• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *	AARP:		An implementation of the AppleTalk AARP protocol for
3  *			Ethernet 'ELAP'.
4  *
5  *		Alan Cox  <Alan.Cox@linux.org>
6  *
7  *	This doesn't fit cleanly with the IP arp. Potentially we can use
8  *	the generic neighbour discovery code to clean this up.
9  *
10  *	FIXME:
11  *		We ought to handle the retransmits with a single list and a
12  *	separate fast timer for when it is needed.
13  *		Use neighbour discovery code.
14  *		Token Ring Support.
15  *
16  *		This program is free software; you can redistribute it and/or
17  *		modify it under the terms of the GNU General Public License
18  *		as published by the Free Software Foundation; either version
19  *		2 of the License, or (at your option) any later version.
20  *
21  *
22  *	References:
23  *		Inside AppleTalk (2nd Ed).
24  *	Fixes:
25  *		Jaume Grau	-	flush caches on AARP_PROBE
26  *		Rob Newberry	-	Added proxy AARP and AARP proc fs,
27  *					moved probing from DDP module.
28  *		Arnaldo C. Melo -	don't mangle rx packets
29  *
30  */
31 
32 #include <linux/if_arp.h>
33 #include <net/sock.h>
34 #include <net/datalink.h>
35 #include <net/psnap.h>
36 #include <linux/atalk.h>
37 #include <linux/delay.h>
38 #include <linux/init.h>
39 #include <linux/proc_fs.h>
40 #include <linux/seq_file.h>
41 
42 int sysctl_aarp_expiry_time = AARP_EXPIRY_TIME;
43 int sysctl_aarp_tick_time = AARP_TICK_TIME;
44 int sysctl_aarp_retransmit_limit = AARP_RETRANSMIT_LIMIT;
45 int sysctl_aarp_resolve_time = AARP_RESOLVE_TIME;
46 
47 /* Lists of aarp entries */
48 /**
49  *	struct aarp_entry - AARP entry
50  *	@last_sent - Last time we xmitted the aarp request
51  *	@packet_queue - Queue of frames wait for resolution
52  *	@status - Used for proxy AARP
53  *	expires_at - Entry expiry time
54  *	target_addr - DDP Address
55  *	dev - Device to use
56  *	hwaddr - Physical i/f address of target/router
57  *	xmit_count - When this hits 10 we give up
58  *	next - Next entry in chain
59  */
60 struct aarp_entry {
61 	/* These first two are only used for unresolved entries */
62 	unsigned long		last_sent;
63 	struct sk_buff_head	packet_queue;
64 	int			status;
65 	unsigned long		expires_at;
66 	struct atalk_addr	target_addr;
67 	struct net_device	*dev;
68 	char			hwaddr[6];
69 	unsigned short		xmit_count;
70 	struct aarp_entry	*next;
71 };
72 
73 /* Hashed list of resolved, unresolved and proxy entries */
74 static struct aarp_entry *resolved[AARP_HASH_SIZE];
75 static struct aarp_entry *unresolved[AARP_HASH_SIZE];
76 static struct aarp_entry *proxies[AARP_HASH_SIZE];
77 static int unresolved_count;
78 
79 /* One lock protects it all. */
80 static DEFINE_RWLOCK(aarp_lock);
81 
82 /* Used to walk the list and purge/kick entries.  */
83 static struct timer_list aarp_timer;
84 
85 /*
86  *	Delete an aarp queue
87  *
88  *	Must run under aarp_lock.
89  */
__aarp_expire(struct aarp_entry * a)90 static void __aarp_expire(struct aarp_entry *a)
91 {
92 	skb_queue_purge(&a->packet_queue);
93 	kfree(a);
94 }
95 
96 /*
97  *	Send an aarp queue entry request
98  *
99  *	Must run under aarp_lock.
100  */
__aarp_send_query(struct aarp_entry * a)101 static void __aarp_send_query(struct aarp_entry *a)
102 {
103 	static unsigned char aarp_eth_multicast[ETH_ALEN] =
104 					{ 0x09, 0x00, 0x07, 0xFF, 0xFF, 0xFF };
105 	struct net_device *dev = a->dev;
106 	struct elapaarp *eah;
107 	int len = dev->hard_header_len + sizeof(*eah) + aarp_dl->header_length;
108 	struct sk_buff *skb = alloc_skb(len, GFP_ATOMIC);
109 	struct atalk_addr *sat = atalk_find_dev_addr(dev);
110 
111 	if (!skb)
112 		return;
113 
114 	if (!sat) {
115 		kfree_skb(skb);
116 		return;
117 	}
118 
119 	/* Set up the buffer */
120 	skb_reserve(skb, dev->hard_header_len + aarp_dl->header_length);
121 	skb_reset_network_header(skb);
122 	skb_reset_transport_header(skb);
123 	skb_put(skb, sizeof(*eah));
124 	skb->protocol    = htons(ETH_P_ATALK);
125 	skb->dev	 = dev;
126 	eah		 = aarp_hdr(skb);
127 
128 	/* Set up the ARP */
129 	eah->hw_type	 = htons(AARP_HW_TYPE_ETHERNET);
130 	eah->pa_type	 = htons(ETH_P_ATALK);
131 	eah->hw_len	 = ETH_ALEN;
132 	eah->pa_len	 = AARP_PA_ALEN;
133 	eah->function	 = htons(AARP_REQUEST);
134 
135 	memcpy(eah->hw_src, dev->dev_addr, ETH_ALEN);
136 
137 	eah->pa_src_zero = 0;
138 	eah->pa_src_net	 = sat->s_net;
139 	eah->pa_src_node = sat->s_node;
140 
141 	memset(eah->hw_dst, '\0', ETH_ALEN);
142 
143 	eah->pa_dst_zero = 0;
144 	eah->pa_dst_net	 = a->target_addr.s_net;
145 	eah->pa_dst_node = a->target_addr.s_node;
146 
147 	/* Send it */
148 	aarp_dl->request(aarp_dl, skb, aarp_eth_multicast);
149 	/* Update the sending count */
150 	a->xmit_count++;
151 	a->last_sent = jiffies;
152 }
153 
154 /* This runs under aarp_lock and in softint context, so only atomic memory
155  * allocations can be used. */
aarp_send_reply(struct net_device * dev,struct atalk_addr * us,struct atalk_addr * them,unsigned char * sha)156 static void aarp_send_reply(struct net_device *dev, struct atalk_addr *us,
157 			    struct atalk_addr *them, unsigned char *sha)
158 {
159 	struct elapaarp *eah;
160 	int len = dev->hard_header_len + sizeof(*eah) + aarp_dl->header_length;
161 	struct sk_buff *skb = alloc_skb(len, GFP_ATOMIC);
162 
163 	if (!skb)
164 		return;
165 
166 	/* Set up the buffer */
167 	skb_reserve(skb, dev->hard_header_len + aarp_dl->header_length);
168 	skb_reset_network_header(skb);
169 	skb_reset_transport_header(skb);
170 	skb_put(skb, sizeof(*eah));
171 	skb->protocol    = htons(ETH_P_ATALK);
172 	skb->dev	 = dev;
173 	eah		 = aarp_hdr(skb);
174 
175 	/* Set up the ARP */
176 	eah->hw_type	 = htons(AARP_HW_TYPE_ETHERNET);
177 	eah->pa_type	 = htons(ETH_P_ATALK);
178 	eah->hw_len	 = ETH_ALEN;
179 	eah->pa_len	 = AARP_PA_ALEN;
180 	eah->function	 = htons(AARP_REPLY);
181 
182 	memcpy(eah->hw_src, dev->dev_addr, ETH_ALEN);
183 
184 	eah->pa_src_zero = 0;
185 	eah->pa_src_net	 = us->s_net;
186 	eah->pa_src_node = us->s_node;
187 
188 	if (!sha)
189 		memset(eah->hw_dst, '\0', ETH_ALEN);
190 	else
191 		memcpy(eah->hw_dst, sha, ETH_ALEN);
192 
193 	eah->pa_dst_zero = 0;
194 	eah->pa_dst_net	 = them->s_net;
195 	eah->pa_dst_node = them->s_node;
196 
197 	/* Send it */
198 	aarp_dl->request(aarp_dl, skb, sha);
199 }
200 
201 /*
202  *	Send probe frames. Called from aarp_probe_network and
203  *	aarp_proxy_probe_network.
204  */
205 
aarp_send_probe(struct net_device * dev,struct atalk_addr * us)206 static void aarp_send_probe(struct net_device *dev, struct atalk_addr *us)
207 {
208 	struct elapaarp *eah;
209 	int len = dev->hard_header_len + sizeof(*eah) + aarp_dl->header_length;
210 	struct sk_buff *skb = alloc_skb(len, GFP_ATOMIC);
211 	static unsigned char aarp_eth_multicast[ETH_ALEN] =
212 					{ 0x09, 0x00, 0x07, 0xFF, 0xFF, 0xFF };
213 
214 	if (!skb)
215 		return;
216 
217 	/* Set up the buffer */
218 	skb_reserve(skb, dev->hard_header_len + aarp_dl->header_length);
219 	skb_reset_network_header(skb);
220 	skb_reset_transport_header(skb);
221 	skb_put(skb, sizeof(*eah));
222 	skb->protocol    = htons(ETH_P_ATALK);
223 	skb->dev	 = dev;
224 	eah		 = aarp_hdr(skb);
225 
226 	/* Set up the ARP */
227 	eah->hw_type	 = htons(AARP_HW_TYPE_ETHERNET);
228 	eah->pa_type	 = htons(ETH_P_ATALK);
229 	eah->hw_len	 = ETH_ALEN;
230 	eah->pa_len	 = AARP_PA_ALEN;
231 	eah->function	 = htons(AARP_PROBE);
232 
233 	memcpy(eah->hw_src, dev->dev_addr, ETH_ALEN);
234 
235 	eah->pa_src_zero = 0;
236 	eah->pa_src_net	 = us->s_net;
237 	eah->pa_src_node = us->s_node;
238 
239 	memset(eah->hw_dst, '\0', ETH_ALEN);
240 
241 	eah->pa_dst_zero = 0;
242 	eah->pa_dst_net	 = us->s_net;
243 	eah->pa_dst_node = us->s_node;
244 
245 	/* Send it */
246 	aarp_dl->request(aarp_dl, skb, aarp_eth_multicast);
247 }
248 
249 /*
250  *	Handle an aarp timer expire
251  *
252  *	Must run under the aarp_lock.
253  */
254 
__aarp_expire_timer(struct aarp_entry ** n)255 static void __aarp_expire_timer(struct aarp_entry **n)
256 {
257 	struct aarp_entry *t;
258 
259 	while (*n)
260 		/* Expired ? */
261 		if (time_after(jiffies, (*n)->expires_at)) {
262 			t = *n;
263 			*n = (*n)->next;
264 			__aarp_expire(t);
265 		} else
266 			n = &((*n)->next);
267 }
268 
269 /*
270  *	Kick all pending requests 5 times a second.
271  *
272  *	Must run under the aarp_lock.
273  */
__aarp_kick(struct aarp_entry ** n)274 static void __aarp_kick(struct aarp_entry **n)
275 {
276 	struct aarp_entry *t;
277 
278 	while (*n)
279 		/* Expired: if this will be the 11th tx, we delete instead. */
280 		if ((*n)->xmit_count >= sysctl_aarp_retransmit_limit) {
281 			t = *n;
282 			*n = (*n)->next;
283 			__aarp_expire(t);
284 		} else {
285 			__aarp_send_query(*n);
286 			n = &((*n)->next);
287 		}
288 }
289 
290 /*
291  *	A device has gone down. Take all entries referring to the device
292  *	and remove them.
293  *
294  *	Must run under the aarp_lock.
295  */
__aarp_expire_device(struct aarp_entry ** n,struct net_device * dev)296 static void __aarp_expire_device(struct aarp_entry **n, struct net_device *dev)
297 {
298 	struct aarp_entry *t;
299 
300 	while (*n)
301 		if ((*n)->dev == dev) {
302 			t = *n;
303 			*n = (*n)->next;
304 			__aarp_expire(t);
305 		} else
306 			n = &((*n)->next);
307 }
308 
309 /* Handle the timer event */
aarp_expire_timeout(unsigned long unused)310 static void aarp_expire_timeout(unsigned long unused)
311 {
312 	int ct;
313 
314 	write_lock_bh(&aarp_lock);
315 
316 	for (ct = 0; ct < AARP_HASH_SIZE; ct++) {
317 		__aarp_expire_timer(&resolved[ct]);
318 		__aarp_kick(&unresolved[ct]);
319 		__aarp_expire_timer(&unresolved[ct]);
320 		__aarp_expire_timer(&proxies[ct]);
321 	}
322 
323 	write_unlock_bh(&aarp_lock);
324 	mod_timer(&aarp_timer, jiffies +
325 			       (unresolved_count ? sysctl_aarp_tick_time :
326 				sysctl_aarp_expiry_time));
327 }
328 
329 /* Network device notifier chain handler. */
aarp_device_event(struct notifier_block * this,unsigned long event,void * ptr)330 static int aarp_device_event(struct notifier_block *this, unsigned long event,
331 			     void *ptr)
332 {
333 	struct net_device *dev = ptr;
334 	int ct;
335 
336 	if (!net_eq(dev_net(dev), &init_net))
337 		return NOTIFY_DONE;
338 
339 	if (event == NETDEV_DOWN) {
340 		write_lock_bh(&aarp_lock);
341 
342 		for (ct = 0; ct < AARP_HASH_SIZE; ct++) {
343 			__aarp_expire_device(&resolved[ct], dev);
344 			__aarp_expire_device(&unresolved[ct], dev);
345 			__aarp_expire_device(&proxies[ct], dev);
346 		}
347 
348 		write_unlock_bh(&aarp_lock);
349 	}
350 	return NOTIFY_DONE;
351 }
352 
353 /* Expire all entries in a hash chain */
__aarp_expire_all(struct aarp_entry ** n)354 static void __aarp_expire_all(struct aarp_entry **n)
355 {
356 	struct aarp_entry *t;
357 
358 	while (*n) {
359 		t = *n;
360 		*n = (*n)->next;
361 		__aarp_expire(t);
362 	}
363 }
364 
365 /* Cleanup all hash chains -- module unloading */
aarp_purge(void)366 static void aarp_purge(void)
367 {
368 	int ct;
369 
370 	write_lock_bh(&aarp_lock);
371 	for (ct = 0; ct < AARP_HASH_SIZE; ct++) {
372 		__aarp_expire_all(&resolved[ct]);
373 		__aarp_expire_all(&unresolved[ct]);
374 		__aarp_expire_all(&proxies[ct]);
375 	}
376 	write_unlock_bh(&aarp_lock);
377 }
378 
379 /*
380  *	Create a new aarp entry.  This must use GFP_ATOMIC because it
381  *	runs while holding spinlocks.
382  */
aarp_alloc(void)383 static struct aarp_entry *aarp_alloc(void)
384 {
385 	struct aarp_entry *a = kmalloc(sizeof(*a), GFP_ATOMIC);
386 
387 	if (a)
388 		skb_queue_head_init(&a->packet_queue);
389 	return a;
390 }
391 
392 /*
393  * Find an entry. We might return an expired but not yet purged entry. We
394  * don't care as it will do no harm.
395  *
396  * This must run under the aarp_lock.
397  */
__aarp_find_entry(struct aarp_entry * list,struct net_device * dev,struct atalk_addr * sat)398 static struct aarp_entry *__aarp_find_entry(struct aarp_entry *list,
399 					    struct net_device *dev,
400 					    struct atalk_addr *sat)
401 {
402 	while (list) {
403 		if (list->target_addr.s_net == sat->s_net &&
404 		    list->target_addr.s_node == sat->s_node &&
405 		    list->dev == dev)
406 			break;
407 		list = list->next;
408 	}
409 
410 	return list;
411 }
412 
413 /* Called from the DDP code, and thus must be exported. */
aarp_proxy_remove(struct net_device * dev,struct atalk_addr * sa)414 void aarp_proxy_remove(struct net_device *dev, struct atalk_addr *sa)
415 {
416 	int hash = sa->s_node % (AARP_HASH_SIZE - 1);
417 	struct aarp_entry *a;
418 
419 	write_lock_bh(&aarp_lock);
420 
421 	a = __aarp_find_entry(proxies[hash], dev, sa);
422 	if (a)
423 		a->expires_at = jiffies - 1;
424 
425 	write_unlock_bh(&aarp_lock);
426 }
427 
428 /* This must run under aarp_lock. */
__aarp_proxy_find(struct net_device * dev,struct atalk_addr * sa)429 static struct atalk_addr *__aarp_proxy_find(struct net_device *dev,
430 					    struct atalk_addr *sa)
431 {
432 	int hash = sa->s_node % (AARP_HASH_SIZE - 1);
433 	struct aarp_entry *a = __aarp_find_entry(proxies[hash], dev, sa);
434 
435 	return a ? sa : NULL;
436 }
437 
438 /*
439  * Probe a Phase 1 device or a device that requires its Net:Node to
440  * be set via an ioctl.
441  */
aarp_send_probe_phase1(struct atalk_iface * iface)442 static void aarp_send_probe_phase1(struct atalk_iface *iface)
443 {
444 	struct ifreq atreq;
445 	struct sockaddr_at *sa = (struct sockaddr_at *)&atreq.ifr_addr;
446 	const struct net_device_ops *ops = iface->dev->netdev_ops;
447 
448 	sa->sat_addr.s_node = iface->address.s_node;
449 	sa->sat_addr.s_net = ntohs(iface->address.s_net);
450 
451 	/* We pass the Net:Node to the drivers/cards by a Device ioctl. */
452 	if (!(ops->ndo_do_ioctl(iface->dev, &atreq, SIOCSIFADDR))) {
453 		ops->ndo_do_ioctl(iface->dev, &atreq, SIOCGIFADDR);
454 		if (iface->address.s_net != htons(sa->sat_addr.s_net) ||
455 		    iface->address.s_node != sa->sat_addr.s_node)
456 			iface->status |= ATIF_PROBE_FAIL;
457 
458 		iface->address.s_net  = htons(sa->sat_addr.s_net);
459 		iface->address.s_node = sa->sat_addr.s_node;
460 	}
461 }
462 
463 
aarp_probe_network(struct atalk_iface * atif)464 void aarp_probe_network(struct atalk_iface *atif)
465 {
466 	if (atif->dev->type == ARPHRD_LOCALTLK ||
467 	    atif->dev->type == ARPHRD_PPP)
468 		aarp_send_probe_phase1(atif);
469 	else {
470 		unsigned int count;
471 
472 		for (count = 0; count < AARP_RETRANSMIT_LIMIT; count++) {
473 			aarp_send_probe(atif->dev, &atif->address);
474 
475 			/* Defer 1/10th */
476 			msleep(100);
477 
478 			if (atif->status & ATIF_PROBE_FAIL)
479 				break;
480 		}
481 	}
482 }
483 
aarp_proxy_probe_network(struct atalk_iface * atif,struct atalk_addr * sa)484 int aarp_proxy_probe_network(struct atalk_iface *atif, struct atalk_addr *sa)
485 {
486 	int hash, retval = -EPROTONOSUPPORT;
487 	struct aarp_entry *entry;
488 	unsigned int count;
489 
490 	/*
491 	 * we don't currently support LocalTalk or PPP for proxy AARP;
492 	 * if someone wants to try and add it, have fun
493 	 */
494 	if (atif->dev->type == ARPHRD_LOCALTLK ||
495 	    atif->dev->type == ARPHRD_PPP)
496 		goto out;
497 
498 	/*
499 	 * create a new AARP entry with the flags set to be published --
500 	 * we need this one to hang around even if it's in use
501 	 */
502 	entry = aarp_alloc();
503 	retval = -ENOMEM;
504 	if (!entry)
505 		goto out;
506 
507 	entry->expires_at = -1;
508 	entry->status = ATIF_PROBE;
509 	entry->target_addr.s_node = sa->s_node;
510 	entry->target_addr.s_net = sa->s_net;
511 	entry->dev = atif->dev;
512 
513 	write_lock_bh(&aarp_lock);
514 
515 	hash = sa->s_node % (AARP_HASH_SIZE - 1);
516 	entry->next = proxies[hash];
517 	proxies[hash] = entry;
518 
519 	for (count = 0; count < AARP_RETRANSMIT_LIMIT; count++) {
520 		aarp_send_probe(atif->dev, sa);
521 
522 		/* Defer 1/10th */
523 		write_unlock_bh(&aarp_lock);
524 		msleep(100);
525 		write_lock_bh(&aarp_lock);
526 
527 		if (entry->status & ATIF_PROBE_FAIL)
528 			break;
529 	}
530 
531 	if (entry->status & ATIF_PROBE_FAIL) {
532 		entry->expires_at = jiffies - 1; /* free the entry */
533 		retval = -EADDRINUSE; /* return network full */
534 	} else { /* clear the probing flag */
535 		entry->status &= ~ATIF_PROBE;
536 		retval = 1;
537 	}
538 
539 	write_unlock_bh(&aarp_lock);
540 out:
541 	return retval;
542 }
543 
544 /* Send a DDP frame */
aarp_send_ddp(struct net_device * dev,struct sk_buff * skb,struct atalk_addr * sa,void * hwaddr)545 int aarp_send_ddp(struct net_device *dev, struct sk_buff *skb,
546 		  struct atalk_addr *sa, void *hwaddr)
547 {
548 	static char ddp_eth_multicast[ETH_ALEN] =
549 		{ 0x09, 0x00, 0x07, 0xFF, 0xFF, 0xFF };
550 	int hash;
551 	struct aarp_entry *a;
552 
553 	skb_reset_network_header(skb);
554 
555 	/* Check for LocalTalk first */
556 	if (dev->type == ARPHRD_LOCALTLK) {
557 		struct atalk_addr *at = atalk_find_dev_addr(dev);
558 		struct ddpehdr *ddp = (struct ddpehdr *)skb->data;
559 		int ft = 2;
560 
561 		/*
562 		 * Compressible ?
563 		 *
564 		 * IFF: src_net == dest_net == device_net
565 		 * (zero matches anything)
566 		 */
567 
568 		if ((!ddp->deh_snet || at->s_net == ddp->deh_snet) &&
569 		    (!ddp->deh_dnet || at->s_net == ddp->deh_dnet)) {
570 			skb_pull(skb, sizeof(*ddp) - 4);
571 
572 			/*
573 			 *	The upper two remaining bytes are the port
574 			 *	numbers	we just happen to need. Now put the
575 			 *	length in the lower two.
576 			 */
577 			*((__be16 *)skb->data) = htons(skb->len);
578 			ft = 1;
579 		}
580 		/*
581 		 * Nice and easy. No AARP type protocols occur here so we can
582 		 * just shovel it out with a 3 byte LLAP header
583 		 */
584 
585 		skb_push(skb, 3);
586 		skb->data[0] = sa->s_node;
587 		skb->data[1] = at->s_node;
588 		skb->data[2] = ft;
589 		skb->dev     = dev;
590 		goto sendit;
591 	}
592 
593 	/* On a PPP link we neither compress nor aarp.  */
594 	if (dev->type == ARPHRD_PPP) {
595 		skb->protocol = htons(ETH_P_PPPTALK);
596 		skb->dev = dev;
597 		goto sendit;
598 	}
599 
600 	/* Non ELAP we cannot do. */
601 	if (dev->type != ARPHRD_ETHER)
602 		return -1;
603 
604 	skb->dev = dev;
605 	skb->protocol = htons(ETH_P_ATALK);
606 	hash = sa->s_node % (AARP_HASH_SIZE - 1);
607 
608 	/* Do we have a resolved entry? */
609 	if (sa->s_node == ATADDR_BCAST) {
610 		/* Send it */
611 		ddp_dl->request(ddp_dl, skb, ddp_eth_multicast);
612 		goto sent;
613 	}
614 
615 	write_lock_bh(&aarp_lock);
616 	a = __aarp_find_entry(resolved[hash], dev, sa);
617 
618 	if (a) { /* Return 1 and fill in the address */
619 		a->expires_at = jiffies + (sysctl_aarp_expiry_time * 10);
620 		ddp_dl->request(ddp_dl, skb, a->hwaddr);
621 		write_unlock_bh(&aarp_lock);
622 		goto sent;
623 	}
624 
625 	/* Do we have an unresolved entry: This is the less common path */
626 	a = __aarp_find_entry(unresolved[hash], dev, sa);
627 	if (a) { /* Queue onto the unresolved queue */
628 		skb_queue_tail(&a->packet_queue, skb);
629 		goto out_unlock;
630 	}
631 
632 	/* Allocate a new entry */
633 	a = aarp_alloc();
634 	if (!a) {
635 		/* Whoops slipped... good job it's an unreliable protocol 8) */
636 		write_unlock_bh(&aarp_lock);
637 		return -1;
638 	}
639 
640 	/* Set up the queue */
641 	skb_queue_tail(&a->packet_queue, skb);
642 	a->expires_at	 = jiffies + sysctl_aarp_resolve_time;
643 	a->dev		 = dev;
644 	a->next		 = unresolved[hash];
645 	a->target_addr	 = *sa;
646 	a->xmit_count	 = 0;
647 	unresolved[hash] = a;
648 	unresolved_count++;
649 
650 	/* Send an initial request for the address */
651 	__aarp_send_query(a);
652 
653 	/*
654 	 * Switch to fast timer if needed (That is if this is the first
655 	 * unresolved entry to get added)
656 	 */
657 
658 	if (unresolved_count == 1)
659 		mod_timer(&aarp_timer, jiffies + sysctl_aarp_tick_time);
660 
661 	/* Now finally, it is safe to drop the lock. */
662 out_unlock:
663 	write_unlock_bh(&aarp_lock);
664 
665 	/* Tell the ddp layer we have taken over for this frame. */
666 	return 0;
667 
668 sendit:
669 	if (skb->sk)
670 		skb->priority = skb->sk->sk_priority;
671 	dev_queue_xmit(skb);
672 sent:
673 	return 1;
674 }
675 
676 /*
677  *	An entry in the aarp unresolved queue has become resolved. Send
678  *	all the frames queued under it.
679  *
680  *	Must run under aarp_lock.
681  */
__aarp_resolved(struct aarp_entry ** list,struct aarp_entry * a,int hash)682 static void __aarp_resolved(struct aarp_entry **list, struct aarp_entry *a,
683 			    int hash)
684 {
685 	struct sk_buff *skb;
686 
687 	while (*list)
688 		if (*list == a) {
689 			unresolved_count--;
690 			*list = a->next;
691 
692 			/* Move into the resolved list */
693 			a->next = resolved[hash];
694 			resolved[hash] = a;
695 
696 			/* Kick frames off */
697 			while ((skb = skb_dequeue(&a->packet_queue)) != NULL) {
698 				a->expires_at = jiffies +
699 						sysctl_aarp_expiry_time * 10;
700 				ddp_dl->request(ddp_dl, skb, a->hwaddr);
701 			}
702 		} else
703 			list = &((*list)->next);
704 }
705 
706 /*
707  *	This is called by the SNAP driver whenever we see an AARP SNAP
708  *	frame. We currently only support Ethernet.
709  */
aarp_rcv(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)710 static int aarp_rcv(struct sk_buff *skb, struct net_device *dev,
711 		    struct packet_type *pt, struct net_device *orig_dev)
712 {
713 	struct elapaarp *ea = aarp_hdr(skb);
714 	int hash, ret = 0;
715 	__u16 function;
716 	struct aarp_entry *a;
717 	struct atalk_addr sa, *ma, da;
718 	struct atalk_iface *ifa;
719 
720 	if (!net_eq(dev_net(dev), &init_net))
721 		goto out0;
722 
723 	/* We only do Ethernet SNAP AARP. */
724 	if (dev->type != ARPHRD_ETHER)
725 		goto out0;
726 
727 	/* Frame size ok? */
728 	if (!skb_pull(skb, sizeof(*ea)))
729 		goto out0;
730 
731 	function = ntohs(ea->function);
732 
733 	/* Sanity check fields. */
734 	if (function < AARP_REQUEST || function > AARP_PROBE ||
735 	    ea->hw_len != ETH_ALEN || ea->pa_len != AARP_PA_ALEN ||
736 	    ea->pa_src_zero || ea->pa_dst_zero)
737 		goto out0;
738 
739 	/* Looks good. */
740 	hash = ea->pa_src_node % (AARP_HASH_SIZE - 1);
741 
742 	/* Build an address. */
743 	sa.s_node = ea->pa_src_node;
744 	sa.s_net = ea->pa_src_net;
745 
746 	/* Process the packet. Check for replies of me. */
747 	ifa = atalk_find_dev(dev);
748 	if (!ifa)
749 		goto out1;
750 
751 	if (ifa->status & ATIF_PROBE &&
752 	    ifa->address.s_node == ea->pa_dst_node &&
753 	    ifa->address.s_net == ea->pa_dst_net) {
754 		ifa->status |= ATIF_PROBE_FAIL; /* Fail the probe (in use) */
755 		goto out1;
756 	}
757 
758 	/* Check for replies of proxy AARP entries */
759 	da.s_node = ea->pa_dst_node;
760 	da.s_net  = ea->pa_dst_net;
761 
762 	write_lock_bh(&aarp_lock);
763 	a = __aarp_find_entry(proxies[hash], dev, &da);
764 
765 	if (a && a->status & ATIF_PROBE) {
766 		a->status |= ATIF_PROBE_FAIL;
767 		/*
768 		 * we do not respond to probe or request packets for
769 		 * this address while we are probing this address
770 		 */
771 		goto unlock;
772 	}
773 
774 	switch (function) {
775 		case AARP_REPLY:
776 			if (!unresolved_count)	/* Speed up */
777 				break;
778 
779 			/* Find the entry.  */
780 			a = __aarp_find_entry(unresolved[hash], dev, &sa);
781 			if (!a || dev != a->dev)
782 				break;
783 
784 			/* We can fill one in - this is good. */
785 			memcpy(a->hwaddr, ea->hw_src, ETH_ALEN);
786 			__aarp_resolved(&unresolved[hash], a, hash);
787 			if (!unresolved_count)
788 				mod_timer(&aarp_timer,
789 					  jiffies + sysctl_aarp_expiry_time);
790 			break;
791 
792 		case AARP_REQUEST:
793 		case AARP_PROBE:
794 
795 			/*
796 			 * If it is my address set ma to my address and reply.
797 			 * We can treat probe and request the same.  Probe
798 			 * simply means we shouldn't cache the querying host,
799 			 * as in a probe they are proposing an address not
800 			 * using one.
801 			 *
802 			 * Support for proxy-AARP added. We check if the
803 			 * address is one of our proxies before we toss the
804 			 * packet out.
805 			 */
806 
807 			sa.s_node = ea->pa_dst_node;
808 			sa.s_net  = ea->pa_dst_net;
809 
810 			/* See if we have a matching proxy. */
811 			ma = __aarp_proxy_find(dev, &sa);
812 			if (!ma)
813 				ma = &ifa->address;
814 			else { /* We need to make a copy of the entry. */
815 				da.s_node = sa.s_node;
816 				da.s_net = da.s_net;
817 				ma = &da;
818 			}
819 
820 			if (function == AARP_PROBE) {
821 				/*
822 				 * A probe implies someone trying to get an
823 				 * address. So as a precaution flush any
824 				 * entries we have for this address.
825 				 */
826 				a = __aarp_find_entry(resolved[sa.s_node %
827 							  (AARP_HASH_SIZE - 1)],
828 						      skb->dev, &sa);
829 
830 				/*
831 				 * Make it expire next tick - that avoids us
832 				 * getting into a probe/flush/learn/probe/
833 				 * flush/learn cycle during probing of a slow
834 				 * to respond host addr.
835 				 */
836 				if (a) {
837 					a->expires_at = jiffies - 1;
838 					mod_timer(&aarp_timer, jiffies +
839 							sysctl_aarp_tick_time);
840 				}
841 			}
842 
843 			if (sa.s_node != ma->s_node)
844 				break;
845 
846 			if (sa.s_net && ma->s_net && sa.s_net != ma->s_net)
847 				break;
848 
849 			sa.s_node = ea->pa_src_node;
850 			sa.s_net = ea->pa_src_net;
851 
852 			/* aarp_my_address has found the address to use for us.
853 			*/
854 			aarp_send_reply(dev, ma, &sa, ea->hw_src);
855 			break;
856 	}
857 
858 unlock:
859 	write_unlock_bh(&aarp_lock);
860 out1:
861 	ret = 1;
862 out0:
863 	kfree_skb(skb);
864 	return ret;
865 }
866 
867 static struct notifier_block aarp_notifier = {
868 	.notifier_call = aarp_device_event,
869 };
870 
871 static unsigned char aarp_snap_id[] = { 0x00, 0x00, 0x00, 0x80, 0xF3 };
872 
aarp_proto_init(void)873 void __init aarp_proto_init(void)
874 {
875 	aarp_dl = register_snap_client(aarp_snap_id, aarp_rcv);
876 	if (!aarp_dl)
877 		printk(KERN_CRIT "Unable to register AARP with SNAP.\n");
878 	setup_timer(&aarp_timer, aarp_expire_timeout, 0);
879 	aarp_timer.expires  = jiffies + sysctl_aarp_expiry_time;
880 	add_timer(&aarp_timer);
881 	register_netdevice_notifier(&aarp_notifier);
882 }
883 
884 /* Remove the AARP entries associated with a device. */
aarp_device_down(struct net_device * dev)885 void aarp_device_down(struct net_device *dev)
886 {
887 	int ct;
888 
889 	write_lock_bh(&aarp_lock);
890 
891 	for (ct = 0; ct < AARP_HASH_SIZE; ct++) {
892 		__aarp_expire_device(&resolved[ct], dev);
893 		__aarp_expire_device(&unresolved[ct], dev);
894 		__aarp_expire_device(&proxies[ct], dev);
895 	}
896 
897 	write_unlock_bh(&aarp_lock);
898 }
899 
900 #ifdef CONFIG_PROC_FS
901 struct aarp_iter_state {
902 	int bucket;
903 	struct aarp_entry **table;
904 };
905 
906 /*
907  * Get the aarp entry that is in the chain described
908  * by the iterator.
909  * If pos is set then skip till that index.
910  * pos = 1 is the first entry
911  */
iter_next(struct aarp_iter_state * iter,loff_t * pos)912 static struct aarp_entry *iter_next(struct aarp_iter_state *iter, loff_t *pos)
913 {
914 	int ct = iter->bucket;
915 	struct aarp_entry **table = iter->table;
916 	loff_t off = 0;
917 	struct aarp_entry *entry;
918 
919  rescan:
920 	while(ct < AARP_HASH_SIZE) {
921 		for (entry = table[ct]; entry; entry = entry->next) {
922 			if (!pos || ++off == *pos) {
923 				iter->table = table;
924 				iter->bucket = ct;
925 				return entry;
926 			}
927 		}
928 		++ct;
929 	}
930 
931 	if (table == resolved) {
932 		ct = 0;
933 		table = unresolved;
934 		goto rescan;
935 	}
936 	if (table == unresolved) {
937 		ct = 0;
938 		table = proxies;
939 		goto rescan;
940 	}
941 	return NULL;
942 }
943 
aarp_seq_start(struct seq_file * seq,loff_t * pos)944 static void *aarp_seq_start(struct seq_file *seq, loff_t *pos)
945 	__acquires(aarp_lock)
946 {
947 	struct aarp_iter_state *iter = seq->private;
948 
949 	read_lock_bh(&aarp_lock);
950 	iter->table     = resolved;
951 	iter->bucket    = 0;
952 
953 	return *pos ? iter_next(iter, pos) : SEQ_START_TOKEN;
954 }
955 
aarp_seq_next(struct seq_file * seq,void * v,loff_t * pos)956 static void *aarp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
957 {
958 	struct aarp_entry *entry = v;
959 	struct aarp_iter_state *iter = seq->private;
960 
961 	++*pos;
962 
963 	/* first line after header */
964 	if (v == SEQ_START_TOKEN)
965 		entry = iter_next(iter, NULL);
966 
967 	/* next entry in current bucket */
968 	else if (entry->next)
969 		entry = entry->next;
970 
971 	/* next bucket or table */
972 	else {
973 		++iter->bucket;
974 		entry = iter_next(iter, NULL);
975 	}
976 	return entry;
977 }
978 
aarp_seq_stop(struct seq_file * seq,void * v)979 static void aarp_seq_stop(struct seq_file *seq, void *v)
980 	__releases(aarp_lock)
981 {
982 	read_unlock_bh(&aarp_lock);
983 }
984 
dt2str(unsigned long ticks)985 static const char *dt2str(unsigned long ticks)
986 {
987 	static char buf[32];
988 
989 	sprintf(buf, "%ld.%02ld", ticks / HZ, ((ticks % HZ) * 100 ) / HZ);
990 
991 	return buf;
992 }
993 
aarp_seq_show(struct seq_file * seq,void * v)994 static int aarp_seq_show(struct seq_file *seq, void *v)
995 {
996 	struct aarp_iter_state *iter = seq->private;
997 	struct aarp_entry *entry = v;
998 	unsigned long now = jiffies;
999 
1000 	if (v == SEQ_START_TOKEN)
1001 		seq_puts(seq,
1002 			 "Address  Interface   Hardware Address"
1003 			 "   Expires LastSend  Retry Status\n");
1004 	else {
1005 		seq_printf(seq, "%04X:%02X  %-12s",
1006 			   ntohs(entry->target_addr.s_net),
1007 			   (unsigned int) entry->target_addr.s_node,
1008 			   entry->dev ? entry->dev->name : "????");
1009 		seq_printf(seq, "%pM", entry->hwaddr);
1010 		seq_printf(seq, " %8s",
1011 			   dt2str((long)entry->expires_at - (long)now));
1012 		if (iter->table == unresolved)
1013 			seq_printf(seq, " %8s %6hu",
1014 				   dt2str(now - entry->last_sent),
1015 				   entry->xmit_count);
1016 		else
1017 			seq_puts(seq, "                ");
1018 		seq_printf(seq, " %s\n",
1019 			   (iter->table == resolved) ? "resolved"
1020 			   : (iter->table == unresolved) ? "unresolved"
1021 			   : (iter->table == proxies) ? "proxies"
1022 			   : "unknown");
1023 	}
1024 	return 0;
1025 }
1026 
1027 static const struct seq_operations aarp_seq_ops = {
1028 	.start  = aarp_seq_start,
1029 	.next   = aarp_seq_next,
1030 	.stop   = aarp_seq_stop,
1031 	.show   = aarp_seq_show,
1032 };
1033 
aarp_seq_open(struct inode * inode,struct file * file)1034 static int aarp_seq_open(struct inode *inode, struct file *file)
1035 {
1036 	return seq_open_private(file, &aarp_seq_ops,
1037 			sizeof(struct aarp_iter_state));
1038 }
1039 
1040 const struct file_operations atalk_seq_arp_fops = {
1041 	.owner		= THIS_MODULE,
1042 	.open           = aarp_seq_open,
1043 	.read           = seq_read,
1044 	.llseek         = seq_lseek,
1045 	.release	= seq_release_private,
1046 };
1047 #endif
1048 
1049 /* General module cleanup. Called from cleanup_module() in ddp.c. */
aarp_cleanup_module(void)1050 void aarp_cleanup_module(void)
1051 {
1052 	del_timer_sync(&aarp_timer);
1053 	unregister_netdevice_notifier(&aarp_notifier);
1054 	unregister_snap_client(aarp_dl);
1055 	aarp_purge();
1056 }
1057