• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2008 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/socket.h>
12 #include <linux/in.h>
13 #include <linux/ip.h>
14 #include <linux/tcp.h>
15 #include <linux/udp.h>
16 #include <net/ip.h>
17 #include <net/checksum.h>
18 #include "net_driver.h"
19 #include "rx.h"
20 #include "efx.h"
21 #include "falcon.h"
22 #include "selftest.h"
23 #include "workarounds.h"
24 
25 /* Number of RX descriptors pushed at once. */
26 #define EFX_RX_BATCH  8
27 
28 /* Size of buffer allocated for skb header area. */
29 #define EFX_SKB_HEADERS  64u
30 
31 /*
32  * rx_alloc_method - RX buffer allocation method
33  *
34  * This driver supports two methods for allocating and using RX buffers:
35  * each RX buffer may be backed by an skb or by an order-n page.
36  *
37  * When LRO is in use then the second method has a lower overhead,
38  * since we don't have to allocate then free skbs on reassembled frames.
39  *
40  * Values:
41  *   - RX_ALLOC_METHOD_AUTO = 0
42  *   - RX_ALLOC_METHOD_SKB  = 1
43  *   - RX_ALLOC_METHOD_PAGE = 2
44  *
45  * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count
46  * controlled by the parameters below.
47  *
48  *   - Since pushing and popping descriptors are separated by the rx_queue
49  *     size, so the watermarks should be ~rxd_size.
50  *   - The performance win by using page-based allocation for LRO is less
51  *     than the performance hit of using page-based allocation of non-LRO,
52  *     so the watermarks should reflect this.
53  *
54  * Per channel we maintain a single variable, updated by each channel:
55  *
56  *   rx_alloc_level += (lro_performed ? RX_ALLOC_FACTOR_LRO :
57  *                      RX_ALLOC_FACTOR_SKB)
58  * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which
59  * limits the hysteresis), and update the allocation strategy:
60  *
61  *   rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_LRO ?
62  *                      RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB)
63  */
64 static int rx_alloc_method = RX_ALLOC_METHOD_PAGE;
65 
66 #define RX_ALLOC_LEVEL_LRO 0x2000
67 #define RX_ALLOC_LEVEL_MAX 0x3000
68 #define RX_ALLOC_FACTOR_LRO 1
69 #define RX_ALLOC_FACTOR_SKB (-2)
70 
71 /* This is the percentage fill level below which new RX descriptors
72  * will be added to the RX descriptor ring.
73  */
74 static unsigned int rx_refill_threshold = 90;
75 
76 /* This is the percentage fill level to which an RX queue will be refilled
77  * when the "RX refill threshold" is reached.
78  */
79 static unsigned int rx_refill_limit = 95;
80 
81 /*
82  * RX maximum head room required.
83  *
84  * This must be at least 1 to prevent overflow and at least 2 to allow
85  * pipelined receives.
86  */
87 #define EFX_RXD_HEAD_ROOM 2
88 
efx_rx_buf_offset(struct efx_rx_buffer * buf)89 static inline unsigned int efx_rx_buf_offset(struct efx_rx_buffer *buf)
90 {
91 	/* Offset is always within one page, so we don't need to consider
92 	 * the page order.
93 	 */
94 	return (__force unsigned long) buf->data & (PAGE_SIZE - 1);
95 }
efx_rx_buf_size(struct efx_nic * efx)96 static inline unsigned int efx_rx_buf_size(struct efx_nic *efx)
97 {
98 	return PAGE_SIZE << efx->rx_buffer_order;
99 }
100 
101 
102 /**************************************************************************
103  *
104  * Linux generic LRO handling
105  *
106  **************************************************************************
107  */
108 
efx_lro_get_skb_hdr(struct sk_buff * skb,void ** ip_hdr,void ** tcpudp_hdr,u64 * hdr_flags,void * priv)109 static int efx_lro_get_skb_hdr(struct sk_buff *skb, void **ip_hdr,
110 			       void **tcpudp_hdr, u64 *hdr_flags, void *priv)
111 {
112 	struct efx_channel *channel = priv;
113 	struct iphdr *iph;
114 	struct tcphdr *th;
115 
116 	iph = (struct iphdr *)skb->data;
117 	if (skb->protocol != htons(ETH_P_IP) || iph->protocol != IPPROTO_TCP)
118 		goto fail;
119 
120 	th = (struct tcphdr *)(skb->data + iph->ihl * 4);
121 
122 	*tcpudp_hdr = th;
123 	*ip_hdr = iph;
124 	*hdr_flags = LRO_IPV4 | LRO_TCP;
125 
126 	channel->rx_alloc_level += RX_ALLOC_FACTOR_LRO;
127 	return 0;
128 fail:
129 	channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
130 	return -1;
131 }
132 
efx_get_frag_hdr(struct skb_frag_struct * frag,void ** mac_hdr,void ** ip_hdr,void ** tcpudp_hdr,u64 * hdr_flags,void * priv)133 static int efx_get_frag_hdr(struct skb_frag_struct *frag, void **mac_hdr,
134 			    void **ip_hdr, void **tcpudp_hdr, u64 *hdr_flags,
135 			    void *priv)
136 {
137 	struct efx_channel *channel = priv;
138 	struct ethhdr *eh;
139 	struct iphdr *iph;
140 
141 	/* We support EtherII and VLAN encapsulated IPv4 */
142 	eh = page_address(frag->page) + frag->page_offset;
143 	*mac_hdr = eh;
144 
145 	if (eh->h_proto == htons(ETH_P_IP)) {
146 		iph = (struct iphdr *)(eh + 1);
147 	} else {
148 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)eh;
149 		if (veh->h_vlan_encapsulated_proto != htons(ETH_P_IP))
150 			goto fail;
151 
152 		iph = (struct iphdr *)(veh + 1);
153 	}
154 	*ip_hdr = iph;
155 
156 	/* We can only do LRO over TCP */
157 	if (iph->protocol != IPPROTO_TCP)
158 		goto fail;
159 
160 	*hdr_flags = LRO_IPV4 | LRO_TCP;
161 	*tcpudp_hdr = (struct tcphdr *)((u8 *) iph + iph->ihl * 4);
162 
163 	channel->rx_alloc_level += RX_ALLOC_FACTOR_LRO;
164 	return 0;
165  fail:
166 	channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
167 	return -1;
168 }
169 
efx_lro_init(struct net_lro_mgr * lro_mgr,struct efx_nic * efx)170 int efx_lro_init(struct net_lro_mgr *lro_mgr, struct efx_nic *efx)
171 {
172 	size_t s = sizeof(struct net_lro_desc) * EFX_MAX_LRO_DESCRIPTORS;
173 	struct net_lro_desc *lro_arr;
174 
175 	/* Allocate the LRO descriptors structure */
176 	lro_arr = kzalloc(s, GFP_KERNEL);
177 	if (lro_arr == NULL)
178 		return -ENOMEM;
179 
180 	lro_mgr->lro_arr = lro_arr;
181 	lro_mgr->max_desc = EFX_MAX_LRO_DESCRIPTORS;
182 	lro_mgr->max_aggr = EFX_MAX_LRO_AGGR;
183 	lro_mgr->frag_align_pad = EFX_PAGE_SKB_ALIGN;
184 
185 	lro_mgr->get_skb_header = efx_lro_get_skb_hdr;
186 	lro_mgr->get_frag_header = efx_get_frag_hdr;
187 	lro_mgr->dev = efx->net_dev;
188 
189 	lro_mgr->features = LRO_F_NAPI;
190 
191 	/* We can pass packets up with the checksum intact */
192 	lro_mgr->ip_summed = CHECKSUM_UNNECESSARY;
193 
194 	lro_mgr->ip_summed_aggr = CHECKSUM_UNNECESSARY;
195 
196 	return 0;
197 }
198 
efx_lro_fini(struct net_lro_mgr * lro_mgr)199 void efx_lro_fini(struct net_lro_mgr *lro_mgr)
200 {
201 	kfree(lro_mgr->lro_arr);
202 	lro_mgr->lro_arr = NULL;
203 }
204 
205 /**
206  * efx_init_rx_buffer_skb - create new RX buffer using skb-based allocation
207  *
208  * @rx_queue:		Efx RX queue
209  * @rx_buf:		RX buffer structure to populate
210  *
211  * This allocates memory for a new receive buffer, maps it for DMA,
212  * and populates a struct efx_rx_buffer with the relevant
213  * information.  Return a negative error code or 0 on success.
214  */
efx_init_rx_buffer_skb(struct efx_rx_queue * rx_queue,struct efx_rx_buffer * rx_buf)215 static int efx_init_rx_buffer_skb(struct efx_rx_queue *rx_queue,
216 				  struct efx_rx_buffer *rx_buf)
217 {
218 	struct efx_nic *efx = rx_queue->efx;
219 	struct net_device *net_dev = efx->net_dev;
220 	int skb_len = efx->rx_buffer_len;
221 
222 	rx_buf->skb = netdev_alloc_skb(net_dev, skb_len);
223 	if (unlikely(!rx_buf->skb))
224 		return -ENOMEM;
225 
226 	/* Adjust the SKB for padding and checksum */
227 	skb_reserve(rx_buf->skb, NET_IP_ALIGN);
228 	rx_buf->len = skb_len - NET_IP_ALIGN;
229 	rx_buf->data = (char *)rx_buf->skb->data;
230 	rx_buf->skb->ip_summed = CHECKSUM_UNNECESSARY;
231 
232 	rx_buf->dma_addr = pci_map_single(efx->pci_dev,
233 					  rx_buf->data, rx_buf->len,
234 					  PCI_DMA_FROMDEVICE);
235 
236 	if (unlikely(pci_dma_mapping_error(efx->pci_dev, rx_buf->dma_addr))) {
237 		dev_kfree_skb_any(rx_buf->skb);
238 		rx_buf->skb = NULL;
239 		return -EIO;
240 	}
241 
242 	return 0;
243 }
244 
245 /**
246  * efx_init_rx_buffer_page - create new RX buffer using page-based allocation
247  *
248  * @rx_queue:		Efx RX queue
249  * @rx_buf:		RX buffer structure to populate
250  *
251  * This allocates memory for a new receive buffer, maps it for DMA,
252  * and populates a struct efx_rx_buffer with the relevant
253  * information.  Return a negative error code or 0 on success.
254  */
efx_init_rx_buffer_page(struct efx_rx_queue * rx_queue,struct efx_rx_buffer * rx_buf)255 static int efx_init_rx_buffer_page(struct efx_rx_queue *rx_queue,
256 				   struct efx_rx_buffer *rx_buf)
257 {
258 	struct efx_nic *efx = rx_queue->efx;
259 	int bytes, space, offset;
260 
261 	bytes = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN;
262 
263 	/* If there is space left in the previously allocated page,
264 	 * then use it. Otherwise allocate a new one */
265 	rx_buf->page = rx_queue->buf_page;
266 	if (rx_buf->page == NULL) {
267 		dma_addr_t dma_addr;
268 
269 		rx_buf->page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
270 					   efx->rx_buffer_order);
271 		if (unlikely(rx_buf->page == NULL))
272 			return -ENOMEM;
273 
274 		dma_addr = pci_map_page(efx->pci_dev, rx_buf->page,
275 					0, efx_rx_buf_size(efx),
276 					PCI_DMA_FROMDEVICE);
277 
278 		if (unlikely(pci_dma_mapping_error(efx->pci_dev, dma_addr))) {
279 			__free_pages(rx_buf->page, efx->rx_buffer_order);
280 			rx_buf->page = NULL;
281 			return -EIO;
282 		}
283 
284 		rx_queue->buf_page = rx_buf->page;
285 		rx_queue->buf_dma_addr = dma_addr;
286 		rx_queue->buf_data = (page_address(rx_buf->page) +
287 				      EFX_PAGE_IP_ALIGN);
288 	}
289 
290 	rx_buf->len = bytes;
291 	rx_buf->data = rx_queue->buf_data;
292 	offset = efx_rx_buf_offset(rx_buf);
293 	rx_buf->dma_addr = rx_queue->buf_dma_addr + offset;
294 
295 	/* Try to pack multiple buffers per page */
296 	if (efx->rx_buffer_order == 0) {
297 		/* The next buffer starts on the next 512 byte boundary */
298 		rx_queue->buf_data += ((bytes + 0x1ff) & ~0x1ff);
299 		offset += ((bytes + 0x1ff) & ~0x1ff);
300 
301 		space = efx_rx_buf_size(efx) - offset;
302 		if (space >= bytes) {
303 			/* Refs dropped on kernel releasing each skb */
304 			get_page(rx_queue->buf_page);
305 			goto out;
306 		}
307 	}
308 
309 	/* This is the final RX buffer for this page, so mark it for
310 	 * unmapping */
311 	rx_queue->buf_page = NULL;
312 	rx_buf->unmap_addr = rx_queue->buf_dma_addr;
313 
314  out:
315 	return 0;
316 }
317 
318 /* This allocates memory for a new receive buffer, maps it for DMA,
319  * and populates a struct efx_rx_buffer with the relevant
320  * information.
321  */
efx_init_rx_buffer(struct efx_rx_queue * rx_queue,struct efx_rx_buffer * new_rx_buf)322 static int efx_init_rx_buffer(struct efx_rx_queue *rx_queue,
323 			      struct efx_rx_buffer *new_rx_buf)
324 {
325 	int rc = 0;
326 
327 	if (rx_queue->channel->rx_alloc_push_pages) {
328 		new_rx_buf->skb = NULL;
329 		rc = efx_init_rx_buffer_page(rx_queue, new_rx_buf);
330 		rx_queue->alloc_page_count++;
331 	} else {
332 		new_rx_buf->page = NULL;
333 		rc = efx_init_rx_buffer_skb(rx_queue, new_rx_buf);
334 		rx_queue->alloc_skb_count++;
335 	}
336 
337 	if (unlikely(rc < 0))
338 		EFX_LOG_RL(rx_queue->efx, "%s RXQ[%d] =%d\n", __func__,
339 			   rx_queue->queue, rc);
340 	return rc;
341 }
342 
efx_unmap_rx_buffer(struct efx_nic * efx,struct efx_rx_buffer * rx_buf)343 static void efx_unmap_rx_buffer(struct efx_nic *efx,
344 				struct efx_rx_buffer *rx_buf)
345 {
346 	if (rx_buf->page) {
347 		EFX_BUG_ON_PARANOID(rx_buf->skb);
348 		if (rx_buf->unmap_addr) {
349 			pci_unmap_page(efx->pci_dev, rx_buf->unmap_addr,
350 				       efx_rx_buf_size(efx),
351 				       PCI_DMA_FROMDEVICE);
352 			rx_buf->unmap_addr = 0;
353 		}
354 	} else if (likely(rx_buf->skb)) {
355 		pci_unmap_single(efx->pci_dev, rx_buf->dma_addr,
356 				 rx_buf->len, PCI_DMA_FROMDEVICE);
357 	}
358 }
359 
efx_free_rx_buffer(struct efx_nic * efx,struct efx_rx_buffer * rx_buf)360 static void efx_free_rx_buffer(struct efx_nic *efx,
361 			       struct efx_rx_buffer *rx_buf)
362 {
363 	if (rx_buf->page) {
364 		__free_pages(rx_buf->page, efx->rx_buffer_order);
365 		rx_buf->page = NULL;
366 	} else if (likely(rx_buf->skb)) {
367 		dev_kfree_skb_any(rx_buf->skb);
368 		rx_buf->skb = NULL;
369 	}
370 }
371 
efx_fini_rx_buffer(struct efx_rx_queue * rx_queue,struct efx_rx_buffer * rx_buf)372 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
373 			       struct efx_rx_buffer *rx_buf)
374 {
375 	efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
376 	efx_free_rx_buffer(rx_queue->efx, rx_buf);
377 }
378 
379 /**
380  * efx_fast_push_rx_descriptors - push new RX descriptors quickly
381  * @rx_queue:		RX descriptor queue
382  * @retry:              Recheck the fill level
383  * This will aim to fill the RX descriptor queue up to
384  * @rx_queue->@fast_fill_limit. If there is insufficient atomic
385  * memory to do so, the caller should retry.
386  */
__efx_fast_push_rx_descriptors(struct efx_rx_queue * rx_queue,int retry)387 static int __efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue,
388 					  int retry)
389 {
390 	struct efx_rx_buffer *rx_buf;
391 	unsigned fill_level, index;
392 	int i, space, rc = 0;
393 
394 	/* Calculate current fill level.  Do this outside the lock,
395 	 * because most of the time we'll end up not wanting to do the
396 	 * fill anyway.
397 	 */
398 	fill_level = (rx_queue->added_count - rx_queue->removed_count);
399 	EFX_BUG_ON_PARANOID(fill_level >
400 			    rx_queue->efx->type->rxd_ring_mask + 1);
401 
402 	/* Don't fill if we don't need to */
403 	if (fill_level >= rx_queue->fast_fill_trigger)
404 		return 0;
405 
406 	/* Record minimum fill level */
407 	if (unlikely(fill_level < rx_queue->min_fill)) {
408 		if (fill_level)
409 			rx_queue->min_fill = fill_level;
410 	}
411 
412 	/* Acquire RX add lock.  If this lock is contended, then a fast
413 	 * fill must already be in progress (e.g. in the refill
414 	 * tasklet), so we don't need to do anything
415 	 */
416 	if (!spin_trylock_bh(&rx_queue->add_lock))
417 		return -1;
418 
419  retry:
420 	/* Recalculate current fill level now that we have the lock */
421 	fill_level = (rx_queue->added_count - rx_queue->removed_count);
422 	EFX_BUG_ON_PARANOID(fill_level >
423 			    rx_queue->efx->type->rxd_ring_mask + 1);
424 	space = rx_queue->fast_fill_limit - fill_level;
425 	if (space < EFX_RX_BATCH)
426 		goto out_unlock;
427 
428 	EFX_TRACE(rx_queue->efx, "RX queue %d fast-filling descriptor ring from"
429 		  " level %d to level %d using %s allocation\n",
430 		  rx_queue->queue, fill_level, rx_queue->fast_fill_limit,
431 		  rx_queue->channel->rx_alloc_push_pages ? "page" : "skb");
432 
433 	do {
434 		for (i = 0; i < EFX_RX_BATCH; ++i) {
435 			index = (rx_queue->added_count &
436 				 rx_queue->efx->type->rxd_ring_mask);
437 			rx_buf = efx_rx_buffer(rx_queue, index);
438 			rc = efx_init_rx_buffer(rx_queue, rx_buf);
439 			if (unlikely(rc))
440 				goto out;
441 			++rx_queue->added_count;
442 		}
443 	} while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH);
444 
445 	EFX_TRACE(rx_queue->efx, "RX queue %d fast-filled descriptor ring "
446 		  "to level %d\n", rx_queue->queue,
447 		  rx_queue->added_count - rx_queue->removed_count);
448 
449  out:
450 	/* Send write pointer to card. */
451 	falcon_notify_rx_desc(rx_queue);
452 
453 	/* If the fast fill is running inside from the refill tasklet, then
454 	 * for SMP systems it may be running on a different CPU to
455 	 * RX event processing, which means that the fill level may now be
456 	 * out of date. */
457 	if (unlikely(retry && (rc == 0)))
458 		goto retry;
459 
460  out_unlock:
461 	spin_unlock_bh(&rx_queue->add_lock);
462 
463 	return rc;
464 }
465 
466 /**
467  * efx_fast_push_rx_descriptors - push new RX descriptors quickly
468  * @rx_queue:		RX descriptor queue
469  *
470  * This will aim to fill the RX descriptor queue up to
471  * @rx_queue->@fast_fill_limit.  If there is insufficient memory to do so,
472  * it will schedule a work item to immediately continue the fast fill
473  */
efx_fast_push_rx_descriptors(struct efx_rx_queue * rx_queue)474 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
475 {
476 	int rc;
477 
478 	rc = __efx_fast_push_rx_descriptors(rx_queue, 0);
479 	if (unlikely(rc)) {
480 		/* Schedule the work item to run immediately. The hope is
481 		 * that work is immediately pending to free some memory
482 		 * (e.g. an RX event or TX completion)
483 		 */
484 		efx_schedule_slow_fill(rx_queue, 0);
485 	}
486 }
487 
efx_rx_work(struct work_struct * data)488 void efx_rx_work(struct work_struct *data)
489 {
490 	struct efx_rx_queue *rx_queue;
491 	int rc;
492 
493 	rx_queue = container_of(data, struct efx_rx_queue, work.work);
494 
495 	if (unlikely(!rx_queue->channel->enabled))
496 		return;
497 
498 	EFX_TRACE(rx_queue->efx, "RX queue %d worker thread executing on CPU "
499 		  "%d\n", rx_queue->queue, raw_smp_processor_id());
500 
501 	++rx_queue->slow_fill_count;
502 	/* Push new RX descriptors, allowing at least 1 jiffy for
503 	 * the kernel to free some more memory. */
504 	rc = __efx_fast_push_rx_descriptors(rx_queue, 1);
505 	if (rc)
506 		efx_schedule_slow_fill(rx_queue, 1);
507 }
508 
efx_rx_packet__check_len(struct efx_rx_queue * rx_queue,struct efx_rx_buffer * rx_buf,int len,bool * discard,bool * leak_packet)509 static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
510 				     struct efx_rx_buffer *rx_buf,
511 				     int len, bool *discard,
512 				     bool *leak_packet)
513 {
514 	struct efx_nic *efx = rx_queue->efx;
515 	unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
516 
517 	if (likely(len <= max_len))
518 		return;
519 
520 	/* The packet must be discarded, but this is only a fatal error
521 	 * if the caller indicated it was
522 	 */
523 	*discard = true;
524 
525 	if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
526 		EFX_ERR_RL(efx, " RX queue %d seriously overlength "
527 			   "RX event (0x%x > 0x%x+0x%x). Leaking\n",
528 			   rx_queue->queue, len, max_len,
529 			   efx->type->rx_buffer_padding);
530 		/* If this buffer was skb-allocated, then the meta
531 		 * data at the end of the skb will be trashed. So
532 		 * we have no choice but to leak the fragment.
533 		 */
534 		*leak_packet = (rx_buf->skb != NULL);
535 		efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
536 	} else {
537 		EFX_ERR_RL(efx, " RX queue %d overlength RX event "
538 			   "(0x%x > 0x%x)\n", rx_queue->queue, len, max_len);
539 	}
540 
541 	rx_queue->channel->n_rx_overlength++;
542 }
543 
544 /* Pass a received packet up through the generic LRO stack
545  *
546  * Handles driverlink veto, and passes the fragment up via
547  * the appropriate LRO method
548  */
efx_rx_packet_lro(struct efx_channel * channel,struct efx_rx_buffer * rx_buf)549 static void efx_rx_packet_lro(struct efx_channel *channel,
550 			      struct efx_rx_buffer *rx_buf)
551 {
552 	struct net_lro_mgr *lro_mgr = &channel->lro_mgr;
553 	void *priv = channel;
554 
555 	/* Pass the skb/page into the LRO engine */
556 	if (rx_buf->page) {
557 		struct skb_frag_struct frags;
558 
559 		frags.page = rx_buf->page;
560 		frags.page_offset = efx_rx_buf_offset(rx_buf);
561 		frags.size = rx_buf->len;
562 
563 		lro_receive_frags(lro_mgr, &frags, rx_buf->len,
564 				  rx_buf->len, priv, 0);
565 
566 		EFX_BUG_ON_PARANOID(rx_buf->skb);
567 		rx_buf->page = NULL;
568 	} else {
569 		EFX_BUG_ON_PARANOID(!rx_buf->skb);
570 
571 		lro_receive_skb(lro_mgr, rx_buf->skb, priv);
572 		rx_buf->skb = NULL;
573 	}
574 }
575 
576 /* Allocate and construct an SKB around a struct page.*/
efx_rx_mk_skb(struct efx_rx_buffer * rx_buf,struct efx_nic * efx,int hdr_len)577 static struct sk_buff *efx_rx_mk_skb(struct efx_rx_buffer *rx_buf,
578 				     struct efx_nic *efx,
579 				     int hdr_len)
580 {
581 	struct sk_buff *skb;
582 
583 	/* Allocate an SKB to store the headers */
584 	skb = netdev_alloc_skb(efx->net_dev, hdr_len + EFX_PAGE_SKB_ALIGN);
585 	if (unlikely(skb == NULL)) {
586 		EFX_ERR_RL(efx, "RX out of memory for skb\n");
587 		return NULL;
588 	}
589 
590 	EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags);
591 	EFX_BUG_ON_PARANOID(rx_buf->len < hdr_len);
592 
593 	skb->ip_summed = CHECKSUM_UNNECESSARY;
594 	skb_reserve(skb, EFX_PAGE_SKB_ALIGN);
595 
596 	skb->len = rx_buf->len;
597 	skb->truesize = rx_buf->len + sizeof(struct sk_buff);
598 	memcpy(skb->data, rx_buf->data, hdr_len);
599 	skb->tail += hdr_len;
600 
601 	/* Append the remaining page onto the frag list */
602 	if (unlikely(rx_buf->len > hdr_len)) {
603 		struct skb_frag_struct *frag = skb_shinfo(skb)->frags;
604 		frag->page = rx_buf->page;
605 		frag->page_offset = efx_rx_buf_offset(rx_buf) + hdr_len;
606 		frag->size = skb->len - hdr_len;
607 		skb_shinfo(skb)->nr_frags = 1;
608 		skb->data_len = frag->size;
609 	} else {
610 		__free_pages(rx_buf->page, efx->rx_buffer_order);
611 		skb->data_len = 0;
612 	}
613 
614 	/* Ownership has transferred from the rx_buf to skb */
615 	rx_buf->page = NULL;
616 
617 	/* Move past the ethernet header */
618 	skb->protocol = eth_type_trans(skb, efx->net_dev);
619 
620 	return skb;
621 }
622 
efx_rx_packet(struct efx_rx_queue * rx_queue,unsigned int index,unsigned int len,bool checksummed,bool discard)623 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
624 		   unsigned int len, bool checksummed, bool discard)
625 {
626 	struct efx_nic *efx = rx_queue->efx;
627 	struct efx_rx_buffer *rx_buf;
628 	bool leak_packet = false;
629 
630 	rx_buf = efx_rx_buffer(rx_queue, index);
631 	EFX_BUG_ON_PARANOID(!rx_buf->data);
632 	EFX_BUG_ON_PARANOID(rx_buf->skb && rx_buf->page);
633 	EFX_BUG_ON_PARANOID(!(rx_buf->skb || rx_buf->page));
634 
635 	/* This allows the refill path to post another buffer.
636 	 * EFX_RXD_HEAD_ROOM ensures that the slot we are using
637 	 * isn't overwritten yet.
638 	 */
639 	rx_queue->removed_count++;
640 
641 	/* Validate the length encoded in the event vs the descriptor pushed */
642 	efx_rx_packet__check_len(rx_queue, rx_buf, len,
643 				 &discard, &leak_packet);
644 
645 	EFX_TRACE(efx, "RX queue %d received id %x at %llx+%x %s%s\n",
646 		  rx_queue->queue, index,
647 		  (unsigned long long)rx_buf->dma_addr, len,
648 		  (checksummed ? " [SUMMED]" : ""),
649 		  (discard ? " [DISCARD]" : ""));
650 
651 	/* Discard packet, if instructed to do so */
652 	if (unlikely(discard)) {
653 		if (unlikely(leak_packet))
654 			rx_queue->channel->n_skbuff_leaks++;
655 		else
656 			/* We haven't called efx_unmap_rx_buffer yet,
657 			 * so fini the entire rx_buffer here */
658 			efx_fini_rx_buffer(rx_queue, rx_buf);
659 		return;
660 	}
661 
662 	/* Release card resources - assumes all RX buffers consumed in-order
663 	 * per RX queue
664 	 */
665 	efx_unmap_rx_buffer(efx, rx_buf);
666 
667 	/* Prefetch nice and early so data will (hopefully) be in cache by
668 	 * the time we look at it.
669 	 */
670 	prefetch(rx_buf->data);
671 
672 	/* Pipeline receives so that we give time for packet headers to be
673 	 * prefetched into cache.
674 	 */
675 	rx_buf->len = len;
676 	if (rx_queue->channel->rx_pkt)
677 		__efx_rx_packet(rx_queue->channel,
678 				rx_queue->channel->rx_pkt,
679 				rx_queue->channel->rx_pkt_csummed);
680 	rx_queue->channel->rx_pkt = rx_buf;
681 	rx_queue->channel->rx_pkt_csummed = checksummed;
682 }
683 
684 /* Handle a received packet.  Second half: Touches packet payload. */
__efx_rx_packet(struct efx_channel * channel,struct efx_rx_buffer * rx_buf,bool checksummed)685 void __efx_rx_packet(struct efx_channel *channel,
686 		     struct efx_rx_buffer *rx_buf, bool checksummed)
687 {
688 	struct efx_nic *efx = channel->efx;
689 	struct sk_buff *skb;
690 	bool lro = !!(efx->net_dev->features & NETIF_F_LRO);
691 
692 	/* If we're in loopback test, then pass the packet directly to the
693 	 * loopback layer, and free the rx_buf here
694 	 */
695 	if (unlikely(efx->loopback_selftest)) {
696 		efx_loopback_rx_packet(efx, rx_buf->data, rx_buf->len);
697 		efx_free_rx_buffer(efx, rx_buf);
698 		goto done;
699 	}
700 
701 	if (rx_buf->skb) {
702 		prefetch(skb_shinfo(rx_buf->skb));
703 
704 		skb_put(rx_buf->skb, rx_buf->len);
705 
706 		/* Move past the ethernet header. rx_buf->data still points
707 		 * at the ethernet header */
708 		rx_buf->skb->protocol = eth_type_trans(rx_buf->skb,
709 						       efx->net_dev);
710 	}
711 
712 	/* Both our generic-LRO and SFC-SSR support skb and page based
713 	 * allocation, but neither support switching from one to the
714 	 * other on the fly. If we spot that the allocation mode has
715 	 * changed, then flush the LRO state.
716 	 */
717 	if (unlikely(channel->rx_alloc_pop_pages != (rx_buf->page != NULL))) {
718 		efx_flush_lro(channel);
719 		channel->rx_alloc_pop_pages = (rx_buf->page != NULL);
720 	}
721 	if (likely(checksummed && lro)) {
722 		efx_rx_packet_lro(channel, rx_buf);
723 		goto done;
724 	}
725 
726 	/* Form an skb if required */
727 	if (rx_buf->page) {
728 		int hdr_len = min(rx_buf->len, EFX_SKB_HEADERS);
729 		skb = efx_rx_mk_skb(rx_buf, efx, hdr_len);
730 		if (unlikely(skb == NULL)) {
731 			efx_free_rx_buffer(efx, rx_buf);
732 			goto done;
733 		}
734 	} else {
735 		/* We now own the SKB */
736 		skb = rx_buf->skb;
737 		rx_buf->skb = NULL;
738 	}
739 
740 	EFX_BUG_ON_PARANOID(rx_buf->page);
741 	EFX_BUG_ON_PARANOID(rx_buf->skb);
742 	EFX_BUG_ON_PARANOID(!skb);
743 
744 	/* Set the SKB flags */
745 	if (unlikely(!checksummed || !efx->rx_checksum_enabled))
746 		skb->ip_summed = CHECKSUM_NONE;
747 
748 	/* Pass the packet up */
749 	netif_receive_skb(skb);
750 
751 	/* Update allocation strategy method */
752 	channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
753 
754 done:
755 	;
756 }
757 
efx_rx_strategy(struct efx_channel * channel)758 void efx_rx_strategy(struct efx_channel *channel)
759 {
760 	enum efx_rx_alloc_method method = rx_alloc_method;
761 
762 	/* Only makes sense to use page based allocation if LRO is enabled */
763 	if (!(channel->efx->net_dev->features & NETIF_F_LRO)) {
764 		method = RX_ALLOC_METHOD_SKB;
765 	} else if (method == RX_ALLOC_METHOD_AUTO) {
766 		/* Constrain the rx_alloc_level */
767 		if (channel->rx_alloc_level < 0)
768 			channel->rx_alloc_level = 0;
769 		else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX)
770 			channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX;
771 
772 		/* Decide on the allocation method */
773 		method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_LRO) ?
774 			  RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB);
775 	}
776 
777 	/* Push the option */
778 	channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE);
779 }
780 
efx_probe_rx_queue(struct efx_rx_queue * rx_queue)781 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
782 {
783 	struct efx_nic *efx = rx_queue->efx;
784 	unsigned int rxq_size;
785 	int rc;
786 
787 	EFX_LOG(efx, "creating RX queue %d\n", rx_queue->queue);
788 
789 	/* Allocate RX buffers */
790 	rxq_size = (efx->type->rxd_ring_mask + 1) * sizeof(*rx_queue->buffer);
791 	rx_queue->buffer = kzalloc(rxq_size, GFP_KERNEL);
792 	if (!rx_queue->buffer)
793 		return -ENOMEM;
794 
795 	rc = falcon_probe_rx(rx_queue);
796 	if (rc) {
797 		kfree(rx_queue->buffer);
798 		rx_queue->buffer = NULL;
799 	}
800 	return rc;
801 }
802 
efx_init_rx_queue(struct efx_rx_queue * rx_queue)803 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
804 {
805 	struct efx_nic *efx = rx_queue->efx;
806 	unsigned int max_fill, trigger, limit;
807 
808 	EFX_LOG(rx_queue->efx, "initialising RX queue %d\n", rx_queue->queue);
809 
810 	/* Initialise ptr fields */
811 	rx_queue->added_count = 0;
812 	rx_queue->notified_count = 0;
813 	rx_queue->removed_count = 0;
814 	rx_queue->min_fill = -1U;
815 	rx_queue->min_overfill = -1U;
816 
817 	/* Initialise limit fields */
818 	max_fill = efx->type->rxd_ring_mask + 1 - EFX_RXD_HEAD_ROOM;
819 	trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
820 	limit = max_fill * min(rx_refill_limit, 100U) / 100U;
821 
822 	rx_queue->max_fill = max_fill;
823 	rx_queue->fast_fill_trigger = trigger;
824 	rx_queue->fast_fill_limit = limit;
825 
826 	/* Set up RX descriptor ring */
827 	falcon_init_rx(rx_queue);
828 }
829 
efx_fini_rx_queue(struct efx_rx_queue * rx_queue)830 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
831 {
832 	int i;
833 	struct efx_rx_buffer *rx_buf;
834 
835 	EFX_LOG(rx_queue->efx, "shutting down RX queue %d\n", rx_queue->queue);
836 
837 	falcon_fini_rx(rx_queue);
838 
839 	/* Release RX buffers NB start at index 0 not current HW ptr */
840 	if (rx_queue->buffer) {
841 		for (i = 0; i <= rx_queue->efx->type->rxd_ring_mask; i++) {
842 			rx_buf = efx_rx_buffer(rx_queue, i);
843 			efx_fini_rx_buffer(rx_queue, rx_buf);
844 		}
845 	}
846 
847 	/* For a page that is part-way through splitting into RX buffers */
848 	if (rx_queue->buf_page != NULL) {
849 		pci_unmap_page(rx_queue->efx->pci_dev, rx_queue->buf_dma_addr,
850 			       efx_rx_buf_size(rx_queue->efx),
851 			       PCI_DMA_FROMDEVICE);
852 		__free_pages(rx_queue->buf_page,
853 			     rx_queue->efx->rx_buffer_order);
854 		rx_queue->buf_page = NULL;
855 	}
856 }
857 
efx_remove_rx_queue(struct efx_rx_queue * rx_queue)858 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
859 {
860 	EFX_LOG(rx_queue->efx, "destroying RX queue %d\n", rx_queue->queue);
861 
862 	falcon_remove_rx(rx_queue);
863 
864 	kfree(rx_queue->buffer);
865 	rx_queue->buffer = NULL;
866 }
867 
efx_flush_lro(struct efx_channel * channel)868 void efx_flush_lro(struct efx_channel *channel)
869 {
870 	lro_flush_all(&channel->lro_mgr);
871 }
872 
873 
874 module_param(rx_alloc_method, int, 0644);
875 MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers");
876 
877 module_param(rx_refill_threshold, uint, 0444);
878 MODULE_PARM_DESC(rx_refill_threshold,
879 		 "RX descriptor ring fast/slow fill threshold (%)");
880 
881