• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * File:         arch/blackfin/kernel/traps.c
3  * Based on:
4  * Author:       Hamish Macdonald
5  *
6  * Created:
7  * Description:  uses S/W interrupt 15 for the system calls
8  *
9  * Modified:
10  *               Copyright 2004-2006 Analog Devices Inc.
11  *
12  * Bugs:         Enter bugs at http://blackfin.uclinux.org/
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License as published by
16  * the Free Software Foundation; either version 2 of the License, or
17  * (at your option) any later version.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with this program; if not, see the file COPYING, or write
26  * to the Free Software Foundation, Inc.,
27  * 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
28  */
29 
30 #include <linux/uaccess.h>
31 #include <linux/interrupt.h>
32 #include <linux/module.h>
33 #include <linux/kallsyms.h>
34 #include <linux/fs.h>
35 #include <linux/rbtree.h>
36 #include <asm/traps.h>
37 #include <asm/cacheflush.h>
38 #include <asm/cplb.h>
39 #include <asm/blackfin.h>
40 #include <asm/irq_handler.h>
41 #include <linux/irq.h>
42 #include <asm/trace.h>
43 #include <asm/fixed_code.h>
44 
45 #ifdef CONFIG_KGDB
46 # include <linux/kgdb.h>
47 
48 # define CHK_DEBUGGER_TRAP() \
49 	do { \
50 		kgdb_handle_exception(trapnr, sig, info.si_code, fp); \
51 	} while (0)
52 # define CHK_DEBUGGER_TRAP_MAYBE() \
53 	do { \
54 		if (kgdb_connected) \
55 			CHK_DEBUGGER_TRAP(); \
56 	} while (0)
57 #else
58 # define CHK_DEBUGGER_TRAP() do { } while (0)
59 # define CHK_DEBUGGER_TRAP_MAYBE() do { } while (0)
60 #endif
61 
62 
63 #ifdef CONFIG_DEBUG_VERBOSE
64 #define verbose_printk(fmt, arg...) \
65 	printk(fmt, ##arg)
66 #else
67 #define verbose_printk(fmt, arg...) \
68 	({ if (0) printk(fmt, ##arg); 0; })
69 #endif
70 
71 /* Initiate the event table handler */
trap_init(void)72 void __init trap_init(void)
73 {
74 	CSYNC();
75 	bfin_write_EVT3(trap);
76 	CSYNC();
77 }
78 
decode_address(char * buf,unsigned long address)79 static void decode_address(char *buf, unsigned long address)
80 {
81 #ifdef CONFIG_DEBUG_VERBOSE
82 	struct vm_list_struct *vml;
83 	struct task_struct *p;
84 	struct mm_struct *mm;
85 	unsigned long flags, offset;
86 	unsigned char in_atomic = (bfin_read_IPEND() & 0x10) || in_atomic();
87 	struct rb_node *n;
88 
89 #ifdef CONFIG_KALLSYMS
90 	unsigned long symsize;
91 	const char *symname;
92 	char *modname;
93 	char *delim = ":";
94 	char namebuf[128];
95 
96 	/* look up the address and see if we are in kernel space */
97 	symname = kallsyms_lookup(address, &symsize, &offset, &modname, namebuf);
98 
99 	if (symname) {
100 		/* yeah! kernel space! */
101 		if (!modname)
102 			modname = delim = "";
103 		sprintf(buf, "<0x%p> { %s%s%s%s + 0x%lx }",
104 		              (void *)address, delim, modname, delim, symname,
105 		              (unsigned long)offset);
106 		return;
107 
108 	}
109 #endif
110 
111 	/* Problem in fixed code section? */
112 	if (address >= FIXED_CODE_START && address < FIXED_CODE_END) {
113 		sprintf(buf, "<0x%p> /* Maybe fixed code section */", (void *)address);
114 		return;
115 	}
116 
117 	/* Problem somewhere before the kernel start address */
118 	if (address < CONFIG_BOOT_LOAD) {
119 		sprintf(buf, "<0x%p> /* Maybe null pointer? */", (void *)address);
120 		return;
121 	}
122 
123 	/* looks like we're off in user-land, so let's walk all the
124 	 * mappings of all our processes and see if we can't be a whee
125 	 * bit more specific
126 	 */
127 	write_lock_irqsave(&tasklist_lock, flags);
128 	for_each_process(p) {
129 		mm = (in_atomic ? p->mm : get_task_mm(p));
130 		if (!mm)
131 			continue;
132 
133 		for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
134 			struct vm_area_struct *vma;
135 
136 			vma = rb_entry(n, struct vm_area_struct, vm_rb);
137 
138 			if (address >= vma->vm_start && address < vma->vm_end) {
139 				char _tmpbuf[256];
140 				char *name = p->comm;
141 				struct file *file = vma->vm_file;
142 
143 				if (file) {
144 					char *d_name = d_path(&file->f_path, _tmpbuf,
145 						      sizeof(_tmpbuf));
146 					if (!IS_ERR(d_name))
147 						name = d_name;
148 				}
149 
150 				/* FLAT does not have its text aligned to the start of
151 				 * the map while FDPIC ELF does ...
152 				 */
153 
154 				/* before we can check flat/fdpic, we need to
155 				 * make sure current is valid
156 				 */
157 				if ((unsigned long)current >= FIXED_CODE_START &&
158 				    !((unsigned long)current & 0x3)) {
159 					if (current->mm &&
160 					    (address > current->mm->start_code) &&
161 					    (address < current->mm->end_code))
162 						offset = address - current->mm->start_code;
163 					else
164 						offset = (address - vma->vm_start) +
165 							 (vma->vm_pgoff << PAGE_SHIFT);
166 
167 					sprintf(buf, "<0x%p> [ %s + 0x%lx ]",
168 						(void *)address, name, offset);
169 				} else
170 					sprintf(buf, "<0x%p> [ %s vma:0x%lx-0x%lx]",
171 						(void *)address, name,
172 						vma->vm_start, vma->vm_end);
173 
174 				if (!in_atomic)
175 					mmput(mm);
176 
177 				if (!strlen(buf))
178 					sprintf(buf, "<0x%p> [ %s ] dynamic memory", (void *)address, name);
179 
180 				goto done;
181 			}
182 		}
183 		if (!in_atomic)
184 			mmput(mm);
185 	}
186 
187 	/* we were unable to find this address anywhere */
188 	sprintf(buf, "<0x%p> /* kernel dynamic memory */", (void *)address);
189 
190 done:
191 	write_unlock_irqrestore(&tasklist_lock, flags);
192 #else
193 	sprintf(buf, " ");
194 #endif
195 }
196 
double_fault_c(struct pt_regs * fp)197 asmlinkage void double_fault_c(struct pt_regs *fp)
198 {
199 	console_verbose();
200 	oops_in_progress = 1;
201 #ifdef CONFIG_DEBUG_VERBOSE
202 	printk(KERN_EMERG "\n" KERN_EMERG "Double Fault\n");
203 #ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
204 	if (((long)fp->seqstat &  SEQSTAT_EXCAUSE) == VEC_UNCOV) {
205 		unsigned int cpu = smp_processor_id();
206 		char buf[150];
207 		decode_address(buf, cpu_pda[cpu].retx);
208 		printk(KERN_EMERG "While handling exception (EXCAUSE = 0x%x) at %s:\n",
209 			(unsigned int)cpu_pda[cpu].seqstat & SEQSTAT_EXCAUSE, buf);
210 		decode_address(buf, cpu_pda[cpu].dcplb_fault_addr);
211 		printk(KERN_NOTICE "   DCPLB_FAULT_ADDR: %s\n", buf);
212 		decode_address(buf, cpu_pda[cpu].icplb_fault_addr);
213 		printk(KERN_NOTICE "   ICPLB_FAULT_ADDR: %s\n", buf);
214 
215 		decode_address(buf, fp->retx);
216 		printk(KERN_NOTICE "The instruction at %s caused a double exception\n", buf);
217 	} else
218 #endif
219 	{
220 		dump_bfin_process(fp);
221 		dump_bfin_mem(fp);
222 		show_regs(fp);
223 	}
224 #endif
225 	panic("Double Fault - unrecoverable event\n");
226 
227 }
228 
trap_c(struct pt_regs * fp)229 asmlinkage void trap_c(struct pt_regs *fp)
230 {
231 #ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON
232 	int j;
233 #endif
234 #ifdef CONFIG_DEBUG_HUNT_FOR_ZERO
235 	unsigned int cpu = smp_processor_id();
236 #endif
237 	int sig = 0;
238 	siginfo_t info;
239 	unsigned long trapnr = fp->seqstat & SEQSTAT_EXCAUSE;
240 
241 	trace_buffer_save(j);
242 
243 	/* Important - be very careful dereferncing pointers - will lead to
244 	 * double faults if the stack has become corrupt
245 	 */
246 
247 	/* If the fault was caused by a kernel thread, or interrupt handler
248 	 * we will kernel panic, so the system reboots.
249 	 * If KGDB is enabled, don't set this for kernel breakpoints
250 	*/
251 
252 	/* TODO: check to see if we are in some sort of deferred HWERR
253 	 * that we should be able to recover from, not kernel panic
254 	 */
255 	if ((bfin_read_IPEND() & 0xFFC0) && (trapnr != VEC_STEP)
256 #ifdef CONFIG_KGDB
257 		&& (trapnr != VEC_EXCPT02)
258 #endif
259 	){
260 		console_verbose();
261 		oops_in_progress = 1;
262 	} else if (current) {
263 		if (current->mm == NULL) {
264 			console_verbose();
265 			oops_in_progress = 1;
266 		}
267 	}
268 
269 	/* trap_c() will be called for exceptions. During exceptions
270 	 * processing, the pc value should be set with retx value.
271 	 * With this change we can cleanup some code in signal.c- TODO
272 	 */
273 	fp->orig_pc = fp->retx;
274 	/* printk("exception: 0x%x, ipend=%x, reti=%x, retx=%x\n",
275 		trapnr, fp->ipend, fp->pc, fp->retx); */
276 
277 	/* send the appropriate signal to the user program */
278 	switch (trapnr) {
279 
280 	/* This table works in conjuction with the one in ./mach-common/entry.S
281 	 * Some exceptions are handled there (in assembly, in exception space)
282 	 * Some are handled here, (in C, in interrupt space)
283 	 * Some, like CPLB, are handled in both, where the normal path is
284 	 * handled in assembly/exception space, and the error path is handled
285 	 * here
286 	 */
287 
288 	/* 0x00 - Linux Syscall, getting here is an error */
289 	/* 0x01 - userspace gdb breakpoint, handled here */
290 	case VEC_EXCPT01:
291 		info.si_code = TRAP_ILLTRAP;
292 		sig = SIGTRAP;
293 		CHK_DEBUGGER_TRAP_MAYBE();
294 		/* Check if this is a breakpoint in kernel space */
295 		if (fp->ipend & 0xffc0)
296 			return;
297 		else
298 			break;
299 	/* 0x03 - User Defined, userspace stack overflow */
300 	case VEC_EXCPT03:
301 		info.si_code = SEGV_STACKFLOW;
302 		sig = SIGSEGV;
303 		verbose_printk(KERN_NOTICE EXC_0x03(KERN_NOTICE));
304 		CHK_DEBUGGER_TRAP_MAYBE();
305 		break;
306 	/* 0x02 - KGDB initial connection and break signal trap */
307 	case VEC_EXCPT02:
308 #ifdef CONFIG_KGDB
309 		info.si_code = TRAP_ILLTRAP;
310 		sig = SIGTRAP;
311 		CHK_DEBUGGER_TRAP();
312 		return;
313 #endif
314 	/* 0x04 - User Defined */
315 	/* 0x05 - User Defined */
316 	/* 0x06 - User Defined */
317 	/* 0x07 - User Defined */
318 	/* 0x08 - User Defined */
319 	/* 0x09 - User Defined */
320 	/* 0x0A - User Defined */
321 	/* 0x0B - User Defined */
322 	/* 0x0C - User Defined */
323 	/* 0x0D - User Defined */
324 	/* 0x0E - User Defined */
325 	/* 0x0F - User Defined */
326 	/* If we got here, it is most likely that someone was trying to use a
327 	 * custom exception handler, and it is not actually installed properly
328 	 */
329 	case VEC_EXCPT04 ... VEC_EXCPT15:
330 		info.si_code = ILL_ILLPARAOP;
331 		sig = SIGILL;
332 		verbose_printk(KERN_NOTICE EXC_0x04(KERN_NOTICE));
333 		CHK_DEBUGGER_TRAP_MAYBE();
334 		break;
335 	/* 0x10 HW Single step, handled here */
336 	case VEC_STEP:
337 		info.si_code = TRAP_STEP;
338 		sig = SIGTRAP;
339 		CHK_DEBUGGER_TRAP_MAYBE();
340 		/* Check if this is a single step in kernel space */
341 		if (fp->ipend & 0xffc0)
342 			return;
343 		else
344 			break;
345 	/* 0x11 - Trace Buffer Full, handled here */
346 	case VEC_OVFLOW:
347 		info.si_code = TRAP_TRACEFLOW;
348 		sig = SIGTRAP;
349 		verbose_printk(KERN_NOTICE EXC_0x11(KERN_NOTICE));
350 		CHK_DEBUGGER_TRAP_MAYBE();
351 		break;
352 	/* 0x12 - Reserved, Caught by default */
353 	/* 0x13 - Reserved, Caught by default */
354 	/* 0x14 - Reserved, Caught by default */
355 	/* 0x15 - Reserved, Caught by default */
356 	/* 0x16 - Reserved, Caught by default */
357 	/* 0x17 - Reserved, Caught by default */
358 	/* 0x18 - Reserved, Caught by default */
359 	/* 0x19 - Reserved, Caught by default */
360 	/* 0x1A - Reserved, Caught by default */
361 	/* 0x1B - Reserved, Caught by default */
362 	/* 0x1C - Reserved, Caught by default */
363 	/* 0x1D - Reserved, Caught by default */
364 	/* 0x1E - Reserved, Caught by default */
365 	/* 0x1F - Reserved, Caught by default */
366 	/* 0x20 - Reserved, Caught by default */
367 	/* 0x21 - Undefined Instruction, handled here */
368 	case VEC_UNDEF_I:
369 		info.si_code = ILL_ILLOPC;
370 		sig = SIGILL;
371 		verbose_printk(KERN_NOTICE EXC_0x21(KERN_NOTICE));
372 		CHK_DEBUGGER_TRAP_MAYBE();
373 		break;
374 	/* 0x22 - Illegal Instruction Combination, handled here */
375 	case VEC_ILGAL_I:
376 		info.si_code = ILL_ILLPARAOP;
377 		sig = SIGILL;
378 		verbose_printk(KERN_NOTICE EXC_0x22(KERN_NOTICE));
379 		CHK_DEBUGGER_TRAP_MAYBE();
380 		break;
381 	/* 0x23 - Data CPLB protection violation, handled here */
382 	case VEC_CPLB_VL:
383 		info.si_code = ILL_CPLB_VI;
384 		sig = SIGBUS;
385 		verbose_printk(KERN_NOTICE EXC_0x23(KERN_NOTICE));
386 		CHK_DEBUGGER_TRAP_MAYBE();
387 		break;
388 	/* 0x24 - Data access misaligned, handled here */
389 	case VEC_MISALI_D:
390 		info.si_code = BUS_ADRALN;
391 		sig = SIGBUS;
392 		verbose_printk(KERN_NOTICE EXC_0x24(KERN_NOTICE));
393 		CHK_DEBUGGER_TRAP_MAYBE();
394 		break;
395 	/* 0x25 - Unrecoverable Event, handled here */
396 	case VEC_UNCOV:
397 		info.si_code = ILL_ILLEXCPT;
398 		sig = SIGILL;
399 		verbose_printk(KERN_NOTICE EXC_0x25(KERN_NOTICE));
400 		CHK_DEBUGGER_TRAP_MAYBE();
401 		break;
402 	/* 0x26 - Data CPLB Miss, normal case is handled in _cplb_hdr,
403 		error case is handled here */
404 	case VEC_CPLB_M:
405 		info.si_code = BUS_ADRALN;
406 		sig = SIGBUS;
407 		verbose_printk(KERN_NOTICE EXC_0x26(KERN_NOTICE));
408 		break;
409 	/* 0x27 - Data CPLB Multiple Hits - Linux Trap Zero, handled here */
410 	case VEC_CPLB_MHIT:
411 		info.si_code = ILL_CPLB_MULHIT;
412 		sig = SIGSEGV;
413 #ifdef CONFIG_DEBUG_HUNT_FOR_ZERO
414 		if (cpu_pda[cpu].dcplb_fault_addr < FIXED_CODE_START)
415 			verbose_printk(KERN_NOTICE "NULL pointer access\n");
416 		else
417 #endif
418 			verbose_printk(KERN_NOTICE EXC_0x27(KERN_NOTICE));
419 		CHK_DEBUGGER_TRAP_MAYBE();
420 		break;
421 	/* 0x28 - Emulation Watchpoint, handled here */
422 	case VEC_WATCH:
423 		info.si_code = TRAP_WATCHPT;
424 		sig = SIGTRAP;
425 		pr_debug(EXC_0x28(KERN_DEBUG));
426 		CHK_DEBUGGER_TRAP_MAYBE();
427 		/* Check if this is a watchpoint in kernel space */
428 		if (fp->ipend & 0xffc0)
429 			return;
430 		else
431 			break;
432 #ifdef CONFIG_BF535
433 	/* 0x29 - Instruction fetch access error (535 only) */
434 	case VEC_ISTRU_VL:      /* ADSP-BF535 only (MH) */
435 		info.si_code = BUS_OPFETCH;
436 		sig = SIGBUS;
437 		verbose_printk(KERN_NOTICE "BF535: VEC_ISTRU_VL\n");
438 		CHK_DEBUGGER_TRAP_MAYBE();
439 		break;
440 #else
441 	/* 0x29 - Reserved, Caught by default */
442 #endif
443 	/* 0x2A - Instruction fetch misaligned, handled here */
444 	case VEC_MISALI_I:
445 		info.si_code = BUS_ADRALN;
446 		sig = SIGBUS;
447 		verbose_printk(KERN_NOTICE EXC_0x2A(KERN_NOTICE));
448 		CHK_DEBUGGER_TRAP_MAYBE();
449 		break;
450 	/* 0x2B - Instruction CPLB protection violation, handled here */
451 	case VEC_CPLB_I_VL:
452 		info.si_code = ILL_CPLB_VI;
453 		sig = SIGBUS;
454 		verbose_printk(KERN_NOTICE EXC_0x2B(KERN_NOTICE));
455 		CHK_DEBUGGER_TRAP_MAYBE();
456 		break;
457 	/* 0x2C - Instruction CPLB miss, handled in _cplb_hdr */
458 	case VEC_CPLB_I_M:
459 		info.si_code = ILL_CPLB_MISS;
460 		sig = SIGBUS;
461 		verbose_printk(KERN_NOTICE EXC_0x2C(KERN_NOTICE));
462 		break;
463 	/* 0x2D - Instruction CPLB Multiple Hits, handled here */
464 	case VEC_CPLB_I_MHIT:
465 		info.si_code = ILL_CPLB_MULHIT;
466 		sig = SIGSEGV;
467 #ifdef CONFIG_DEBUG_HUNT_FOR_ZERO
468 		if (cpu_pda[cpu].icplb_fault_addr < FIXED_CODE_START)
469 			verbose_printk(KERN_NOTICE "Jump to NULL address\n");
470 		else
471 #endif
472 			verbose_printk(KERN_NOTICE EXC_0x2D(KERN_NOTICE));
473 		CHK_DEBUGGER_TRAP_MAYBE();
474 		break;
475 	/* 0x2E - Illegal use of Supervisor Resource, handled here */
476 	case VEC_ILL_RES:
477 		info.si_code = ILL_PRVOPC;
478 		sig = SIGILL;
479 		verbose_printk(KERN_NOTICE EXC_0x2E(KERN_NOTICE));
480 		CHK_DEBUGGER_TRAP_MAYBE();
481 		break;
482 	/* 0x2F - Reserved, Caught by default */
483 	/* 0x30 - Reserved, Caught by default */
484 	/* 0x31 - Reserved, Caught by default */
485 	/* 0x32 - Reserved, Caught by default */
486 	/* 0x33 - Reserved, Caught by default */
487 	/* 0x34 - Reserved, Caught by default */
488 	/* 0x35 - Reserved, Caught by default */
489 	/* 0x36 - Reserved, Caught by default */
490 	/* 0x37 - Reserved, Caught by default */
491 	/* 0x38 - Reserved, Caught by default */
492 	/* 0x39 - Reserved, Caught by default */
493 	/* 0x3A - Reserved, Caught by default */
494 	/* 0x3B - Reserved, Caught by default */
495 	/* 0x3C - Reserved, Caught by default */
496 	/* 0x3D - Reserved, Caught by default */
497 	/* 0x3E - Reserved, Caught by default */
498 	/* 0x3F - Reserved, Caught by default */
499 	case VEC_HWERR:
500 		info.si_code = BUS_ADRALN;
501 		sig = SIGBUS;
502 		switch (fp->seqstat & SEQSTAT_HWERRCAUSE) {
503 		/* System MMR Error */
504 		case (SEQSTAT_HWERRCAUSE_SYSTEM_MMR):
505 			info.si_code = BUS_ADRALN;
506 			sig = SIGBUS;
507 			verbose_printk(KERN_NOTICE HWC_x2(KERN_NOTICE));
508 			break;
509 		/* External Memory Addressing Error */
510 		case (SEQSTAT_HWERRCAUSE_EXTERN_ADDR):
511 			info.si_code = BUS_ADRERR;
512 			sig = SIGBUS;
513 			verbose_printk(KERN_NOTICE HWC_x3(KERN_NOTICE));
514 			break;
515 		/* Performance Monitor Overflow */
516 		case (SEQSTAT_HWERRCAUSE_PERF_FLOW):
517 			verbose_printk(KERN_NOTICE HWC_x12(KERN_NOTICE));
518 			break;
519 		/* RAISE 5 instruction */
520 		case (SEQSTAT_HWERRCAUSE_RAISE_5):
521 			printk(KERN_NOTICE HWC_x18(KERN_NOTICE));
522 			break;
523 		default:        /* Reserved */
524 			printk(KERN_NOTICE HWC_default(KERN_NOTICE));
525 			break;
526 		}
527 		CHK_DEBUGGER_TRAP_MAYBE();
528 		break;
529 	/*
530 	 * We should be handling all known exception types above,
531 	 * if we get here we hit a reserved one, so panic
532 	 */
533 	default:
534 		oops_in_progress = 1;
535 		info.si_code = ILL_ILLPARAOP;
536 		sig = SIGILL;
537 		verbose_printk(KERN_EMERG "Caught Unhandled Exception, code = %08lx\n",
538 			(fp->seqstat & SEQSTAT_EXCAUSE));
539 		CHK_DEBUGGER_TRAP_MAYBE();
540 		break;
541 	}
542 
543 	BUG_ON(sig == 0);
544 
545 	if (sig != SIGTRAP) {
546 		dump_bfin_process(fp);
547 		dump_bfin_mem(fp);
548 		show_regs(fp);
549 
550 		/* Print out the trace buffer if it makes sense */
551 #ifndef CONFIG_DEBUG_BFIN_NO_KERN_HWTRACE
552 		if (trapnr == VEC_CPLB_I_M || trapnr == VEC_CPLB_M)
553 			verbose_printk(KERN_NOTICE "No trace since you do not have "
554 				"CONFIG_DEBUG_BFIN_NO_KERN_HWTRACE enabled\n"
555 				KERN_NOTICE "\n");
556 		else
557 #endif
558 			dump_bfin_trace_buffer();
559 
560 		if (oops_in_progress) {
561 			/* Dump the current kernel stack */
562 			verbose_printk(KERN_NOTICE "\n" KERN_NOTICE "Kernel Stack\n");
563 			show_stack(current, NULL);
564 			print_modules();
565 #ifndef CONFIG_ACCESS_CHECK
566 			verbose_printk(KERN_EMERG "Please turn on "
567 			       "CONFIG_ACCESS_CHECK\n");
568 #endif
569 			panic("Kernel exception");
570 		} else {
571 #ifdef CONFIG_DEBUG_VERBOSE
572 			unsigned long *stack;
573 			/* Dump the user space stack */
574 			stack = (unsigned long *)rdusp();
575 			verbose_printk(KERN_NOTICE "Userspace Stack\n");
576 			show_stack(NULL, stack);
577 #endif
578 		}
579 	}
580 
581 #ifdef CONFIG_IPIPE
582 	if (!ipipe_trap_notify(fp->seqstat & 0x3f, fp))
583 #endif
584 	{
585 		info.si_signo = sig;
586 		info.si_errno = 0;
587 		info.si_addr = (void __user *)fp->pc;
588 		force_sig_info(sig, &info, current);
589 	}
590 
591 	trace_buffer_restore(j);
592 	return;
593 }
594 
595 /* Typical exception handling routines	*/
596 
597 #define EXPAND_LEN ((1 << CONFIG_DEBUG_BFIN_HWTRACE_EXPAND_LEN) * 256 - 1)
598 
599 /*
600  * Similar to get_user, do some address checking, then dereference
601  * Return true on sucess, false on bad address
602  */
get_instruction(unsigned short * val,unsigned short * address)603 static bool get_instruction(unsigned short *val, unsigned short *address)
604 {
605 
606 	unsigned long addr;
607 
608 	addr = (unsigned long)address;
609 
610 	/* Check for odd addresses */
611 	if (addr & 0x1)
612 		return false;
613 
614 	/* Check that things do not wrap around */
615 	if (addr > (addr + 2))
616 		return false;
617 
618 	/*
619 	 * Since we are in exception context, we need to do a little address checking
620 	 * We need to make sure we are only accessing valid memory, and
621 	 * we don't read something in the async space that can hang forever
622 	 */
623 	if ((addr >= FIXED_CODE_START && (addr + 2) <= physical_mem_end) ||
624 #if L2_LENGTH != 0
625 	    (addr >= L2_START && (addr + 2) <= (L2_START + L2_LENGTH)) ||
626 #endif
627 	    (addr >= BOOT_ROM_START && (addr + 2) <= (BOOT_ROM_START + BOOT_ROM_LENGTH)) ||
628 #if L1_DATA_A_LENGTH != 0
629 	    (addr >= L1_DATA_A_START && (addr + 2) <= (L1_DATA_A_START + L1_DATA_A_LENGTH)) ||
630 #endif
631 #if L1_DATA_B_LENGTH != 0
632 	    (addr >= L1_DATA_B_START && (addr + 2) <= (L1_DATA_B_START + L1_DATA_B_LENGTH)) ||
633 #endif
634 	    (addr >= L1_SCRATCH_START && (addr + 2) <= (L1_SCRATCH_START + L1_SCRATCH_LENGTH)) ||
635 	    (!(bfin_read_EBIU_AMBCTL0() & B0RDYEN) &&
636 	       addr >= ASYNC_BANK0_BASE && (addr + 2) <= (ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE)) ||
637 	    (!(bfin_read_EBIU_AMBCTL0() & B1RDYEN) &&
638 	       addr >= ASYNC_BANK1_BASE && (addr + 2) <= (ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE)) ||
639 	    (!(bfin_read_EBIU_AMBCTL1() & B2RDYEN) &&
640 	       addr >= ASYNC_BANK2_BASE && (addr + 2) <= (ASYNC_BANK2_BASE + ASYNC_BANK1_SIZE)) ||
641 	    (!(bfin_read_EBIU_AMBCTL1() & B3RDYEN) &&
642 	      addr >= ASYNC_BANK3_BASE && (addr + 2) <= (ASYNC_BANK3_BASE + ASYNC_BANK1_SIZE))) {
643 		*val = *address;
644 		return true;
645 	}
646 
647 #if L1_CODE_LENGTH != 0
648 	if (addr >= L1_CODE_START && (addr + 2) <= (L1_CODE_START + L1_CODE_LENGTH)) {
649 		isram_memcpy(val, address, 2);
650 		return true;
651 	}
652 #endif
653 
654 
655 	return false;
656 }
657 
658 /*
659  * decode the instruction if we are printing out the trace, as it
660  * makes things easier to follow, without running it through objdump
661  * These are the normal instructions which cause change of flow, which
662  * would be at the source of the trace buffer
663  */
664 #if defined(CONFIG_DEBUG_VERBOSE) && defined(CONFIG_DEBUG_BFIN_HWTRACE_ON)
decode_instruction(unsigned short * address)665 static void decode_instruction(unsigned short *address)
666 {
667 	unsigned short opcode;
668 
669 	if (get_instruction(&opcode, address)) {
670 		if (opcode == 0x0010)
671 			verbose_printk("RTS");
672 		else if (opcode == 0x0011)
673 			verbose_printk("RTI");
674 		else if (opcode == 0x0012)
675 			verbose_printk("RTX");
676 		else if (opcode == 0x0013)
677 			verbose_printk("RTN");
678 		else if (opcode == 0x0014)
679 			verbose_printk("RTE");
680 		else if (opcode == 0x0025)
681 			verbose_printk("EMUEXCPT");
682 		else if (opcode == 0x0040 && opcode <= 0x0047)
683 			verbose_printk("STI R%i", opcode & 7);
684 		else if (opcode >= 0x0050 && opcode <= 0x0057)
685 			verbose_printk("JUMP (P%i)", opcode & 7);
686 		else if (opcode >= 0x0060 && opcode <= 0x0067)
687 			verbose_printk("CALL (P%i)", opcode & 7);
688 		else if (opcode >= 0x0070 && opcode <= 0x0077)
689 			verbose_printk("CALL (PC+P%i)", opcode & 7);
690 		else if (opcode >= 0x0080 && opcode <= 0x0087)
691 			verbose_printk("JUMP (PC+P%i)", opcode & 7);
692 		else if (opcode >= 0x0090 && opcode <= 0x009F)
693 			verbose_printk("RAISE 0x%x", opcode & 0xF);
694 		else if (opcode >= 0x00A0 && opcode <= 0x00AF)
695 			verbose_printk("EXCPT 0x%x", opcode & 0xF);
696 		else if ((opcode >= 0x1000 && opcode <= 0x13FF) || (opcode >= 0x1800 && opcode <= 0x1BFF))
697 			verbose_printk("IF !CC JUMP");
698 		else if ((opcode >= 0x1400 && opcode <= 0x17ff) || (opcode >= 0x1c00 && opcode <= 0x1fff))
699 			verbose_printk("IF CC JUMP");
700 		else if (opcode >= 0x2000 && opcode <= 0x2fff)
701 			verbose_printk("JUMP.S");
702 		else if (opcode >= 0xe080 && opcode <= 0xe0ff)
703 			verbose_printk("LSETUP");
704 		else if (opcode >= 0xe200 && opcode <= 0xe2ff)
705 			verbose_printk("JUMP.L");
706 		else if (opcode >= 0xe300 && opcode <= 0xe3ff)
707 			verbose_printk("CALL pcrel");
708 		else
709 			verbose_printk("0x%04x", opcode);
710 	}
711 
712 }
713 #endif
714 
dump_bfin_trace_buffer(void)715 void dump_bfin_trace_buffer(void)
716 {
717 #ifdef CONFIG_DEBUG_VERBOSE
718 #ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON
719 	int tflags, i = 0;
720 	char buf[150];
721 	unsigned short *addr;
722 #ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND
723 	int j, index;
724 #endif
725 
726 	trace_buffer_save(tflags);
727 
728 	printk(KERN_NOTICE "Hardware Trace:\n");
729 
730 #ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND
731 	printk(KERN_NOTICE "WARNING: Expanded trace turned on - can not trace exceptions\n");
732 #endif
733 
734 	if (likely(bfin_read_TBUFSTAT() & TBUFCNT)) {
735 		for (; bfin_read_TBUFSTAT() & TBUFCNT; i++) {
736 			decode_address(buf, (unsigned long)bfin_read_TBUF());
737 			printk(KERN_NOTICE "%4i Target : %s\n", i, buf);
738 			addr = (unsigned short *)bfin_read_TBUF();
739 			decode_address(buf, (unsigned long)addr);
740 			printk(KERN_NOTICE "     Source : %s ", buf);
741 			decode_instruction(addr);
742 			printk("\n");
743 		}
744 	}
745 
746 #ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND
747 	if (trace_buff_offset)
748 		index = trace_buff_offset / 4;
749 	else
750 		index = EXPAND_LEN;
751 
752 	j = (1 << CONFIG_DEBUG_BFIN_HWTRACE_EXPAND_LEN) * 128;
753 	while (j) {
754 		decode_address(buf, software_trace_buff[index]);
755 		printk(KERN_NOTICE "%4i Target : %s\n", i, buf);
756 		index -= 1;
757 		if (index < 0 )
758 			index = EXPAND_LEN;
759 		decode_address(buf, software_trace_buff[index]);
760 		printk(KERN_NOTICE "     Source : %s ", buf);
761 		decode_instruction((unsigned short *)software_trace_buff[index]);
762 		printk("\n");
763 		index -= 1;
764 		if (index < 0)
765 			index = EXPAND_LEN;
766 		j--;
767 		i++;
768 	}
769 #endif
770 
771 	trace_buffer_restore(tflags);
772 #endif
773 #endif
774 }
775 EXPORT_SYMBOL(dump_bfin_trace_buffer);
776 
777 /*
778  * Checks to see if the address pointed to is either a
779  * 16-bit CALL instruction, or a 32-bit CALL instruction
780  */
is_bfin_call(unsigned short * addr)781 static bool is_bfin_call(unsigned short *addr)
782 {
783 	unsigned short opcode = 0, *ins_addr;
784 	ins_addr = (unsigned short *)addr;
785 
786 	if (!get_instruction(&opcode, ins_addr))
787 		return false;
788 
789 	if ((opcode >= 0x0060 && opcode <= 0x0067) ||
790 	    (opcode >= 0x0070 && opcode <= 0x0077))
791 		return true;
792 
793 	ins_addr--;
794 	if (!get_instruction(&opcode, ins_addr))
795 		return false;
796 
797 	if (opcode >= 0xE300 && opcode <= 0xE3FF)
798 		return true;
799 
800 	return false;
801 
802 }
803 
show_stack(struct task_struct * task,unsigned long * stack)804 void show_stack(struct task_struct *task, unsigned long *stack)
805 {
806 #ifdef CONFIG_PRINTK
807 	unsigned int *addr, *endstack, *fp = 0, *frame;
808 	unsigned short *ins_addr;
809 	char buf[150];
810 	unsigned int i, j, ret_addr, frame_no = 0;
811 
812 	/*
813 	 * If we have been passed a specific stack, use that one otherwise
814 	 *    if we have been passed a task structure, use that, otherwise
815 	 *    use the stack of where the variable "stack" exists
816 	 */
817 
818 	if (stack == NULL) {
819 		if (task) {
820 			/* We know this is a kernel stack, so this is the start/end */
821 			stack = (unsigned long *)task->thread.ksp;
822 			endstack = (unsigned int *)(((unsigned int)(stack) & ~(THREAD_SIZE - 1)) + THREAD_SIZE);
823 		} else {
824 			/* print out the existing stack info */
825 			stack = (unsigned long *)&stack;
826 			endstack = (unsigned int *)PAGE_ALIGN((unsigned int)stack);
827 		}
828 	} else
829 		endstack = (unsigned int *)PAGE_ALIGN((unsigned int)stack);
830 
831 	printk(KERN_NOTICE "Stack info:\n");
832 	decode_address(buf, (unsigned int)stack);
833 	printk(KERN_NOTICE " SP: [0x%p] %s\n", stack, buf);
834 
835 	/* First thing is to look for a frame pointer */
836 	for (addr = (unsigned int *)((unsigned int)stack & ~0xF); addr < endstack; addr++) {
837 		if (*addr & 0x1)
838 			continue;
839 		ins_addr = (unsigned short *)*addr;
840 		ins_addr--;
841 		if (is_bfin_call(ins_addr))
842 			fp = addr - 1;
843 
844 		if (fp) {
845 			/* Let's check to see if it is a frame pointer */
846 			while (fp >= (addr - 1) && fp < endstack
847 			       && fp && ((unsigned int) fp & 0x3) == 0)
848 				fp = (unsigned int *)*fp;
849 			if (fp == 0 || fp == endstack) {
850 				fp = addr - 1;
851 				break;
852 			}
853 			fp = 0;
854 		}
855 	}
856 	if (fp) {
857 		frame = fp;
858 		printk(KERN_NOTICE " FP: (0x%p)\n", fp);
859 	} else
860 		frame = 0;
861 
862 	/*
863 	 * Now that we think we know where things are, we
864 	 * walk the stack again, this time printing things out
865 	 * incase there is no frame pointer, we still look for
866 	 * valid return addresses
867 	 */
868 
869 	/* First time print out data, next time, print out symbols */
870 	for (j = 0; j <= 1; j++) {
871 		if (j)
872 			printk(KERN_NOTICE "Return addresses in stack:\n");
873 		else
874 			printk(KERN_NOTICE " Memory from 0x%08lx to %p", ((long unsigned int)stack & ~0xF), endstack);
875 
876 		fp = frame;
877 		frame_no = 0;
878 
879 		for (addr = (unsigned int *)((unsigned int)stack & ~0xF), i = 0;
880 		     addr <= endstack; addr++, i++) {
881 
882 			ret_addr = 0;
883 			if (!j && i % 8 == 0)
884 				printk("\n" KERN_NOTICE "%p:",addr);
885 
886 			/* if it is an odd address, or zero, just skip it */
887 			if (*addr & 0x1 || !*addr)
888 				goto print;
889 
890 			ins_addr = (unsigned short *)*addr;
891 
892 			/* Go back one instruction, and see if it is a CALL */
893 			ins_addr--;
894 			ret_addr = is_bfin_call(ins_addr);
895  print:
896 			if (!j && stack == (unsigned long *)addr)
897 				printk("[%08x]", *addr);
898 			else if (ret_addr)
899 				if (j) {
900 					decode_address(buf, (unsigned int)*addr);
901 					if (frame == addr) {
902 						printk(KERN_NOTICE "   frame %2i : %s\n", frame_no, buf);
903 						continue;
904 					}
905 					printk(KERN_NOTICE "    address : %s\n", buf);
906 				} else
907 					printk("<%08x>", *addr);
908 			else if (fp == addr) {
909 				if (j)
910 					frame = addr+1;
911 				else
912 					printk("(%08x)", *addr);
913 
914 				fp = (unsigned int *)*addr;
915 				frame_no++;
916 
917 			} else if (!j)
918 				printk(" %08x ", *addr);
919 		}
920 		if (!j)
921 			printk("\n");
922 	}
923 #endif
924 }
925 
dump_stack(void)926 void dump_stack(void)
927 {
928 	unsigned long stack;
929 #ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON
930 	int tflags;
931 #endif
932 	trace_buffer_save(tflags);
933 	dump_bfin_trace_buffer();
934 	show_stack(current, &stack);
935 	trace_buffer_restore(tflags);
936 }
937 EXPORT_SYMBOL(dump_stack);
938 
dump_bfin_process(struct pt_regs * fp)939 void dump_bfin_process(struct pt_regs *fp)
940 {
941 #ifdef CONFIG_DEBUG_VERBOSE
942 	/* We should be able to look at fp->ipend, but we don't push it on the
943 	 * stack all the time, so do this until we fix that */
944 	unsigned int context = bfin_read_IPEND();
945 
946 	if (oops_in_progress)
947 		verbose_printk(KERN_EMERG "Kernel OOPS in progress\n");
948 
949 	if (context & 0x0020 && (fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR)
950 		verbose_printk(KERN_NOTICE "HW Error context\n");
951 	else if (context & 0x0020)
952 		verbose_printk(KERN_NOTICE "Deferred Exception context\n");
953 	else if (context & 0x3FC0)
954 		verbose_printk(KERN_NOTICE "Interrupt context\n");
955 	else if (context & 0x4000)
956 		verbose_printk(KERN_NOTICE "Deferred Interrupt context\n");
957 	else if (context & 0x8000)
958 		verbose_printk(KERN_NOTICE "Kernel process context\n");
959 
960 	/* Because we are crashing, and pointers could be bad, we check things
961 	 * pretty closely before we use them
962 	 */
963 	if ((unsigned long)current >= FIXED_CODE_START &&
964 	    !((unsigned long)current & 0x3) && current->pid) {
965 		verbose_printk(KERN_NOTICE "CURRENT PROCESS:\n");
966 		if (current->comm >= (char *)FIXED_CODE_START)
967 			verbose_printk(KERN_NOTICE "COMM=%s PID=%d\n",
968 				current->comm, current->pid);
969 		else
970 			verbose_printk(KERN_NOTICE "COMM= invalid\n");
971 
972 		printk(KERN_NOTICE "CPU = %d\n", current_thread_info()->cpu);
973 		if (!((unsigned long)current->mm & 0x3) && (unsigned long)current->mm >= FIXED_CODE_START)
974 			verbose_printk(KERN_NOTICE  "TEXT = 0x%p-0x%p        DATA = 0x%p-0x%p\n"
975 				KERN_NOTICE " BSS = 0x%p-0x%p  USER-STACK = 0x%p\n"
976 				KERN_NOTICE "\n",
977 				(void *)current->mm->start_code,
978 				(void *)current->mm->end_code,
979 				(void *)current->mm->start_data,
980 				(void *)current->mm->end_data,
981 				(void *)current->mm->end_data,
982 				(void *)current->mm->brk,
983 				(void *)current->mm->start_stack);
984 		else
985 			verbose_printk(KERN_NOTICE "invalid mm\n");
986 	} else
987 		verbose_printk(KERN_NOTICE "\n" KERN_NOTICE
988 		     "No Valid process in current context\n");
989 #endif
990 }
991 
dump_bfin_mem(struct pt_regs * fp)992 void dump_bfin_mem(struct pt_regs *fp)
993 {
994 #ifdef CONFIG_DEBUG_VERBOSE
995 	unsigned short *addr, *erraddr, val = 0, err = 0;
996 	char sti = 0, buf[6];
997 
998 	erraddr = (void *)fp->pc;
999 
1000 	verbose_printk(KERN_NOTICE "return address: [0x%p]; contents of:", erraddr);
1001 
1002 	for (addr = (unsigned short *)((unsigned long)erraddr & ~0xF) - 0x10;
1003 	     addr < (unsigned short *)((unsigned long)erraddr & ~0xF) + 0x10;
1004 	     addr++) {
1005 		if (!((unsigned long)addr & 0xF))
1006 			verbose_printk("\n" KERN_NOTICE "0x%p: ", addr);
1007 
1008 		if (!get_instruction(&val, addr)) {
1009 				val = 0;
1010 				sprintf(buf, "????");
1011 		} else
1012 			sprintf(buf, "%04x", val);
1013 
1014 		if (addr == erraddr) {
1015 			verbose_printk("[%s]", buf);
1016 			err = val;
1017 		} else
1018 			verbose_printk(" %s ", buf);
1019 
1020 		/* Do any previous instructions turn on interrupts? */
1021 		if (addr <= erraddr &&				/* in the past */
1022 		    ((val >= 0x0040 && val <= 0x0047) ||	/* STI instruction */
1023 		      val == 0x017b))				/* [SP++] = RETI */
1024 			sti = 1;
1025 	}
1026 
1027 	verbose_printk("\n");
1028 
1029 	/* Hardware error interrupts can be deferred */
1030 	if (unlikely(sti && (fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR &&
1031 	    oops_in_progress)){
1032 		verbose_printk(KERN_NOTICE "Looks like this was a deferred error - sorry\n");
1033 #ifndef CONFIG_DEBUG_HWERR
1034 		verbose_printk(KERN_NOTICE "The remaining message may be meaningless\n"
1035 			KERN_NOTICE "You should enable CONFIG_DEBUG_HWERR to get a"
1036 			 " better idea where it came from\n");
1037 #else
1038 		/* If we are handling only one peripheral interrupt
1039 		 * and current mm and pid are valid, and the last error
1040 		 * was in that user space process's text area
1041 		 * print it out - because that is where the problem exists
1042 		 */
1043 		if ((!(((fp)->ipend & ~0x30) & (((fp)->ipend & ~0x30) - 1))) &&
1044 		     (current->pid && current->mm)) {
1045 			/* And the last RETI points to the current userspace context */
1046 			if ((fp + 1)->pc >= current->mm->start_code &&
1047 			    (fp + 1)->pc <= current->mm->end_code) {
1048 				verbose_printk(KERN_NOTICE "It might be better to look around here : \n");
1049 				verbose_printk(KERN_NOTICE "-------------------------------------------\n");
1050 				show_regs(fp + 1);
1051 				verbose_printk(KERN_NOTICE "-------------------------------------------\n");
1052 			}
1053 		}
1054 #endif
1055 	}
1056 #endif
1057 }
1058 
show_regs(struct pt_regs * fp)1059 void show_regs(struct pt_regs *fp)
1060 {
1061 #ifdef CONFIG_DEBUG_VERBOSE
1062 	char buf [150];
1063 	struct irqaction *action;
1064 	unsigned int i;
1065 	unsigned long flags = 0;
1066 	unsigned int cpu = smp_processor_id();
1067 	unsigned char in_atomic = (bfin_read_IPEND() & 0x10) || in_atomic();
1068 
1069 	verbose_printk(KERN_NOTICE "\n" KERN_NOTICE "SEQUENCER STATUS:\t\t%s\n", print_tainted());
1070 	verbose_printk(KERN_NOTICE " SEQSTAT: %08lx  IPEND: %04lx  SYSCFG: %04lx\n",
1071 		(long)fp->seqstat, fp->ipend, fp->syscfg);
1072 	if ((fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR) {
1073 		verbose_printk(KERN_NOTICE "  HWERRCAUSE: 0x%lx\n",
1074 			(fp->seqstat & SEQSTAT_HWERRCAUSE) >> 14);
1075 #ifdef EBIU_ERRMST
1076 		/* If the error was from the EBIU, print it out */
1077 		if (bfin_read_EBIU_ERRMST() & CORE_ERROR) {
1078 			verbose_printk(KERN_NOTICE "  EBIU Error Reason  : 0x%04x\n",
1079 				bfin_read_EBIU_ERRMST());
1080 			verbose_printk(KERN_NOTICE "  EBIU Error Address : 0x%08x\n",
1081 				bfin_read_EBIU_ERRADD());
1082 		}
1083 #endif
1084 	}
1085 	verbose_printk(KERN_NOTICE "  EXCAUSE   : 0x%lx\n",
1086 		fp->seqstat & SEQSTAT_EXCAUSE);
1087 	for (i = 2; i <= 15 ; i++) {
1088 		if (fp->ipend & (1 << i)) {
1089 			if (i != 4) {
1090 				decode_address(buf, bfin_read32(EVT0 + 4*i));
1091 				verbose_printk(KERN_NOTICE "  physical IVG%i asserted : %s\n", i, buf);
1092 			} else
1093 				verbose_printk(KERN_NOTICE "  interrupts disabled\n");
1094 		}
1095 	}
1096 
1097 	/* if no interrupts are going off, don't print this out */
1098 	if (fp->ipend & ~0x3F) {
1099 		for (i = 0; i < (NR_IRQS - 1); i++) {
1100 			if (!in_atomic)
1101 				spin_lock_irqsave(&irq_desc[i].lock, flags);
1102 
1103 			action = irq_desc[i].action;
1104 			if (!action)
1105 				goto unlock;
1106 
1107 			decode_address(buf, (unsigned int)action->handler);
1108 			verbose_printk(KERN_NOTICE "  logical irq %3d mapped  : %s", i, buf);
1109 			for (action = action->next; action; action = action->next) {
1110 				decode_address(buf, (unsigned int)action->handler);
1111 				verbose_printk(", %s", buf);
1112 			}
1113 			verbose_printk("\n");
1114 unlock:
1115 			if (!in_atomic)
1116 				spin_unlock_irqrestore(&irq_desc[i].lock, flags);
1117 		}
1118 	}
1119 
1120 	decode_address(buf, fp->rete);
1121 	verbose_printk(KERN_NOTICE " RETE: %s\n", buf);
1122 	decode_address(buf, fp->retn);
1123 	verbose_printk(KERN_NOTICE " RETN: %s\n", buf);
1124 	decode_address(buf, fp->retx);
1125 	verbose_printk(KERN_NOTICE " RETX: %s\n", buf);
1126 	decode_address(buf, fp->rets);
1127 	verbose_printk(KERN_NOTICE " RETS: %s\n", buf);
1128 	decode_address(buf, fp->pc);
1129 	verbose_printk(KERN_NOTICE " PC  : %s\n", buf);
1130 
1131 	if (((long)fp->seqstat &  SEQSTAT_EXCAUSE) &&
1132 	    (((long)fp->seqstat & SEQSTAT_EXCAUSE) != VEC_HWERR)) {
1133 		decode_address(buf, cpu_pda[cpu].dcplb_fault_addr);
1134 		verbose_printk(KERN_NOTICE "DCPLB_FAULT_ADDR: %s\n", buf);
1135 		decode_address(buf, cpu_pda[cpu].icplb_fault_addr);
1136 		verbose_printk(KERN_NOTICE "ICPLB_FAULT_ADDR: %s\n", buf);
1137 	}
1138 
1139 	verbose_printk(KERN_NOTICE "\n" KERN_NOTICE "PROCESSOR STATE:\n");
1140 	verbose_printk(KERN_NOTICE " R0 : %08lx    R1 : %08lx    R2 : %08lx    R3 : %08lx\n",
1141 		fp->r0, fp->r1, fp->r2, fp->r3);
1142 	verbose_printk(KERN_NOTICE " R4 : %08lx    R5 : %08lx    R6 : %08lx    R7 : %08lx\n",
1143 		fp->r4, fp->r5, fp->r6, fp->r7);
1144 	verbose_printk(KERN_NOTICE " P0 : %08lx    P1 : %08lx    P2 : %08lx    P3 : %08lx\n",
1145 		fp->p0, fp->p1, fp->p2, fp->p3);
1146 	verbose_printk(KERN_NOTICE " P4 : %08lx    P5 : %08lx    FP : %08lx    SP : %08lx\n",
1147 		fp->p4, fp->p5, fp->fp, (long)fp);
1148 	verbose_printk(KERN_NOTICE " LB0: %08lx    LT0: %08lx    LC0: %08lx\n",
1149 		fp->lb0, fp->lt0, fp->lc0);
1150 	verbose_printk(KERN_NOTICE " LB1: %08lx    LT1: %08lx    LC1: %08lx\n",
1151 		fp->lb1, fp->lt1, fp->lc1);
1152 	verbose_printk(KERN_NOTICE " B0 : %08lx    L0 : %08lx    M0 : %08lx    I0 : %08lx\n",
1153 		fp->b0, fp->l0, fp->m0, fp->i0);
1154 	verbose_printk(KERN_NOTICE " B1 : %08lx    L1 : %08lx    M1 : %08lx    I1 : %08lx\n",
1155 		fp->b1, fp->l1, fp->m1, fp->i1);
1156 	verbose_printk(KERN_NOTICE " B2 : %08lx    L2 : %08lx    M2 : %08lx    I2 : %08lx\n",
1157 		fp->b2, fp->l2, fp->m2, fp->i2);
1158 	verbose_printk(KERN_NOTICE " B3 : %08lx    L3 : %08lx    M3 : %08lx    I3 : %08lx\n",
1159 		fp->b3, fp->l3, fp->m3, fp->i3);
1160 	verbose_printk(KERN_NOTICE "A0.w: %08lx   A0.x: %08lx   A1.w: %08lx   A1.x: %08lx\n",
1161 		fp->a0w, fp->a0x, fp->a1w, fp->a1x);
1162 
1163 	verbose_printk(KERN_NOTICE "USP : %08lx  ASTAT: %08lx\n",
1164 		rdusp(), fp->astat);
1165 
1166 	verbose_printk(KERN_NOTICE "\n");
1167 #endif
1168 }
1169 
1170 #ifdef CONFIG_SYS_BFIN_SPINLOCK_L1
1171 asmlinkage int sys_bfin_spinlock(int *spinlock)__attribute__((l1_text));
1172 #endif
1173 
1174 static DEFINE_SPINLOCK(bfin_spinlock_lock);
1175 
sys_bfin_spinlock(int * p)1176 asmlinkage int sys_bfin_spinlock(int *p)
1177 {
1178 	int ret, tmp = 0;
1179 
1180 	spin_lock(&bfin_spinlock_lock);	/* This would also hold kernel preemption. */
1181 	ret = get_user(tmp, p);
1182 	if (likely(ret == 0)) {
1183 		if (unlikely(tmp))
1184 			ret = 1;
1185 		else
1186 			put_user(1, p);
1187 	}
1188 	spin_unlock(&bfin_spinlock_lock);
1189 	return ret;
1190 }
1191 
bfin_request_exception(unsigned int exception,void (* handler)(void))1192 int bfin_request_exception(unsigned int exception, void (*handler)(void))
1193 {
1194 	void (*curr_handler)(void);
1195 
1196 	if (exception > 0x3F)
1197 		return -EINVAL;
1198 
1199 	curr_handler = ex_table[exception];
1200 
1201 	if (curr_handler != ex_replaceable)
1202 		return -EBUSY;
1203 
1204 	ex_table[exception] = handler;
1205 
1206 	return 0;
1207 }
1208 EXPORT_SYMBOL(bfin_request_exception);
1209 
bfin_free_exception(unsigned int exception,void (* handler)(void))1210 int bfin_free_exception(unsigned int exception, void (*handler)(void))
1211 {
1212 	void (*curr_handler)(void);
1213 
1214 	if (exception > 0x3F)
1215 		return -EINVAL;
1216 
1217 	curr_handler = ex_table[exception];
1218 
1219 	if (curr_handler != handler)
1220 		return -EBUSY;
1221 
1222 	ex_table[exception] = ex_replaceable;
1223 
1224 	return 0;
1225 }
1226 EXPORT_SYMBOL(bfin_free_exception);
1227 
panic_cplb_error(int cplb_panic,struct pt_regs * fp)1228 void panic_cplb_error(int cplb_panic, struct pt_regs *fp)
1229 {
1230 	switch (cplb_panic) {
1231 	case CPLB_NO_UNLOCKED:
1232 		printk(KERN_EMERG "All CPLBs are locked\n");
1233 		break;
1234 	case CPLB_PROT_VIOL:
1235 		return;
1236 	case CPLB_NO_ADDR_MATCH:
1237 		return;
1238 	case CPLB_UNKNOWN_ERR:
1239 		printk(KERN_EMERG "Unknown CPLB Exception\n");
1240 		break;
1241 	}
1242 
1243 	oops_in_progress = 1;
1244 
1245 	dump_bfin_process(fp);
1246 	dump_bfin_mem(fp);
1247 	show_regs(fp);
1248 	dump_stack();
1249 	panic("Unrecoverable event\n");
1250 }
1251