• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2004 Erez Zadok
5  * Copyright (C) 2001-2004 Stony Brook University
6  * Copyright (C) 2004-2007 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *   		Michael C. Thompson <mcthomps@us.ibm.com>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23  * 02111-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <asm/unaligned.h>
37 #include "ecryptfs_kernel.h"
38 
39 static int
40 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
41 			     struct page *dst_page, int dst_offset,
42 			     struct page *src_page, int src_offset, int size,
43 			     unsigned char *iv);
44 static int
45 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
46 			     struct page *dst_page, int dst_offset,
47 			     struct page *src_page, int src_offset, int size,
48 			     unsigned char *iv);
49 
50 /**
51  * ecryptfs_to_hex
52  * @dst: Buffer to take hex character representation of contents of
53  *       src; must be at least of size (src_size * 2)
54  * @src: Buffer to be converted to a hex string respresentation
55  * @src_size: number of bytes to convert
56  */
ecryptfs_to_hex(char * dst,char * src,size_t src_size)57 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
58 {
59 	int x;
60 
61 	for (x = 0; x < src_size; x++)
62 		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
63 }
64 
65 /**
66  * ecryptfs_from_hex
67  * @dst: Buffer to take the bytes from src hex; must be at least of
68  *       size (src_size / 2)
69  * @src: Buffer to be converted from a hex string respresentation to raw value
70  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
71  */
ecryptfs_from_hex(char * dst,char * src,int dst_size)72 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
73 {
74 	int x;
75 	char tmp[3] = { 0, };
76 
77 	for (x = 0; x < dst_size; x++) {
78 		tmp[0] = src[x * 2];
79 		tmp[1] = src[x * 2 + 1];
80 		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
81 	}
82 }
83 
84 /**
85  * ecryptfs_calculate_md5 - calculates the md5 of @src
86  * @dst: Pointer to 16 bytes of allocated memory
87  * @crypt_stat: Pointer to crypt_stat struct for the current inode
88  * @src: Data to be md5'd
89  * @len: Length of @src
90  *
91  * Uses the allocated crypto context that crypt_stat references to
92  * generate the MD5 sum of the contents of src.
93  */
ecryptfs_calculate_md5(char * dst,struct ecryptfs_crypt_stat * crypt_stat,char * src,int len)94 static int ecryptfs_calculate_md5(char *dst,
95 				  struct ecryptfs_crypt_stat *crypt_stat,
96 				  char *src, int len)
97 {
98 	struct scatterlist sg;
99 	struct hash_desc desc = {
100 		.tfm = crypt_stat->hash_tfm,
101 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
102 	};
103 	int rc = 0;
104 
105 	mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
106 	sg_init_one(&sg, (u8 *)src, len);
107 	if (!desc.tfm) {
108 		desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
109 					     CRYPTO_ALG_ASYNC);
110 		if (IS_ERR(desc.tfm)) {
111 			rc = PTR_ERR(desc.tfm);
112 			ecryptfs_printk(KERN_ERR, "Error attempting to "
113 					"allocate crypto context; rc = [%d]\n",
114 					rc);
115 			goto out;
116 		}
117 		crypt_stat->hash_tfm = desc.tfm;
118 	}
119 	rc = crypto_hash_init(&desc);
120 	if (rc) {
121 		printk(KERN_ERR
122 		       "%s: Error initializing crypto hash; rc = [%d]\n",
123 		       __func__, rc);
124 		goto out;
125 	}
126 	rc = crypto_hash_update(&desc, &sg, len);
127 	if (rc) {
128 		printk(KERN_ERR
129 		       "%s: Error updating crypto hash; rc = [%d]\n",
130 		       __func__, rc);
131 		goto out;
132 	}
133 	rc = crypto_hash_final(&desc, dst);
134 	if (rc) {
135 		printk(KERN_ERR
136 		       "%s: Error finalizing crypto hash; rc = [%d]\n",
137 		       __func__, rc);
138 		goto out;
139 	}
140 out:
141 	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
142 	return rc;
143 }
144 
ecryptfs_crypto_api_algify_cipher_name(char ** algified_name,char * cipher_name,char * chaining_modifier)145 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
146 						  char *cipher_name,
147 						  char *chaining_modifier)
148 {
149 	int cipher_name_len = strlen(cipher_name);
150 	int chaining_modifier_len = strlen(chaining_modifier);
151 	int algified_name_len;
152 	int rc;
153 
154 	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
155 	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
156 	if (!(*algified_name)) {
157 		rc = -ENOMEM;
158 		goto out;
159 	}
160 	snprintf((*algified_name), algified_name_len, "%s(%s)",
161 		 chaining_modifier, cipher_name);
162 	rc = 0;
163 out:
164 	return rc;
165 }
166 
167 /**
168  * ecryptfs_derive_iv
169  * @iv: destination for the derived iv vale
170  * @crypt_stat: Pointer to crypt_stat struct for the current inode
171  * @offset: Offset of the extent whose IV we are to derive
172  *
173  * Generate the initialization vector from the given root IV and page
174  * offset.
175  *
176  * Returns zero on success; non-zero on error.
177  */
ecryptfs_derive_iv(char * iv,struct ecryptfs_crypt_stat * crypt_stat,loff_t offset)178 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
179 		       loff_t offset)
180 {
181 	int rc = 0;
182 	char dst[MD5_DIGEST_SIZE];
183 	char src[ECRYPTFS_MAX_IV_BYTES + 16];
184 
185 	if (unlikely(ecryptfs_verbosity > 0)) {
186 		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
187 		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
188 	}
189 	/* TODO: It is probably secure to just cast the least
190 	 * significant bits of the root IV into an unsigned long and
191 	 * add the offset to that rather than go through all this
192 	 * hashing business. -Halcrow */
193 	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
194 	memset((src + crypt_stat->iv_bytes), 0, 16);
195 	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
196 	if (unlikely(ecryptfs_verbosity > 0)) {
197 		ecryptfs_printk(KERN_DEBUG, "source:\n");
198 		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
199 	}
200 	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
201 				    (crypt_stat->iv_bytes + 16));
202 	if (rc) {
203 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
204 				"MD5 while generating IV for a page\n");
205 		goto out;
206 	}
207 	memcpy(iv, dst, crypt_stat->iv_bytes);
208 	if (unlikely(ecryptfs_verbosity > 0)) {
209 		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
210 		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
211 	}
212 out:
213 	return rc;
214 }
215 
216 /**
217  * ecryptfs_init_crypt_stat
218  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
219  *
220  * Initialize the crypt_stat structure.
221  */
222 void
ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat * crypt_stat)223 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
224 {
225 	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
226 	INIT_LIST_HEAD(&crypt_stat->keysig_list);
227 	mutex_init(&crypt_stat->keysig_list_mutex);
228 	mutex_init(&crypt_stat->cs_mutex);
229 	mutex_init(&crypt_stat->cs_tfm_mutex);
230 	mutex_init(&crypt_stat->cs_hash_tfm_mutex);
231 	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
232 }
233 
234 /**
235  * ecryptfs_destroy_crypt_stat
236  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
237  *
238  * Releases all memory associated with a crypt_stat struct.
239  */
ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat * crypt_stat)240 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
241 {
242 	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
243 
244 	if (crypt_stat->tfm)
245 		crypto_free_blkcipher(crypt_stat->tfm);
246 	if (crypt_stat->hash_tfm)
247 		crypto_free_hash(crypt_stat->hash_tfm);
248 	mutex_lock(&crypt_stat->keysig_list_mutex);
249 	list_for_each_entry_safe(key_sig, key_sig_tmp,
250 				 &crypt_stat->keysig_list, crypt_stat_list) {
251 		list_del(&key_sig->crypt_stat_list);
252 		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
253 	}
254 	mutex_unlock(&crypt_stat->keysig_list_mutex);
255 	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
256 }
257 
ecryptfs_destroy_mount_crypt_stat(struct ecryptfs_mount_crypt_stat * mount_crypt_stat)258 void ecryptfs_destroy_mount_crypt_stat(
259 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
260 {
261 	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
262 
263 	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
264 		return;
265 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
266 	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
267 				 &mount_crypt_stat->global_auth_tok_list,
268 				 mount_crypt_stat_list) {
269 		list_del(&auth_tok->mount_crypt_stat_list);
270 		mount_crypt_stat->num_global_auth_toks--;
271 		if (auth_tok->global_auth_tok_key
272 		    && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
273 			key_put(auth_tok->global_auth_tok_key);
274 		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
275 	}
276 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
277 	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
278 }
279 
280 /**
281  * virt_to_scatterlist
282  * @addr: Virtual address
283  * @size: Size of data; should be an even multiple of the block size
284  * @sg: Pointer to scatterlist array; set to NULL to obtain only
285  *      the number of scatterlist structs required in array
286  * @sg_size: Max array size
287  *
288  * Fills in a scatterlist array with page references for a passed
289  * virtual address.
290  *
291  * Returns the number of scatterlist structs in array used
292  */
virt_to_scatterlist(const void * addr,int size,struct scatterlist * sg,int sg_size)293 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
294 			int sg_size)
295 {
296 	int i = 0;
297 	struct page *pg;
298 	int offset;
299 	int remainder_of_page;
300 
301 	sg_init_table(sg, sg_size);
302 
303 	while (size > 0 && i < sg_size) {
304 		pg = virt_to_page(addr);
305 		offset = offset_in_page(addr);
306 		if (sg)
307 			sg_set_page(&sg[i], pg, 0, offset);
308 		remainder_of_page = PAGE_CACHE_SIZE - offset;
309 		if (size >= remainder_of_page) {
310 			if (sg)
311 				sg[i].length = remainder_of_page;
312 			addr += remainder_of_page;
313 			size -= remainder_of_page;
314 		} else {
315 			if (sg)
316 				sg[i].length = size;
317 			addr += size;
318 			size = 0;
319 		}
320 		i++;
321 	}
322 	if (size > 0)
323 		return -ENOMEM;
324 	return i;
325 }
326 
327 /**
328  * encrypt_scatterlist
329  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
330  * @dest_sg: Destination of encrypted data
331  * @src_sg: Data to be encrypted
332  * @size: Length of data to be encrypted
333  * @iv: iv to use during encryption
334  *
335  * Returns the number of bytes encrypted; negative value on error
336  */
encrypt_scatterlist(struct ecryptfs_crypt_stat * crypt_stat,struct scatterlist * dest_sg,struct scatterlist * src_sg,int size,unsigned char * iv)337 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
338 			       struct scatterlist *dest_sg,
339 			       struct scatterlist *src_sg, int size,
340 			       unsigned char *iv)
341 {
342 	struct blkcipher_desc desc = {
343 		.tfm = crypt_stat->tfm,
344 		.info = iv,
345 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
346 	};
347 	int rc = 0;
348 
349 	BUG_ON(!crypt_stat || !crypt_stat->tfm
350 	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
351 	if (unlikely(ecryptfs_verbosity > 0)) {
352 		ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
353 				crypt_stat->key_size);
354 		ecryptfs_dump_hex(crypt_stat->key,
355 				  crypt_stat->key_size);
356 	}
357 	/* Consider doing this once, when the file is opened */
358 	mutex_lock(&crypt_stat->cs_tfm_mutex);
359 	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
360 		rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
361 					     crypt_stat->key_size);
362 		crypt_stat->flags |= ECRYPTFS_KEY_SET;
363 	}
364 	if (rc) {
365 		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
366 				rc);
367 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
368 		rc = -EINVAL;
369 		goto out;
370 	}
371 	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
372 	crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
373 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
374 out:
375 	return rc;
376 }
377 
378 /**
379  * ecryptfs_lower_offset_for_extent
380  *
381  * Convert an eCryptfs page index into a lower byte offset
382  */
ecryptfs_lower_offset_for_extent(loff_t * offset,loff_t extent_num,struct ecryptfs_crypt_stat * crypt_stat)383 static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
384 					     struct ecryptfs_crypt_stat *crypt_stat)
385 {
386 	(*offset) = (crypt_stat->num_header_bytes_at_front
387 		     + (crypt_stat->extent_size * extent_num));
388 }
389 
390 /**
391  * ecryptfs_encrypt_extent
392  * @enc_extent_page: Allocated page into which to encrypt the data in
393  *                   @page
394  * @crypt_stat: crypt_stat containing cryptographic context for the
395  *              encryption operation
396  * @page: Page containing plaintext data extent to encrypt
397  * @extent_offset: Page extent offset for use in generating IV
398  *
399  * Encrypts one extent of data.
400  *
401  * Return zero on success; non-zero otherwise
402  */
ecryptfs_encrypt_extent(struct page * enc_extent_page,struct ecryptfs_crypt_stat * crypt_stat,struct page * page,unsigned long extent_offset)403 static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
404 				   struct ecryptfs_crypt_stat *crypt_stat,
405 				   struct page *page,
406 				   unsigned long extent_offset)
407 {
408 	loff_t extent_base;
409 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
410 	int rc;
411 
412 	extent_base = (((loff_t)page->index)
413 		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
414 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
415 				(extent_base + extent_offset));
416 	if (rc) {
417 		ecryptfs_printk(KERN_ERR, "Error attempting to "
418 				"derive IV for extent [0x%.16x]; "
419 				"rc = [%d]\n", (extent_base + extent_offset),
420 				rc);
421 		goto out;
422 	}
423 	if (unlikely(ecryptfs_verbosity > 0)) {
424 		ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
425 				"with iv:\n");
426 		ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
427 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
428 				"encryption:\n");
429 		ecryptfs_dump_hex((char *)
430 				  (page_address(page)
431 				   + (extent_offset * crypt_stat->extent_size)),
432 				  8);
433 	}
434 	rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
435 					  page, (extent_offset
436 						 * crypt_stat->extent_size),
437 					  crypt_stat->extent_size, extent_iv);
438 	if (rc < 0) {
439 		printk(KERN_ERR "%s: Error attempting to encrypt page with "
440 		       "page->index = [%ld], extent_offset = [%ld]; "
441 		       "rc = [%d]\n", __func__, page->index, extent_offset,
442 		       rc);
443 		goto out;
444 	}
445 	rc = 0;
446 	if (unlikely(ecryptfs_verbosity > 0)) {
447 		ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
448 				"rc = [%d]\n", (extent_base + extent_offset),
449 				rc);
450 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
451 				"encryption:\n");
452 		ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8);
453 	}
454 out:
455 	return rc;
456 }
457 
458 /**
459  * ecryptfs_encrypt_page
460  * @page: Page mapped from the eCryptfs inode for the file; contains
461  *        decrypted content that needs to be encrypted (to a temporary
462  *        page; not in place) and written out to the lower file
463  *
464  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
465  * that eCryptfs pages may straddle the lower pages -- for instance,
466  * if the file was created on a machine with an 8K page size
467  * (resulting in an 8K header), and then the file is copied onto a
468  * host with a 32K page size, then when reading page 0 of the eCryptfs
469  * file, 24K of page 0 of the lower file will be read and decrypted,
470  * and then 8K of page 1 of the lower file will be read and decrypted.
471  *
472  * Returns zero on success; negative on error
473  */
ecryptfs_encrypt_page(struct page * page)474 int ecryptfs_encrypt_page(struct page *page)
475 {
476 	struct inode *ecryptfs_inode;
477 	struct ecryptfs_crypt_stat *crypt_stat;
478 	char *enc_extent_virt;
479 	struct page *enc_extent_page = NULL;
480 	loff_t extent_offset;
481 	int rc = 0;
482 
483 	ecryptfs_inode = page->mapping->host;
484 	crypt_stat =
485 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
486 	if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
487 		rc = ecryptfs_write_lower_page_segment(ecryptfs_inode, page,
488 						       0, PAGE_CACHE_SIZE);
489 		if (rc)
490 			printk(KERN_ERR "%s: Error attempting to copy "
491 			       "page at index [%ld]\n", __func__,
492 			       page->index);
493 		goto out;
494 	}
495 	enc_extent_page = alloc_page(GFP_USER);
496 	if (!enc_extent_page) {
497 		rc = -ENOMEM;
498 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
499 				"encrypted extent\n");
500 		goto out;
501 	}
502 	enc_extent_virt = kmap(enc_extent_page);
503 	for (extent_offset = 0;
504 	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
505 	     extent_offset++) {
506 		loff_t offset;
507 
508 		rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
509 					     extent_offset);
510 		if (rc) {
511 			printk(KERN_ERR "%s: Error encrypting extent; "
512 			       "rc = [%d]\n", __func__, rc);
513 			goto out;
514 		}
515 		ecryptfs_lower_offset_for_extent(
516 			&offset, ((((loff_t)page->index)
517 				   * (PAGE_CACHE_SIZE
518 				      / crypt_stat->extent_size))
519 				  + extent_offset), crypt_stat);
520 		rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
521 					  offset, crypt_stat->extent_size);
522 		if (rc) {
523 			ecryptfs_printk(KERN_ERR, "Error attempting "
524 					"to write lower page; rc = [%d]"
525 					"\n", rc);
526 			goto out;
527 		}
528 	}
529 out:
530 	if (enc_extent_page) {
531 		kunmap(enc_extent_page);
532 		__free_page(enc_extent_page);
533 	}
534 	return rc;
535 }
536 
ecryptfs_decrypt_extent(struct page * page,struct ecryptfs_crypt_stat * crypt_stat,struct page * enc_extent_page,unsigned long extent_offset)537 static int ecryptfs_decrypt_extent(struct page *page,
538 				   struct ecryptfs_crypt_stat *crypt_stat,
539 				   struct page *enc_extent_page,
540 				   unsigned long extent_offset)
541 {
542 	loff_t extent_base;
543 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
544 	int rc;
545 
546 	extent_base = (((loff_t)page->index)
547 		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
548 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
549 				(extent_base + extent_offset));
550 	if (rc) {
551 		ecryptfs_printk(KERN_ERR, "Error attempting to "
552 				"derive IV for extent [0x%.16x]; "
553 				"rc = [%d]\n", (extent_base + extent_offset),
554 				rc);
555 		goto out;
556 	}
557 	if (unlikely(ecryptfs_verbosity > 0)) {
558 		ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
559 				"with iv:\n");
560 		ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
561 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
562 				"decryption:\n");
563 		ecryptfs_dump_hex((char *)
564 				  (page_address(enc_extent_page)
565 				   + (extent_offset * crypt_stat->extent_size)),
566 				  8);
567 	}
568 	rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
569 					  (extent_offset
570 					   * crypt_stat->extent_size),
571 					  enc_extent_page, 0,
572 					  crypt_stat->extent_size, extent_iv);
573 	if (rc < 0) {
574 		printk(KERN_ERR "%s: Error attempting to decrypt to page with "
575 		       "page->index = [%ld], extent_offset = [%ld]; "
576 		       "rc = [%d]\n", __func__, page->index, extent_offset,
577 		       rc);
578 		goto out;
579 	}
580 	rc = 0;
581 	if (unlikely(ecryptfs_verbosity > 0)) {
582 		ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16x]; "
583 				"rc = [%d]\n", (extent_base + extent_offset),
584 				rc);
585 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
586 				"decryption:\n");
587 		ecryptfs_dump_hex((char *)(page_address(page)
588 					   + (extent_offset
589 					      * crypt_stat->extent_size)), 8);
590 	}
591 out:
592 	return rc;
593 }
594 
595 /**
596  * ecryptfs_decrypt_page
597  * @page: Page mapped from the eCryptfs inode for the file; data read
598  *        and decrypted from the lower file will be written into this
599  *        page
600  *
601  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
602  * that eCryptfs pages may straddle the lower pages -- for instance,
603  * if the file was created on a machine with an 8K page size
604  * (resulting in an 8K header), and then the file is copied onto a
605  * host with a 32K page size, then when reading page 0 of the eCryptfs
606  * file, 24K of page 0 of the lower file will be read and decrypted,
607  * and then 8K of page 1 of the lower file will be read and decrypted.
608  *
609  * Returns zero on success; negative on error
610  */
ecryptfs_decrypt_page(struct page * page)611 int ecryptfs_decrypt_page(struct page *page)
612 {
613 	struct inode *ecryptfs_inode;
614 	struct ecryptfs_crypt_stat *crypt_stat;
615 	char *enc_extent_virt;
616 	struct page *enc_extent_page = NULL;
617 	unsigned long extent_offset;
618 	int rc = 0;
619 
620 	ecryptfs_inode = page->mapping->host;
621 	crypt_stat =
622 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
623 	if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
624 		rc = ecryptfs_read_lower_page_segment(page, page->index, 0,
625 						      PAGE_CACHE_SIZE,
626 						      ecryptfs_inode);
627 		if (rc)
628 			printk(KERN_ERR "%s: Error attempting to copy "
629 			       "page at index [%ld]\n", __func__,
630 			       page->index);
631 		goto out;
632 	}
633 	enc_extent_page = alloc_page(GFP_USER);
634 	if (!enc_extent_page) {
635 		rc = -ENOMEM;
636 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
637 				"encrypted extent\n");
638 		goto out;
639 	}
640 	enc_extent_virt = kmap(enc_extent_page);
641 	for (extent_offset = 0;
642 	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
643 	     extent_offset++) {
644 		loff_t offset;
645 
646 		ecryptfs_lower_offset_for_extent(
647 			&offset, ((page->index * (PAGE_CACHE_SIZE
648 						  / crypt_stat->extent_size))
649 				  + extent_offset), crypt_stat);
650 		rc = ecryptfs_read_lower(enc_extent_virt, offset,
651 					 crypt_stat->extent_size,
652 					 ecryptfs_inode);
653 		if (rc) {
654 			ecryptfs_printk(KERN_ERR, "Error attempting "
655 					"to read lower page; rc = [%d]"
656 					"\n", rc);
657 			goto out;
658 		}
659 		rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
660 					     extent_offset);
661 		if (rc) {
662 			printk(KERN_ERR "%s: Error encrypting extent; "
663 			       "rc = [%d]\n", __func__, rc);
664 			goto out;
665 		}
666 	}
667 out:
668 	if (enc_extent_page) {
669 		kunmap(enc_extent_page);
670 		__free_page(enc_extent_page);
671 	}
672 	return rc;
673 }
674 
675 /**
676  * decrypt_scatterlist
677  * @crypt_stat: Cryptographic context
678  * @dest_sg: The destination scatterlist to decrypt into
679  * @src_sg: The source scatterlist to decrypt from
680  * @size: The number of bytes to decrypt
681  * @iv: The initialization vector to use for the decryption
682  *
683  * Returns the number of bytes decrypted; negative value on error
684  */
decrypt_scatterlist(struct ecryptfs_crypt_stat * crypt_stat,struct scatterlist * dest_sg,struct scatterlist * src_sg,int size,unsigned char * iv)685 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
686 			       struct scatterlist *dest_sg,
687 			       struct scatterlist *src_sg, int size,
688 			       unsigned char *iv)
689 {
690 	struct blkcipher_desc desc = {
691 		.tfm = crypt_stat->tfm,
692 		.info = iv,
693 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
694 	};
695 	int rc = 0;
696 
697 	/* Consider doing this once, when the file is opened */
698 	mutex_lock(&crypt_stat->cs_tfm_mutex);
699 	rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
700 				     crypt_stat->key_size);
701 	if (rc) {
702 		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
703 				rc);
704 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
705 		rc = -EINVAL;
706 		goto out;
707 	}
708 	ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
709 	rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
710 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
711 	if (rc) {
712 		ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
713 				rc);
714 		goto out;
715 	}
716 	rc = size;
717 out:
718 	return rc;
719 }
720 
721 /**
722  * ecryptfs_encrypt_page_offset
723  * @crypt_stat: The cryptographic context
724  * @dst_page: The page to encrypt into
725  * @dst_offset: The offset in the page to encrypt into
726  * @src_page: The page to encrypt from
727  * @src_offset: The offset in the page to encrypt from
728  * @size: The number of bytes to encrypt
729  * @iv: The initialization vector to use for the encryption
730  *
731  * Returns the number of bytes encrypted
732  */
733 static int
ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat * crypt_stat,struct page * dst_page,int dst_offset,struct page * src_page,int src_offset,int size,unsigned char * iv)734 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
735 			     struct page *dst_page, int dst_offset,
736 			     struct page *src_page, int src_offset, int size,
737 			     unsigned char *iv)
738 {
739 	struct scatterlist src_sg, dst_sg;
740 
741 	sg_init_table(&src_sg, 1);
742 	sg_init_table(&dst_sg, 1);
743 
744 	sg_set_page(&src_sg, src_page, size, src_offset);
745 	sg_set_page(&dst_sg, dst_page, size, dst_offset);
746 	return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
747 }
748 
749 /**
750  * ecryptfs_decrypt_page_offset
751  * @crypt_stat: The cryptographic context
752  * @dst_page: The page to decrypt into
753  * @dst_offset: The offset in the page to decrypt into
754  * @src_page: The page to decrypt from
755  * @src_offset: The offset in the page to decrypt from
756  * @size: The number of bytes to decrypt
757  * @iv: The initialization vector to use for the decryption
758  *
759  * Returns the number of bytes decrypted
760  */
761 static int
ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat * crypt_stat,struct page * dst_page,int dst_offset,struct page * src_page,int src_offset,int size,unsigned char * iv)762 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
763 			     struct page *dst_page, int dst_offset,
764 			     struct page *src_page, int src_offset, int size,
765 			     unsigned char *iv)
766 {
767 	struct scatterlist src_sg, dst_sg;
768 
769 	sg_init_table(&src_sg, 1);
770 	sg_set_page(&src_sg, src_page, size, src_offset);
771 
772 	sg_init_table(&dst_sg, 1);
773 	sg_set_page(&dst_sg, dst_page, size, dst_offset);
774 
775 	return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
776 }
777 
778 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
779 
780 /**
781  * ecryptfs_init_crypt_ctx
782  * @crypt_stat: Uninitilized crypt stats structure
783  *
784  * Initialize the crypto context.
785  *
786  * TODO: Performance: Keep a cache of initialized cipher contexts;
787  * only init if needed
788  */
ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat * crypt_stat)789 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
790 {
791 	char *full_alg_name;
792 	int rc = -EINVAL;
793 
794 	if (!crypt_stat->cipher) {
795 		ecryptfs_printk(KERN_ERR, "No cipher specified\n");
796 		goto out;
797 	}
798 	ecryptfs_printk(KERN_DEBUG,
799 			"Initializing cipher [%s]; strlen = [%d]; "
800 			"key_size_bits = [%d]\n",
801 			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
802 			crypt_stat->key_size << 3);
803 	if (crypt_stat->tfm) {
804 		rc = 0;
805 		goto out;
806 	}
807 	mutex_lock(&crypt_stat->cs_tfm_mutex);
808 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
809 						    crypt_stat->cipher, "cbc");
810 	if (rc)
811 		goto out_unlock;
812 	crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
813 						 CRYPTO_ALG_ASYNC);
814 	kfree(full_alg_name);
815 	if (IS_ERR(crypt_stat->tfm)) {
816 		rc = PTR_ERR(crypt_stat->tfm);
817 		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
818 				"Error initializing cipher [%s]\n",
819 				crypt_stat->cipher);
820 		goto out_unlock;
821 	}
822 	crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
823 	rc = 0;
824 out_unlock:
825 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
826 out:
827 	return rc;
828 }
829 
set_extent_mask_and_shift(struct ecryptfs_crypt_stat * crypt_stat)830 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
831 {
832 	int extent_size_tmp;
833 
834 	crypt_stat->extent_mask = 0xFFFFFFFF;
835 	crypt_stat->extent_shift = 0;
836 	if (crypt_stat->extent_size == 0)
837 		return;
838 	extent_size_tmp = crypt_stat->extent_size;
839 	while ((extent_size_tmp & 0x01) == 0) {
840 		extent_size_tmp >>= 1;
841 		crypt_stat->extent_mask <<= 1;
842 		crypt_stat->extent_shift++;
843 	}
844 }
845 
ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat * crypt_stat)846 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
847 {
848 	/* Default values; may be overwritten as we are parsing the
849 	 * packets. */
850 	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
851 	set_extent_mask_and_shift(crypt_stat);
852 	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
853 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
854 		crypt_stat->num_header_bytes_at_front = 0;
855 	else {
856 		if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
857 			crypt_stat->num_header_bytes_at_front =
858 				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
859 		else
860 			crypt_stat->num_header_bytes_at_front =	PAGE_CACHE_SIZE;
861 	}
862 }
863 
864 /**
865  * ecryptfs_compute_root_iv
866  * @crypt_stats
867  *
868  * On error, sets the root IV to all 0's.
869  */
ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat * crypt_stat)870 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
871 {
872 	int rc = 0;
873 	char dst[MD5_DIGEST_SIZE];
874 
875 	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
876 	BUG_ON(crypt_stat->iv_bytes <= 0);
877 	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
878 		rc = -EINVAL;
879 		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
880 				"cannot generate root IV\n");
881 		goto out;
882 	}
883 	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
884 				    crypt_stat->key_size);
885 	if (rc) {
886 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
887 				"MD5 while generating root IV\n");
888 		goto out;
889 	}
890 	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
891 out:
892 	if (rc) {
893 		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
894 		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
895 	}
896 	return rc;
897 }
898 
ecryptfs_generate_new_key(struct ecryptfs_crypt_stat * crypt_stat)899 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
900 {
901 	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
902 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
903 	ecryptfs_compute_root_iv(crypt_stat);
904 	if (unlikely(ecryptfs_verbosity > 0)) {
905 		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
906 		ecryptfs_dump_hex(crypt_stat->key,
907 				  crypt_stat->key_size);
908 	}
909 }
910 
911 /**
912  * ecryptfs_copy_mount_wide_flags_to_inode_flags
913  * @crypt_stat: The inode's cryptographic context
914  * @mount_crypt_stat: The mount point's cryptographic context
915  *
916  * This function propagates the mount-wide flags to individual inode
917  * flags.
918  */
ecryptfs_copy_mount_wide_flags_to_inode_flags(struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_mount_crypt_stat * mount_crypt_stat)919 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
920 	struct ecryptfs_crypt_stat *crypt_stat,
921 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
922 {
923 	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
924 		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
925 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
926 		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
927 	if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
928 		crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
929 		if (mount_crypt_stat->flags
930 		    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
931 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
932 		else if (mount_crypt_stat->flags
933 			 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
934 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
935 	}
936 }
937 
ecryptfs_copy_mount_wide_sigs_to_inode_sigs(struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_mount_crypt_stat * mount_crypt_stat)938 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
939 	struct ecryptfs_crypt_stat *crypt_stat,
940 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
941 {
942 	struct ecryptfs_global_auth_tok *global_auth_tok;
943 	int rc = 0;
944 
945 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
946 	list_for_each_entry(global_auth_tok,
947 			    &mount_crypt_stat->global_auth_tok_list,
948 			    mount_crypt_stat_list) {
949 		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
950 			continue;
951 		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
952 		if (rc) {
953 			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
954 			mutex_unlock(
955 				&mount_crypt_stat->global_auth_tok_list_mutex);
956 			goto out;
957 		}
958 	}
959 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
960 out:
961 	return rc;
962 }
963 
964 /**
965  * ecryptfs_set_default_crypt_stat_vals
966  * @crypt_stat: The inode's cryptographic context
967  * @mount_crypt_stat: The mount point's cryptographic context
968  *
969  * Default values in the event that policy does not override them.
970  */
ecryptfs_set_default_crypt_stat_vals(struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_mount_crypt_stat * mount_crypt_stat)971 static void ecryptfs_set_default_crypt_stat_vals(
972 	struct ecryptfs_crypt_stat *crypt_stat,
973 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
974 {
975 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
976 						      mount_crypt_stat);
977 	ecryptfs_set_default_sizes(crypt_stat);
978 	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
979 	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
980 	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
981 	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
982 	crypt_stat->mount_crypt_stat = mount_crypt_stat;
983 }
984 
985 /**
986  * ecryptfs_new_file_context
987  * @ecryptfs_dentry: The eCryptfs dentry
988  *
989  * If the crypto context for the file has not yet been established,
990  * this is where we do that.  Establishing a new crypto context
991  * involves the following decisions:
992  *  - What cipher to use?
993  *  - What set of authentication tokens to use?
994  * Here we just worry about getting enough information into the
995  * authentication tokens so that we know that they are available.
996  * We associate the available authentication tokens with the new file
997  * via the set of signatures in the crypt_stat struct.  Later, when
998  * the headers are actually written out, we may again defer to
999  * userspace to perform the encryption of the session key; for the
1000  * foreseeable future, this will be the case with public key packets.
1001  *
1002  * Returns zero on success; non-zero otherwise
1003  */
ecryptfs_new_file_context(struct dentry * ecryptfs_dentry)1004 int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
1005 {
1006 	struct ecryptfs_crypt_stat *crypt_stat =
1007 	    &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
1008 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1009 	    &ecryptfs_superblock_to_private(
1010 		    ecryptfs_dentry->d_sb)->mount_crypt_stat;
1011 	int cipher_name_len;
1012 	int rc = 0;
1013 
1014 	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
1015 	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
1016 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1017 						      mount_crypt_stat);
1018 	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
1019 							 mount_crypt_stat);
1020 	if (rc) {
1021 		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
1022 		       "to the inode key sigs; rc = [%d]\n", rc);
1023 		goto out;
1024 	}
1025 	cipher_name_len =
1026 		strlen(mount_crypt_stat->global_default_cipher_name);
1027 	memcpy(crypt_stat->cipher,
1028 	       mount_crypt_stat->global_default_cipher_name,
1029 	       cipher_name_len);
1030 	crypt_stat->cipher[cipher_name_len] = '\0';
1031 	crypt_stat->key_size =
1032 		mount_crypt_stat->global_default_cipher_key_size;
1033 	ecryptfs_generate_new_key(crypt_stat);
1034 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1035 	if (rc)
1036 		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1037 				"context for cipher [%s]: rc = [%d]\n",
1038 				crypt_stat->cipher, rc);
1039 out:
1040 	return rc;
1041 }
1042 
1043 /**
1044  * contains_ecryptfs_marker - check for the ecryptfs marker
1045  * @data: The data block in which to check
1046  *
1047  * Returns one if marker found; zero if not found
1048  */
contains_ecryptfs_marker(char * data)1049 static int contains_ecryptfs_marker(char *data)
1050 {
1051 	u32 m_1, m_2;
1052 
1053 	m_1 = get_unaligned_be32(data);
1054 	m_2 = get_unaligned_be32(data + 4);
1055 	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1056 		return 1;
1057 	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1058 			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1059 			MAGIC_ECRYPTFS_MARKER);
1060 	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1061 			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1062 	return 0;
1063 }
1064 
1065 struct ecryptfs_flag_map_elem {
1066 	u32 file_flag;
1067 	u32 local_flag;
1068 };
1069 
1070 /* Add support for additional flags by adding elements here. */
1071 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1072 	{0x00000001, ECRYPTFS_ENABLE_HMAC},
1073 	{0x00000002, ECRYPTFS_ENCRYPTED},
1074 	{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
1075 	{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
1076 };
1077 
1078 /**
1079  * ecryptfs_process_flags
1080  * @crypt_stat: The cryptographic context
1081  * @page_virt: Source data to be parsed
1082  * @bytes_read: Updated with the number of bytes read
1083  *
1084  * Returns zero on success; non-zero if the flag set is invalid
1085  */
ecryptfs_process_flags(struct ecryptfs_crypt_stat * crypt_stat,char * page_virt,int * bytes_read)1086 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1087 				  char *page_virt, int *bytes_read)
1088 {
1089 	int rc = 0;
1090 	int i;
1091 	u32 flags;
1092 
1093 	flags = get_unaligned_be32(page_virt);
1094 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1095 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1096 		if (flags & ecryptfs_flag_map[i].file_flag) {
1097 			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1098 		} else
1099 			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1100 	/* Version is in top 8 bits of the 32-bit flag vector */
1101 	crypt_stat->file_version = ((flags >> 24) & 0xFF);
1102 	(*bytes_read) = 4;
1103 	return rc;
1104 }
1105 
1106 /**
1107  * write_ecryptfs_marker
1108  * @page_virt: The pointer to in a page to begin writing the marker
1109  * @written: Number of bytes written
1110  *
1111  * Marker = 0x3c81b7f5
1112  */
write_ecryptfs_marker(char * page_virt,size_t * written)1113 static void write_ecryptfs_marker(char *page_virt, size_t *written)
1114 {
1115 	u32 m_1, m_2;
1116 
1117 	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1118 	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1119 	put_unaligned_be32(m_1, page_virt);
1120 	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
1121 	put_unaligned_be32(m_2, page_virt);
1122 	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1123 }
1124 
1125 static void
write_ecryptfs_flags(char * page_virt,struct ecryptfs_crypt_stat * crypt_stat,size_t * written)1126 write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat,
1127 		     size_t *written)
1128 {
1129 	u32 flags = 0;
1130 	int i;
1131 
1132 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1133 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1134 		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1135 			flags |= ecryptfs_flag_map[i].file_flag;
1136 	/* Version is in top 8 bits of the 32-bit flag vector */
1137 	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1138 	put_unaligned_be32(flags, page_virt);
1139 	(*written) = 4;
1140 }
1141 
1142 struct ecryptfs_cipher_code_str_map_elem {
1143 	char cipher_str[16];
1144 	u8 cipher_code;
1145 };
1146 
1147 /* Add support for additional ciphers by adding elements here. The
1148  * cipher_code is whatever OpenPGP applicatoins use to identify the
1149  * ciphers. List in order of probability. */
1150 static struct ecryptfs_cipher_code_str_map_elem
1151 ecryptfs_cipher_code_str_map[] = {
1152 	{"aes",RFC2440_CIPHER_AES_128 },
1153 	{"blowfish", RFC2440_CIPHER_BLOWFISH},
1154 	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
1155 	{"cast5", RFC2440_CIPHER_CAST_5},
1156 	{"twofish", RFC2440_CIPHER_TWOFISH},
1157 	{"cast6", RFC2440_CIPHER_CAST_6},
1158 	{"aes", RFC2440_CIPHER_AES_192},
1159 	{"aes", RFC2440_CIPHER_AES_256}
1160 };
1161 
1162 /**
1163  * ecryptfs_code_for_cipher_string
1164  * @cipher_name: The string alias for the cipher
1165  * @key_bytes: Length of key in bytes; used for AES code selection
1166  *
1167  * Returns zero on no match, or the cipher code on match
1168  */
ecryptfs_code_for_cipher_string(char * cipher_name,size_t key_bytes)1169 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
1170 {
1171 	int i;
1172 	u8 code = 0;
1173 	struct ecryptfs_cipher_code_str_map_elem *map =
1174 		ecryptfs_cipher_code_str_map;
1175 
1176 	if (strcmp(cipher_name, "aes") == 0) {
1177 		switch (key_bytes) {
1178 		case 16:
1179 			code = RFC2440_CIPHER_AES_128;
1180 			break;
1181 		case 24:
1182 			code = RFC2440_CIPHER_AES_192;
1183 			break;
1184 		case 32:
1185 			code = RFC2440_CIPHER_AES_256;
1186 		}
1187 	} else {
1188 		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1189 			if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1190 				code = map[i].cipher_code;
1191 				break;
1192 			}
1193 	}
1194 	return code;
1195 }
1196 
1197 /**
1198  * ecryptfs_cipher_code_to_string
1199  * @str: Destination to write out the cipher name
1200  * @cipher_code: The code to convert to cipher name string
1201  *
1202  * Returns zero on success
1203  */
ecryptfs_cipher_code_to_string(char * str,u8 cipher_code)1204 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1205 {
1206 	int rc = 0;
1207 	int i;
1208 
1209 	str[0] = '\0';
1210 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1211 		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1212 			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1213 	if (str[0] == '\0') {
1214 		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1215 				"[%d]\n", cipher_code);
1216 		rc = -EINVAL;
1217 	}
1218 	return rc;
1219 }
1220 
ecryptfs_read_and_validate_header_region(char * data,struct inode * ecryptfs_inode)1221 int ecryptfs_read_and_validate_header_region(char *data,
1222 					     struct inode *ecryptfs_inode)
1223 {
1224 	struct ecryptfs_crypt_stat *crypt_stat =
1225 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
1226 	int rc;
1227 
1228 	if (crypt_stat->extent_size == 0)
1229 		crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
1230 	rc = ecryptfs_read_lower(data, 0, crypt_stat->extent_size,
1231 				 ecryptfs_inode);
1232 	if (rc) {
1233 		printk(KERN_ERR "%s: Error reading header region; rc = [%d]\n",
1234 		       __func__, rc);
1235 		goto out;
1236 	}
1237 	if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) {
1238 		rc = -EINVAL;
1239 	}
1240 out:
1241 	return rc;
1242 }
1243 
1244 void
ecryptfs_write_header_metadata(char * virt,struct ecryptfs_crypt_stat * crypt_stat,size_t * written)1245 ecryptfs_write_header_metadata(char *virt,
1246 			       struct ecryptfs_crypt_stat *crypt_stat,
1247 			       size_t *written)
1248 {
1249 	u32 header_extent_size;
1250 	u16 num_header_extents_at_front;
1251 
1252 	header_extent_size = (u32)crypt_stat->extent_size;
1253 	num_header_extents_at_front =
1254 		(u16)(crypt_stat->num_header_bytes_at_front
1255 		      / crypt_stat->extent_size);
1256 	put_unaligned_be32(header_extent_size, virt);
1257 	virt += 4;
1258 	put_unaligned_be16(num_header_extents_at_front, virt);
1259 	(*written) = 6;
1260 }
1261 
1262 struct kmem_cache *ecryptfs_header_cache_1;
1263 struct kmem_cache *ecryptfs_header_cache_2;
1264 
1265 /**
1266  * ecryptfs_write_headers_virt
1267  * @page_virt: The virtual address to write the headers to
1268  * @max: The size of memory allocated at page_virt
1269  * @size: Set to the number of bytes written by this function
1270  * @crypt_stat: The cryptographic context
1271  * @ecryptfs_dentry: The eCryptfs dentry
1272  *
1273  * Format version: 1
1274  *
1275  *   Header Extent:
1276  *     Octets 0-7:        Unencrypted file size (big-endian)
1277  *     Octets 8-15:       eCryptfs special marker
1278  *     Octets 16-19:      Flags
1279  *      Octet 16:         File format version number (between 0 and 255)
1280  *      Octets 17-18:     Reserved
1281  *      Octet 19:         Bit 1 (lsb): Reserved
1282  *                        Bit 2: Encrypted?
1283  *                        Bits 3-8: Reserved
1284  *     Octets 20-23:      Header extent size (big-endian)
1285  *     Octets 24-25:      Number of header extents at front of file
1286  *                        (big-endian)
1287  *     Octet  26:         Begin RFC 2440 authentication token packet set
1288  *   Data Extent 0:
1289  *     Lower data (CBC encrypted)
1290  *   Data Extent 1:
1291  *     Lower data (CBC encrypted)
1292  *   ...
1293  *
1294  * Returns zero on success
1295  */
ecryptfs_write_headers_virt(char * page_virt,size_t max,size_t * size,struct ecryptfs_crypt_stat * crypt_stat,struct dentry * ecryptfs_dentry)1296 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1297 				       size_t *size,
1298 				       struct ecryptfs_crypt_stat *crypt_stat,
1299 				       struct dentry *ecryptfs_dentry)
1300 {
1301 	int rc;
1302 	size_t written;
1303 	size_t offset;
1304 
1305 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1306 	write_ecryptfs_marker((page_virt + offset), &written);
1307 	offset += written;
1308 	write_ecryptfs_flags((page_virt + offset), crypt_stat, &written);
1309 	offset += written;
1310 	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1311 				       &written);
1312 	offset += written;
1313 	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1314 					      ecryptfs_dentry, &written,
1315 					      max - offset);
1316 	if (rc)
1317 		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1318 				"set; rc = [%d]\n", rc);
1319 	if (size) {
1320 		offset += written;
1321 		*size = offset;
1322 	}
1323 	return rc;
1324 }
1325 
1326 static int
ecryptfs_write_metadata_to_contents(struct dentry * ecryptfs_dentry,char * virt,size_t virt_len)1327 ecryptfs_write_metadata_to_contents(struct dentry *ecryptfs_dentry,
1328 				    char *virt, size_t virt_len)
1329 {
1330 	int rc;
1331 
1332 	rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, virt,
1333 				  0, virt_len);
1334 	if (rc)
1335 		printk(KERN_ERR "%s: Error attempting to write header "
1336 		       "information to lower file; rc = [%d]\n", __func__,
1337 		       rc);
1338 	return rc;
1339 }
1340 
1341 static int
ecryptfs_write_metadata_to_xattr(struct dentry * ecryptfs_dentry,char * page_virt,size_t size)1342 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1343 				 char *page_virt, size_t size)
1344 {
1345 	int rc;
1346 
1347 	rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1348 			       size, 0);
1349 	return rc;
1350 }
1351 
ecryptfs_get_zeroed_pages(gfp_t gfp_mask,unsigned int order)1352 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1353 					       unsigned int order)
1354 {
1355 	struct page *page;
1356 
1357 	page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1358 	if (page)
1359 		return (unsigned long) page_address(page);
1360 	return 0;
1361 }
1362 
1363 /**
1364  * ecryptfs_write_metadata
1365  * @ecryptfs_dentry: The eCryptfs dentry
1366  *
1367  * Write the file headers out.  This will likely involve a userspace
1368  * callout, in which the session key is encrypted with one or more
1369  * public keys and/or the passphrase necessary to do the encryption is
1370  * retrieved via a prompt.  Exactly what happens at this point should
1371  * be policy-dependent.
1372  *
1373  * Returns zero on success; non-zero on error
1374  */
ecryptfs_write_metadata(struct dentry * ecryptfs_dentry)1375 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry)
1376 {
1377 	struct ecryptfs_crypt_stat *crypt_stat =
1378 		&ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
1379 	unsigned int order;
1380 	char *virt;
1381 	size_t virt_len;
1382 	size_t size = 0;
1383 	int rc = 0;
1384 
1385 	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1386 		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1387 			printk(KERN_ERR "Key is invalid; bailing out\n");
1388 			rc = -EINVAL;
1389 			goto out;
1390 		}
1391 	} else {
1392 		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1393 		       __func__);
1394 		rc = -EINVAL;
1395 		goto out;
1396 	}
1397 	virt_len = crypt_stat->num_header_bytes_at_front;
1398 	order = get_order(virt_len);
1399 	/* Released in this function */
1400 	virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1401 	if (!virt) {
1402 		printk(KERN_ERR "%s: Out of memory\n", __func__);
1403 		rc = -ENOMEM;
1404 		goto out;
1405 	}
1406 	rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1407 					 ecryptfs_dentry);
1408 	if (unlikely(rc)) {
1409 		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1410 		       __func__, rc);
1411 		goto out_free;
1412 	}
1413 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1414 		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1415 						      size);
1416 	else
1417 		rc = ecryptfs_write_metadata_to_contents(ecryptfs_dentry, virt,
1418 							 virt_len);
1419 	if (rc) {
1420 		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1421 		       "rc = [%d]\n", __func__, rc);
1422 		goto out_free;
1423 	}
1424 out_free:
1425 	free_pages((unsigned long)virt, order);
1426 out:
1427 	return rc;
1428 }
1429 
1430 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1431 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
parse_header_metadata(struct ecryptfs_crypt_stat * crypt_stat,char * virt,int * bytes_read,int validate_header_size)1432 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1433 				 char *virt, int *bytes_read,
1434 				 int validate_header_size)
1435 {
1436 	int rc = 0;
1437 	u32 header_extent_size;
1438 	u16 num_header_extents_at_front;
1439 
1440 	header_extent_size = get_unaligned_be32(virt);
1441 	virt += sizeof(__be32);
1442 	num_header_extents_at_front = get_unaligned_be16(virt);
1443 	crypt_stat->num_header_bytes_at_front =
1444 		(((size_t)num_header_extents_at_front
1445 		  * (size_t)header_extent_size));
1446 	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1447 	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1448 	    && (crypt_stat->num_header_bytes_at_front
1449 		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1450 		rc = -EINVAL;
1451 		printk(KERN_WARNING "Invalid header size: [%zd]\n",
1452 		       crypt_stat->num_header_bytes_at_front);
1453 	}
1454 	return rc;
1455 }
1456 
1457 /**
1458  * set_default_header_data
1459  * @crypt_stat: The cryptographic context
1460  *
1461  * For version 0 file format; this function is only for backwards
1462  * compatibility for files created with the prior versions of
1463  * eCryptfs.
1464  */
set_default_header_data(struct ecryptfs_crypt_stat * crypt_stat)1465 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1466 {
1467 	crypt_stat->num_header_bytes_at_front =
1468 		ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1469 }
1470 
1471 /**
1472  * ecryptfs_read_headers_virt
1473  * @page_virt: The virtual address into which to read the headers
1474  * @crypt_stat: The cryptographic context
1475  * @ecryptfs_dentry: The eCryptfs dentry
1476  * @validate_header_size: Whether to validate the header size while reading
1477  *
1478  * Read/parse the header data. The header format is detailed in the
1479  * comment block for the ecryptfs_write_headers_virt() function.
1480  *
1481  * Returns zero on success
1482  */
ecryptfs_read_headers_virt(char * page_virt,struct ecryptfs_crypt_stat * crypt_stat,struct dentry * ecryptfs_dentry,int validate_header_size)1483 static int ecryptfs_read_headers_virt(char *page_virt,
1484 				      struct ecryptfs_crypt_stat *crypt_stat,
1485 				      struct dentry *ecryptfs_dentry,
1486 				      int validate_header_size)
1487 {
1488 	int rc = 0;
1489 	int offset;
1490 	int bytes_read;
1491 
1492 	ecryptfs_set_default_sizes(crypt_stat);
1493 	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1494 		ecryptfs_dentry->d_sb)->mount_crypt_stat;
1495 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1496 	rc = contains_ecryptfs_marker(page_virt + offset);
1497 	if (rc == 0) {
1498 		rc = -EINVAL;
1499 		goto out;
1500 	}
1501 	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1502 	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1503 				    &bytes_read);
1504 	if (rc) {
1505 		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1506 		goto out;
1507 	}
1508 	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1509 		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1510 				"file version [%d] is supported by this "
1511 				"version of eCryptfs\n",
1512 				crypt_stat->file_version,
1513 				ECRYPTFS_SUPPORTED_FILE_VERSION);
1514 		rc = -EINVAL;
1515 		goto out;
1516 	}
1517 	offset += bytes_read;
1518 	if (crypt_stat->file_version >= 1) {
1519 		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1520 					   &bytes_read, validate_header_size);
1521 		if (rc) {
1522 			ecryptfs_printk(KERN_WARNING, "Error reading header "
1523 					"metadata; rc = [%d]\n", rc);
1524 		}
1525 		offset += bytes_read;
1526 	} else
1527 		set_default_header_data(crypt_stat);
1528 	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1529 				       ecryptfs_dentry);
1530 out:
1531 	return rc;
1532 }
1533 
1534 /**
1535  * ecryptfs_read_xattr_region
1536  * @page_virt: The vitual address into which to read the xattr data
1537  * @ecryptfs_inode: The eCryptfs inode
1538  *
1539  * Attempts to read the crypto metadata from the extended attribute
1540  * region of the lower file.
1541  *
1542  * Returns zero on success; non-zero on error
1543  */
ecryptfs_read_xattr_region(char * page_virt,struct inode * ecryptfs_inode)1544 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1545 {
1546 	struct dentry *lower_dentry =
1547 		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1548 	ssize_t size;
1549 	int rc = 0;
1550 
1551 	size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1552 				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1553 	if (size < 0) {
1554 		if (unlikely(ecryptfs_verbosity > 0))
1555 			printk(KERN_INFO "Error attempting to read the [%s] "
1556 			       "xattr from the lower file; return value = "
1557 			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1558 		rc = -EINVAL;
1559 		goto out;
1560 	}
1561 out:
1562 	return rc;
1563 }
1564 
ecryptfs_read_and_validate_xattr_region(char * page_virt,struct dentry * ecryptfs_dentry)1565 int ecryptfs_read_and_validate_xattr_region(char *page_virt,
1566 					    struct dentry *ecryptfs_dentry)
1567 {
1568 	int rc;
1569 
1570 	rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry->d_inode);
1571 	if (rc)
1572 		goto out;
1573 	if (!contains_ecryptfs_marker(page_virt	+ ECRYPTFS_FILE_SIZE_BYTES)) {
1574 		printk(KERN_WARNING "Valid data found in [%s] xattr, but "
1575 			"the marker is invalid\n", ECRYPTFS_XATTR_NAME);
1576 		rc = -EINVAL;
1577 	}
1578 out:
1579 	return rc;
1580 }
1581 
1582 /**
1583  * ecryptfs_read_metadata
1584  *
1585  * Common entry point for reading file metadata. From here, we could
1586  * retrieve the header information from the header region of the file,
1587  * the xattr region of the file, or some other repostory that is
1588  * stored separately from the file itself. The current implementation
1589  * supports retrieving the metadata information from the file contents
1590  * and from the xattr region.
1591  *
1592  * Returns zero if valid headers found and parsed; non-zero otherwise
1593  */
ecryptfs_read_metadata(struct dentry * ecryptfs_dentry)1594 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1595 {
1596 	int rc = 0;
1597 	char *page_virt = NULL;
1598 	struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1599 	struct ecryptfs_crypt_stat *crypt_stat =
1600 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1601 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1602 		&ecryptfs_superblock_to_private(
1603 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1604 
1605 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1606 						      mount_crypt_stat);
1607 	/* Read the first page from the underlying file */
1608 	page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
1609 	if (!page_virt) {
1610 		rc = -ENOMEM;
1611 		printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1612 		       __func__);
1613 		goto out;
1614 	}
1615 	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1616 				 ecryptfs_inode);
1617 	if (!rc)
1618 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1619 						ecryptfs_dentry,
1620 						ECRYPTFS_VALIDATE_HEADER_SIZE);
1621 	if (rc) {
1622 		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1623 		if (rc) {
1624 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1625 			       "file header region or xattr region\n");
1626 			rc = -EINVAL;
1627 			goto out;
1628 		}
1629 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1630 						ecryptfs_dentry,
1631 						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1632 		if (rc) {
1633 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1634 			       "file xattr region either\n");
1635 			rc = -EINVAL;
1636 		}
1637 		if (crypt_stat->mount_crypt_stat->flags
1638 		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1639 			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1640 		} else {
1641 			printk(KERN_WARNING "Attempt to access file with "
1642 			       "crypto metadata only in the extended attribute "
1643 			       "region, but eCryptfs was mounted without "
1644 			       "xattr support enabled. eCryptfs will not treat "
1645 			       "this like an encrypted file.\n");
1646 			rc = -EINVAL;
1647 		}
1648 	}
1649 out:
1650 	if (page_virt) {
1651 		memset(page_virt, 0, PAGE_CACHE_SIZE);
1652 		kmem_cache_free(ecryptfs_header_cache_1, page_virt);
1653 	}
1654 	return rc;
1655 }
1656 
1657 /**
1658  * ecryptfs_encrypt_filename - encrypt filename
1659  *
1660  * CBC-encrypts the filename. We do not want to encrypt the same
1661  * filename with the same key and IV, which may happen with hard
1662  * links, so we prepend random bits to each filename.
1663  *
1664  * Returns zero on success; non-zero otherwise
1665  */
1666 static int
ecryptfs_encrypt_filename(struct ecryptfs_filename * filename,struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_mount_crypt_stat * mount_crypt_stat)1667 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1668 			  struct ecryptfs_crypt_stat *crypt_stat,
1669 			  struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1670 {
1671 	int rc = 0;
1672 
1673 	filename->encrypted_filename = NULL;
1674 	filename->encrypted_filename_size = 0;
1675 	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1676 	    || (mount_crypt_stat && (mount_crypt_stat->flags
1677 				     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1678 		size_t packet_size;
1679 		size_t remaining_bytes;
1680 
1681 		rc = ecryptfs_write_tag_70_packet(
1682 			NULL, NULL,
1683 			&filename->encrypted_filename_size,
1684 			mount_crypt_stat, NULL,
1685 			filename->filename_size);
1686 		if (rc) {
1687 			printk(KERN_ERR "%s: Error attempting to get packet "
1688 			       "size for tag 72; rc = [%d]\n", __func__,
1689 			       rc);
1690 			filename->encrypted_filename_size = 0;
1691 			goto out;
1692 		}
1693 		filename->encrypted_filename =
1694 			kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1695 		if (!filename->encrypted_filename) {
1696 			printk(KERN_ERR "%s: Out of memory whilst attempting "
1697 			       "to kmalloc [%zd] bytes\n", __func__,
1698 			       filename->encrypted_filename_size);
1699 			rc = -ENOMEM;
1700 			goto out;
1701 		}
1702 		remaining_bytes = filename->encrypted_filename_size;
1703 		rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1704 						  &remaining_bytes,
1705 						  &packet_size,
1706 						  mount_crypt_stat,
1707 						  filename->filename,
1708 						  filename->filename_size);
1709 		if (rc) {
1710 			printk(KERN_ERR "%s: Error attempting to generate "
1711 			       "tag 70 packet; rc = [%d]\n", __func__,
1712 			       rc);
1713 			kfree(filename->encrypted_filename);
1714 			filename->encrypted_filename = NULL;
1715 			filename->encrypted_filename_size = 0;
1716 			goto out;
1717 		}
1718 		filename->encrypted_filename_size = packet_size;
1719 	} else {
1720 		printk(KERN_ERR "%s: No support for requested filename "
1721 		       "encryption method in this release\n", __func__);
1722 		rc = -ENOTSUPP;
1723 		goto out;
1724 	}
1725 out:
1726 	return rc;
1727 }
1728 
ecryptfs_copy_filename(char ** copied_name,size_t * copied_name_size,const char * name,size_t name_size)1729 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1730 				  const char *name, size_t name_size)
1731 {
1732 	int rc = 0;
1733 
1734 	(*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1735 	if (!(*copied_name)) {
1736 		rc = -ENOMEM;
1737 		goto out;
1738 	}
1739 	memcpy((void *)(*copied_name), (void *)name, name_size);
1740 	(*copied_name)[(name_size)] = '\0';	/* Only for convenience
1741 						 * in printing out the
1742 						 * string in debug
1743 						 * messages */
1744 	(*copied_name_size) = name_size;
1745 out:
1746 	return rc;
1747 }
1748 
1749 /**
1750  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1751  * @key_tfm: Crypto context for key material, set by this function
1752  * @cipher_name: Name of the cipher
1753  * @key_size: Size of the key in bytes
1754  *
1755  * Returns zero on success. Any crypto_tfm structs allocated here
1756  * should be released by other functions, such as on a superblock put
1757  * event, regardless of whether this function succeeds for fails.
1758  */
1759 static int
ecryptfs_process_key_cipher(struct crypto_blkcipher ** key_tfm,char * cipher_name,size_t * key_size)1760 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1761 			    char *cipher_name, size_t *key_size)
1762 {
1763 	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1764 	char *full_alg_name;
1765 	int rc;
1766 
1767 	*key_tfm = NULL;
1768 	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1769 		rc = -EINVAL;
1770 		printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1771 		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1772 		goto out;
1773 	}
1774 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1775 						    "ecb");
1776 	if (rc)
1777 		goto out;
1778 	*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1779 	kfree(full_alg_name);
1780 	if (IS_ERR(*key_tfm)) {
1781 		rc = PTR_ERR(*key_tfm);
1782 		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1783 		       "[%s]; rc = [%d]\n", cipher_name, rc);
1784 		goto out;
1785 	}
1786 	crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1787 	if (*key_size == 0) {
1788 		struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1789 
1790 		*key_size = alg->max_keysize;
1791 	}
1792 	get_random_bytes(dummy_key, *key_size);
1793 	rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1794 	if (rc) {
1795 		printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1796 		       "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc);
1797 		rc = -EINVAL;
1798 		goto out;
1799 	}
1800 out:
1801 	return rc;
1802 }
1803 
1804 struct kmem_cache *ecryptfs_key_tfm_cache;
1805 static struct list_head key_tfm_list;
1806 struct mutex key_tfm_list_mutex;
1807 
ecryptfs_init_crypto(void)1808 int ecryptfs_init_crypto(void)
1809 {
1810 	mutex_init(&key_tfm_list_mutex);
1811 	INIT_LIST_HEAD(&key_tfm_list);
1812 	return 0;
1813 }
1814 
1815 /**
1816  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1817  *
1818  * Called only at module unload time
1819  */
ecryptfs_destroy_crypto(void)1820 int ecryptfs_destroy_crypto(void)
1821 {
1822 	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1823 
1824 	mutex_lock(&key_tfm_list_mutex);
1825 	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1826 				 key_tfm_list) {
1827 		list_del(&key_tfm->key_tfm_list);
1828 		if (key_tfm->key_tfm)
1829 			crypto_free_blkcipher(key_tfm->key_tfm);
1830 		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1831 	}
1832 	mutex_unlock(&key_tfm_list_mutex);
1833 	return 0;
1834 }
1835 
1836 int
ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm ** key_tfm,char * cipher_name,size_t key_size)1837 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1838 			 size_t key_size)
1839 {
1840 	struct ecryptfs_key_tfm *tmp_tfm;
1841 	int rc = 0;
1842 
1843 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1844 
1845 	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1846 	if (key_tfm != NULL)
1847 		(*key_tfm) = tmp_tfm;
1848 	if (!tmp_tfm) {
1849 		rc = -ENOMEM;
1850 		printk(KERN_ERR "Error attempting to allocate from "
1851 		       "ecryptfs_key_tfm_cache\n");
1852 		goto out;
1853 	}
1854 	mutex_init(&tmp_tfm->key_tfm_mutex);
1855 	strncpy(tmp_tfm->cipher_name, cipher_name,
1856 		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1857 	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1858 	tmp_tfm->key_size = key_size;
1859 	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1860 					 tmp_tfm->cipher_name,
1861 					 &tmp_tfm->key_size);
1862 	if (rc) {
1863 		printk(KERN_ERR "Error attempting to initialize key TFM "
1864 		       "cipher with name = [%s]; rc = [%d]\n",
1865 		       tmp_tfm->cipher_name, rc);
1866 		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1867 		if (key_tfm != NULL)
1868 			(*key_tfm) = NULL;
1869 		goto out;
1870 	}
1871 	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1872 out:
1873 	return rc;
1874 }
1875 
1876 /**
1877  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1878  * @cipher_name: the name of the cipher to search for
1879  * @key_tfm: set to corresponding tfm if found
1880  *
1881  * Searches for cached key_tfm matching @cipher_name
1882  * Must be called with &key_tfm_list_mutex held
1883  * Returns 1 if found, with @key_tfm set
1884  * Returns 0 if not found, with @key_tfm set to NULL
1885  */
ecryptfs_tfm_exists(char * cipher_name,struct ecryptfs_key_tfm ** key_tfm)1886 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1887 {
1888 	struct ecryptfs_key_tfm *tmp_key_tfm;
1889 
1890 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1891 
1892 	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1893 		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1894 			if (key_tfm)
1895 				(*key_tfm) = tmp_key_tfm;
1896 			return 1;
1897 		}
1898 	}
1899 	if (key_tfm)
1900 		(*key_tfm) = NULL;
1901 	return 0;
1902 }
1903 
1904 /**
1905  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1906  *
1907  * @tfm: set to cached tfm found, or new tfm created
1908  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1909  * @cipher_name: the name of the cipher to search for and/or add
1910  *
1911  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1912  * Searches for cached item first, and creates new if not found.
1913  * Returns 0 on success, non-zero if adding new cipher failed
1914  */
ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher ** tfm,struct mutex ** tfm_mutex,char * cipher_name)1915 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1916 					       struct mutex **tfm_mutex,
1917 					       char *cipher_name)
1918 {
1919 	struct ecryptfs_key_tfm *key_tfm;
1920 	int rc = 0;
1921 
1922 	(*tfm) = NULL;
1923 	(*tfm_mutex) = NULL;
1924 
1925 	mutex_lock(&key_tfm_list_mutex);
1926 	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1927 		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1928 		if (rc) {
1929 			printk(KERN_ERR "Error adding new key_tfm to list; "
1930 					"rc = [%d]\n", rc);
1931 			goto out;
1932 		}
1933 	}
1934 	(*tfm) = key_tfm->key_tfm;
1935 	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
1936 out:
1937 	mutex_unlock(&key_tfm_list_mutex);
1938 	return rc;
1939 }
1940 
1941 /* 64 characters forming a 6-bit target field */
1942 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1943 						 "EFGHIJKLMNOPQRST"
1944 						 "UVWXYZabcdefghij"
1945 						 "klmnopqrstuvwxyz");
1946 
1947 /* We could either offset on every reverse map or just pad some 0x00's
1948  * at the front here */
1949 static const unsigned char filename_rev_map[] = {
1950 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1951 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1952 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1953 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1954 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1955 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1956 	0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1957 	0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1958 	0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1959 	0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1960 	0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1961 	0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1962 	0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1963 	0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1964 	0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1965 	0x3D, 0x3E, 0x3F
1966 };
1967 
1968 /**
1969  * ecryptfs_encode_for_filename
1970  * @dst: Destination location for encoded filename
1971  * @dst_size: Size of the encoded filename in bytes
1972  * @src: Source location for the filename to encode
1973  * @src_size: Size of the source in bytes
1974  */
ecryptfs_encode_for_filename(unsigned char * dst,size_t * dst_size,unsigned char * src,size_t src_size)1975 void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1976 				  unsigned char *src, size_t src_size)
1977 {
1978 	size_t num_blocks;
1979 	size_t block_num = 0;
1980 	size_t dst_offset = 0;
1981 	unsigned char last_block[3];
1982 
1983 	if (src_size == 0) {
1984 		(*dst_size) = 0;
1985 		goto out;
1986 	}
1987 	num_blocks = (src_size / 3);
1988 	if ((src_size % 3) == 0) {
1989 		memcpy(last_block, (&src[src_size - 3]), 3);
1990 	} else {
1991 		num_blocks++;
1992 		last_block[2] = 0x00;
1993 		switch (src_size % 3) {
1994 		case 1:
1995 			last_block[0] = src[src_size - 1];
1996 			last_block[1] = 0x00;
1997 			break;
1998 		case 2:
1999 			last_block[0] = src[src_size - 2];
2000 			last_block[1] = src[src_size - 1];
2001 		}
2002 	}
2003 	(*dst_size) = (num_blocks * 4);
2004 	if (!dst)
2005 		goto out;
2006 	while (block_num < num_blocks) {
2007 		unsigned char *src_block;
2008 		unsigned char dst_block[4];
2009 
2010 		if (block_num == (num_blocks - 1))
2011 			src_block = last_block;
2012 		else
2013 			src_block = &src[block_num * 3];
2014 		dst_block[0] = ((src_block[0] >> 2) & 0x3F);
2015 		dst_block[1] = (((src_block[0] << 4) & 0x30)
2016 				| ((src_block[1] >> 4) & 0x0F));
2017 		dst_block[2] = (((src_block[1] << 2) & 0x3C)
2018 				| ((src_block[2] >> 6) & 0x03));
2019 		dst_block[3] = (src_block[2] & 0x3F);
2020 		dst[dst_offset++] = portable_filename_chars[dst_block[0]];
2021 		dst[dst_offset++] = portable_filename_chars[dst_block[1]];
2022 		dst[dst_offset++] = portable_filename_chars[dst_block[2]];
2023 		dst[dst_offset++] = portable_filename_chars[dst_block[3]];
2024 		block_num++;
2025 	}
2026 out:
2027 	return;
2028 }
2029 
2030 /**
2031  * ecryptfs_decode_from_filename
2032  * @dst: If NULL, this function only sets @dst_size and returns. If
2033  *       non-NULL, this function decodes the encoded octets in @src
2034  *       into the memory that @dst points to.
2035  * @dst_size: Set to the size of the decoded string.
2036  * @src: The encoded set of octets to decode.
2037  * @src_size: The size of the encoded set of octets to decode.
2038  */
2039 static void
ecryptfs_decode_from_filename(unsigned char * dst,size_t * dst_size,const unsigned char * src,size_t src_size)2040 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
2041 			      const unsigned char *src, size_t src_size)
2042 {
2043 	u8 current_bit_offset = 0;
2044 	size_t src_byte_offset = 0;
2045 	size_t dst_byte_offset = 0;
2046 
2047 	if (dst == NULL) {
2048 		/* Not exact; conservatively long. Every block of 4
2049 		 * encoded characters decodes into a block of 3
2050 		 * decoded characters. This segment of code provides
2051 		 * the caller with the maximum amount of allocated
2052 		 * space that @dst will need to point to in a
2053 		 * subsequent call. */
2054 		(*dst_size) = (((src_size + 1) * 3) / 4);
2055 		goto out;
2056 	}
2057 	while (src_byte_offset < src_size) {
2058 		unsigned char src_byte =
2059 				filename_rev_map[(int)src[src_byte_offset]];
2060 
2061 		switch (current_bit_offset) {
2062 		case 0:
2063 			dst[dst_byte_offset] = (src_byte << 2);
2064 			current_bit_offset = 6;
2065 			break;
2066 		case 6:
2067 			dst[dst_byte_offset++] |= (src_byte >> 4);
2068 			dst[dst_byte_offset] = ((src_byte & 0xF)
2069 						 << 4);
2070 			current_bit_offset = 4;
2071 			break;
2072 		case 4:
2073 			dst[dst_byte_offset++] |= (src_byte >> 2);
2074 			dst[dst_byte_offset] = (src_byte << 6);
2075 			current_bit_offset = 2;
2076 			break;
2077 		case 2:
2078 			dst[dst_byte_offset++] |= (src_byte);
2079 			dst[dst_byte_offset] = 0;
2080 			current_bit_offset = 0;
2081 			break;
2082 		}
2083 		src_byte_offset++;
2084 	}
2085 	(*dst_size) = dst_byte_offset;
2086 out:
2087 	return;
2088 }
2089 
2090 /**
2091  * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2092  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2093  * @name: The plaintext name
2094  * @length: The length of the plaintext
2095  * @encoded_name: The encypted name
2096  *
2097  * Encrypts and encodes a filename into something that constitutes a
2098  * valid filename for a filesystem, with printable characters.
2099  *
2100  * We assume that we have a properly initialized crypto context,
2101  * pointed to by crypt_stat->tfm.
2102  *
2103  * Returns zero on success; non-zero on otherwise
2104  */
ecryptfs_encrypt_and_encode_filename(char ** encoded_name,size_t * encoded_name_size,struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_mount_crypt_stat * mount_crypt_stat,const char * name,size_t name_size)2105 int ecryptfs_encrypt_and_encode_filename(
2106 	char **encoded_name,
2107 	size_t *encoded_name_size,
2108 	struct ecryptfs_crypt_stat *crypt_stat,
2109 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2110 	const char *name, size_t name_size)
2111 {
2112 	size_t encoded_name_no_prefix_size;
2113 	int rc = 0;
2114 
2115 	(*encoded_name) = NULL;
2116 	(*encoded_name_size) = 0;
2117 	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
2118 	    || (mount_crypt_stat && (mount_crypt_stat->flags
2119 				     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
2120 		struct ecryptfs_filename *filename;
2121 
2122 		filename = kzalloc(sizeof(*filename), GFP_KERNEL);
2123 		if (!filename) {
2124 			printk(KERN_ERR "%s: Out of memory whilst attempting "
2125 			       "to kzalloc [%zd] bytes\n", __func__,
2126 			       sizeof(*filename));
2127 			rc = -ENOMEM;
2128 			goto out;
2129 		}
2130 		filename->filename = (char *)name;
2131 		filename->filename_size = name_size;
2132 		rc = ecryptfs_encrypt_filename(filename, crypt_stat,
2133 					       mount_crypt_stat);
2134 		if (rc) {
2135 			printk(KERN_ERR "%s: Error attempting to encrypt "
2136 			       "filename; rc = [%d]\n", __func__, rc);
2137 			kfree(filename);
2138 			goto out;
2139 		}
2140 		ecryptfs_encode_for_filename(
2141 			NULL, &encoded_name_no_prefix_size,
2142 			filename->encrypted_filename,
2143 			filename->encrypted_filename_size);
2144 		if ((crypt_stat && (crypt_stat->flags
2145 				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2146 		    || (mount_crypt_stat
2147 			&& (mount_crypt_stat->flags
2148 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
2149 			(*encoded_name_size) =
2150 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2151 				 + encoded_name_no_prefix_size);
2152 		else
2153 			(*encoded_name_size) =
2154 				(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2155 				 + encoded_name_no_prefix_size);
2156 		(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2157 		if (!(*encoded_name)) {
2158 			printk(KERN_ERR "%s: Out of memory whilst attempting "
2159 			       "to kzalloc [%zd] bytes\n", __func__,
2160 			       (*encoded_name_size));
2161 			rc = -ENOMEM;
2162 			kfree(filename->encrypted_filename);
2163 			kfree(filename);
2164 			goto out;
2165 		}
2166 		if ((crypt_stat && (crypt_stat->flags
2167 				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2168 		    || (mount_crypt_stat
2169 			&& (mount_crypt_stat->flags
2170 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2171 			memcpy((*encoded_name),
2172 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2173 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2174 			ecryptfs_encode_for_filename(
2175 			    ((*encoded_name)
2176 			     + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2177 			    &encoded_name_no_prefix_size,
2178 			    filename->encrypted_filename,
2179 			    filename->encrypted_filename_size);
2180 			(*encoded_name_size) =
2181 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2182 				 + encoded_name_no_prefix_size);
2183 			(*encoded_name)[(*encoded_name_size)] = '\0';
2184 			(*encoded_name_size)++;
2185 		} else {
2186 			rc = -ENOTSUPP;
2187 		}
2188 		if (rc) {
2189 			printk(KERN_ERR "%s: Error attempting to encode "
2190 			       "encrypted filename; rc = [%d]\n", __func__,
2191 			       rc);
2192 			kfree((*encoded_name));
2193 			(*encoded_name) = NULL;
2194 			(*encoded_name_size) = 0;
2195 		}
2196 		kfree(filename->encrypted_filename);
2197 		kfree(filename);
2198 	} else {
2199 		rc = ecryptfs_copy_filename(encoded_name,
2200 					    encoded_name_size,
2201 					    name, name_size);
2202 	}
2203 out:
2204 	return rc;
2205 }
2206 
2207 /**
2208  * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2209  * @plaintext_name: The plaintext name
2210  * @plaintext_name_size: The plaintext name size
2211  * @ecryptfs_dir_dentry: eCryptfs directory dentry
2212  * @name: The filename in cipher text
2213  * @name_size: The cipher text name size
2214  *
2215  * Decrypts and decodes the filename.
2216  *
2217  * Returns zero on error; non-zero otherwise
2218  */
ecryptfs_decode_and_decrypt_filename(char ** plaintext_name,size_t * plaintext_name_size,struct dentry * ecryptfs_dir_dentry,const char * name,size_t name_size)2219 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2220 					 size_t *plaintext_name_size,
2221 					 struct dentry *ecryptfs_dir_dentry,
2222 					 const char *name, size_t name_size)
2223 {
2224 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2225 		&ecryptfs_superblock_to_private(
2226 			ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
2227 	char *decoded_name;
2228 	size_t decoded_name_size;
2229 	size_t packet_size;
2230 	int rc = 0;
2231 
2232 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2233 	    && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2234 	    && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2235 	    && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2236 			ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2237 		const char *orig_name = name;
2238 		size_t orig_name_size = name_size;
2239 
2240 		name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2241 		name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2242 		ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2243 					      name, name_size);
2244 		decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2245 		if (!decoded_name) {
2246 			printk(KERN_ERR "%s: Out of memory whilst attempting "
2247 			       "to kmalloc [%zd] bytes\n", __func__,
2248 			       decoded_name_size);
2249 			rc = -ENOMEM;
2250 			goto out;
2251 		}
2252 		ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2253 					      name, name_size);
2254 		rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2255 						  plaintext_name_size,
2256 						  &packet_size,
2257 						  mount_crypt_stat,
2258 						  decoded_name,
2259 						  decoded_name_size);
2260 		if (rc) {
2261 			printk(KERN_INFO "%s: Could not parse tag 70 packet "
2262 			       "from filename; copying through filename "
2263 			       "as-is\n", __func__);
2264 			rc = ecryptfs_copy_filename(plaintext_name,
2265 						    plaintext_name_size,
2266 						    orig_name, orig_name_size);
2267 			goto out_free;
2268 		}
2269 	} else {
2270 		rc = ecryptfs_copy_filename(plaintext_name,
2271 					    plaintext_name_size,
2272 					    name, name_size);
2273 		goto out;
2274 	}
2275 out_free:
2276 	kfree(decoded_name);
2277 out:
2278 	return rc;
2279 }
2280