j, ret_addr, frame_no = 0;
811
812 /*
813 * If we have been passed a specific stack, use that one otherwise
814 * if we have been passed a task structure, use that, otherwise
815 * use the stack of where the variable "stack" exists
816 */
817
818 if (stack == NULL) {
819 if (task) {
820 /* We know this is a kernel stack, so this is the start/end */
821 stack = (unsigned long *)task->thread.ksp;
822 endstack = (unsigned int *)(((unsigned int)(stack) & ~(THREAD_SIZE - 1)) + THREAD_SIZE);
823 } else {
824 /* print out the existing stack info */
825 stack = (unsigned long *)&stack;
826 endstack = (unsigned int *)PAGE_ALIGN((unsigned int)stack);
827 }
828 } else
829 endstack = (unsigned int *)PAGE_ALIGN((unsigned int)stack);
830
831 printk(KERN_NOTICE "Stack info:\n");
832 decode_address(buf, (unsigned int)stack);
833 printk(KERN_NOTICE " SP: [0x%p] %s\n", stack, buf);
834
835 /* First thing is to look for a frame pointer */
836 for (addr = (unsigned int *)((unsigned int)stack & ~0xF); addr < endstack; addr++) {
837 if (*addr & 0x1)
838 continue;
839 ins_addr = (unsigned short *)*addr;
840 ins_addr--;
841 if (is_bfin_call(ins_addr))
842 fp = addr - 1;
843
844 if (fp) {
845 /* Let's check to see if it is a frame pointer */
846 while (fp >= (addr - 1) && fp < endstack
847 && fp && ((unsigned int) fp & 0x3) == 0)
848 fp = (unsigned int *)*fp;
849 if (fp == 0 || fp == endstack) {
850 fp = addr - 1;
851 break;
852 }
853 fp = 0;
854 }
855 }
856 if (fp) {
857 frame = fp;
858 printk(KERN_NOTICE " FP: (0x%p)\n", fp);
859 } else
860 frame = 0;
861
862 /*
863 * Now that we think we know where things are, we
864 * walk the stack again, this time printing things out
865 * incase there is no frame pointer, we still look for
866 * valid return addresses
867 */
868
869 /* First time print out data, next time, print out symbols */
870 for (j = 0; j <= 1; j++) {
871 if (j)
872 printk(KERN_NOTICE "Return addresses in stack:\n");
873 else
874 printk(KERN_NOTICE " Memory from 0x%08lx to %p", ((long unsigned int)stack & ~0xF), endstack);
875
876 fp = frame;
877 frame_no = 0;
878
879 for (addr = (unsigned int *)((unsigned int)stack & ~0xF), i = 0;
880 addr <= endstack; addr++, i++) {
881
882 ret_addr = 0;
883 if (!j && i % 8 == 0)
884 printk("\n" KERN_NOTICE "%p:",addr);
885
886 /* if it is an odd address, or zero, just skip it */
887 if (*addr & 0x1 || !*addr)
888 goto print;
889
890 ins_addr = (unsigned short *)*addr;
891
892 /* Go back one instruction, and see if it is a CALL */
893 ins_addr--;
894 ret_addr = is_bfin_call(ins_addr);
895 print:
896 if (!j && stack == (unsigned long *)addr)
897 printk("[%08x]", *addr);
898 else if (ret_addr)
899 if (j) {
900 decode_address(buf, (unsigned int)*addr);
901 if (frame == addr) {
902 printk(KERN_NOTICE " frame %2i : %s\n", frame_no, buf);
903 continue;
904 }
905 printk(KERN_NOTICE " address : %s\n", buf);
906 } else
907 printk("<%08x>", *addr);
908 else if (fp == addr) {
909 if (j)
910 frame = addr+1;
911 else
912 printk("(%08x)", *addr);
913
914 fp = (unsigned int *)*addr;
915 frame_no++;
916
917 } else if (!j)
918 printk(" %08x ", *addr);
919 }
920 if (!j)
921 printk("\n");
922 }
923 #endif
924 }
925
dump_stack(void)926 void dump_stack(void)
927 {
928 unsigned long stack;
929 #ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON
930 int tflags;
931 #endif
932 trace_buffer_save(tflags);
933 dump_bfin_trace_buffer();
934 show_stack(current, &stack);
935 trace_buffer_restore(tflags);
936 }
937 EXPORT_SYMBOL(dump_stack);
938
dump_bfin_process(struct pt_regs * fp)939 void dump_bfin_process(struct pt_regs *fp)
940 {
941 #ifdef CONFIG_DEBUG_VERBOSE
942 /* We should be able to look at fp->ipend, but we don't push it on the
943 * stack all the time, so do this until we fix that */
944 unsigned int context = bfin_read_IPEND();
945
946 if (oops_in_progress)
947 verbose_printk(KERN_EMERG "Kernel OOPS in progress\n");
948
949 if (context & 0x0020 && (fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR)
950 verbose_printk(KERN_NOTICE "HW Error context\n");
951 else if (context & 0x0020)
952 verbose_printk(KERN_NOTICE "Deferred Exception context\n");
953 else if (context & 0x3FC0)
954 verbose_printk(KERN_NOTICE "Interrupt context\n");
955 else if (context & 0x4000)
956 verbose_printk(KERN_NOTICE "Deferred Interrupt context\n");
957 else if (context & 0x8000)
958 verbose_printk(KERN_NOTICE "Kernel process context\n");
959
960 /* Because we are crashing, and pointers could be bad, we check things
961 * pretty closely before we use them
962 */
963 if ((unsigned long)current >= FIXED_CODE_START &&
964 !((unsigned long)current & 0x3) && current->pid) {
965 verbose_printk(KERN_NOTICE "CURRENT PROCESS:\n");
966 if (current->comm >= (char *)FIXED_CODE_START)
967 verbose_printk(KERN_NOTICE "COMM=%s PID=%d\n",
968 current->comm, current->pid);
969 else
970 verbose_printk(KERN_NOTICE "COMM= invalid\n");
971
972 printk(KERN_NOTICE "CPU = %d\n", current_thread_info()->cpu);
973 if (!((unsigned long)current->mm & 0x3) && (unsigned long)current->mm >= FIXED_CODE_START)
974 verbose_printk(KERN_NOTICE "TEXT = 0x%p-0x%p DATA = 0x%p-0x%p\n"
975 KERN_NOTICE " BSS = 0x%p-0x%p USER-STACK = 0x%p\n"
976 KERN_NOTICE "\n",
977 (void *)current->mm->start_code,
978 (void *)current->mm->end_code,
979 (void *)current->mm->start_data,
980 (void *)current->mm->end_data,
981 (void *)current->mm->end_data,
982 (void *)current->mm->brk,
983 (void *)current->mm->start_stack);
984 else
985 verbose_printk(KERN_NOTICE "invalid mm\n");
986 } else
987 verbose_printk(KERN_NOTICE "\n" KERN_NOTICE
988 "No Valid process in current context\n");
989 #endif
990 }
991
dump_bfin_mem(struct pt_regs * fp)992 void dump_bfin_mem(struct pt_regs *fp)
993 {
994 #ifdef CONFIG_DEBUG_VERBOSE
995 unsigned short *addr, *erraddr, val = 0, err = 0;
996 char sti = 0, buf[6];
997
998 erraddr = (void *)fp->pc;
999
1000 verbose_printk(KERN_NOTICE "return address: [0x%p]; contents of:", erraddr);
1001
1002 for (addr = (unsigned short *)((unsigned long)erraddr & ~0xF) - 0x10;
1003 addr < (unsigned short *)((unsigned long)erraddr & ~0xF) + 0x10;
1004 addr++) {
1005 if (!((unsigned long)addr & 0xF))
1006 verbose_printk("\n" KERN_NOTICE "0x%p: ", addr);
1007
1008 if (!get_instruction(&val, addr)) {
1009 val = 0;
1010 sprintf(buf, "????");
1011 } else
1012 sprintf(buf, "%04x", val);
1013
1014 if (addr == erraddr) {
1015 verbose_printk("[%s]", buf);
1016 err = val;
1017 } else
1018 verbose_printk(" %s ", buf);
1019
1020 /* Do any previous instructions turn on interrupts? */
1021 if (addr <= erraddr && /* in the past */
1022 ((val >= 0x0040 && val <= 0x0047) || /* STI instruction */
1023 val == 0x017b)) /* [SP++] = RETI */
1024 sti = 1;
1025 }
1026
1027 verbose_printk("\n");
1028
1029 /* Hardware error interrupts can be deferred */
1030 if (unlikely(sti && (fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR &&
1031 oops_in_progress)){
1032 verbose_printk(KERN_NOTICE "Looks like this was a deferred error - sorry\n");
1033 #ifndef CONFIG_DEBUG_HWERR
1034 verbose_printk(KERN_NOTICE "The remaining message may be meaningless\n"
1035 KERN_NOTICE "You should enable CONFIG_DEBUG_HWERR to get a"
1036 " better idea where it came from\n");
1037 #else
1038 /* If we are handling only one peripheral interrupt
1039 * and current mm and pid are valid, and the last error
1040 * was in that user space process's text area
1041 * print it out - because that is where the problem exists
1042 */
1043 if ((!(((fp)->ipend & ~0x30) & (((fp)->ipend & ~0x30) - 1))) &&
1044 (current->pid && current->mm)) {
1045 /* And the last RETI points to the current userspace context */
1046 if ((fp + 1)->pc >= current->mm->start_code &&
1047 (fp + 1)->pc <= current->mm->end_code) {
1048 verbose_printk(KERN_NOTICE "It might be better to look around here : \n");
1049 verbose_printk(KERN_NOTICE "-------------------------------------------\n");
1050 show_regs(fp + 1);
1051 verbose_printk(KERN_NOTICE "-------------------------------------------\n");
1052 }
1053 }
1054 #endif
1055 }
1056 #endif
1057 }
1058
show_regs(struct pt_regs * fp)1059 void show_regs(struct pt_regs *fp)
1060 {
1061 #ifdef CONFIG_DEBUG_VERBOSE
1062 char buf [150];
1063 struct irqaction *action;
1064 unsigned int i;
1065 unsigned long flags = 0;
1066 unsigned int cpu = smp_processor_id();
1067 unsigned char in_atomic = (bfin_read_IPEND() & 0x10) || in_atomic();
1068
1069 verbose_printk(KERN_NOTICE "\n" KERN_NOTICE "SEQUENCER STATUS:\t\t%s\n", print_tainted());
1070 verbose_printk(KERN_NOTICE " SEQSTAT: %08lx IPEND: %04lx SYSCFG: %04lx\n",
1071 (long)fp->seqstat, fp->ipend, fp->syscfg);
1072 if ((fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR) {
1073 verbose_printk(KERN_NOTICE " HWERRCAUSE: 0x%lx\n",
1074 (fp->seqstat & SEQSTAT_HWERRCAUSE) >> 14);
1075 #ifdef EBIU_ERRMST
1076 /* If the error was from the EBIU, print it out */
1077 if (bfin_read_EBIU_ERRMST() & CORE_ERROR) {
1078 verbose_printk(KERN_NOTICE " EBIU Error Reason : 0x%04x\n",
1079 bfin_read_EBIU_ERRMST());
1080 verbose_printk(KERN_NOTICE " EBIU Error Address : 0x%08x\n",
1081 bfin_read_EBIU_ERRADD());
1082 }
1083 #endif
1084 }
1085 verbose_printk(KERN_NOTICE " EXCAUSE : 0x%lx\n",
1086 fp->seqstat & SEQSTAT_EXCAUSE);
1087 for (i = 2; i <= 15 ; i++) {
1088 if (fp->ipend & (1 << i)) {
1089 if (i != 4) {
1090 decode_address(buf, bfin_read32(EVT0 + 4*i));
1091 verbose_printk(KERN_NOTICE " physical IVG%i asserted : %s\n", i, buf);
1092 } else
1093 verbose_printk(KERN_NOTICE " interrupts disabled\n");
1094 }
1095 }
1096
1097 /* if no interrupts are going off, don't print this out */
1098 if (fp->ipend & ~0x3F) {
1099 for (i = 0; i < (NR_IRQS - 1); i++) {
1100 if (!in_atomic)
1101 spin_lock_irqsave(&irq_desc[i].lock, flags);
1102
1103 action = irq_desc[i].action;
1104 if (!action)
1105 goto unlock;
1106
1107 decode_address(buf, (unsigned int)action->handler);
1108 verbose_printk(KERN_NOTICE " logical irq %3d mapped : %s", i, buf);
1109 for (action = action->next; action; action = action->next) {
1110 decode_address(buf, (unsigned int)action->handler);
1111 verbose_printk(", %s", buf);
1112 }
1113 verbose_printk("\n");
1114 unlock:
1115 if (!in_atomic)
1116 spin_unlock_irqrestore(&irq_desc[i].lock, flags);
1117 }
1118 }
1119
1120 decode_address(buf, fp->rete);
1121 verbose_printk(KERN_NOTICE " RETE: %s\n", buf);
1122 decode_address(buf, fp->retn);
1123 verbose_printk(KERN_NOTICE " RETN: %s\n", buf);
1124 decode_address(buf, fp->retx);
1125 verbose_printk(KERN_NOTICE " RETX: %s\n", buf);
1126 decode_address(buf, fp->rets);
1127 verbose_printk(KERN_NOTICE " RETS: %s\n", buf);
1128 decode_address(buf, fp->pc);
1129 verbose_printk(KERN_NOTICE " PC : %s\n", buf);
1130
1131 if (((long)fp->seqstat & SEQSTAT_EXCAUSE) &&
1132 (((long)fp->seqstat & SEQSTAT_EXCAUSE) != VEC_HWERR)) {
1133 decode_address(buf, cpu_pda[cpu].dcplb_fault_addr);
1134 verbose_printk(KERN_NOTICE "DCPLB_FAULT_ADDR: %s\n", buf);
1135 decode_address(buf, cpu_pda[cpu].icplb_fault_addr);
1136 verbose_printk(KERN_NOTICE "ICPLB_FAULT_ADDR: %s\n", buf);
1137 }
1138
1139 verbose_printk(KERN_NOTICE "\n" KERN_NOTICE "PROCESSOR STATE:\n");
1140 verbose_printk(KERN_NOTICE " R0 : %08lx R1 : %08lx R2 : %08lx R3 : %08lx\n",
1141 fp->r0, fp->r1, fp->r2, fp->r3);
1142 verbose_printk(KERN_NOTICE " R4 : %08lx R5 : %08lx R6 : %08lx R7 : %08lx\n",
1143 fp->r4, fp->r5, fp->r6, fp->r7);
1144 verbose_printk(KERN_NOTICE " P0 : %08lx P1 : %08lx P2 : %08lx P3 : %08lx\n",
1145 fp->p0, fp->p1, fp->p2, fp->p3);
1146 verbose_printk(KERN_NOTICE " P4 : %08lx P5 : %08lx FP : %08lx SP : %08lx\n",
1147 fp->p4, fp->p5, fp->fp, (long)fp);
1148 verbose_printk(KERN_NOTICE " LB0: %08lx LT0: %08lx LC0: %08lx\n",
1149 fp->lb0, fp->lt0, fp->lc0);
1150 verbose_printk(KERN_NOTICE " LB1: %08lx LT1: %08lx LC1: %08lx\n",
1151 fp->lb1, fp->lt1, fp->lc1);
1152 verbose_printk(KERN_NOTICE " B0 : %08lx L0 : %08lx M0 : %08lx I0 : %08lx\n",
1153 fp->b0, fp->l0, fp->m0, fp->i0);
1154 verbose_printk(KERN_NOTICE " B1 : %08lx L1 : %08lx M1 : %08lx I1 : %08lx\n",
1155 fp->b1, fp->l1, fp->m1, fp->i1);
1156 verbose_printk(KERN_NOTICE " B2 : %08lx L2 : %08lx M2 : %08lx I2 : %08lx\n",
1157 fp->b2, fp->l2, fp->m2, fp->i2);
1158 verbose_printk(KERN_NOTICE " B3 : %08lx L3 : %08lx M3 : %08lx I3 : %08lx\n",
1159 fp->b3, fp->l3, fp->m3, fp->i3);
1160 verbose_printk(KERN_NOTICE "A0.w: %08lx A0.x: %08lx A1.w: %08lx A1.x: %08lx\n",
1161 fp->a0w, fp->a0x, fp->a1w, fp->a1x);
1162
1163 verbose_printk(KERN_NOTICE "USP : %08lx ASTAT: %08lx\n",
1164 rdusp(), fp->astat);
1165
1166 verbose_printk(KERN_NOTICE "\n");
1167 #endif
1168 }
1169
1170 #ifdef CONFIG_SYS_BFIN_SPINLOCK_L1
1171 asmlinkage int sys_bfin_spinlock(int *spinlock)__attribute__((l1_text));
1172 #endif
1173
1174 static DEFINE_SPINLOCK(bfin_spinlock_lock);
1175
sys_bfin_spinlock(int * p)1176 asmlinkage int sys_bfin_spinlock(int *p)
1177 {
1178 int ret, tmp = 0;
1179
1180 spin_lock(&bfin_spinlock_lock); /* This would also hold kernel preemption. */
1181 ret = get_user(tmp, p);
1182 if (likely(ret == 0)) {
1183 if (unlikely(tmp))
1184 ret = 1;
1185 else
1186 put_user(1, p);
1187 }
1188 spin_unlock(&bfin_spinlock_lock);
1189 return ret;
1190 }
1191
bfin_request_exception(unsigned int exception,void (* handler)(void))1192 int bfin_request_exception(unsigned int exception, void (*handler)(void))
1193 {
1194 void (*curr_handler)(void);
1195
1196 if (exception > 0x3F)
1197 return -EINVAL;
1198
1199 curr_handler = ex_table[exception];
1200
1201 if (curr_handler != ex_replaceable)
1202 return -EBUSY;
1203
1204 ex_table[exception] = handler;
1205
1206 return 0;
1207 }
1208 EXPORT_SYMBOL(bfin_request_exception);
1209
bfin_free_exception(unsigned int exception,void (* handler)(void))1210 int bfin_free_exception(unsigned int exception, void (*handler)(void))
1211 {
1212 void (*curr_handler)(void);
1213
1214 if (exception > 0x3F)
1215 return -EINVAL;
1216
1217 curr_handler = ex_table[exception];
1218
1219 if (curr_handler != handler)
1220 return -EBUSY;
1221
1222 ex_table[exception] = ex_replaceable;
1223
1224 return 0;
1225 }
1226 EXPORT_SYMBOL(bfin_free_exception);
1227
panic_cplb_error(int cplb_panic,struct pt_regs * fp)1228 void panic_cplb_error(int cplb_panic, struct pt_regs *fp)
1229 {
1230 switch (cplb_panic) {
1231 case CPLB_NO_UNLOCKED:
1232 printk(KERN_EMERG "All CPLBs are locked\n");
1233 break;
1234 case CPLB_PROT_VIOL:
1235 return;
1236 case CPLB_NO_ADDR_MATCH:
1237 return;
1238 case CPLB_UNKNOWN_ERR:
1239 printk(KERN_EMERG "Unknown CPLB Exception\n");
1240 break;
1241 }
1242
1243 oops_in_progress = 1;
1244
1245 dump_bfin_process(fp);
1246 dump_bfin_mem(fp);
1247 show_regs(fp);
1248 dump_stack();
1249 panic("Unrecoverable event\n");
1250 }
1251