1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
17 */
18
19
20 /*
21 * mballoc.c contains the multiblocks allocation routines
22 */
23
24 #include "mballoc.h"
25 /*
26 * MUSTDO:
27 * - test ext4_ext_search_left() and ext4_ext_search_right()
28 * - search for metadata in few groups
29 *
30 * TODO v4:
31 * - normalization should take into account whether file is still open
32 * - discard preallocations if no free space left (policy?)
33 * - don't normalize tails
34 * - quota
35 * - reservation for superuser
36 *
37 * TODO v3:
38 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
39 * - track min/max extents in each group for better group selection
40 * - mb_mark_used() may allocate chunk right after splitting buddy
41 * - tree of groups sorted by number of free blocks
42 * - error handling
43 */
44
45 /*
46 * The allocation request involve request for multiple number of blocks
47 * near to the goal(block) value specified.
48 *
49 * During initialization phase of the allocator we decide to use the group
50 * preallocation or inode preallocation depending on the size file. The
51 * size of the file could be the resulting file size we would have after
52 * allocation or the current file size which ever is larger. If the size is
53 * less that sbi->s_mb_stream_request we select the group
54 * preallocation. The default value of s_mb_stream_request is 16
55 * blocks. This can also be tuned via
56 * /proc/fs/ext4/<partition>/stream_req. The value is represented in terms
57 * of number of blocks.
58 *
59 * The main motivation for having small file use group preallocation is to
60 * ensure that we have small file closer in the disk.
61 *
62 * First stage the allocator looks at the inode prealloc list
63 * ext4_inode_info->i_prealloc_list contain list of prealloc spaces for
64 * this particular inode. The inode prealloc space is represented as:
65 *
66 * pa_lstart -> the logical start block for this prealloc space
67 * pa_pstart -> the physical start block for this prealloc space
68 * pa_len -> lenght for this prealloc space
69 * pa_free -> free space available in this prealloc space
70 *
71 * The inode preallocation space is used looking at the _logical_ start
72 * block. If only the logical file block falls within the range of prealloc
73 * space we will consume the particular prealloc space. This make sure that
74 * that the we have contiguous physical blocks representing the file blocks
75 *
76 * The important thing to be noted in case of inode prealloc space is that
77 * we don't modify the values associated to inode prealloc space except
78 * pa_free.
79 *
80 * If we are not able to find blocks in the inode prealloc space and if we
81 * have the group allocation flag set then we look at the locality group
82 * prealloc space. These are per CPU prealloc list repreasented as
83 *
84 * ext4_sb_info.s_locality_groups[smp_processor_id()]
85 *
86 * The reason for having a per cpu locality group is to reduce the contention
87 * between CPUs. It is possible to get scheduled at this point.
88 *
89 * The locality group prealloc space is used looking at whether we have
90 * enough free space (pa_free) withing the prealloc space.
91 *
92 * If we can't allocate blocks via inode prealloc or/and locality group
93 * prealloc then we look at the buddy cache. The buddy cache is represented
94 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
95 * mapped to the buddy and bitmap information regarding different
96 * groups. The buddy information is attached to buddy cache inode so that
97 * we can access them through the page cache. The information regarding
98 * each group is loaded via ext4_mb_load_buddy. The information involve
99 * block bitmap and buddy information. The information are stored in the
100 * inode as:
101 *
102 * { page }
103 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
104 *
105 *
106 * one block each for bitmap and buddy information. So for each group we
107 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
108 * blocksize) blocks. So it can have information regarding groups_per_page
109 * which is blocks_per_page/2
110 *
111 * The buddy cache inode is not stored on disk. The inode is thrown
112 * away when the filesystem is unmounted.
113 *
114 * We look for count number of blocks in the buddy cache. If we were able
115 * to locate that many free blocks we return with additional information
116 * regarding rest of the contiguous physical block available
117 *
118 * Before allocating blocks via buddy cache we normalize the request
119 * blocks. This ensure we ask for more blocks that we needed. The extra
120 * blocks that we get after allocation is added to the respective prealloc
121 * list. In case of inode preallocation we follow a list of heuristics
122 * based on file size. This can be found in ext4_mb_normalize_request. If
123 * we are doing a group prealloc we try to normalize the request to
124 * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is set to
125 * 512 blocks. This can be tuned via
126 * /proc/fs/ext4/<partition/group_prealloc. The value is represented in
127 * terms of number of blocks. If we have mounted the file system with -O
128 * stripe=<value> option the group prealloc request is normalized to the
129 * stripe value (sbi->s_stripe)
130 *
131 * The regular allocator(using the buddy cache) support few tunables.
132 *
133 * /proc/fs/ext4/<partition>/min_to_scan
134 * /proc/fs/ext4/<partition>/max_to_scan
135 * /proc/fs/ext4/<partition>/order2_req
136 *
137 * The regular allocator use buddy scan only if the request len is power of
138 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
139 * value of s_mb_order2_reqs can be tuned via
140 * /proc/fs/ext4/<partition>/order2_req. If the request len is equal to
141 * stripe size (sbi->s_stripe), we try to search for contigous block in
142 * stripe size. This should result in better allocation on RAID setup. If
143 * not we search in the specific group using bitmap for best extents. The
144 * tunable min_to_scan and max_to_scan controll the behaviour here.
145 * min_to_scan indicate how long the mballoc __must__ look for a best
146 * extent and max_to_scanindicate how long the mballoc __can__ look for a
147 * best extent in the found extents. Searching for the blocks starts with
148 * the group specified as the goal value in allocation context via
149 * ac_g_ex. Each group is first checked based on the criteria whether it
150 * can used for allocation. ext4_mb_good_group explains how the groups are
151 * checked.
152 *
153 * Both the prealloc space are getting populated as above. So for the first
154 * request we will hit the buddy cache which will result in this prealloc
155 * space getting filled. The prealloc space is then later used for the
156 * subsequent request.
157 */
158
159 /*
160 * mballoc operates on the following data:
161 * - on-disk bitmap
162 * - in-core buddy (actually includes buddy and bitmap)
163 * - preallocation descriptors (PAs)
164 *
165 * there are two types of preallocations:
166 * - inode
167 * assiged to specific inode and can be used for this inode only.
168 * it describes part of inode's space preallocated to specific
169 * physical blocks. any block from that preallocated can be used
170 * independent. the descriptor just tracks number of blocks left
171 * unused. so, before taking some block from descriptor, one must
172 * make sure corresponded logical block isn't allocated yet. this
173 * also means that freeing any block within descriptor's range
174 * must discard all preallocated blocks.
175 * - locality group
176 * assigned to specific locality group which does not translate to
177 * permanent set of inodes: inode can join and leave group. space
178 * from this type of preallocation can be used for any inode. thus
179 * it's consumed from the beginning to the end.
180 *
181 * relation between them can be expressed as:
182 * in-core buddy = on-disk bitmap + preallocation descriptors
183 *
184 * this mean blocks mballoc considers used are:
185 * - allocated blocks (persistent)
186 * - preallocated blocks (non-persistent)
187 *
188 * consistency in mballoc world means that at any time a block is either
189 * free or used in ALL structures. notice: "any time" should not be read
190 * literally -- time is discrete and delimited by locks.
191 *
192 * to keep it simple, we don't use block numbers, instead we count number of
193 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
194 *
195 * all operations can be expressed as:
196 * - init buddy: buddy = on-disk + PAs
197 * - new PA: buddy += N; PA = N
198 * - use inode PA: on-disk += N; PA -= N
199 * - discard inode PA buddy -= on-disk - PA; PA = 0
200 * - use locality group PA on-disk += N; PA -= N
201 * - discard locality group PA buddy -= PA; PA = 0
202 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
203 * is used in real operation because we can't know actual used
204 * bits from PA, only from on-disk bitmap
205 *
206 * if we follow this strict logic, then all operations above should be atomic.
207 * given some of them can block, we'd have to use something like semaphores
208 * killing performance on high-end SMP hardware. let's try to relax it using
209 * the following knowledge:
210 * 1) if buddy is referenced, it's already initialized
211 * 2) while block is used in buddy and the buddy is referenced,
212 * nobody can re-allocate that block
213 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
214 * bit set and PA claims same block, it's OK. IOW, one can set bit in
215 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
216 * block
217 *
218 * so, now we're building a concurrency table:
219 * - init buddy vs.
220 * - new PA
221 * blocks for PA are allocated in the buddy, buddy must be referenced
222 * until PA is linked to allocation group to avoid concurrent buddy init
223 * - use inode PA
224 * we need to make sure that either on-disk bitmap or PA has uptodate data
225 * given (3) we care that PA-=N operation doesn't interfere with init
226 * - discard inode PA
227 * the simplest way would be to have buddy initialized by the discard
228 * - use locality group PA
229 * again PA-=N must be serialized with init
230 * - discard locality group PA
231 * the simplest way would be to have buddy initialized by the discard
232 * - new PA vs.
233 * - use inode PA
234 * i_data_sem serializes them
235 * - discard inode PA
236 * discard process must wait until PA isn't used by another process
237 * - use locality group PA
238 * some mutex should serialize them
239 * - discard locality group PA
240 * discard process must wait until PA isn't used by another process
241 * - use inode PA
242 * - use inode PA
243 * i_data_sem or another mutex should serializes them
244 * - discard inode PA
245 * discard process must wait until PA isn't used by another process
246 * - use locality group PA
247 * nothing wrong here -- they're different PAs covering different blocks
248 * - discard locality group PA
249 * discard process must wait until PA isn't used by another process
250 *
251 * now we're ready to make few consequences:
252 * - PA is referenced and while it is no discard is possible
253 * - PA is referenced until block isn't marked in on-disk bitmap
254 * - PA changes only after on-disk bitmap
255 * - discard must not compete with init. either init is done before
256 * any discard or they're serialized somehow
257 * - buddy init as sum of on-disk bitmap and PAs is done atomically
258 *
259 * a special case when we've used PA to emptiness. no need to modify buddy
260 * in this case, but we should care about concurrent init
261 *
262 */
263
264 /*
265 * Logic in few words:
266 *
267 * - allocation:
268 * load group
269 * find blocks
270 * mark bits in on-disk bitmap
271 * release group
272 *
273 * - use preallocation:
274 * find proper PA (per-inode or group)
275 * load group
276 * mark bits in on-disk bitmap
277 * release group
278 * release PA
279 *
280 * - free:
281 * load group
282 * mark bits in on-disk bitmap
283 * release group
284 *
285 * - discard preallocations in group:
286 * mark PAs deleted
287 * move them onto local list
288 * load on-disk bitmap
289 * load group
290 * remove PA from object (inode or locality group)
291 * mark free blocks in-core
292 *
293 * - discard inode's preallocations:
294 */
295
296 /*
297 * Locking rules
298 *
299 * Locks:
300 * - bitlock on a group (group)
301 * - object (inode/locality) (object)
302 * - per-pa lock (pa)
303 *
304 * Paths:
305 * - new pa
306 * object
307 * group
308 *
309 * - find and use pa:
310 * pa
311 *
312 * - release consumed pa:
313 * pa
314 * group
315 * object
316 *
317 * - generate in-core bitmap:
318 * group
319 * pa
320 *
321 * - discard all for given object (inode, locality group):
322 * object
323 * pa
324 * group
325 *
326 * - discard all for given group:
327 * group
328 * pa
329 * group
330 * object
331 *
332 */
333 static struct kmem_cache *ext4_pspace_cachep;
334 static struct kmem_cache *ext4_ac_cachep;
335 static struct kmem_cache *ext4_free_ext_cachep;
336 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
337 ext4_group_t group);
338 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
339 ext4_group_t group);
340 static int ext4_mb_init_per_dev_proc(struct super_block *sb);
341 static int ext4_mb_destroy_per_dev_proc(struct super_block *sb);
342 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn);
343
344
345
mb_correct_addr_and_bit(int * bit,void * addr)346 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
347 {
348 #if BITS_PER_LONG == 64
349 *bit += ((unsigned long) addr & 7UL) << 3;
350 addr = (void *) ((unsigned long) addr & ~7UL);
351 #elif BITS_PER_LONG == 32
352 *bit += ((unsigned long) addr & 3UL) << 3;
353 addr = (void *) ((unsigned long) addr & ~3UL);
354 #else
355 #error "how many bits you are?!"
356 #endif
357 return addr;
358 }
359
mb_test_bit(int bit,void * addr)360 static inline int mb_test_bit(int bit, void *addr)
361 {
362 /*
363 * ext4_test_bit on architecture like powerpc
364 * needs unsigned long aligned address
365 */
366 addr = mb_correct_addr_and_bit(&bit, addr);
367 return ext4_test_bit(bit, addr);
368 }
369
mb_set_bit(int bit,void * addr)370 static inline void mb_set_bit(int bit, void *addr)
371 {
372 addr = mb_correct_addr_and_bit(&bit, addr);
373 ext4_set_bit(bit, addr);
374 }
375
mb_set_bit_atomic(spinlock_t * lock,int bit,void * addr)376 static inline void mb_set_bit_atomic(spinlock_t *lock, int bit, void *addr)
377 {
378 addr = mb_correct_addr_and_bit(&bit, addr);
379 ext4_set_bit_atomic(lock, bit, addr);
380 }
381
mb_clear_bit(int bit,void * addr)382 static inline void mb_clear_bit(int bit, void *addr)
383 {
384 addr = mb_correct_addr_and_bit(&bit, addr);
385 ext4_clear_bit(bit, addr);
386 }
387
mb_clear_bit_atomic(spinlock_t * lock,int bit,void * addr)388 static inline void mb_clear_bit_atomic(spinlock_t *lock, int bit, void *addr)
389 {
390 addr = mb_correct_addr_and_bit(&bit, addr);
391 ext4_clear_bit_atomic(lock, bit, addr);
392 }
393
mb_find_next_zero_bit(void * addr,int max,int start)394 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
395 {
396 int fix = 0, ret, tmpmax;
397 addr = mb_correct_addr_and_bit(&fix, addr);
398 tmpmax = max + fix;
399 start += fix;
400
401 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
402 if (ret > max)
403 return max;
404 return ret;
405 }
406
mb_find_next_bit(void * addr,int max,int start)407 static inline int mb_find_next_bit(void *addr, int max, int start)
408 {
409 int fix = 0, ret, tmpmax;
410 addr = mb_correct_addr_and_bit(&fix, addr);
411 tmpmax = max + fix;
412 start += fix;
413
414 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
415 if (ret > max)
416 return max;
417 return ret;
418 }
419
mb_find_buddy(struct ext4_buddy * e4b,int order,int * max)420 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
421 {
422 char *bb;
423
424 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
425 BUG_ON(max == NULL);
426
427 if (order > e4b->bd_blkbits + 1) {
428 *max = 0;
429 return NULL;
430 }
431
432 /* at order 0 we see each particular block */
433 *max = 1 << (e4b->bd_blkbits + 3);
434 if (order == 0)
435 return EXT4_MB_BITMAP(e4b);
436
437 bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
438 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
439
440 return bb;
441 }
442
443 #ifdef DOUBLE_CHECK
mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)444 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
445 int first, int count)
446 {
447 int i;
448 struct super_block *sb = e4b->bd_sb;
449
450 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
451 return;
452 BUG_ON(!ext4_is_group_locked(sb, e4b->bd_group));
453 for (i = 0; i < count; i++) {
454 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
455 ext4_fsblk_t blocknr;
456 blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
457 blocknr += first + i;
458 blocknr +=
459 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
460 ext4_grp_locked_error(sb, e4b->bd_group,
461 __func__, "double-free of inode"
462 " %lu's block %llu(bit %u in group %u)",
463 inode ? inode->i_ino : 0, blocknr,
464 first + i, e4b->bd_group);
465 }
466 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
467 }
468 }
469
mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)470 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
471 {
472 int i;
473
474 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
475 return;
476 BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
477 for (i = 0; i < count; i++) {
478 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
479 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
480 }
481 }
482
mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)483 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
484 {
485 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
486 unsigned char *b1, *b2;
487 int i;
488 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
489 b2 = (unsigned char *) bitmap;
490 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
491 if (b1[i] != b2[i]) {
492 printk(KERN_ERR "corruption in group %u "
493 "at byte %u(%u): %x in copy != %x "
494 "on disk/prealloc\n",
495 e4b->bd_group, i, i * 8, b1[i], b2[i]);
496 BUG();
497 }
498 }
499 }
500 }
501
502 #else
mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)503 static inline void mb_free_blocks_double(struct inode *inode,
504 struct ext4_buddy *e4b, int first, int count)
505 {
506 return;
507 }
mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)508 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
509 int first, int count)
510 {
511 return;
512 }
mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)513 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
514 {
515 return;
516 }
517 #endif
518
519 #ifdef AGGRESSIVE_CHECK
520
521 #define MB_CHECK_ASSERT(assert) \
522 do { \
523 if (!(assert)) { \
524 printk(KERN_EMERG \
525 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
526 function, file, line, # assert); \
527 BUG(); \
528 } \
529 } while (0)
530
__mb_check_buddy(struct ext4_buddy * e4b,char * file,const char * function,int line)531 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
532 const char *function, int line)
533 {
534 struct super_block *sb = e4b->bd_sb;
535 int order = e4b->bd_blkbits + 1;
536 int max;
537 int max2;
538 int i;
539 int j;
540 int k;
541 int count;
542 struct ext4_group_info *grp;
543 int fragments = 0;
544 int fstart;
545 struct list_head *cur;
546 void *buddy;
547 void *buddy2;
548
549 {
550 static int mb_check_counter;
551 if (mb_check_counter++ % 100 != 0)
552 return 0;
553 }
554
555 while (order > 1) {
556 buddy = mb_find_buddy(e4b, order, &max);
557 MB_CHECK_ASSERT(buddy);
558 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
559 MB_CHECK_ASSERT(buddy2);
560 MB_CHECK_ASSERT(buddy != buddy2);
561 MB_CHECK_ASSERT(max * 2 == max2);
562
563 count = 0;
564 for (i = 0; i < max; i++) {
565
566 if (mb_test_bit(i, buddy)) {
567 /* only single bit in buddy2 may be 1 */
568 if (!mb_test_bit(i << 1, buddy2)) {
569 MB_CHECK_ASSERT(
570 mb_test_bit((i<<1)+1, buddy2));
571 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
572 MB_CHECK_ASSERT(
573 mb_test_bit(i << 1, buddy2));
574 }
575 continue;
576 }
577
578 /* both bits in buddy2 must be 0 */
579 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
580 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
581
582 for (j = 0; j < (1 << order); j++) {
583 k = (i * (1 << order)) + j;
584 MB_CHECK_ASSERT(
585 !mb_test_bit(k, EXT4_MB_BITMAP(e4b)));
586 }
587 count++;
588 }
589 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
590 order--;
591 }
592
593 fstart = -1;
594 buddy = mb_find_buddy(e4b, 0, &max);
595 for (i = 0; i < max; i++) {
596 if (!mb_test_bit(i, buddy)) {
597 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
598 if (fstart == -1) {
599 fragments++;
600 fstart = i;
601 }
602 continue;
603 }
604 fstart = -1;
605 /* check used bits only */
606 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
607 buddy2 = mb_find_buddy(e4b, j, &max2);
608 k = i >> j;
609 MB_CHECK_ASSERT(k < max2);
610 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
611 }
612 }
613 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
614 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
615
616 grp = ext4_get_group_info(sb, e4b->bd_group);
617 buddy = mb_find_buddy(e4b, 0, &max);
618 list_for_each(cur, &grp->bb_prealloc_list) {
619 ext4_group_t groupnr;
620 struct ext4_prealloc_space *pa;
621 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
622 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
623 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
624 for (i = 0; i < pa->pa_len; i++)
625 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
626 }
627 return 0;
628 }
629 #undef MB_CHECK_ASSERT
630 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
631 __FILE__, __func__, __LINE__)
632 #else
633 #define mb_check_buddy(e4b)
634 #endif
635
636 /* FIXME!! need more doc */
ext4_mb_mark_free_simple(struct super_block * sb,void * buddy,unsigned first,int len,struct ext4_group_info * grp)637 static void ext4_mb_mark_free_simple(struct super_block *sb,
638 void *buddy, unsigned first, int len,
639 struct ext4_group_info *grp)
640 {
641 struct ext4_sb_info *sbi = EXT4_SB(sb);
642 unsigned short min;
643 unsigned short max;
644 unsigned short chunk;
645 unsigned short border;
646
647 BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb));
648
649 border = 2 << sb->s_blocksize_bits;
650
651 while (len > 0) {
652 /* find how many blocks can be covered since this position */
653 max = ffs(first | border) - 1;
654
655 /* find how many blocks of power 2 we need to mark */
656 min = fls(len) - 1;
657
658 if (max < min)
659 min = max;
660 chunk = 1 << min;
661
662 /* mark multiblock chunks only */
663 grp->bb_counters[min]++;
664 if (min > 0)
665 mb_clear_bit(first >> min,
666 buddy + sbi->s_mb_offsets[min]);
667
668 len -= chunk;
669 first += chunk;
670 }
671 }
672
ext4_mb_generate_buddy(struct super_block * sb,void * buddy,void * bitmap,ext4_group_t group)673 static void ext4_mb_generate_buddy(struct super_block *sb,
674 void *buddy, void *bitmap, ext4_group_t group)
675 {
676 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
677 unsigned short max = EXT4_BLOCKS_PER_GROUP(sb);
678 unsigned short i = 0;
679 unsigned short first;
680 unsigned short len;
681 unsigned free = 0;
682 unsigned fragments = 0;
683 unsigned long long period = get_cycles();
684
685 /* initialize buddy from bitmap which is aggregation
686 * of on-disk bitmap and preallocations */
687 i = mb_find_next_zero_bit(bitmap, max, 0);
688 grp->bb_first_free = i;
689 while (i < max) {
690 fragments++;
691 first = i;
692 i = mb_find_next_bit(bitmap, max, i);
693 len = i - first;
694 free += len;
695 if (len > 1)
696 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
697 else
698 grp->bb_counters[0]++;
699 if (i < max)
700 i = mb_find_next_zero_bit(bitmap, max, i);
701 }
702 grp->bb_fragments = fragments;
703
704 if (free != grp->bb_free) {
705 ext4_grp_locked_error(sb, group, __func__,
706 "EXT4-fs: group %u: %u blocks in bitmap, %u in gd",
707 group, free, grp->bb_free);
708 /*
709 * If we intent to continue, we consider group descritor
710 * corrupt and update bb_free using bitmap value
711 */
712 grp->bb_free = free;
713 }
714
715 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
716
717 period = get_cycles() - period;
718 spin_lock(&EXT4_SB(sb)->s_bal_lock);
719 EXT4_SB(sb)->s_mb_buddies_generated++;
720 EXT4_SB(sb)->s_mb_generation_time += period;
721 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
722 }
723
724 /* The buddy information is attached the buddy cache inode
725 * for convenience. The information regarding each group
726 * is loaded via ext4_mb_load_buddy. The information involve
727 * block bitmap and buddy information. The information are
728 * stored in the inode as
729 *
730 * { page }
731 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
732 *
733 *
734 * one block each for bitmap and buddy information.
735 * So for each group we take up 2 blocks. A page can
736 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
737 * So it can have information regarding groups_per_page which
738 * is blocks_per_page/2
739 */
740
ext4_mb_init_cache(struct page * page,char * incore)741 static int ext4_mb_init_cache(struct page *page, char *incore)
742 {
743 int blocksize;
744 int blocks_per_page;
745 int groups_per_page;
746 int err = 0;
747 int i;
748 ext4_group_t first_group;
749 int first_block;
750 struct super_block *sb;
751 struct buffer_head *bhs;
752 struct buffer_head **bh;
753 struct inode *inode;
754 char *data;
755 char *bitmap;
756
757 mb_debug("init page %lu\n", page->index);
758
759 inode = page->mapping->host;
760 sb = inode->i_sb;
761 blocksize = 1 << inode->i_blkbits;
762 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
763
764 groups_per_page = blocks_per_page >> 1;
765 if (groups_per_page == 0)
766 groups_per_page = 1;
767
768 /* allocate buffer_heads to read bitmaps */
769 if (groups_per_page > 1) {
770 err = -ENOMEM;
771 i = sizeof(struct buffer_head *) * groups_per_page;
772 bh = kzalloc(i, GFP_NOFS);
773 if (bh == NULL)
774 goto out;
775 } else
776 bh = &bhs;
777
778 first_group = page->index * blocks_per_page / 2;
779
780 /* read all groups the page covers into the cache */
781 for (i = 0; i < groups_per_page; i++) {
782 struct ext4_group_desc *desc;
783
784 if (first_group + i >= EXT4_SB(sb)->s_groups_count)
785 break;
786
787 err = -EIO;
788 desc = ext4_get_group_desc(sb, first_group + i, NULL);
789 if (desc == NULL)
790 goto out;
791
792 err = -ENOMEM;
793 bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc));
794 if (bh[i] == NULL)
795 goto out;
796
797 if (bitmap_uptodate(bh[i]))
798 continue;
799
800 lock_buffer(bh[i]);
801 if (bitmap_uptodate(bh[i])) {
802 unlock_buffer(bh[i]);
803 continue;
804 }
805 spin_lock(sb_bgl_lock(EXT4_SB(sb), first_group + i));
806 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
807 ext4_init_block_bitmap(sb, bh[i],
808 first_group + i, desc);
809 set_bitmap_uptodate(bh[i]);
810 set_buffer_uptodate(bh[i]);
811 spin_unlock(sb_bgl_lock(EXT4_SB(sb), first_group + i));
812 unlock_buffer(bh[i]);
813 continue;
814 }
815 spin_unlock(sb_bgl_lock(EXT4_SB(sb), first_group + i));
816 if (buffer_uptodate(bh[i])) {
817 /*
818 * if not uninit if bh is uptodate,
819 * bitmap is also uptodate
820 */
821 set_bitmap_uptodate(bh[i]);
822 unlock_buffer(bh[i]);
823 continue;
824 }
825 get_bh(bh[i]);
826 /*
827 * submit the buffer_head for read. We can
828 * safely mark the bitmap as uptodate now.
829 * We do it here so the bitmap uptodate bit
830 * get set with buffer lock held.
831 */
832 set_bitmap_uptodate(bh[i]);
833 bh[i]->b_end_io = end_buffer_read_sync;
834 submit_bh(READ, bh[i]);
835 mb_debug("read bitmap for group %u\n", first_group + i);
836 }
837
838 /* wait for I/O completion */
839 for (i = 0; i < groups_per_page && bh[i]; i++)
840 wait_on_buffer(bh[i]);
841
842 err = -EIO;
843 for (i = 0; i < groups_per_page && bh[i]; i++)
844 if (!buffer_uptodate(bh[i]))
845 goto out;
846
847 err = 0;
848 first_block = page->index * blocks_per_page;
849 /* init the page */
850 memset(page_address(page), 0xff, PAGE_CACHE_SIZE);
851 for (i = 0; i < blocks_per_page; i++) {
852 int group;
853 struct ext4_group_info *grinfo;
854
855 group = (first_block + i) >> 1;
856 if (group >= EXT4_SB(sb)->s_groups_count)
857 break;
858
859 /*
860 * data carry information regarding this
861 * particular group in the format specified
862 * above
863 *
864 */
865 data = page_address(page) + (i * blocksize);
866 bitmap = bh[group - first_group]->b_data;
867
868 /*
869 * We place the buddy block and bitmap block
870 * close together
871 */
872 if ((first_block + i) & 1) {
873 /* this is block of buddy */
874 BUG_ON(incore == NULL);
875 mb_debug("put buddy for group %u in page %lu/%x\n",
876 group, page->index, i * blocksize);
877 grinfo = ext4_get_group_info(sb, group);
878 grinfo->bb_fragments = 0;
879 memset(grinfo->bb_counters, 0,
880 sizeof(unsigned short)*(sb->s_blocksize_bits+2));
881 /*
882 * incore got set to the group block bitmap below
883 */
884 ext4_lock_group(sb, group);
885 ext4_mb_generate_buddy(sb, data, incore, group);
886 ext4_unlock_group(sb, group);
887 incore = NULL;
888 } else {
889 /* this is block of bitmap */
890 BUG_ON(incore != NULL);
891 mb_debug("put bitmap for group %u in page %lu/%x\n",
892 group, page->index, i * blocksize);
893
894 /* see comments in ext4_mb_put_pa() */
895 ext4_lock_group(sb, group);
896 memcpy(data, bitmap, blocksize);
897
898 /* mark all preallocated blks used in in-core bitmap */
899 ext4_mb_generate_from_pa(sb, data, group);
900 ext4_mb_generate_from_freelist(sb, data, group);
901 ext4_unlock_group(sb, group);
902
903 /* set incore so that the buddy information can be
904 * generated using this
905 */
906 incore = data;
907 }
908 }
909 SetPageUptodate(page);
910
911 out:
912 if (bh) {
913 for (i = 0; i < groups_per_page && bh[i]; i++)
914 brelse(bh[i]);
915 if (bh != &bhs)
916 kfree(bh);
917 }
918 return err;
919 }
920
921 static noinline_for_stack int
ext4_mb_load_buddy(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b)922 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
923 struct ext4_buddy *e4b)
924 {
925 int blocks_per_page;
926 int block;
927 int pnum;
928 int poff;
929 struct page *page;
930 int ret;
931 struct ext4_group_info *grp;
932 struct ext4_sb_info *sbi = EXT4_SB(sb);
933 struct inode *inode = sbi->s_buddy_cache;
934
935 mb_debug("load group %u\n", group);
936
937 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
938 grp = ext4_get_group_info(sb, group);
939
940 e4b->bd_blkbits = sb->s_blocksize_bits;
941 e4b->bd_info = ext4_get_group_info(sb, group);
942 e4b->bd_sb = sb;
943 e4b->bd_group = group;
944 e4b->bd_buddy_page = NULL;
945 e4b->bd_bitmap_page = NULL;
946 e4b->alloc_semp = &grp->alloc_sem;
947
948 /* Take the read lock on the group alloc
949 * sem. This would make sure a parallel
950 * ext4_mb_init_group happening on other
951 * groups mapped by the page is blocked
952 * till we are done with allocation
953 */
954 down_read(e4b->alloc_semp);
955
956 /*
957 * the buddy cache inode stores the block bitmap
958 * and buddy information in consecutive blocks.
959 * So for each group we need two blocks.
960 */
961 block = group * 2;
962 pnum = block / blocks_per_page;
963 poff = block % blocks_per_page;
964
965 /* we could use find_or_create_page(), but it locks page
966 * what we'd like to avoid in fast path ... */
967 page = find_get_page(inode->i_mapping, pnum);
968 if (page == NULL || !PageUptodate(page)) {
969 if (page)
970 /*
971 * drop the page reference and try
972 * to get the page with lock. If we
973 * are not uptodate that implies
974 * somebody just created the page but
975 * is yet to initialize the same. So
976 * wait for it to initialize.
977 */
978 page_cache_release(page);
979 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
980 if (page) {
981 BUG_ON(page->mapping != inode->i_mapping);
982 if (!PageUptodate(page)) {
983 ret = ext4_mb_init_cache(page, NULL);
984 if (ret) {
985 unlock_page(page);
986 goto err;
987 }
988 mb_cmp_bitmaps(e4b, page_address(page) +
989 (poff * sb->s_blocksize));
990 }
991 unlock_page(page);
992 }
993 }
994 if (page == NULL || !PageUptodate(page)) {
995 ret = -EIO;
996 goto err;
997 }
998 e4b->bd_bitmap_page = page;
999 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1000 mark_page_accessed(page);
1001
1002 block++;
1003 pnum = block / blocks_per_page;
1004 poff = block % blocks_per_page;
1005
1006 page = find_get_page(inode->i_mapping, pnum);
1007 if (page == NULL || !PageUptodate(page)) {
1008 if (page)
1009 page_cache_release(page);
1010 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1011 if (page) {
1012 BUG_ON(page->mapping != inode->i_mapping);
1013 if (!PageUptodate(page)) {
1014 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1015 if (ret) {
1016 unlock_page(page);
1017 goto err;
1018 }
1019 }
1020 unlock_page(page);
1021 }
1022 }
1023 if (page == NULL || !PageUptodate(page)) {
1024 ret = -EIO;
1025 goto err;
1026 }
1027 e4b->bd_buddy_page = page;
1028 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1029 mark_page_accessed(page);
1030
1031 BUG_ON(e4b->bd_bitmap_page == NULL);
1032 BUG_ON(e4b->bd_buddy_page == NULL);
1033
1034 return 0;
1035
1036 err:
1037 if (e4b->bd_bitmap_page)
1038 page_cache_release(e4b->bd_bitmap_page);
1039 if (e4b->bd_buddy_page)
1040 page_cache_release(e4b->bd_buddy_page);
1041 e4b->bd_buddy = NULL;
1042 e4b->bd_bitmap = NULL;
1043
1044 /* Done with the buddy cache */
1045 up_read(e4b->alloc_semp);
1046 return ret;
1047 }
1048
ext4_mb_release_desc(struct ext4_buddy * e4b)1049 static void ext4_mb_release_desc(struct ext4_buddy *e4b)
1050 {
1051 if (e4b->bd_bitmap_page)
1052 page_cache_release(e4b->bd_bitmap_page);
1053 if (e4b->bd_buddy_page)
1054 page_cache_release(e4b->bd_buddy_page);
1055 /* Done with the buddy cache */
1056 if (e4b->alloc_semp)
1057 up_read(e4b->alloc_semp);
1058 }
1059
1060
mb_find_order_for_block(struct ext4_buddy * e4b,int block)1061 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1062 {
1063 int order = 1;
1064 void *bb;
1065
1066 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
1067 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1068
1069 bb = EXT4_MB_BUDDY(e4b);
1070 while (order <= e4b->bd_blkbits + 1) {
1071 block = block >> 1;
1072 if (!mb_test_bit(block, bb)) {
1073 /* this block is part of buddy of order 'order' */
1074 return order;
1075 }
1076 bb += 1 << (e4b->bd_blkbits - order);
1077 order++;
1078 }
1079 return 0;
1080 }
1081
mb_clear_bits(spinlock_t * lock,void * bm,int cur,int len)1082 static void mb_clear_bits(spinlock_t *lock, void *bm, int cur, int len)
1083 {
1084 __u32 *addr;
1085
1086 len = cur + len;
1087 while (cur < len) {
1088 if ((cur & 31) == 0 && (len - cur) >= 32) {
1089 /* fast path: clear whole word at once */
1090 addr = bm + (cur >> 3);
1091 *addr = 0;
1092 cur += 32;
1093 continue;
1094 }
1095 if (lock)
1096 mb_clear_bit_atomic(lock, cur, bm);
1097 else
1098 mb_clear_bit(cur, bm);
1099 cur++;
1100 }
1101 }
1102
mb_set_bits(spinlock_t * lock,void * bm,int cur,int len)1103 static void mb_set_bits(spinlock_t *lock, void *bm, int cur, int len)
1104 {
1105 __u32 *addr;
1106
1107 len = cur + len;
1108 while (cur < len) {
1109 if ((cur & 31) == 0 && (len - cur) >= 32) {
1110 /* fast path: set whole word at once */
1111 addr = bm + (cur >> 3);
1112 *addr = 0xffffffff;
1113 cur += 32;
1114 continue;
1115 }
1116 if (lock)
1117 mb_set_bit_atomic(lock, cur, bm);
1118 else
1119 mb_set_bit(cur, bm);
1120 cur++;
1121 }
1122 }
1123
mb_free_blocks(struct inode * inode,struct ext4_buddy * e4b,int first,int count)1124 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1125 int first, int count)
1126 {
1127 int block = 0;
1128 int max = 0;
1129 int order;
1130 void *buddy;
1131 void *buddy2;
1132 struct super_block *sb = e4b->bd_sb;
1133
1134 BUG_ON(first + count > (sb->s_blocksize << 3));
1135 BUG_ON(!ext4_is_group_locked(sb, e4b->bd_group));
1136 mb_check_buddy(e4b);
1137 mb_free_blocks_double(inode, e4b, first, count);
1138
1139 e4b->bd_info->bb_free += count;
1140 if (first < e4b->bd_info->bb_first_free)
1141 e4b->bd_info->bb_first_free = first;
1142
1143 /* let's maintain fragments counter */
1144 if (first != 0)
1145 block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b));
1146 if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1147 max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b));
1148 if (block && max)
1149 e4b->bd_info->bb_fragments--;
1150 else if (!block && !max)
1151 e4b->bd_info->bb_fragments++;
1152
1153 /* let's maintain buddy itself */
1154 while (count-- > 0) {
1155 block = first++;
1156 order = 0;
1157
1158 if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) {
1159 ext4_fsblk_t blocknr;
1160 blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
1161 blocknr += block;
1162 blocknr +=
1163 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
1164 ext4_grp_locked_error(sb, e4b->bd_group,
1165 __func__, "double-free of inode"
1166 " %lu's block %llu(bit %u in group %u)",
1167 inode ? inode->i_ino : 0, blocknr, block,
1168 e4b->bd_group);
1169 }
1170 mb_clear_bit(block, EXT4_MB_BITMAP(e4b));
1171 e4b->bd_info->bb_counters[order]++;
1172
1173 /* start of the buddy */
1174 buddy = mb_find_buddy(e4b, order, &max);
1175
1176 do {
1177 block &= ~1UL;
1178 if (mb_test_bit(block, buddy) ||
1179 mb_test_bit(block + 1, buddy))
1180 break;
1181
1182 /* both the buddies are free, try to coalesce them */
1183 buddy2 = mb_find_buddy(e4b, order + 1, &max);
1184
1185 if (!buddy2)
1186 break;
1187
1188 if (order > 0) {
1189 /* for special purposes, we don't set
1190 * free bits in bitmap */
1191 mb_set_bit(block, buddy);
1192 mb_set_bit(block + 1, buddy);
1193 }
1194 e4b->bd_info->bb_counters[order]--;
1195 e4b->bd_info->bb_counters[order]--;
1196
1197 block = block >> 1;
1198 order++;
1199 e4b->bd_info->bb_counters[order]++;
1200
1201 mb_clear_bit(block, buddy2);
1202 buddy = buddy2;
1203 } while (1);
1204 }
1205 mb_check_buddy(e4b);
1206 }
1207
mb_find_extent(struct ext4_buddy * e4b,int order,int block,int needed,struct ext4_free_extent * ex)1208 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
1209 int needed, struct ext4_free_extent *ex)
1210 {
1211 int next = block;
1212 int max;
1213 int ord;
1214 void *buddy;
1215
1216 BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
1217 BUG_ON(ex == NULL);
1218
1219 buddy = mb_find_buddy(e4b, order, &max);
1220 BUG_ON(buddy == NULL);
1221 BUG_ON(block >= max);
1222 if (mb_test_bit(block, buddy)) {
1223 ex->fe_len = 0;
1224 ex->fe_start = 0;
1225 ex->fe_group = 0;
1226 return 0;
1227 }
1228
1229 /* FIXME dorp order completely ? */
1230 if (likely(order == 0)) {
1231 /* find actual order */
1232 order = mb_find_order_for_block(e4b, block);
1233 block = block >> order;
1234 }
1235
1236 ex->fe_len = 1 << order;
1237 ex->fe_start = block << order;
1238 ex->fe_group = e4b->bd_group;
1239
1240 /* calc difference from given start */
1241 next = next - ex->fe_start;
1242 ex->fe_len -= next;
1243 ex->fe_start += next;
1244
1245 while (needed > ex->fe_len &&
1246 (buddy = mb_find_buddy(e4b, order, &max))) {
1247
1248 if (block + 1 >= max)
1249 break;
1250
1251 next = (block + 1) * (1 << order);
1252 if (mb_test_bit(next, EXT4_MB_BITMAP(e4b)))
1253 break;
1254
1255 ord = mb_find_order_for_block(e4b, next);
1256
1257 order = ord;
1258 block = next >> order;
1259 ex->fe_len += 1 << order;
1260 }
1261
1262 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1263 return ex->fe_len;
1264 }
1265
mb_mark_used(struct ext4_buddy * e4b,struct ext4_free_extent * ex)1266 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1267 {
1268 int ord;
1269 int mlen = 0;
1270 int max = 0;
1271 int cur;
1272 int start = ex->fe_start;
1273 int len = ex->fe_len;
1274 unsigned ret = 0;
1275 int len0 = len;
1276 void *buddy;
1277
1278 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1279 BUG_ON(e4b->bd_group != ex->fe_group);
1280 BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
1281 mb_check_buddy(e4b);
1282 mb_mark_used_double(e4b, start, len);
1283
1284 e4b->bd_info->bb_free -= len;
1285 if (e4b->bd_info->bb_first_free == start)
1286 e4b->bd_info->bb_first_free += len;
1287
1288 /* let's maintain fragments counter */
1289 if (start != 0)
1290 mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b));
1291 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1292 max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b));
1293 if (mlen && max)
1294 e4b->bd_info->bb_fragments++;
1295 else if (!mlen && !max)
1296 e4b->bd_info->bb_fragments--;
1297
1298 /* let's maintain buddy itself */
1299 while (len) {
1300 ord = mb_find_order_for_block(e4b, start);
1301
1302 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1303 /* the whole chunk may be allocated at once! */
1304 mlen = 1 << ord;
1305 buddy = mb_find_buddy(e4b, ord, &max);
1306 BUG_ON((start >> ord) >= max);
1307 mb_set_bit(start >> ord, buddy);
1308 e4b->bd_info->bb_counters[ord]--;
1309 start += mlen;
1310 len -= mlen;
1311 BUG_ON(len < 0);
1312 continue;
1313 }
1314
1315 /* store for history */
1316 if (ret == 0)
1317 ret = len | (ord << 16);
1318
1319 /* we have to split large buddy */
1320 BUG_ON(ord <= 0);
1321 buddy = mb_find_buddy(e4b, ord, &max);
1322 mb_set_bit(start >> ord, buddy);
1323 e4b->bd_info->bb_counters[ord]--;
1324
1325 ord--;
1326 cur = (start >> ord) & ~1U;
1327 buddy = mb_find_buddy(e4b, ord, &max);
1328 mb_clear_bit(cur, buddy);
1329 mb_clear_bit(cur + 1, buddy);
1330 e4b->bd_info->bb_counters[ord]++;
1331 e4b->bd_info->bb_counters[ord]++;
1332 }
1333
1334 mb_set_bits(sb_bgl_lock(EXT4_SB(e4b->bd_sb), ex->fe_group),
1335 EXT4_MB_BITMAP(e4b), ex->fe_start, len0);
1336 mb_check_buddy(e4b);
1337
1338 return ret;
1339 }
1340
1341 /*
1342 * Must be called under group lock!
1343 */
ext4_mb_use_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1344 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1345 struct ext4_buddy *e4b)
1346 {
1347 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1348 int ret;
1349
1350 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1351 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1352
1353 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1354 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1355 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1356
1357 /* preallocation can change ac_b_ex, thus we store actually
1358 * allocated blocks for history */
1359 ac->ac_f_ex = ac->ac_b_ex;
1360
1361 ac->ac_status = AC_STATUS_FOUND;
1362 ac->ac_tail = ret & 0xffff;
1363 ac->ac_buddy = ret >> 16;
1364
1365 /*
1366 * take the page reference. We want the page to be pinned
1367 * so that we don't get a ext4_mb_init_cache_call for this
1368 * group until we update the bitmap. That would mean we
1369 * double allocate blocks. The reference is dropped
1370 * in ext4_mb_release_context
1371 */
1372 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1373 get_page(ac->ac_bitmap_page);
1374 ac->ac_buddy_page = e4b->bd_buddy_page;
1375 get_page(ac->ac_buddy_page);
1376 /* on allocation we use ac to track the held semaphore */
1377 ac->alloc_semp = e4b->alloc_semp;
1378 e4b->alloc_semp = NULL;
1379 /* store last allocated for subsequent stream allocation */
1380 if ((ac->ac_flags & EXT4_MB_HINT_DATA)) {
1381 spin_lock(&sbi->s_md_lock);
1382 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1383 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1384 spin_unlock(&sbi->s_md_lock);
1385 }
1386 }
1387
1388 /*
1389 * regular allocator, for general purposes allocation
1390 */
1391
ext4_mb_check_limits(struct ext4_allocation_context * ac,struct ext4_buddy * e4b,int finish_group)1392 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1393 struct ext4_buddy *e4b,
1394 int finish_group)
1395 {
1396 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1397 struct ext4_free_extent *bex = &ac->ac_b_ex;
1398 struct ext4_free_extent *gex = &ac->ac_g_ex;
1399 struct ext4_free_extent ex;
1400 int max;
1401
1402 if (ac->ac_status == AC_STATUS_FOUND)
1403 return;
1404 /*
1405 * We don't want to scan for a whole year
1406 */
1407 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1408 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1409 ac->ac_status = AC_STATUS_BREAK;
1410 return;
1411 }
1412
1413 /*
1414 * Haven't found good chunk so far, let's continue
1415 */
1416 if (bex->fe_len < gex->fe_len)
1417 return;
1418
1419 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1420 && bex->fe_group == e4b->bd_group) {
1421 /* recheck chunk's availability - we don't know
1422 * when it was found (within this lock-unlock
1423 * period or not) */
1424 max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
1425 if (max >= gex->fe_len) {
1426 ext4_mb_use_best_found(ac, e4b);
1427 return;
1428 }
1429 }
1430 }
1431
1432 /*
1433 * The routine checks whether found extent is good enough. If it is,
1434 * then the extent gets marked used and flag is set to the context
1435 * to stop scanning. Otherwise, the extent is compared with the
1436 * previous found extent and if new one is better, then it's stored
1437 * in the context. Later, the best found extent will be used, if
1438 * mballoc can't find good enough extent.
1439 *
1440 * FIXME: real allocation policy is to be designed yet!
1441 */
ext4_mb_measure_extent(struct ext4_allocation_context * ac,struct ext4_free_extent * ex,struct ext4_buddy * e4b)1442 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1443 struct ext4_free_extent *ex,
1444 struct ext4_buddy *e4b)
1445 {
1446 struct ext4_free_extent *bex = &ac->ac_b_ex;
1447 struct ext4_free_extent *gex = &ac->ac_g_ex;
1448
1449 BUG_ON(ex->fe_len <= 0);
1450 BUG_ON(ex->fe_len > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1451 BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1452 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1453
1454 ac->ac_found++;
1455
1456 /*
1457 * The special case - take what you catch first
1458 */
1459 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1460 *bex = *ex;
1461 ext4_mb_use_best_found(ac, e4b);
1462 return;
1463 }
1464
1465 /*
1466 * Let's check whether the chuck is good enough
1467 */
1468 if (ex->fe_len == gex->fe_len) {
1469 *bex = *ex;
1470 ext4_mb_use_best_found(ac, e4b);
1471 return;
1472 }
1473
1474 /*
1475 * If this is first found extent, just store it in the context
1476 */
1477 if (bex->fe_len == 0) {
1478 *bex = *ex;
1479 return;
1480 }
1481
1482 /*
1483 * If new found extent is better, store it in the context
1484 */
1485 if (bex->fe_len < gex->fe_len) {
1486 /* if the request isn't satisfied, any found extent
1487 * larger than previous best one is better */
1488 if (ex->fe_len > bex->fe_len)
1489 *bex = *ex;
1490 } else if (ex->fe_len > gex->fe_len) {
1491 /* if the request is satisfied, then we try to find
1492 * an extent that still satisfy the request, but is
1493 * smaller than previous one */
1494 if (ex->fe_len < bex->fe_len)
1495 *bex = *ex;
1496 }
1497
1498 ext4_mb_check_limits(ac, e4b, 0);
1499 }
1500
ext4_mb_try_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1501 static int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1502 struct ext4_buddy *e4b)
1503 {
1504 struct ext4_free_extent ex = ac->ac_b_ex;
1505 ext4_group_t group = ex.fe_group;
1506 int max;
1507 int err;
1508
1509 BUG_ON(ex.fe_len <= 0);
1510 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1511 if (err)
1512 return err;
1513
1514 ext4_lock_group(ac->ac_sb, group);
1515 max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
1516
1517 if (max > 0) {
1518 ac->ac_b_ex = ex;
1519 ext4_mb_use_best_found(ac, e4b);
1520 }
1521
1522 ext4_unlock_group(ac->ac_sb, group);
1523 ext4_mb_release_desc(e4b);
1524
1525 return 0;
1526 }
1527
ext4_mb_find_by_goal(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1528 static int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1529 struct ext4_buddy *e4b)
1530 {
1531 ext4_group_t group = ac->ac_g_ex.fe_group;
1532 int max;
1533 int err;
1534 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1535 struct ext4_super_block *es = sbi->s_es;
1536 struct ext4_free_extent ex;
1537
1538 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1539 return 0;
1540
1541 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1542 if (err)
1543 return err;
1544
1545 ext4_lock_group(ac->ac_sb, group);
1546 max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
1547 ac->ac_g_ex.fe_len, &ex);
1548
1549 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1550 ext4_fsblk_t start;
1551
1552 start = (e4b->bd_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) +
1553 ex.fe_start + le32_to_cpu(es->s_first_data_block);
1554 /* use do_div to get remainder (would be 64-bit modulo) */
1555 if (do_div(start, sbi->s_stripe) == 0) {
1556 ac->ac_found++;
1557 ac->ac_b_ex = ex;
1558 ext4_mb_use_best_found(ac, e4b);
1559 }
1560 } else if (max >= ac->ac_g_ex.fe_len) {
1561 BUG_ON(ex.fe_len <= 0);
1562 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1563 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1564 ac->ac_found++;
1565 ac->ac_b_ex = ex;
1566 ext4_mb_use_best_found(ac, e4b);
1567 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1568 /* Sometimes, caller may want to merge even small
1569 * number of blocks to an existing extent */
1570 BUG_ON(ex.fe_len <= 0);
1571 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1572 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1573 ac->ac_found++;
1574 ac->ac_b_ex = ex;
1575 ext4_mb_use_best_found(ac, e4b);
1576 }
1577 ext4_unlock_group(ac->ac_sb, group);
1578 ext4_mb_release_desc(e4b);
1579
1580 return 0;
1581 }
1582
1583 /*
1584 * The routine scans buddy structures (not bitmap!) from given order
1585 * to max order and tries to find big enough chunk to satisfy the req
1586 */
ext4_mb_simple_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1587 static void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1588 struct ext4_buddy *e4b)
1589 {
1590 struct super_block *sb = ac->ac_sb;
1591 struct ext4_group_info *grp = e4b->bd_info;
1592 void *buddy;
1593 int i;
1594 int k;
1595 int max;
1596
1597 BUG_ON(ac->ac_2order <= 0);
1598 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1599 if (grp->bb_counters[i] == 0)
1600 continue;
1601
1602 buddy = mb_find_buddy(e4b, i, &max);
1603 BUG_ON(buddy == NULL);
1604
1605 k = mb_find_next_zero_bit(buddy, max, 0);
1606 BUG_ON(k >= max);
1607
1608 ac->ac_found++;
1609
1610 ac->ac_b_ex.fe_len = 1 << i;
1611 ac->ac_b_ex.fe_start = k << i;
1612 ac->ac_b_ex.fe_group = e4b->bd_group;
1613
1614 ext4_mb_use_best_found(ac, e4b);
1615
1616 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1617
1618 if (EXT4_SB(sb)->s_mb_stats)
1619 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1620
1621 break;
1622 }
1623 }
1624
1625 /*
1626 * The routine scans the group and measures all found extents.
1627 * In order to optimize scanning, caller must pass number of
1628 * free blocks in the group, so the routine can know upper limit.
1629 */
ext4_mb_complex_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1630 static void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1631 struct ext4_buddy *e4b)
1632 {
1633 struct super_block *sb = ac->ac_sb;
1634 void *bitmap = EXT4_MB_BITMAP(e4b);
1635 struct ext4_free_extent ex;
1636 int i;
1637 int free;
1638
1639 free = e4b->bd_info->bb_free;
1640 BUG_ON(free <= 0);
1641
1642 i = e4b->bd_info->bb_first_free;
1643
1644 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1645 i = mb_find_next_zero_bit(bitmap,
1646 EXT4_BLOCKS_PER_GROUP(sb), i);
1647 if (i >= EXT4_BLOCKS_PER_GROUP(sb)) {
1648 /*
1649 * IF we have corrupt bitmap, we won't find any
1650 * free blocks even though group info says we
1651 * we have free blocks
1652 */
1653 ext4_grp_locked_error(sb, e4b->bd_group,
1654 __func__, "%d free blocks as per "
1655 "group info. But bitmap says 0",
1656 free);
1657 break;
1658 }
1659
1660 mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
1661 BUG_ON(ex.fe_len <= 0);
1662 if (free < ex.fe_len) {
1663 ext4_grp_locked_error(sb, e4b->bd_group,
1664 __func__, "%d free blocks as per "
1665 "group info. But got %d blocks",
1666 free, ex.fe_len);
1667 /*
1668 * The number of free blocks differs. This mostly
1669 * indicate that the bitmap is corrupt. So exit
1670 * without claiming the space.
1671 */
1672 break;
1673 }
1674
1675 ext4_mb_measure_extent(ac, &ex, e4b);
1676
1677 i += ex.fe_len;
1678 free -= ex.fe_len;
1679 }
1680
1681 ext4_mb_check_limits(ac, e4b, 1);
1682 }
1683
1684 /*
1685 * This is a special case for storages like raid5
1686 * we try to find stripe-aligned chunks for stripe-size requests
1687 * XXX should do so at least for multiples of stripe size as well
1688 */
ext4_mb_scan_aligned(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1689 static void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1690 struct ext4_buddy *e4b)
1691 {
1692 struct super_block *sb = ac->ac_sb;
1693 struct ext4_sb_info *sbi = EXT4_SB(sb);
1694 void *bitmap = EXT4_MB_BITMAP(e4b);
1695 struct ext4_free_extent ex;
1696 ext4_fsblk_t first_group_block;
1697 ext4_fsblk_t a;
1698 ext4_grpblk_t i;
1699 int max;
1700
1701 BUG_ON(sbi->s_stripe == 0);
1702
1703 /* find first stripe-aligned block in group */
1704 first_group_block = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb)
1705 + le32_to_cpu(sbi->s_es->s_first_data_block);
1706 a = first_group_block + sbi->s_stripe - 1;
1707 do_div(a, sbi->s_stripe);
1708 i = (a * sbi->s_stripe) - first_group_block;
1709
1710 while (i < EXT4_BLOCKS_PER_GROUP(sb)) {
1711 if (!mb_test_bit(i, bitmap)) {
1712 max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
1713 if (max >= sbi->s_stripe) {
1714 ac->ac_found++;
1715 ac->ac_b_ex = ex;
1716 ext4_mb_use_best_found(ac, e4b);
1717 break;
1718 }
1719 }
1720 i += sbi->s_stripe;
1721 }
1722 }
1723
ext4_mb_good_group(struct ext4_allocation_context * ac,ext4_group_t group,int cr)1724 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1725 ext4_group_t group, int cr)
1726 {
1727 unsigned free, fragments;
1728 unsigned i, bits;
1729 struct ext4_group_desc *desc;
1730 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1731
1732 BUG_ON(cr < 0 || cr >= 4);
1733 BUG_ON(EXT4_MB_GRP_NEED_INIT(grp));
1734
1735 free = grp->bb_free;
1736 fragments = grp->bb_fragments;
1737 if (free == 0)
1738 return 0;
1739 if (fragments == 0)
1740 return 0;
1741
1742 switch (cr) {
1743 case 0:
1744 BUG_ON(ac->ac_2order == 0);
1745 /* If this group is uninitialized, skip it initially */
1746 desc = ext4_get_group_desc(ac->ac_sb, group, NULL);
1747 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))
1748 return 0;
1749
1750 bits = ac->ac_sb->s_blocksize_bits + 1;
1751 for (i = ac->ac_2order; i <= bits; i++)
1752 if (grp->bb_counters[i] > 0)
1753 return 1;
1754 break;
1755 case 1:
1756 if ((free / fragments) >= ac->ac_g_ex.fe_len)
1757 return 1;
1758 break;
1759 case 2:
1760 if (free >= ac->ac_g_ex.fe_len)
1761 return 1;
1762 break;
1763 case 3:
1764 return 1;
1765 default:
1766 BUG();
1767 }
1768
1769 return 0;
1770 }
1771
1772 /*
1773 * lock the group_info alloc_sem of all the groups
1774 * belonging to the same buddy cache page. This
1775 * make sure other parallel operation on the buddy
1776 * cache doesn't happen whild holding the buddy cache
1777 * lock
1778 */
ext4_mb_get_buddy_cache_lock(struct super_block * sb,ext4_group_t group)1779 int ext4_mb_get_buddy_cache_lock(struct super_block *sb, ext4_group_t group)
1780 {
1781 int i;
1782 int block, pnum;
1783 int blocks_per_page;
1784 int groups_per_page;
1785 ext4_group_t first_group;
1786 struct ext4_group_info *grp;
1787
1788 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1789 /*
1790 * the buddy cache inode stores the block bitmap
1791 * and buddy information in consecutive blocks.
1792 * So for each group we need two blocks.
1793 */
1794 block = group * 2;
1795 pnum = block / blocks_per_page;
1796 first_group = pnum * blocks_per_page / 2;
1797
1798 groups_per_page = blocks_per_page >> 1;
1799 if (groups_per_page == 0)
1800 groups_per_page = 1;
1801 /* read all groups the page covers into the cache */
1802 for (i = 0; i < groups_per_page; i++) {
1803
1804 if ((first_group + i) >= EXT4_SB(sb)->s_groups_count)
1805 break;
1806 grp = ext4_get_group_info(sb, first_group + i);
1807 /* take all groups write allocation
1808 * semaphore. This make sure there is
1809 * no block allocation going on in any
1810 * of that groups
1811 */
1812 down_write_nested(&grp->alloc_sem, i);
1813 }
1814 return i;
1815 }
1816
ext4_mb_put_buddy_cache_lock(struct super_block * sb,ext4_group_t group,int locked_group)1817 void ext4_mb_put_buddy_cache_lock(struct super_block *sb,
1818 ext4_group_t group, int locked_group)
1819 {
1820 int i;
1821 int block, pnum;
1822 int blocks_per_page;
1823 ext4_group_t first_group;
1824 struct ext4_group_info *grp;
1825
1826 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1827 /*
1828 * the buddy cache inode stores the block bitmap
1829 * and buddy information in consecutive blocks.
1830 * So for each group we need two blocks.
1831 */
1832 block = group * 2;
1833 pnum = block / blocks_per_page;
1834 first_group = pnum * blocks_per_page / 2;
1835 /* release locks on all the groups */
1836 for (i = 0; i < locked_group; i++) {
1837
1838 grp = ext4_get_group_info(sb, first_group + i);
1839 /* take all groups write allocation
1840 * semaphore. This make sure there is
1841 * no block allocation going on in any
1842 * of that groups
1843 */
1844 up_write(&grp->alloc_sem);
1845 }
1846
1847 }
1848
ext4_mb_init_group(struct super_block * sb,ext4_group_t group)1849 static int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1850 {
1851
1852 int ret;
1853 void *bitmap;
1854 int blocks_per_page;
1855 int block, pnum, poff;
1856 int num_grp_locked = 0;
1857 struct ext4_group_info *this_grp;
1858 struct ext4_sb_info *sbi = EXT4_SB(sb);
1859 struct inode *inode = sbi->s_buddy_cache;
1860 struct page *page = NULL, *bitmap_page = NULL;
1861
1862 mb_debug("init group %lu\n", group);
1863 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1864 this_grp = ext4_get_group_info(sb, group);
1865 /*
1866 * This ensures we don't add group
1867 * to this buddy cache via resize
1868 */
1869 num_grp_locked = ext4_mb_get_buddy_cache_lock(sb, group);
1870 if (!EXT4_MB_GRP_NEED_INIT(this_grp)) {
1871 /*
1872 * somebody initialized the group
1873 * return without doing anything
1874 */
1875 ret = 0;
1876 goto err;
1877 }
1878 /*
1879 * the buddy cache inode stores the block bitmap
1880 * and buddy information in consecutive blocks.
1881 * So for each group we need two blocks.
1882 */
1883 block = group * 2;
1884 pnum = block / blocks_per_page;
1885 poff = block % blocks_per_page;
1886 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1887 if (page) {
1888 BUG_ON(page->mapping != inode->i_mapping);
1889 ret = ext4_mb_init_cache(page, NULL);
1890 if (ret) {
1891 unlock_page(page);
1892 goto err;
1893 }
1894 unlock_page(page);
1895 }
1896 if (page == NULL || !PageUptodate(page)) {
1897 ret = -EIO;
1898 goto err;
1899 }
1900 mark_page_accessed(page);
1901 bitmap_page = page;
1902 bitmap = page_address(page) + (poff * sb->s_blocksize);
1903
1904 /* init buddy cache */
1905 block++;
1906 pnum = block / blocks_per_page;
1907 poff = block % blocks_per_page;
1908 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1909 if (page == bitmap_page) {
1910 /*
1911 * If both the bitmap and buddy are in
1912 * the same page we don't need to force
1913 * init the buddy
1914 */
1915 unlock_page(page);
1916 } else if (page) {
1917 BUG_ON(page->mapping != inode->i_mapping);
1918 ret = ext4_mb_init_cache(page, bitmap);
1919 if (ret) {
1920 unlock_page(page);
1921 goto err;
1922 }
1923 unlock_page(page);
1924 }
1925 if (page == NULL || !PageUptodate(page)) {
1926 ret = -EIO;
1927 goto err;
1928 }
1929 mark_page_accessed(page);
1930 err:
1931 ext4_mb_put_buddy_cache_lock(sb, group, num_grp_locked);
1932 if (bitmap_page)
1933 page_cache_release(bitmap_page);
1934 if (page)
1935 page_cache_release(page);
1936 return ret;
1937 }
1938
1939 static noinline_for_stack int
ext4_mb_regular_allocator(struct ext4_allocation_context * ac)1940 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1941 {
1942 ext4_group_t group;
1943 ext4_group_t i;
1944 int cr;
1945 int err = 0;
1946 int bsbits;
1947 struct ext4_sb_info *sbi;
1948 struct super_block *sb;
1949 struct ext4_buddy e4b;
1950 loff_t size, isize;
1951
1952 sb = ac->ac_sb;
1953 sbi = EXT4_SB(sb);
1954 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1955
1956 /* first, try the goal */
1957 err = ext4_mb_find_by_goal(ac, &e4b);
1958 if (err || ac->ac_status == AC_STATUS_FOUND)
1959 goto out;
1960
1961 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
1962 goto out;
1963
1964 /*
1965 * ac->ac2_order is set only if the fe_len is a power of 2
1966 * if ac2_order is set we also set criteria to 0 so that we
1967 * try exact allocation using buddy.
1968 */
1969 i = fls(ac->ac_g_ex.fe_len);
1970 ac->ac_2order = 0;
1971 /*
1972 * We search using buddy data only if the order of the request
1973 * is greater than equal to the sbi_s_mb_order2_reqs
1974 * You can tune it via /proc/fs/ext4/<partition>/order2_req
1975 */
1976 if (i >= sbi->s_mb_order2_reqs) {
1977 /*
1978 * This should tell if fe_len is exactly power of 2
1979 */
1980 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
1981 ac->ac_2order = i - 1;
1982 }
1983
1984 bsbits = ac->ac_sb->s_blocksize_bits;
1985 /* if stream allocation is enabled, use global goal */
1986 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
1987 isize = i_size_read(ac->ac_inode) >> bsbits;
1988 if (size < isize)
1989 size = isize;
1990
1991 if (size < sbi->s_mb_stream_request &&
1992 (ac->ac_flags & EXT4_MB_HINT_DATA)) {
1993 /* TBD: may be hot point */
1994 spin_lock(&sbi->s_md_lock);
1995 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
1996 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
1997 spin_unlock(&sbi->s_md_lock);
1998 }
1999 /* Let's just scan groups to find more-less suitable blocks */
2000 cr = ac->ac_2order ? 0 : 1;
2001 /*
2002 * cr == 0 try to get exact allocation,
2003 * cr == 3 try to get anything
2004 */
2005 repeat:
2006 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2007 ac->ac_criteria = cr;
2008 /*
2009 * searching for the right group start
2010 * from the goal value specified
2011 */
2012 group = ac->ac_g_ex.fe_group;
2013
2014 for (i = 0; i < EXT4_SB(sb)->s_groups_count; group++, i++) {
2015 struct ext4_group_info *grp;
2016 struct ext4_group_desc *desc;
2017
2018 if (group == EXT4_SB(sb)->s_groups_count)
2019 group = 0;
2020
2021 /* quick check to skip empty groups */
2022 grp = ext4_get_group_info(sb, group);
2023 if (grp->bb_free == 0)
2024 continue;
2025
2026 /*
2027 * if the group is already init we check whether it is
2028 * a good group and if not we don't load the buddy
2029 */
2030 if (EXT4_MB_GRP_NEED_INIT(grp)) {
2031 /*
2032 * we need full data about the group
2033 * to make a good selection
2034 */
2035 err = ext4_mb_init_group(sb, group);
2036 if (err)
2037 goto out;
2038 }
2039
2040 /*
2041 * If the particular group doesn't satisfy our
2042 * criteria we continue with the next group
2043 */
2044 if (!ext4_mb_good_group(ac, group, cr))
2045 continue;
2046
2047 err = ext4_mb_load_buddy(sb, group, &e4b);
2048 if (err)
2049 goto out;
2050
2051 ext4_lock_group(sb, group);
2052 if (!ext4_mb_good_group(ac, group, cr)) {
2053 /* someone did allocation from this group */
2054 ext4_unlock_group(sb, group);
2055 ext4_mb_release_desc(&e4b);
2056 continue;
2057 }
2058
2059 ac->ac_groups_scanned++;
2060 desc = ext4_get_group_desc(sb, group, NULL);
2061 if (cr == 0 || (desc->bg_flags &
2062 cpu_to_le16(EXT4_BG_BLOCK_UNINIT) &&
2063 ac->ac_2order != 0))
2064 ext4_mb_simple_scan_group(ac, &e4b);
2065 else if (cr == 1 &&
2066 ac->ac_g_ex.fe_len == sbi->s_stripe)
2067 ext4_mb_scan_aligned(ac, &e4b);
2068 else
2069 ext4_mb_complex_scan_group(ac, &e4b);
2070
2071 ext4_unlock_group(sb, group);
2072 ext4_mb_release_desc(&e4b);
2073
2074 if (ac->ac_status != AC_STATUS_CONTINUE)
2075 break;
2076 }
2077 }
2078
2079 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2080 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2081 /*
2082 * We've been searching too long. Let's try to allocate
2083 * the best chunk we've found so far
2084 */
2085
2086 ext4_mb_try_best_found(ac, &e4b);
2087 if (ac->ac_status != AC_STATUS_FOUND) {
2088 /*
2089 * Someone more lucky has already allocated it.
2090 * The only thing we can do is just take first
2091 * found block(s)
2092 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2093 */
2094 ac->ac_b_ex.fe_group = 0;
2095 ac->ac_b_ex.fe_start = 0;
2096 ac->ac_b_ex.fe_len = 0;
2097 ac->ac_status = AC_STATUS_CONTINUE;
2098 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2099 cr = 3;
2100 atomic_inc(&sbi->s_mb_lost_chunks);
2101 goto repeat;
2102 }
2103 }
2104 out:
2105 return err;
2106 }
2107
2108 #ifdef EXT4_MB_HISTORY
2109 struct ext4_mb_proc_session {
2110 struct ext4_mb_history *history;
2111 struct super_block *sb;
2112 int start;
2113 int max;
2114 };
2115
ext4_mb_history_skip_empty(struct ext4_mb_proc_session * s,struct ext4_mb_history * hs,int first)2116 static void *ext4_mb_history_skip_empty(struct ext4_mb_proc_session *s,
2117 struct ext4_mb_history *hs,
2118 int first)
2119 {
2120 if (hs == s->history + s->max)
2121 hs = s->history;
2122 if (!first && hs == s->history + s->start)
2123 return NULL;
2124 while (hs->orig.fe_len == 0) {
2125 hs++;
2126 if (hs == s->history + s->max)
2127 hs = s->history;
2128 if (hs == s->history + s->start)
2129 return NULL;
2130 }
2131 return hs;
2132 }
2133
ext4_mb_seq_history_start(struct seq_file * seq,loff_t * pos)2134 static void *ext4_mb_seq_history_start(struct seq_file *seq, loff_t *pos)
2135 {
2136 struct ext4_mb_proc_session *s = seq->private;
2137 struct ext4_mb_history *hs;
2138 int l = *pos;
2139
2140 if (l == 0)
2141 return SEQ_START_TOKEN;
2142 hs = ext4_mb_history_skip_empty(s, s->history + s->start, 1);
2143 if (!hs)
2144 return NULL;
2145 while (--l && (hs = ext4_mb_history_skip_empty(s, ++hs, 0)) != NULL);
2146 return hs;
2147 }
2148
ext4_mb_seq_history_next(struct seq_file * seq,void * v,loff_t * pos)2149 static void *ext4_mb_seq_history_next(struct seq_file *seq, void *v,
2150 loff_t *pos)
2151 {
2152 struct ext4_mb_proc_session *s = seq->private;
2153 struct ext4_mb_history *hs = v;
2154
2155 ++*pos;
2156 if (v == SEQ_START_TOKEN)
2157 return ext4_mb_history_skip_empty(s, s->history + s->start, 1);
2158 else
2159 return ext4_mb_history_skip_empty(s, ++hs, 0);
2160 }
2161
ext4_mb_seq_history_show(struct seq_file * seq,void * v)2162 static int ext4_mb_seq_history_show(struct seq_file *seq, void *v)
2163 {
2164 char buf[25], buf2[25], buf3[25], *fmt;
2165 struct ext4_mb_history *hs = v;
2166
2167 if (v == SEQ_START_TOKEN) {
2168 seq_printf(seq, "%-5s %-8s %-23s %-23s %-23s %-5s "
2169 "%-5s %-2s %-5s %-5s %-5s %-6s\n",
2170 "pid", "inode", "original", "goal", "result", "found",
2171 "grps", "cr", "flags", "merge", "tail", "broken");
2172 return 0;
2173 }
2174
2175 if (hs->op == EXT4_MB_HISTORY_ALLOC) {
2176 fmt = "%-5u %-8u %-23s %-23s %-23s %-5u %-5u %-2u "
2177 "%-5u %-5s %-5u %-6u\n";
2178 sprintf(buf2, "%u/%d/%u@%u", hs->result.fe_group,
2179 hs->result.fe_start, hs->result.fe_len,
2180 hs->result.fe_logical);
2181 sprintf(buf, "%u/%d/%u@%u", hs->orig.fe_group,
2182 hs->orig.fe_start, hs->orig.fe_len,
2183 hs->orig.fe_logical);
2184 sprintf(buf3, "%u/%d/%u@%u", hs->goal.fe_group,
2185 hs->goal.fe_start, hs->goal.fe_len,
2186 hs->goal.fe_logical);
2187 seq_printf(seq, fmt, hs->pid, hs->ino, buf, buf3, buf2,
2188 hs->found, hs->groups, hs->cr, hs->flags,
2189 hs->merged ? "M" : "", hs->tail,
2190 hs->buddy ? 1 << hs->buddy : 0);
2191 } else if (hs->op == EXT4_MB_HISTORY_PREALLOC) {
2192 fmt = "%-5u %-8u %-23s %-23s %-23s\n";
2193 sprintf(buf2, "%u/%d/%u@%u", hs->result.fe_group,
2194 hs->result.fe_start, hs->result.fe_len,
2195 hs->result.fe_logical);
2196 sprintf(buf, "%u/%d/%u@%u", hs->orig.fe_group,
2197 hs->orig.fe_start, hs->orig.fe_len,
2198 hs->orig.fe_logical);
2199 seq_printf(seq, fmt, hs->pid, hs->ino, buf, "", buf2);
2200 } else if (hs->op == EXT4_MB_HISTORY_DISCARD) {
2201 sprintf(buf2, "%u/%d/%u", hs->result.fe_group,
2202 hs->result.fe_start, hs->result.fe_len);
2203 seq_printf(seq, "%-5u %-8u %-23s discard\n",
2204 hs->pid, hs->ino, buf2);
2205 } else if (hs->op == EXT4_MB_HISTORY_FREE) {
2206 sprintf(buf2, "%u/%d/%u", hs->result.fe_group,
2207 hs->result.fe_start, hs->result.fe_len);
2208 seq_printf(seq, "%-5u %-8u %-23s free\n",
2209 hs->pid, hs->ino, buf2);
2210 }
2211 return 0;
2212 }
2213
ext4_mb_seq_history_stop(struct seq_file * seq,void * v)2214 static void ext4_mb_seq_history_stop(struct seq_file *seq, void *v)
2215 {
2216 }
2217
2218 static struct seq_operations ext4_mb_seq_history_ops = {
2219 .start = ext4_mb_seq_history_start,
2220 .next = ext4_mb_seq_history_next,
2221 .stop = ext4_mb_seq_history_stop,
2222 .show = ext4_mb_seq_history_show,
2223 };
2224
ext4_mb_seq_history_open(struct inode * inode,struct file * file)2225 static int ext4_mb_seq_history_open(struct inode *inode, struct file *file)
2226 {
2227 struct super_block *sb = PDE(inode)->data;
2228 struct ext4_sb_info *sbi = EXT4_SB(sb);
2229 struct ext4_mb_proc_session *s;
2230 int rc;
2231 int size;
2232
2233 if (unlikely(sbi->s_mb_history == NULL))
2234 return -ENOMEM;
2235 s = kmalloc(sizeof(*s), GFP_KERNEL);
2236 if (s == NULL)
2237 return -ENOMEM;
2238 s->sb = sb;
2239 size = sizeof(struct ext4_mb_history) * sbi->s_mb_history_max;
2240 s->history = kmalloc(size, GFP_KERNEL);
2241 if (s->history == NULL) {
2242 kfree(s);
2243 return -ENOMEM;
2244 }
2245
2246 spin_lock(&sbi->s_mb_history_lock);
2247 memcpy(s->history, sbi->s_mb_history, size);
2248 s->max = sbi->s_mb_history_max;
2249 s->start = sbi->s_mb_history_cur % s->max;
2250 spin_unlock(&sbi->s_mb_history_lock);
2251
2252 rc = seq_open(file, &ext4_mb_seq_history_ops);
2253 if (rc == 0) {
2254 struct seq_file *m = (struct seq_file *)file->private_data;
2255 m->private = s;
2256 } else {
2257 kfree(s->history);
2258 kfree(s);
2259 }
2260 return rc;
2261
2262 }
2263
ext4_mb_seq_history_release(struct inode * inode,struct file * file)2264 static int ext4_mb_seq_history_release(struct inode *inode, struct file *file)
2265 {
2266 struct seq_file *seq = (struct seq_file *)file->private_data;
2267 struct ext4_mb_proc_session *s = seq->private;
2268 kfree(s->history);
2269 kfree(s);
2270 return seq_release(inode, file);
2271 }
2272
ext4_mb_seq_history_write(struct file * file,const char __user * buffer,size_t count,loff_t * ppos)2273 static ssize_t ext4_mb_seq_history_write(struct file *file,
2274 const char __user *buffer,
2275 size_t count, loff_t *ppos)
2276 {
2277 struct seq_file *seq = (struct seq_file *)file->private_data;
2278 struct ext4_mb_proc_session *s = seq->private;
2279 struct super_block *sb = s->sb;
2280 char str[32];
2281 int value;
2282
2283 if (count >= sizeof(str)) {
2284 printk(KERN_ERR "EXT4-fs: %s string too long, max %u bytes\n",
2285 "mb_history", (int)sizeof(str));
2286 return -EOVERFLOW;
2287 }
2288
2289 if (copy_from_user(str, buffer, count))
2290 return -EFAULT;
2291
2292 value = simple_strtol(str, NULL, 0);
2293 if (value < 0)
2294 return -ERANGE;
2295 EXT4_SB(sb)->s_mb_history_filter = value;
2296
2297 return count;
2298 }
2299
2300 static struct file_operations ext4_mb_seq_history_fops = {
2301 .owner = THIS_MODULE,
2302 .open = ext4_mb_seq_history_open,
2303 .read = seq_read,
2304 .write = ext4_mb_seq_history_write,
2305 .llseek = seq_lseek,
2306 .release = ext4_mb_seq_history_release,
2307 };
2308
ext4_mb_seq_groups_start(struct seq_file * seq,loff_t * pos)2309 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2310 {
2311 struct super_block *sb = seq->private;
2312 struct ext4_sb_info *sbi = EXT4_SB(sb);
2313 ext4_group_t group;
2314
2315 if (*pos < 0 || *pos >= sbi->s_groups_count)
2316 return NULL;
2317
2318 group = *pos + 1;
2319 return (void *) ((unsigned long) group);
2320 }
2321
ext4_mb_seq_groups_next(struct seq_file * seq,void * v,loff_t * pos)2322 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2323 {
2324 struct super_block *sb = seq->private;
2325 struct ext4_sb_info *sbi = EXT4_SB(sb);
2326 ext4_group_t group;
2327
2328 ++*pos;
2329 if (*pos < 0 || *pos >= sbi->s_groups_count)
2330 return NULL;
2331 group = *pos + 1;
2332 return (void *) ((unsigned long) group);
2333 }
2334
ext4_mb_seq_groups_show(struct seq_file * seq,void * v)2335 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2336 {
2337 struct super_block *sb = seq->private;
2338 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2339 int i;
2340 int err;
2341 struct ext4_buddy e4b;
2342 struct sg {
2343 struct ext4_group_info info;
2344 unsigned short counters[16];
2345 } sg;
2346
2347 group--;
2348 if (group == 0)
2349 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2350 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2351 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2352 "group", "free", "frags", "first",
2353 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2354 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2355
2356 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2357 sizeof(struct ext4_group_info);
2358 err = ext4_mb_load_buddy(sb, group, &e4b);
2359 if (err) {
2360 seq_printf(seq, "#%-5u: I/O error\n", group);
2361 return 0;
2362 }
2363 ext4_lock_group(sb, group);
2364 memcpy(&sg, ext4_get_group_info(sb, group), i);
2365 ext4_unlock_group(sb, group);
2366 ext4_mb_release_desc(&e4b);
2367
2368 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2369 sg.info.bb_fragments, sg.info.bb_first_free);
2370 for (i = 0; i <= 13; i++)
2371 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2372 sg.info.bb_counters[i] : 0);
2373 seq_printf(seq, " ]\n");
2374
2375 return 0;
2376 }
2377
ext4_mb_seq_groups_stop(struct seq_file * seq,void * v)2378 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2379 {
2380 }
2381
2382 static struct seq_operations ext4_mb_seq_groups_ops = {
2383 .start = ext4_mb_seq_groups_start,
2384 .next = ext4_mb_seq_groups_next,
2385 .stop = ext4_mb_seq_groups_stop,
2386 .show = ext4_mb_seq_groups_show,
2387 };
2388
ext4_mb_seq_groups_open(struct inode * inode,struct file * file)2389 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2390 {
2391 struct super_block *sb = PDE(inode)->data;
2392 int rc;
2393
2394 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2395 if (rc == 0) {
2396 struct seq_file *m = (struct seq_file *)file->private_data;
2397 m->private = sb;
2398 }
2399 return rc;
2400
2401 }
2402
2403 static struct file_operations ext4_mb_seq_groups_fops = {
2404 .owner = THIS_MODULE,
2405 .open = ext4_mb_seq_groups_open,
2406 .read = seq_read,
2407 .llseek = seq_lseek,
2408 .release = seq_release,
2409 };
2410
ext4_mb_history_release(struct super_block * sb)2411 static void ext4_mb_history_release(struct super_block *sb)
2412 {
2413 struct ext4_sb_info *sbi = EXT4_SB(sb);
2414
2415 if (sbi->s_proc != NULL) {
2416 remove_proc_entry("mb_groups", sbi->s_proc);
2417 remove_proc_entry("mb_history", sbi->s_proc);
2418 }
2419 kfree(sbi->s_mb_history);
2420 }
2421
ext4_mb_history_init(struct super_block * sb)2422 static void ext4_mb_history_init(struct super_block *sb)
2423 {
2424 struct ext4_sb_info *sbi = EXT4_SB(sb);
2425 int i;
2426
2427 if (sbi->s_proc != NULL) {
2428 proc_create_data("mb_history", S_IRUGO, sbi->s_proc,
2429 &ext4_mb_seq_history_fops, sb);
2430 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2431 &ext4_mb_seq_groups_fops, sb);
2432 }
2433
2434 sbi->s_mb_history_max = 1000;
2435 sbi->s_mb_history_cur = 0;
2436 spin_lock_init(&sbi->s_mb_history_lock);
2437 i = sbi->s_mb_history_max * sizeof(struct ext4_mb_history);
2438 sbi->s_mb_history = kzalloc(i, GFP_KERNEL);
2439 /* if we can't allocate history, then we simple won't use it */
2440 }
2441
2442 static noinline_for_stack void
ext4_mb_store_history(struct ext4_allocation_context * ac)2443 ext4_mb_store_history(struct ext4_allocation_context *ac)
2444 {
2445 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2446 struct ext4_mb_history h;
2447
2448 if (unlikely(sbi->s_mb_history == NULL))
2449 return;
2450
2451 if (!(ac->ac_op & sbi->s_mb_history_filter))
2452 return;
2453
2454 h.op = ac->ac_op;
2455 h.pid = current->pid;
2456 h.ino = ac->ac_inode ? ac->ac_inode->i_ino : 0;
2457 h.orig = ac->ac_o_ex;
2458 h.result = ac->ac_b_ex;
2459 h.flags = ac->ac_flags;
2460 h.found = ac->ac_found;
2461 h.groups = ac->ac_groups_scanned;
2462 h.cr = ac->ac_criteria;
2463 h.tail = ac->ac_tail;
2464 h.buddy = ac->ac_buddy;
2465 h.merged = 0;
2466 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) {
2467 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
2468 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
2469 h.merged = 1;
2470 h.goal = ac->ac_g_ex;
2471 h.result = ac->ac_f_ex;
2472 }
2473
2474 spin_lock(&sbi->s_mb_history_lock);
2475 memcpy(sbi->s_mb_history + sbi->s_mb_history_cur, &h, sizeof(h));
2476 if (++sbi->s_mb_history_cur >= sbi->s_mb_history_max)
2477 sbi->s_mb_history_cur = 0;
2478 spin_unlock(&sbi->s_mb_history_lock);
2479 }
2480
2481 #else
2482 #define ext4_mb_history_release(sb)
2483 #define ext4_mb_history_init(sb)
2484 #endif
2485
2486
2487 /* Create and initialize ext4_group_info data for the given group. */
ext4_mb_add_groupinfo(struct super_block * sb,ext4_group_t group,struct ext4_group_desc * desc)2488 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2489 struct ext4_group_desc *desc)
2490 {
2491 int i, len;
2492 int metalen = 0;
2493 struct ext4_sb_info *sbi = EXT4_SB(sb);
2494 struct ext4_group_info **meta_group_info;
2495
2496 /*
2497 * First check if this group is the first of a reserved block.
2498 * If it's true, we have to allocate a new table of pointers
2499 * to ext4_group_info structures
2500 */
2501 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2502 metalen = sizeof(*meta_group_info) <<
2503 EXT4_DESC_PER_BLOCK_BITS(sb);
2504 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2505 if (meta_group_info == NULL) {
2506 printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2507 "buddy group\n");
2508 goto exit_meta_group_info;
2509 }
2510 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2511 meta_group_info;
2512 }
2513
2514 /*
2515 * calculate needed size. if change bb_counters size,
2516 * don't forget about ext4_mb_generate_buddy()
2517 */
2518 len = offsetof(typeof(**meta_group_info),
2519 bb_counters[sb->s_blocksize_bits + 2]);
2520
2521 meta_group_info =
2522 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2523 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2524
2525 meta_group_info[i] = kzalloc(len, GFP_KERNEL);
2526 if (meta_group_info[i] == NULL) {
2527 printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n");
2528 goto exit_group_info;
2529 }
2530 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2531 &(meta_group_info[i]->bb_state));
2532
2533 /*
2534 * initialize bb_free to be able to skip
2535 * empty groups without initialization
2536 */
2537 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2538 meta_group_info[i]->bb_free =
2539 ext4_free_blocks_after_init(sb, group, desc);
2540 } else {
2541 meta_group_info[i]->bb_free =
2542 ext4_free_blks_count(sb, desc);
2543 }
2544
2545 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2546 init_rwsem(&meta_group_info[i]->alloc_sem);
2547 meta_group_info[i]->bb_free_root.rb_node = NULL;;
2548
2549 #ifdef DOUBLE_CHECK
2550 {
2551 struct buffer_head *bh;
2552 meta_group_info[i]->bb_bitmap =
2553 kmalloc(sb->s_blocksize, GFP_KERNEL);
2554 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2555 bh = ext4_read_block_bitmap(sb, group);
2556 BUG_ON(bh == NULL);
2557 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2558 sb->s_blocksize);
2559 put_bh(bh);
2560 }
2561 #endif
2562
2563 return 0;
2564
2565 exit_group_info:
2566 /* If a meta_group_info table has been allocated, release it now */
2567 if (group % EXT4_DESC_PER_BLOCK(sb) == 0)
2568 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2569 exit_meta_group_info:
2570 return -ENOMEM;
2571 } /* ext4_mb_add_groupinfo */
2572
2573 /*
2574 * Update an existing group.
2575 * This function is used for online resize
2576 */
ext4_mb_update_group_info(struct ext4_group_info * grp,ext4_grpblk_t add)2577 void ext4_mb_update_group_info(struct ext4_group_info *grp, ext4_grpblk_t add)
2578 {
2579 grp->bb_free += add;
2580 }
2581
ext4_mb_init_backend(struct super_block * sb)2582 static int ext4_mb_init_backend(struct super_block *sb)
2583 {
2584 ext4_group_t i;
2585 int metalen;
2586 struct ext4_sb_info *sbi = EXT4_SB(sb);
2587 struct ext4_super_block *es = sbi->s_es;
2588 int num_meta_group_infos;
2589 int num_meta_group_infos_max;
2590 int array_size;
2591 struct ext4_group_info **meta_group_info;
2592 struct ext4_group_desc *desc;
2593
2594 /* This is the number of blocks used by GDT */
2595 num_meta_group_infos = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) -
2596 1) >> EXT4_DESC_PER_BLOCK_BITS(sb);
2597
2598 /*
2599 * This is the total number of blocks used by GDT including
2600 * the number of reserved blocks for GDT.
2601 * The s_group_info array is allocated with this value
2602 * to allow a clean online resize without a complex
2603 * manipulation of pointer.
2604 * The drawback is the unused memory when no resize
2605 * occurs but it's very low in terms of pages
2606 * (see comments below)
2607 * Need to handle this properly when META_BG resizing is allowed
2608 */
2609 num_meta_group_infos_max = num_meta_group_infos +
2610 le16_to_cpu(es->s_reserved_gdt_blocks);
2611
2612 /*
2613 * array_size is the size of s_group_info array. We round it
2614 * to the next power of two because this approximation is done
2615 * internally by kmalloc so we can have some more memory
2616 * for free here (e.g. may be used for META_BG resize).
2617 */
2618 array_size = 1;
2619 while (array_size < sizeof(*sbi->s_group_info) *
2620 num_meta_group_infos_max)
2621 array_size = array_size << 1;
2622 /* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2623 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2624 * So a two level scheme suffices for now. */
2625 sbi->s_group_info = kmalloc(array_size, GFP_KERNEL);
2626 if (sbi->s_group_info == NULL) {
2627 printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n");
2628 return -ENOMEM;
2629 }
2630 sbi->s_buddy_cache = new_inode(sb);
2631 if (sbi->s_buddy_cache == NULL) {
2632 printk(KERN_ERR "EXT4-fs: can't get new inode\n");
2633 goto err_freesgi;
2634 }
2635 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2636
2637 metalen = sizeof(*meta_group_info) << EXT4_DESC_PER_BLOCK_BITS(sb);
2638 for (i = 0; i < num_meta_group_infos; i++) {
2639 if ((i + 1) == num_meta_group_infos)
2640 metalen = sizeof(*meta_group_info) *
2641 (sbi->s_groups_count -
2642 (i << EXT4_DESC_PER_BLOCK_BITS(sb)));
2643 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2644 if (meta_group_info == NULL) {
2645 printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2646 "buddy group\n");
2647 goto err_freemeta;
2648 }
2649 sbi->s_group_info[i] = meta_group_info;
2650 }
2651
2652 for (i = 0; i < sbi->s_groups_count; i++) {
2653 desc = ext4_get_group_desc(sb, i, NULL);
2654 if (desc == NULL) {
2655 printk(KERN_ERR
2656 "EXT4-fs: can't read descriptor %u\n", i);
2657 goto err_freebuddy;
2658 }
2659 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2660 goto err_freebuddy;
2661 }
2662
2663 return 0;
2664
2665 err_freebuddy:
2666 while (i-- > 0)
2667 kfree(ext4_get_group_info(sb, i));
2668 i = num_meta_group_infos;
2669 err_freemeta:
2670 while (i-- > 0)
2671 kfree(sbi->s_group_info[i]);
2672 iput(sbi->s_buddy_cache);
2673 err_freesgi:
2674 kfree(sbi->s_group_info);
2675 return -ENOMEM;
2676 }
2677
ext4_mb_init(struct super_block * sb,int needs_recovery)2678 int ext4_mb_init(struct super_block *sb, int needs_recovery)
2679 {
2680 struct ext4_sb_info *sbi = EXT4_SB(sb);
2681 unsigned i, j;
2682 unsigned offset;
2683 unsigned max;
2684 int ret;
2685
2686 i = (sb->s_blocksize_bits + 2) * sizeof(unsigned short);
2687
2688 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2689 if (sbi->s_mb_offsets == NULL) {
2690 return -ENOMEM;
2691 }
2692
2693 i = (sb->s_blocksize_bits + 2) * sizeof(unsigned int);
2694 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2695 if (sbi->s_mb_maxs == NULL) {
2696 kfree(sbi->s_mb_maxs);
2697 return -ENOMEM;
2698 }
2699
2700 /* order 0 is regular bitmap */
2701 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2702 sbi->s_mb_offsets[0] = 0;
2703
2704 i = 1;
2705 offset = 0;
2706 max = sb->s_blocksize << 2;
2707 do {
2708 sbi->s_mb_offsets[i] = offset;
2709 sbi->s_mb_maxs[i] = max;
2710 offset += 1 << (sb->s_blocksize_bits - i);
2711 max = max >> 1;
2712 i++;
2713 } while (i <= sb->s_blocksize_bits + 1);
2714
2715 /* init file for buddy data */
2716 ret = ext4_mb_init_backend(sb);
2717 if (ret != 0) {
2718 kfree(sbi->s_mb_offsets);
2719 kfree(sbi->s_mb_maxs);
2720 return ret;
2721 }
2722
2723 spin_lock_init(&sbi->s_md_lock);
2724 spin_lock_init(&sbi->s_bal_lock);
2725
2726 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2727 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2728 sbi->s_mb_stats = MB_DEFAULT_STATS;
2729 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2730 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2731 sbi->s_mb_history_filter = EXT4_MB_HISTORY_DEFAULT;
2732 sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC;
2733
2734 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2735 if (sbi->s_locality_groups == NULL) {
2736 kfree(sbi->s_mb_offsets);
2737 kfree(sbi->s_mb_maxs);
2738 return -ENOMEM;
2739 }
2740 for_each_possible_cpu(i) {
2741 struct ext4_locality_group *lg;
2742 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2743 mutex_init(&lg->lg_mutex);
2744 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2745 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2746 spin_lock_init(&lg->lg_prealloc_lock);
2747 }
2748
2749 ext4_mb_init_per_dev_proc(sb);
2750 ext4_mb_history_init(sb);
2751
2752 if (sbi->s_journal)
2753 sbi->s_journal->j_commit_callback = release_blocks_on_commit;
2754
2755 printk(KERN_INFO "EXT4-fs: mballoc enabled\n");
2756 return 0;
2757 }
2758
2759 /* need to called with ext4 group lock (ext4_lock_group) */
ext4_mb_cleanup_pa(struct ext4_group_info * grp)2760 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2761 {
2762 struct ext4_prealloc_space *pa;
2763 struct list_head *cur, *tmp;
2764 int count = 0;
2765
2766 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2767 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2768 list_del(&pa->pa_group_list);
2769 count++;
2770 kmem_cache_free(ext4_pspace_cachep, pa);
2771 }
2772 if (count)
2773 mb_debug("mballoc: %u PAs left\n", count);
2774
2775 }
2776
ext4_mb_release(struct super_block * sb)2777 int ext4_mb_release(struct super_block *sb)
2778 {
2779 ext4_group_t i;
2780 int num_meta_group_infos;
2781 struct ext4_group_info *grinfo;
2782 struct ext4_sb_info *sbi = EXT4_SB(sb);
2783
2784 if (sbi->s_group_info) {
2785 for (i = 0; i < sbi->s_groups_count; i++) {
2786 grinfo = ext4_get_group_info(sb, i);
2787 #ifdef DOUBLE_CHECK
2788 kfree(grinfo->bb_bitmap);
2789 #endif
2790 ext4_lock_group(sb, i);
2791 ext4_mb_cleanup_pa(grinfo);
2792 ext4_unlock_group(sb, i);
2793 kfree(grinfo);
2794 }
2795 num_meta_group_infos = (sbi->s_groups_count +
2796 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2797 EXT4_DESC_PER_BLOCK_BITS(sb);
2798 for (i = 0; i < num_meta_group_infos; i++)
2799 kfree(sbi->s_group_info[i]);
2800 kfree(sbi->s_group_info);
2801 }
2802 kfree(sbi->s_mb_offsets);
2803 kfree(sbi->s_mb_maxs);
2804 if (sbi->s_buddy_cache)
2805 iput(sbi->s_buddy_cache);
2806 if (sbi->s_mb_stats) {
2807 printk(KERN_INFO
2808 "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n",
2809 atomic_read(&sbi->s_bal_allocated),
2810 atomic_read(&sbi->s_bal_reqs),
2811 atomic_read(&sbi->s_bal_success));
2812 printk(KERN_INFO
2813 "EXT4-fs: mballoc: %u extents scanned, %u goal hits, "
2814 "%u 2^N hits, %u breaks, %u lost\n",
2815 atomic_read(&sbi->s_bal_ex_scanned),
2816 atomic_read(&sbi->s_bal_goals),
2817 atomic_read(&sbi->s_bal_2orders),
2818 atomic_read(&sbi->s_bal_breaks),
2819 atomic_read(&sbi->s_mb_lost_chunks));
2820 printk(KERN_INFO
2821 "EXT4-fs: mballoc: %lu generated and it took %Lu\n",
2822 sbi->s_mb_buddies_generated++,
2823 sbi->s_mb_generation_time);
2824 printk(KERN_INFO
2825 "EXT4-fs: mballoc: %u preallocated, %u discarded\n",
2826 atomic_read(&sbi->s_mb_preallocated),
2827 atomic_read(&sbi->s_mb_discarded));
2828 }
2829
2830 free_percpu(sbi->s_locality_groups);
2831 ext4_mb_history_release(sb);
2832 ext4_mb_destroy_per_dev_proc(sb);
2833
2834 return 0;
2835 }
2836
2837 /*
2838 * This function is called by the jbd2 layer once the commit has finished,
2839 * so we know we can free the blocks that were released with that commit.
2840 */
release_blocks_on_commit(journal_t * journal,transaction_t * txn)2841 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn)
2842 {
2843 struct super_block *sb = journal->j_private;
2844 struct ext4_buddy e4b;
2845 struct ext4_group_info *db;
2846 int err, count = 0, count2 = 0;
2847 struct ext4_free_data *entry;
2848 ext4_fsblk_t discard_block;
2849 struct list_head *l, *ltmp;
2850
2851 list_for_each_safe(l, ltmp, &txn->t_private_list) {
2852 entry = list_entry(l, struct ext4_free_data, list);
2853
2854 mb_debug("gonna free %u blocks in group %u (0x%p):",
2855 entry->count, entry->group, entry);
2856
2857 err = ext4_mb_load_buddy(sb, entry->group, &e4b);
2858 /* we expect to find existing buddy because it's pinned */
2859 BUG_ON(err != 0);
2860
2861 db = e4b.bd_info;
2862 /* there are blocks to put in buddy to make them really free */
2863 count += entry->count;
2864 count2++;
2865 ext4_lock_group(sb, entry->group);
2866 /* Take it out of per group rb tree */
2867 rb_erase(&entry->node, &(db->bb_free_root));
2868 mb_free_blocks(NULL, &e4b, entry->start_blk, entry->count);
2869
2870 if (!db->bb_free_root.rb_node) {
2871 /* No more items in the per group rb tree
2872 * balance refcounts from ext4_mb_free_metadata()
2873 */
2874 page_cache_release(e4b.bd_buddy_page);
2875 page_cache_release(e4b.bd_bitmap_page);
2876 }
2877 ext4_unlock_group(sb, entry->group);
2878 discard_block = (ext4_fsblk_t) entry->group * EXT4_BLOCKS_PER_GROUP(sb)
2879 + entry->start_blk
2880 + le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
2881 trace_mark(ext4_discard_blocks, "dev %s blk %llu count %u",
2882 sb->s_id, (unsigned long long) discard_block,
2883 entry->count);
2884 sb_issue_discard(sb, discard_block, entry->count);
2885
2886 kmem_cache_free(ext4_free_ext_cachep, entry);
2887 ext4_mb_release_desc(&e4b);
2888 }
2889
2890 mb_debug("freed %u blocks in %u structures\n", count, count2);
2891 }
2892
2893 #define EXT4_MB_STATS_NAME "stats"
2894 #define EXT4_MB_MAX_TO_SCAN_NAME "max_to_scan"
2895 #define EXT4_MB_MIN_TO_SCAN_NAME "min_to_scan"
2896 #define EXT4_MB_ORDER2_REQ "order2_req"
2897 #define EXT4_MB_STREAM_REQ "stream_req"
2898 #define EXT4_MB_GROUP_PREALLOC "group_prealloc"
2899
ext4_mb_init_per_dev_proc(struct super_block * sb)2900 static int ext4_mb_init_per_dev_proc(struct super_block *sb)
2901 {
2902 #ifdef CONFIG_PROC_FS
2903 mode_t mode = S_IFREG | S_IRUGO | S_IWUSR;
2904 struct ext4_sb_info *sbi = EXT4_SB(sb);
2905 struct proc_dir_entry *proc;
2906
2907 if (sbi->s_proc == NULL)
2908 return -EINVAL;
2909
2910 EXT4_PROC_HANDLER(EXT4_MB_STATS_NAME, mb_stats);
2911 EXT4_PROC_HANDLER(EXT4_MB_MAX_TO_SCAN_NAME, mb_max_to_scan);
2912 EXT4_PROC_HANDLER(EXT4_MB_MIN_TO_SCAN_NAME, mb_min_to_scan);
2913 EXT4_PROC_HANDLER(EXT4_MB_ORDER2_REQ, mb_order2_reqs);
2914 EXT4_PROC_HANDLER(EXT4_MB_STREAM_REQ, mb_stream_request);
2915 EXT4_PROC_HANDLER(EXT4_MB_GROUP_PREALLOC, mb_group_prealloc);
2916 return 0;
2917
2918 err_out:
2919 remove_proc_entry(EXT4_MB_GROUP_PREALLOC, sbi->s_proc);
2920 remove_proc_entry(EXT4_MB_STREAM_REQ, sbi->s_proc);
2921 remove_proc_entry(EXT4_MB_ORDER2_REQ, sbi->s_proc);
2922 remove_proc_entry(EXT4_MB_MIN_TO_SCAN_NAME, sbi->s_proc);
2923 remove_proc_entry(EXT4_MB_MAX_TO_SCAN_NAME, sbi->s_proc);
2924 remove_proc_entry(EXT4_MB_STATS_NAME, sbi->s_proc);
2925 return -ENOMEM;
2926 #else
2927 return 0;
2928 #endif
2929 }
2930
ext4_mb_destroy_per_dev_proc(struct super_block * sb)2931 static int ext4_mb_destroy_per_dev_proc(struct super_block *sb)
2932 {
2933 #ifdef CONFIG_PROC_FS
2934 struct ext4_sb_info *sbi = EXT4_SB(sb);
2935
2936 if (sbi->s_proc == NULL)
2937 return -EINVAL;
2938
2939 remove_proc_entry(EXT4_MB_GROUP_PREALLOC, sbi->s_proc);
2940 remove_proc_entry(EXT4_MB_STREAM_REQ, sbi->s_proc);
2941 remove_proc_entry(EXT4_MB_ORDER2_REQ, sbi->s_proc);
2942 remove_proc_entry(EXT4_MB_MIN_TO_SCAN_NAME, sbi->s_proc);
2943 remove_proc_entry(EXT4_MB_MAX_TO_SCAN_NAME, sbi->s_proc);
2944 remove_proc_entry(EXT4_MB_STATS_NAME, sbi->s_proc);
2945 #endif
2946 return 0;
2947 }
2948
init_ext4_mballoc(void)2949 int __init init_ext4_mballoc(void)
2950 {
2951 ext4_pspace_cachep =
2952 kmem_cache_create("ext4_prealloc_space",
2953 sizeof(struct ext4_prealloc_space),
2954 0, SLAB_RECLAIM_ACCOUNT, NULL);
2955 if (ext4_pspace_cachep == NULL)
2956 return -ENOMEM;
2957
2958 ext4_ac_cachep =
2959 kmem_cache_create("ext4_alloc_context",
2960 sizeof(struct ext4_allocation_context),
2961 0, SLAB_RECLAIM_ACCOUNT, NULL);
2962 if (ext4_ac_cachep == NULL) {
2963 kmem_cache_destroy(ext4_pspace_cachep);
2964 return -ENOMEM;
2965 }
2966
2967 ext4_free_ext_cachep =
2968 kmem_cache_create("ext4_free_block_extents",
2969 sizeof(struct ext4_free_data),
2970 0, SLAB_RECLAIM_ACCOUNT, NULL);
2971 if (ext4_free_ext_cachep == NULL) {
2972 kmem_cache_destroy(ext4_pspace_cachep);
2973 kmem_cache_destroy(ext4_ac_cachep);
2974 return -ENOMEM;
2975 }
2976 return 0;
2977 }
2978
exit_ext4_mballoc(void)2979 void exit_ext4_mballoc(void)
2980 {
2981 /* XXX: synchronize_rcu(); */
2982 kmem_cache_destroy(ext4_pspace_cachep);
2983 kmem_cache_destroy(ext4_ac_cachep);
2984 kmem_cache_destroy(ext4_free_ext_cachep);
2985 }
2986
2987
2988 /*
2989 * Check quota and mark choosed space (ac->ac_b_ex) non-free in bitmaps
2990 * Returns 0 if success or error code
2991 */
2992 static noinline_for_stack int
ext4_mb_mark_diskspace_used(struct ext4_allocation_context * ac,handle_t * handle,unsigned int reserv_blks)2993 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2994 handle_t *handle, unsigned int reserv_blks)
2995 {
2996 struct buffer_head *bitmap_bh = NULL;
2997 struct ext4_super_block *es;
2998 struct ext4_group_desc *gdp;
2999 struct buffer_head *gdp_bh;
3000 struct ext4_sb_info *sbi;
3001 struct super_block *sb;
3002 ext4_fsblk_t block;
3003 int err, len;
3004
3005 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3006 BUG_ON(ac->ac_b_ex.fe_len <= 0);
3007
3008 sb = ac->ac_sb;
3009 sbi = EXT4_SB(sb);
3010 es = sbi->s_es;
3011
3012
3013 err = -EIO;
3014 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
3015 if (!bitmap_bh)
3016 goto out_err;
3017
3018 err = ext4_journal_get_write_access(handle, bitmap_bh);
3019 if (err)
3020 goto out_err;
3021
3022 err = -EIO;
3023 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
3024 if (!gdp)
3025 goto out_err;
3026
3027 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
3028 ext4_free_blks_count(sb, gdp));
3029
3030 err = ext4_journal_get_write_access(handle, gdp_bh);
3031 if (err)
3032 goto out_err;
3033
3034 block = ac->ac_b_ex.fe_group * EXT4_BLOCKS_PER_GROUP(sb)
3035 + ac->ac_b_ex.fe_start
3036 + le32_to_cpu(es->s_first_data_block);
3037
3038 len = ac->ac_b_ex.fe_len;
3039 if (in_range(ext4_block_bitmap(sb, gdp), block, len) ||
3040 in_range(ext4_inode_bitmap(sb, gdp), block, len) ||
3041 in_range(block, ext4_inode_table(sb, gdp),
3042 EXT4_SB(sb)->s_itb_per_group) ||
3043 in_range(block + len - 1, ext4_inode_table(sb, gdp),
3044 EXT4_SB(sb)->s_itb_per_group)) {
3045 ext4_error(sb, __func__,
3046 "Allocating block %llu in system zone of %d group\n",
3047 block, ac->ac_b_ex.fe_group);
3048 /* File system mounted not to panic on error
3049 * Fix the bitmap and repeat the block allocation
3050 * We leak some of the blocks here.
3051 */
3052 mb_set_bits(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group),
3053 bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3054 ac->ac_b_ex.fe_len);
3055 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3056 if (!err)
3057 err = -EAGAIN;
3058 goto out_err;
3059 }
3060 #ifdef AGGRESSIVE_CHECK
3061 {
3062 int i;
3063 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3064 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3065 bitmap_bh->b_data));
3066 }
3067 }
3068 #endif
3069 spin_lock(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group));
3070 mb_set_bits(NULL, bitmap_bh->b_data,
3071 ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len);
3072 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
3073 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3074 ext4_free_blks_set(sb, gdp,
3075 ext4_free_blocks_after_init(sb,
3076 ac->ac_b_ex.fe_group, gdp));
3077 }
3078 len = ext4_free_blks_count(sb, gdp) - ac->ac_b_ex.fe_len;
3079 ext4_free_blks_set(sb, gdp, len);
3080 gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
3081 spin_unlock(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group));
3082 percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len);
3083 /*
3084 * Now reduce the dirty block count also. Should not go negative
3085 */
3086 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3087 /* release all the reserved blocks if non delalloc */
3088 percpu_counter_sub(&sbi->s_dirtyblocks_counter, reserv_blks);
3089 else
3090 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
3091 ac->ac_b_ex.fe_len);
3092
3093 if (sbi->s_log_groups_per_flex) {
3094 ext4_group_t flex_group = ext4_flex_group(sbi,
3095 ac->ac_b_ex.fe_group);
3096 spin_lock(sb_bgl_lock(sbi, flex_group));
3097 sbi->s_flex_groups[flex_group].free_blocks -= ac->ac_b_ex.fe_len;
3098 spin_unlock(sb_bgl_lock(sbi, flex_group));
3099 }
3100
3101 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3102 if (err)
3103 goto out_err;
3104 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3105
3106 out_err:
3107 sb->s_dirt = 1;
3108 brelse(bitmap_bh);
3109 return err;
3110 }
3111
3112 /*
3113 * here we normalize request for locality group
3114 * Group request are normalized to s_strip size if we set the same via mount
3115 * option. If not we set it to s_mb_group_prealloc which can be configured via
3116 * /proc/fs/ext4/<partition>/group_prealloc
3117 *
3118 * XXX: should we try to preallocate more than the group has now?
3119 */
ext4_mb_normalize_group_request(struct ext4_allocation_context * ac)3120 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3121 {
3122 struct super_block *sb = ac->ac_sb;
3123 struct ext4_locality_group *lg = ac->ac_lg;
3124
3125 BUG_ON(lg == NULL);
3126 if (EXT4_SB(sb)->s_stripe)
3127 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe;
3128 else
3129 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3130 mb_debug("#%u: goal %u blocks for locality group\n",
3131 current->pid, ac->ac_g_ex.fe_len);
3132 }
3133
3134 /*
3135 * Normalization means making request better in terms of
3136 * size and alignment
3137 */
3138 static noinline_for_stack void
ext4_mb_normalize_request(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)3139 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3140 struct ext4_allocation_request *ar)
3141 {
3142 int bsbits, max;
3143 ext4_lblk_t end;
3144 loff_t size, orig_size, start_off;
3145 ext4_lblk_t start, orig_start;
3146 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3147 struct ext4_prealloc_space *pa;
3148
3149 /* do normalize only data requests, metadata requests
3150 do not need preallocation */
3151 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3152 return;
3153
3154 /* sometime caller may want exact blocks */
3155 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3156 return;
3157
3158 /* caller may indicate that preallocation isn't
3159 * required (it's a tail, for example) */
3160 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3161 return;
3162
3163 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3164 ext4_mb_normalize_group_request(ac);
3165 return ;
3166 }
3167
3168 bsbits = ac->ac_sb->s_blocksize_bits;
3169
3170 /* first, let's learn actual file size
3171 * given current request is allocated */
3172 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
3173 size = size << bsbits;
3174 if (size < i_size_read(ac->ac_inode))
3175 size = i_size_read(ac->ac_inode);
3176
3177 /* max size of free chunks */
3178 max = 2 << bsbits;
3179
3180 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3181 (req <= (size) || max <= (chunk_size))
3182
3183 /* first, try to predict filesize */
3184 /* XXX: should this table be tunable? */
3185 start_off = 0;
3186 if (size <= 16 * 1024) {
3187 size = 16 * 1024;
3188 } else if (size <= 32 * 1024) {
3189 size = 32 * 1024;
3190 } else if (size <= 64 * 1024) {
3191 size = 64 * 1024;
3192 } else if (size <= 128 * 1024) {
3193 size = 128 * 1024;
3194 } else if (size <= 256 * 1024) {
3195 size = 256 * 1024;
3196 } else if (size <= 512 * 1024) {
3197 size = 512 * 1024;
3198 } else if (size <= 1024 * 1024) {
3199 size = 1024 * 1024;
3200 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3201 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3202 (21 - bsbits)) << 21;
3203 size = 2 * 1024 * 1024;
3204 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3205 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3206 (22 - bsbits)) << 22;
3207 size = 4 * 1024 * 1024;
3208 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3209 (8<<20)>>bsbits, max, 8 * 1024)) {
3210 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3211 (23 - bsbits)) << 23;
3212 size = 8 * 1024 * 1024;
3213 } else {
3214 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
3215 size = ac->ac_o_ex.fe_len << bsbits;
3216 }
3217 orig_size = size = size >> bsbits;
3218 orig_start = start = start_off >> bsbits;
3219
3220 /* don't cover already allocated blocks in selected range */
3221 if (ar->pleft && start <= ar->lleft) {
3222 size -= ar->lleft + 1 - start;
3223 start = ar->lleft + 1;
3224 }
3225 if (ar->pright && start + size - 1 >= ar->lright)
3226 size -= start + size - ar->lright;
3227
3228 end = start + size;
3229
3230 /* check we don't cross already preallocated blocks */
3231 rcu_read_lock();
3232 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3233 ext4_lblk_t pa_end;
3234
3235 if (pa->pa_deleted)
3236 continue;
3237 spin_lock(&pa->pa_lock);
3238 if (pa->pa_deleted) {
3239 spin_unlock(&pa->pa_lock);
3240 continue;
3241 }
3242
3243 pa_end = pa->pa_lstart + pa->pa_len;
3244
3245 /* PA must not overlap original request */
3246 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3247 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3248
3249 /* skip PA normalized request doesn't overlap with */
3250 if (pa->pa_lstart >= end) {
3251 spin_unlock(&pa->pa_lock);
3252 continue;
3253 }
3254 if (pa_end <= start) {
3255 spin_unlock(&pa->pa_lock);
3256 continue;
3257 }
3258 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3259
3260 if (pa_end <= ac->ac_o_ex.fe_logical) {
3261 BUG_ON(pa_end < start);
3262 start = pa_end;
3263 }
3264
3265 if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3266 BUG_ON(pa->pa_lstart > end);
3267 end = pa->pa_lstart;
3268 }
3269 spin_unlock(&pa->pa_lock);
3270 }
3271 rcu_read_unlock();
3272 size = end - start;
3273
3274 /* XXX: extra loop to check we really don't overlap preallocations */
3275 rcu_read_lock();
3276 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3277 ext4_lblk_t pa_end;
3278 spin_lock(&pa->pa_lock);
3279 if (pa->pa_deleted == 0) {
3280 pa_end = pa->pa_lstart + pa->pa_len;
3281 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3282 }
3283 spin_unlock(&pa->pa_lock);
3284 }
3285 rcu_read_unlock();
3286
3287 if (start + size <= ac->ac_o_ex.fe_logical &&
3288 start > ac->ac_o_ex.fe_logical) {
3289 printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n",
3290 (unsigned long) start, (unsigned long) size,
3291 (unsigned long) ac->ac_o_ex.fe_logical);
3292 }
3293 BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3294 start > ac->ac_o_ex.fe_logical);
3295 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3296
3297 /* now prepare goal request */
3298
3299 /* XXX: is it better to align blocks WRT to logical
3300 * placement or satisfy big request as is */
3301 ac->ac_g_ex.fe_logical = start;
3302 ac->ac_g_ex.fe_len = size;
3303
3304 /* define goal start in order to merge */
3305 if (ar->pright && (ar->lright == (start + size))) {
3306 /* merge to the right */
3307 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3308 &ac->ac_f_ex.fe_group,
3309 &ac->ac_f_ex.fe_start);
3310 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3311 }
3312 if (ar->pleft && (ar->lleft + 1 == start)) {
3313 /* merge to the left */
3314 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3315 &ac->ac_f_ex.fe_group,
3316 &ac->ac_f_ex.fe_start);
3317 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3318 }
3319
3320 mb_debug("goal: %u(was %u) blocks at %u\n", (unsigned) size,
3321 (unsigned) orig_size, (unsigned) start);
3322 }
3323
ext4_mb_collect_stats(struct ext4_allocation_context * ac)3324 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3325 {
3326 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3327
3328 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3329 atomic_inc(&sbi->s_bal_reqs);
3330 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3331 if (ac->ac_o_ex.fe_len >= ac->ac_g_ex.fe_len)
3332 atomic_inc(&sbi->s_bal_success);
3333 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3334 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3335 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3336 atomic_inc(&sbi->s_bal_goals);
3337 if (ac->ac_found > sbi->s_mb_max_to_scan)
3338 atomic_inc(&sbi->s_bal_breaks);
3339 }
3340
3341 ext4_mb_store_history(ac);
3342 }
3343
3344 /*
3345 * use blocks preallocated to inode
3346 */
ext4_mb_use_inode_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)3347 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3348 struct ext4_prealloc_space *pa)
3349 {
3350 ext4_fsblk_t start;
3351 ext4_fsblk_t end;
3352 int len;
3353
3354 /* found preallocated blocks, use them */
3355 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3356 end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len);
3357 len = end - start;
3358 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3359 &ac->ac_b_ex.fe_start);
3360 ac->ac_b_ex.fe_len = len;
3361 ac->ac_status = AC_STATUS_FOUND;
3362 ac->ac_pa = pa;
3363
3364 BUG_ON(start < pa->pa_pstart);
3365 BUG_ON(start + len > pa->pa_pstart + pa->pa_len);
3366 BUG_ON(pa->pa_free < len);
3367 pa->pa_free -= len;
3368
3369 mb_debug("use %llu/%u from inode pa %p\n", start, len, pa);
3370 }
3371
3372 /*
3373 * use blocks preallocated to locality group
3374 */
ext4_mb_use_group_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)3375 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3376 struct ext4_prealloc_space *pa)
3377 {
3378 unsigned int len = ac->ac_o_ex.fe_len;
3379
3380 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3381 &ac->ac_b_ex.fe_group,
3382 &ac->ac_b_ex.fe_start);
3383 ac->ac_b_ex.fe_len = len;
3384 ac->ac_status = AC_STATUS_FOUND;
3385 ac->ac_pa = pa;
3386
3387 /* we don't correct pa_pstart or pa_plen here to avoid
3388 * possible race when the group is being loaded concurrently
3389 * instead we correct pa later, after blocks are marked
3390 * in on-disk bitmap -- see ext4_mb_release_context()
3391 * Other CPUs are prevented from allocating from this pa by lg_mutex
3392 */
3393 mb_debug("use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3394 }
3395
3396 /*
3397 * Return the prealloc space that have minimal distance
3398 * from the goal block. @cpa is the prealloc
3399 * space that is having currently known minimal distance
3400 * from the goal block.
3401 */
3402 static struct ext4_prealloc_space *
ext4_mb_check_group_pa(ext4_fsblk_t goal_block,struct ext4_prealloc_space * pa,struct ext4_prealloc_space * cpa)3403 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3404 struct ext4_prealloc_space *pa,
3405 struct ext4_prealloc_space *cpa)
3406 {
3407 ext4_fsblk_t cur_distance, new_distance;
3408
3409 if (cpa == NULL) {
3410 atomic_inc(&pa->pa_count);
3411 return pa;
3412 }
3413 cur_distance = abs(goal_block - cpa->pa_pstart);
3414 new_distance = abs(goal_block - pa->pa_pstart);
3415
3416 if (cur_distance < new_distance)
3417 return cpa;
3418
3419 /* drop the previous reference */
3420 atomic_dec(&cpa->pa_count);
3421 atomic_inc(&pa->pa_count);
3422 return pa;
3423 }
3424
3425 /*
3426 * search goal blocks in preallocated space
3427 */
3428 static noinline_for_stack int
ext4_mb_use_preallocated(struct ext4_allocation_context * ac)3429 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3430 {
3431 int order, i;
3432 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3433 struct ext4_locality_group *lg;
3434 struct ext4_prealloc_space *pa, *cpa = NULL;
3435 ext4_fsblk_t goal_block;
3436
3437 /* only data can be preallocated */
3438 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3439 return 0;
3440
3441 /* first, try per-file preallocation */
3442 rcu_read_lock();
3443 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3444
3445 /* all fields in this condition don't change,
3446 * so we can skip locking for them */
3447 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3448 ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len)
3449 continue;
3450
3451 /* found preallocated blocks, use them */
3452 spin_lock(&pa->pa_lock);
3453 if (pa->pa_deleted == 0 && pa->pa_free) {
3454 atomic_inc(&pa->pa_count);
3455 ext4_mb_use_inode_pa(ac, pa);
3456 spin_unlock(&pa->pa_lock);
3457 ac->ac_criteria = 10;
3458 rcu_read_unlock();
3459 return 1;
3460 }
3461 spin_unlock(&pa->pa_lock);
3462 }
3463 rcu_read_unlock();
3464
3465 /* can we use group allocation? */
3466 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3467 return 0;
3468
3469 /* inode may have no locality group for some reason */
3470 lg = ac->ac_lg;
3471 if (lg == NULL)
3472 return 0;
3473 order = fls(ac->ac_o_ex.fe_len) - 1;
3474 if (order > PREALLOC_TB_SIZE - 1)
3475 /* The max size of hash table is PREALLOC_TB_SIZE */
3476 order = PREALLOC_TB_SIZE - 1;
3477
3478 goal_block = ac->ac_g_ex.fe_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb) +
3479 ac->ac_g_ex.fe_start +
3480 le32_to_cpu(EXT4_SB(ac->ac_sb)->s_es->s_first_data_block);
3481 /*
3482 * search for the prealloc space that is having
3483 * minimal distance from the goal block.
3484 */
3485 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3486 rcu_read_lock();
3487 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3488 pa_inode_list) {
3489 spin_lock(&pa->pa_lock);
3490 if (pa->pa_deleted == 0 &&
3491 pa->pa_free >= ac->ac_o_ex.fe_len) {
3492
3493 cpa = ext4_mb_check_group_pa(goal_block,
3494 pa, cpa);
3495 }
3496 spin_unlock(&pa->pa_lock);
3497 }
3498 rcu_read_unlock();
3499 }
3500 if (cpa) {
3501 ext4_mb_use_group_pa(ac, cpa);
3502 ac->ac_criteria = 20;
3503 return 1;
3504 }
3505 return 0;
3506 }
3507
3508 /*
3509 * the function goes through all block freed in the group
3510 * but not yet committed and marks them used in in-core bitmap.
3511 * buddy must be generated from this bitmap
3512 * Need to be called with ext4 group lock (ext4_lock_group)
3513 */
ext4_mb_generate_from_freelist(struct super_block * sb,void * bitmap,ext4_group_t group)3514 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3515 ext4_group_t group)
3516 {
3517 struct rb_node *n;
3518 struct ext4_group_info *grp;
3519 struct ext4_free_data *entry;
3520
3521 grp = ext4_get_group_info(sb, group);
3522 n = rb_first(&(grp->bb_free_root));
3523
3524 while (n) {
3525 entry = rb_entry(n, struct ext4_free_data, node);
3526 mb_set_bits(sb_bgl_lock(EXT4_SB(sb), group),
3527 bitmap, entry->start_blk,
3528 entry->count);
3529 n = rb_next(n);
3530 }
3531 return;
3532 }
3533
3534 /*
3535 * the function goes through all preallocation in this group and marks them
3536 * used in in-core bitmap. buddy must be generated from this bitmap
3537 * Need to be called with ext4 group lock (ext4_lock_group)
3538 */
ext4_mb_generate_from_pa(struct super_block * sb,void * bitmap,ext4_group_t group)3539 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3540 ext4_group_t group)
3541 {
3542 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3543 struct ext4_prealloc_space *pa;
3544 struct list_head *cur;
3545 ext4_group_t groupnr;
3546 ext4_grpblk_t start;
3547 int preallocated = 0;
3548 int count = 0;
3549 int len;
3550
3551 /* all form of preallocation discards first load group,
3552 * so the only competing code is preallocation use.
3553 * we don't need any locking here
3554 * notice we do NOT ignore preallocations with pa_deleted
3555 * otherwise we could leave used blocks available for
3556 * allocation in buddy when concurrent ext4_mb_put_pa()
3557 * is dropping preallocation
3558 */
3559 list_for_each(cur, &grp->bb_prealloc_list) {
3560 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3561 spin_lock(&pa->pa_lock);
3562 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3563 &groupnr, &start);
3564 len = pa->pa_len;
3565 spin_unlock(&pa->pa_lock);
3566 if (unlikely(len == 0))
3567 continue;
3568 BUG_ON(groupnr != group);
3569 mb_set_bits(sb_bgl_lock(EXT4_SB(sb), group),
3570 bitmap, start, len);
3571 preallocated += len;
3572 count++;
3573 }
3574 mb_debug("prellocated %u for group %u\n", preallocated, group);
3575 }
3576
ext4_mb_pa_callback(struct rcu_head * head)3577 static void ext4_mb_pa_callback(struct rcu_head *head)
3578 {
3579 struct ext4_prealloc_space *pa;
3580 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3581 kmem_cache_free(ext4_pspace_cachep, pa);
3582 }
3583
3584 /*
3585 * drops a reference to preallocated space descriptor
3586 * if this was the last reference and the space is consumed
3587 */
ext4_mb_put_pa(struct ext4_allocation_context * ac,struct super_block * sb,struct ext4_prealloc_space * pa)3588 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3589 struct super_block *sb, struct ext4_prealloc_space *pa)
3590 {
3591 ext4_group_t grp;
3592 ext4_fsblk_t grp_blk;
3593
3594 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3595 return;
3596
3597 /* in this short window concurrent discard can set pa_deleted */
3598 spin_lock(&pa->pa_lock);
3599 if (pa->pa_deleted == 1) {
3600 spin_unlock(&pa->pa_lock);
3601 return;
3602 }
3603
3604 pa->pa_deleted = 1;
3605 spin_unlock(&pa->pa_lock);
3606
3607 grp_blk = pa->pa_pstart;
3608 /* If linear, pa_pstart may be in the next group when pa is used up */
3609 if (pa->pa_linear)
3610 grp_blk--;
3611
3612 ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL);
3613
3614 /*
3615 * possible race:
3616 *
3617 * P1 (buddy init) P2 (regular allocation)
3618 * find block B in PA
3619 * copy on-disk bitmap to buddy
3620 * mark B in on-disk bitmap
3621 * drop PA from group
3622 * mark all PAs in buddy
3623 *
3624 * thus, P1 initializes buddy with B available. to prevent this
3625 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3626 * against that pair
3627 */
3628 ext4_lock_group(sb, grp);
3629 list_del(&pa->pa_group_list);
3630 ext4_unlock_group(sb, grp);
3631
3632 spin_lock(pa->pa_obj_lock);
3633 list_del_rcu(&pa->pa_inode_list);
3634 spin_unlock(pa->pa_obj_lock);
3635
3636 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3637 }
3638
3639 /*
3640 * creates new preallocated space for given inode
3641 */
3642 static noinline_for_stack int
ext4_mb_new_inode_pa(struct ext4_allocation_context * ac)3643 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3644 {
3645 struct super_block *sb = ac->ac_sb;
3646 struct ext4_prealloc_space *pa;
3647 struct ext4_group_info *grp;
3648 struct ext4_inode_info *ei;
3649
3650 /* preallocate only when found space is larger then requested */
3651 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3652 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3653 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3654
3655 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3656 if (pa == NULL)
3657 return -ENOMEM;
3658
3659 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3660 int winl;
3661 int wins;
3662 int win;
3663 int offs;
3664
3665 /* we can't allocate as much as normalizer wants.
3666 * so, found space must get proper lstart
3667 * to cover original request */
3668 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3669 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3670
3671 /* we're limited by original request in that
3672 * logical block must be covered any way
3673 * winl is window we can move our chunk within */
3674 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3675
3676 /* also, we should cover whole original request */
3677 wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len;
3678
3679 /* the smallest one defines real window */
3680 win = min(winl, wins);
3681
3682 offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len;
3683 if (offs && offs < win)
3684 win = offs;
3685
3686 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win;
3687 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3688 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3689 }
3690
3691 /* preallocation can change ac_b_ex, thus we store actually
3692 * allocated blocks for history */
3693 ac->ac_f_ex = ac->ac_b_ex;
3694
3695 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3696 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3697 pa->pa_len = ac->ac_b_ex.fe_len;
3698 pa->pa_free = pa->pa_len;
3699 atomic_set(&pa->pa_count, 1);
3700 spin_lock_init(&pa->pa_lock);
3701 INIT_LIST_HEAD(&pa->pa_inode_list);
3702 INIT_LIST_HEAD(&pa->pa_group_list);
3703 pa->pa_deleted = 0;
3704 pa->pa_linear = 0;
3705
3706 mb_debug("new inode pa %p: %llu/%u for %u\n", pa,
3707 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3708 trace_mark(ext4_mb_new_inode_pa,
3709 "dev %s ino %lu pstart %llu len %u lstart %u",
3710 sb->s_id, ac->ac_inode->i_ino,
3711 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3712
3713 ext4_mb_use_inode_pa(ac, pa);
3714 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3715
3716 ei = EXT4_I(ac->ac_inode);
3717 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3718
3719 pa->pa_obj_lock = &ei->i_prealloc_lock;
3720 pa->pa_inode = ac->ac_inode;
3721
3722 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3723 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3724 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3725
3726 spin_lock(pa->pa_obj_lock);
3727 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3728 spin_unlock(pa->pa_obj_lock);
3729
3730 return 0;
3731 }
3732
3733 /*
3734 * creates new preallocated space for locality group inodes belongs to
3735 */
3736 static noinline_for_stack int
ext4_mb_new_group_pa(struct ext4_allocation_context * ac)3737 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3738 {
3739 struct super_block *sb = ac->ac_sb;
3740 struct ext4_locality_group *lg;
3741 struct ext4_prealloc_space *pa;
3742 struct ext4_group_info *grp;
3743
3744 /* preallocate only when found space is larger then requested */
3745 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3746 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3747 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3748
3749 BUG_ON(ext4_pspace_cachep == NULL);
3750 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3751 if (pa == NULL)
3752 return -ENOMEM;
3753
3754 /* preallocation can change ac_b_ex, thus we store actually
3755 * allocated blocks for history */
3756 ac->ac_f_ex = ac->ac_b_ex;
3757
3758 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3759 pa->pa_lstart = pa->pa_pstart;
3760 pa->pa_len = ac->ac_b_ex.fe_len;
3761 pa->pa_free = pa->pa_len;
3762 atomic_set(&pa->pa_count, 1);
3763 spin_lock_init(&pa->pa_lock);
3764 INIT_LIST_HEAD(&pa->pa_inode_list);
3765 INIT_LIST_HEAD(&pa->pa_group_list);
3766 pa->pa_deleted = 0;
3767 pa->pa_linear = 1;
3768
3769 mb_debug("new group pa %p: %llu/%u for %u\n", pa,
3770 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3771 trace_mark(ext4_mb_new_group_pa, "dev %s pstart %llu len %u lstart %u",
3772 sb->s_id, pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3773
3774 ext4_mb_use_group_pa(ac, pa);
3775 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3776
3777 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3778 lg = ac->ac_lg;
3779 BUG_ON(lg == NULL);
3780
3781 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3782 pa->pa_inode = NULL;
3783
3784 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3785 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3786 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3787
3788 /*
3789 * We will later add the new pa to the right bucket
3790 * after updating the pa_free in ext4_mb_release_context
3791 */
3792 return 0;
3793 }
3794
ext4_mb_new_preallocation(struct ext4_allocation_context * ac)3795 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3796 {
3797 int err;
3798
3799 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3800 err = ext4_mb_new_group_pa(ac);
3801 else
3802 err = ext4_mb_new_inode_pa(ac);
3803 return err;
3804 }
3805
3806 /*
3807 * finds all unused blocks in on-disk bitmap, frees them in
3808 * in-core bitmap and buddy.
3809 * @pa must be unlinked from inode and group lists, so that
3810 * nobody else can find/use it.
3811 * the caller MUST hold group/inode locks.
3812 * TODO: optimize the case when there are no in-core structures yet
3813 */
3814 static noinline_for_stack int
ext4_mb_release_inode_pa(struct ext4_buddy * e4b,struct buffer_head * bitmap_bh,struct ext4_prealloc_space * pa,struct ext4_allocation_context * ac)3815 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3816 struct ext4_prealloc_space *pa,
3817 struct ext4_allocation_context *ac)
3818 {
3819 struct super_block *sb = e4b->bd_sb;
3820 struct ext4_sb_info *sbi = EXT4_SB(sb);
3821 unsigned int end;
3822 unsigned int next;
3823 ext4_group_t group;
3824 ext4_grpblk_t bit;
3825 unsigned long long grp_blk_start;
3826 sector_t start;
3827 int err = 0;
3828 int free = 0;
3829
3830 BUG_ON(pa->pa_deleted == 0);
3831 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3832 grp_blk_start = pa->pa_pstart - bit;
3833 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3834 end = bit + pa->pa_len;
3835
3836 if (ac) {
3837 ac->ac_sb = sb;
3838 ac->ac_inode = pa->pa_inode;
3839 ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3840 }
3841
3842 while (bit < end) {
3843 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3844 if (bit >= end)
3845 break;
3846 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3847 start = group * EXT4_BLOCKS_PER_GROUP(sb) + bit +
3848 le32_to_cpu(sbi->s_es->s_first_data_block);
3849 mb_debug(" free preallocated %u/%u in group %u\n",
3850 (unsigned) start, (unsigned) next - bit,
3851 (unsigned) group);
3852 free += next - bit;
3853
3854 if (ac) {
3855 ac->ac_b_ex.fe_group = group;
3856 ac->ac_b_ex.fe_start = bit;
3857 ac->ac_b_ex.fe_len = next - bit;
3858 ac->ac_b_ex.fe_logical = 0;
3859 ext4_mb_store_history(ac);
3860 }
3861
3862 trace_mark(ext4_mb_release_inode_pa,
3863 "dev %s ino %lu block %llu count %u",
3864 sb->s_id, pa->pa_inode->i_ino, grp_blk_start + bit,
3865 next - bit);
3866 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3867 bit = next + 1;
3868 }
3869 if (free != pa->pa_free) {
3870 printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n",
3871 pa, (unsigned long) pa->pa_lstart,
3872 (unsigned long) pa->pa_pstart,
3873 (unsigned long) pa->pa_len);
3874 ext4_grp_locked_error(sb, group,
3875 __func__, "free %u, pa_free %u",
3876 free, pa->pa_free);
3877 /*
3878 * pa is already deleted so we use the value obtained
3879 * from the bitmap and continue.
3880 */
3881 }
3882 atomic_add(free, &sbi->s_mb_discarded);
3883
3884 return err;
3885 }
3886
3887 static noinline_for_stack int
ext4_mb_release_group_pa(struct ext4_buddy * e4b,struct ext4_prealloc_space * pa,struct ext4_allocation_context * ac)3888 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3889 struct ext4_prealloc_space *pa,
3890 struct ext4_allocation_context *ac)
3891 {
3892 struct super_block *sb = e4b->bd_sb;
3893 ext4_group_t group;
3894 ext4_grpblk_t bit;
3895
3896 if (ac)
3897 ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3898
3899 trace_mark(ext4_mb_release_group_pa, "dev %s pstart %llu len %d",
3900 sb->s_id, pa->pa_pstart, pa->pa_len);
3901 BUG_ON(pa->pa_deleted == 0);
3902 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3903 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3904 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3905 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3906
3907 if (ac) {
3908 ac->ac_sb = sb;
3909 ac->ac_inode = NULL;
3910 ac->ac_b_ex.fe_group = group;
3911 ac->ac_b_ex.fe_start = bit;
3912 ac->ac_b_ex.fe_len = pa->pa_len;
3913 ac->ac_b_ex.fe_logical = 0;
3914 ext4_mb_store_history(ac);
3915 }
3916
3917 return 0;
3918 }
3919
3920 /*
3921 * releases all preallocations in given group
3922 *
3923 * first, we need to decide discard policy:
3924 * - when do we discard
3925 * 1) ENOSPC
3926 * - how many do we discard
3927 * 1) how many requested
3928 */
3929 static noinline_for_stack int
ext4_mb_discard_group_preallocations(struct super_block * sb,ext4_group_t group,int needed)3930 ext4_mb_discard_group_preallocations(struct super_block *sb,
3931 ext4_group_t group, int needed)
3932 {
3933 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3934 struct buffer_head *bitmap_bh = NULL;
3935 struct ext4_prealloc_space *pa, *tmp;
3936 struct ext4_allocation_context *ac;
3937 struct list_head list;
3938 struct ext4_buddy e4b;
3939 int err;
3940 int busy = 0;
3941 int free = 0;
3942
3943 mb_debug("discard preallocation for group %u\n", group);
3944
3945 if (list_empty(&grp->bb_prealloc_list))
3946 return 0;
3947
3948 bitmap_bh = ext4_read_block_bitmap(sb, group);
3949 if (bitmap_bh == NULL) {
3950 ext4_error(sb, __func__, "Error in reading block "
3951 "bitmap for %u", group);
3952 return 0;
3953 }
3954
3955 err = ext4_mb_load_buddy(sb, group, &e4b);
3956 if (err) {
3957 ext4_error(sb, __func__, "Error in loading buddy "
3958 "information for %u", group);
3959 put_bh(bitmap_bh);
3960 return 0;
3961 }
3962
3963 if (needed == 0)
3964 needed = EXT4_BLOCKS_PER_GROUP(sb) + 1;
3965
3966 INIT_LIST_HEAD(&list);
3967 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
3968 repeat:
3969 ext4_lock_group(sb, group);
3970 list_for_each_entry_safe(pa, tmp,
3971 &grp->bb_prealloc_list, pa_group_list) {
3972 spin_lock(&pa->pa_lock);
3973 if (atomic_read(&pa->pa_count)) {
3974 spin_unlock(&pa->pa_lock);
3975 busy = 1;
3976 continue;
3977 }
3978 if (pa->pa_deleted) {
3979 spin_unlock(&pa->pa_lock);
3980 continue;
3981 }
3982
3983 /* seems this one can be freed ... */
3984 pa->pa_deleted = 1;
3985
3986 /* we can trust pa_free ... */
3987 free += pa->pa_free;
3988
3989 spin_unlock(&pa->pa_lock);
3990
3991 list_del(&pa->pa_group_list);
3992 list_add(&pa->u.pa_tmp_list, &list);
3993 }
3994
3995 /* if we still need more blocks and some PAs were used, try again */
3996 if (free < needed && busy) {
3997 busy = 0;
3998 ext4_unlock_group(sb, group);
3999 /*
4000 * Yield the CPU here so that we don't get soft lockup
4001 * in non preempt case.
4002 */
4003 yield();
4004 goto repeat;
4005 }
4006
4007 /* found anything to free? */
4008 if (list_empty(&list)) {
4009 BUG_ON(free != 0);
4010 goto out;
4011 }
4012
4013 /* now free all selected PAs */
4014 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4015
4016 /* remove from object (inode or locality group) */
4017 spin_lock(pa->pa_obj_lock);
4018 list_del_rcu(&pa->pa_inode_list);
4019 spin_unlock(pa->pa_obj_lock);
4020
4021 if (pa->pa_linear)
4022 ext4_mb_release_group_pa(&e4b, pa, ac);
4023 else
4024 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
4025
4026 list_del(&pa->u.pa_tmp_list);
4027 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4028 }
4029
4030 out:
4031 ext4_unlock_group(sb, group);
4032 if (ac)
4033 kmem_cache_free(ext4_ac_cachep, ac);
4034 ext4_mb_release_desc(&e4b);
4035 put_bh(bitmap_bh);
4036 return free;
4037 }
4038
4039 /*
4040 * releases all non-used preallocated blocks for given inode
4041 *
4042 * It's important to discard preallocations under i_data_sem
4043 * We don't want another block to be served from the prealloc
4044 * space when we are discarding the inode prealloc space.
4045 *
4046 * FIXME!! Make sure it is valid at all the call sites
4047 */
ext4_discard_preallocations(struct inode * inode)4048 void ext4_discard_preallocations(struct inode *inode)
4049 {
4050 struct ext4_inode_info *ei = EXT4_I(inode);
4051 struct super_block *sb = inode->i_sb;
4052 struct buffer_head *bitmap_bh = NULL;
4053 struct ext4_prealloc_space *pa, *tmp;
4054 struct ext4_allocation_context *ac;
4055 ext4_group_t group = 0;
4056 struct list_head list;
4057 struct ext4_buddy e4b;
4058 int err;
4059
4060 if (!S_ISREG(inode->i_mode)) {
4061 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4062 return;
4063 }
4064
4065 mb_debug("discard preallocation for inode %lu\n", inode->i_ino);
4066 trace_mark(ext4_discard_preallocations, "dev %s ino %lu", sb->s_id,
4067 inode->i_ino);
4068
4069 INIT_LIST_HEAD(&list);
4070
4071 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4072 repeat:
4073 /* first, collect all pa's in the inode */
4074 spin_lock(&ei->i_prealloc_lock);
4075 while (!list_empty(&ei->i_prealloc_list)) {
4076 pa = list_entry(ei->i_prealloc_list.next,
4077 struct ext4_prealloc_space, pa_inode_list);
4078 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4079 spin_lock(&pa->pa_lock);
4080 if (atomic_read(&pa->pa_count)) {
4081 /* this shouldn't happen often - nobody should
4082 * use preallocation while we're discarding it */
4083 spin_unlock(&pa->pa_lock);
4084 spin_unlock(&ei->i_prealloc_lock);
4085 printk(KERN_ERR "uh-oh! used pa while discarding\n");
4086 WARN_ON(1);
4087 schedule_timeout_uninterruptible(HZ);
4088 goto repeat;
4089
4090 }
4091 if (pa->pa_deleted == 0) {
4092 pa->pa_deleted = 1;
4093 spin_unlock(&pa->pa_lock);
4094 list_del_rcu(&pa->pa_inode_list);
4095 list_add(&pa->u.pa_tmp_list, &list);
4096 continue;
4097 }
4098
4099 /* someone is deleting pa right now */
4100 spin_unlock(&pa->pa_lock);
4101 spin_unlock(&ei->i_prealloc_lock);
4102
4103 /* we have to wait here because pa_deleted
4104 * doesn't mean pa is already unlinked from
4105 * the list. as we might be called from
4106 * ->clear_inode() the inode will get freed
4107 * and concurrent thread which is unlinking
4108 * pa from inode's list may access already
4109 * freed memory, bad-bad-bad */
4110
4111 /* XXX: if this happens too often, we can
4112 * add a flag to force wait only in case
4113 * of ->clear_inode(), but not in case of
4114 * regular truncate */
4115 schedule_timeout_uninterruptible(HZ);
4116 goto repeat;
4117 }
4118 spin_unlock(&ei->i_prealloc_lock);
4119
4120 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4121 BUG_ON(pa->pa_linear != 0);
4122 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4123
4124 err = ext4_mb_load_buddy(sb, group, &e4b);
4125 if (err) {
4126 ext4_error(sb, __func__, "Error in loading buddy "
4127 "information for %u", group);
4128 continue;
4129 }
4130
4131 bitmap_bh = ext4_read_block_bitmap(sb, group);
4132 if (bitmap_bh == NULL) {
4133 ext4_error(sb, __func__, "Error in reading block "
4134 "bitmap for %u", group);
4135 ext4_mb_release_desc(&e4b);
4136 continue;
4137 }
4138
4139 ext4_lock_group(sb, group);
4140 list_del(&pa->pa_group_list);
4141 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
4142 ext4_unlock_group(sb, group);
4143
4144 ext4_mb_release_desc(&e4b);
4145 put_bh(bitmap_bh);
4146
4147 list_del(&pa->u.pa_tmp_list);
4148 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4149 }
4150 if (ac)
4151 kmem_cache_free(ext4_ac_cachep, ac);
4152 }
4153
4154 /*
4155 * finds all preallocated spaces and return blocks being freed to them
4156 * if preallocated space becomes full (no block is used from the space)
4157 * then the function frees space in buddy
4158 * XXX: at the moment, truncate (which is the only way to free blocks)
4159 * discards all preallocations
4160 */
ext4_mb_return_to_preallocation(struct inode * inode,struct ext4_buddy * e4b,sector_t block,int count)4161 static void ext4_mb_return_to_preallocation(struct inode *inode,
4162 struct ext4_buddy *e4b,
4163 sector_t block, int count)
4164 {
4165 BUG_ON(!list_empty(&EXT4_I(inode)->i_prealloc_list));
4166 }
4167 #ifdef MB_DEBUG
ext4_mb_show_ac(struct ext4_allocation_context * ac)4168 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4169 {
4170 struct super_block *sb = ac->ac_sb;
4171 ext4_group_t i;
4172
4173 printk(KERN_ERR "EXT4-fs: Can't allocate:"
4174 " Allocation context details:\n");
4175 printk(KERN_ERR "EXT4-fs: status %d flags %d\n",
4176 ac->ac_status, ac->ac_flags);
4177 printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, "
4178 "best %lu/%lu/%lu@%lu cr %d\n",
4179 (unsigned long)ac->ac_o_ex.fe_group,
4180 (unsigned long)ac->ac_o_ex.fe_start,
4181 (unsigned long)ac->ac_o_ex.fe_len,
4182 (unsigned long)ac->ac_o_ex.fe_logical,
4183 (unsigned long)ac->ac_g_ex.fe_group,
4184 (unsigned long)ac->ac_g_ex.fe_start,
4185 (unsigned long)ac->ac_g_ex.fe_len,
4186 (unsigned long)ac->ac_g_ex.fe_logical,
4187 (unsigned long)ac->ac_b_ex.fe_group,
4188 (unsigned long)ac->ac_b_ex.fe_start,
4189 (unsigned long)ac->ac_b_ex.fe_len,
4190 (unsigned long)ac->ac_b_ex.fe_logical,
4191 (int)ac->ac_criteria);
4192 printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned,
4193 ac->ac_found);
4194 printk(KERN_ERR "EXT4-fs: groups: \n");
4195 for (i = 0; i < EXT4_SB(sb)->s_groups_count; i++) {
4196 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4197 struct ext4_prealloc_space *pa;
4198 ext4_grpblk_t start;
4199 struct list_head *cur;
4200 ext4_lock_group(sb, i);
4201 list_for_each(cur, &grp->bb_prealloc_list) {
4202 pa = list_entry(cur, struct ext4_prealloc_space,
4203 pa_group_list);
4204 spin_lock(&pa->pa_lock);
4205 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4206 NULL, &start);
4207 spin_unlock(&pa->pa_lock);
4208 printk(KERN_ERR "PA:%lu:%d:%u \n", i,
4209 start, pa->pa_len);
4210 }
4211 ext4_unlock_group(sb, i);
4212
4213 if (grp->bb_free == 0)
4214 continue;
4215 printk(KERN_ERR "%lu: %d/%d \n",
4216 i, grp->bb_free, grp->bb_fragments);
4217 }
4218 printk(KERN_ERR "\n");
4219 }
4220 #else
ext4_mb_show_ac(struct ext4_allocation_context * ac)4221 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4222 {
4223 return;
4224 }
4225 #endif
4226
4227 /*
4228 * We use locality group preallocation for small size file. The size of the
4229 * file is determined by the current size or the resulting size after
4230 * allocation which ever is larger
4231 *
4232 * One can tune this size via /proc/fs/ext4/<partition>/stream_req
4233 */
ext4_mb_group_or_file(struct ext4_allocation_context * ac)4234 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4235 {
4236 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4237 int bsbits = ac->ac_sb->s_blocksize_bits;
4238 loff_t size, isize;
4239
4240 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4241 return;
4242
4243 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
4244 isize = i_size_read(ac->ac_inode) >> bsbits;
4245 size = max(size, isize);
4246
4247 /* don't use group allocation for large files */
4248 if (size >= sbi->s_mb_stream_request)
4249 return;
4250
4251 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4252 return;
4253
4254 BUG_ON(ac->ac_lg != NULL);
4255 /*
4256 * locality group prealloc space are per cpu. The reason for having
4257 * per cpu locality group is to reduce the contention between block
4258 * request from multiple CPUs.
4259 */
4260 ac->ac_lg = per_cpu_ptr(sbi->s_locality_groups, raw_smp_processor_id());
4261
4262 /* we're going to use group allocation */
4263 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4264
4265 /* serialize all allocations in the group */
4266 mutex_lock(&ac->ac_lg->lg_mutex);
4267 }
4268
4269 static noinline_for_stack int
ext4_mb_initialize_context(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)4270 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4271 struct ext4_allocation_request *ar)
4272 {
4273 struct super_block *sb = ar->inode->i_sb;
4274 struct ext4_sb_info *sbi = EXT4_SB(sb);
4275 struct ext4_super_block *es = sbi->s_es;
4276 ext4_group_t group;
4277 unsigned int len;
4278 ext4_fsblk_t goal;
4279 ext4_grpblk_t block;
4280
4281 /* we can't allocate > group size */
4282 len = ar->len;
4283
4284 /* just a dirty hack to filter too big requests */
4285 if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10)
4286 len = EXT4_BLOCKS_PER_GROUP(sb) - 10;
4287
4288 /* start searching from the goal */
4289 goal = ar->goal;
4290 if (goal < le32_to_cpu(es->s_first_data_block) ||
4291 goal >= ext4_blocks_count(es))
4292 goal = le32_to_cpu(es->s_first_data_block);
4293 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4294
4295 /* set up allocation goals */
4296 ac->ac_b_ex.fe_logical = ar->logical;
4297 ac->ac_b_ex.fe_group = 0;
4298 ac->ac_b_ex.fe_start = 0;
4299 ac->ac_b_ex.fe_len = 0;
4300 ac->ac_status = AC_STATUS_CONTINUE;
4301 ac->ac_groups_scanned = 0;
4302 ac->ac_ex_scanned = 0;
4303 ac->ac_found = 0;
4304 ac->ac_sb = sb;
4305 ac->ac_inode = ar->inode;
4306 ac->ac_o_ex.fe_logical = ar->logical;
4307 ac->ac_o_ex.fe_group = group;
4308 ac->ac_o_ex.fe_start = block;
4309 ac->ac_o_ex.fe_len = len;
4310 ac->ac_g_ex.fe_logical = ar->logical;
4311 ac->ac_g_ex.fe_group = group;
4312 ac->ac_g_ex.fe_start = block;
4313 ac->ac_g_ex.fe_len = len;
4314 ac->ac_f_ex.fe_len = 0;
4315 ac->ac_flags = ar->flags;
4316 ac->ac_2order = 0;
4317 ac->ac_criteria = 0;
4318 ac->ac_pa = NULL;
4319 ac->ac_bitmap_page = NULL;
4320 ac->ac_buddy_page = NULL;
4321 ac->alloc_semp = NULL;
4322 ac->ac_lg = NULL;
4323
4324 /* we have to define context: we'll we work with a file or
4325 * locality group. this is a policy, actually */
4326 ext4_mb_group_or_file(ac);
4327
4328 mb_debug("init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4329 "left: %u/%u, right %u/%u to %swritable\n",
4330 (unsigned) ar->len, (unsigned) ar->logical,
4331 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4332 (unsigned) ar->lleft, (unsigned) ar->pleft,
4333 (unsigned) ar->lright, (unsigned) ar->pright,
4334 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4335 return 0;
4336
4337 }
4338
4339 static noinline_for_stack void
ext4_mb_discard_lg_preallocations(struct super_block * sb,struct ext4_locality_group * lg,int order,int total_entries)4340 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4341 struct ext4_locality_group *lg,
4342 int order, int total_entries)
4343 {
4344 ext4_group_t group = 0;
4345 struct ext4_buddy e4b;
4346 struct list_head discard_list;
4347 struct ext4_prealloc_space *pa, *tmp;
4348 struct ext4_allocation_context *ac;
4349
4350 mb_debug("discard locality group preallocation\n");
4351
4352 INIT_LIST_HEAD(&discard_list);
4353 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4354
4355 spin_lock(&lg->lg_prealloc_lock);
4356 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4357 pa_inode_list) {
4358 spin_lock(&pa->pa_lock);
4359 if (atomic_read(&pa->pa_count)) {
4360 /*
4361 * This is the pa that we just used
4362 * for block allocation. So don't
4363 * free that
4364 */
4365 spin_unlock(&pa->pa_lock);
4366 continue;
4367 }
4368 if (pa->pa_deleted) {
4369 spin_unlock(&pa->pa_lock);
4370 continue;
4371 }
4372 /* only lg prealloc space */
4373 BUG_ON(!pa->pa_linear);
4374
4375 /* seems this one can be freed ... */
4376 pa->pa_deleted = 1;
4377 spin_unlock(&pa->pa_lock);
4378
4379 list_del_rcu(&pa->pa_inode_list);
4380 list_add(&pa->u.pa_tmp_list, &discard_list);
4381
4382 total_entries--;
4383 if (total_entries <= 5) {
4384 /*
4385 * we want to keep only 5 entries
4386 * allowing it to grow to 8. This
4387 * mak sure we don't call discard
4388 * soon for this list.
4389 */
4390 break;
4391 }
4392 }
4393 spin_unlock(&lg->lg_prealloc_lock);
4394
4395 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4396
4397 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4398 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4399 ext4_error(sb, __func__, "Error in loading buddy "
4400 "information for %u", group);
4401 continue;
4402 }
4403 ext4_lock_group(sb, group);
4404 list_del(&pa->pa_group_list);
4405 ext4_mb_release_group_pa(&e4b, pa, ac);
4406 ext4_unlock_group(sb, group);
4407
4408 ext4_mb_release_desc(&e4b);
4409 list_del(&pa->u.pa_tmp_list);
4410 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4411 }
4412 if (ac)
4413 kmem_cache_free(ext4_ac_cachep, ac);
4414 }
4415
4416 /*
4417 * We have incremented pa_count. So it cannot be freed at this
4418 * point. Also we hold lg_mutex. So no parallel allocation is
4419 * possible from this lg. That means pa_free cannot be updated.
4420 *
4421 * A parallel ext4_mb_discard_group_preallocations is possible.
4422 * which can cause the lg_prealloc_list to be updated.
4423 */
4424
ext4_mb_add_n_trim(struct ext4_allocation_context * ac)4425 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4426 {
4427 int order, added = 0, lg_prealloc_count = 1;
4428 struct super_block *sb = ac->ac_sb;
4429 struct ext4_locality_group *lg = ac->ac_lg;
4430 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4431
4432 order = fls(pa->pa_free) - 1;
4433 if (order > PREALLOC_TB_SIZE - 1)
4434 /* The max size of hash table is PREALLOC_TB_SIZE */
4435 order = PREALLOC_TB_SIZE - 1;
4436 /* Add the prealloc space to lg */
4437 rcu_read_lock();
4438 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4439 pa_inode_list) {
4440 spin_lock(&tmp_pa->pa_lock);
4441 if (tmp_pa->pa_deleted) {
4442 spin_unlock(&pa->pa_lock);
4443 continue;
4444 }
4445 if (!added && pa->pa_free < tmp_pa->pa_free) {
4446 /* Add to the tail of the previous entry */
4447 list_add_tail_rcu(&pa->pa_inode_list,
4448 &tmp_pa->pa_inode_list);
4449 added = 1;
4450 /*
4451 * we want to count the total
4452 * number of entries in the list
4453 */
4454 }
4455 spin_unlock(&tmp_pa->pa_lock);
4456 lg_prealloc_count++;
4457 }
4458 if (!added)
4459 list_add_tail_rcu(&pa->pa_inode_list,
4460 &lg->lg_prealloc_list[order]);
4461 rcu_read_unlock();
4462
4463 /* Now trim the list to be not more than 8 elements */
4464 if (lg_prealloc_count > 8) {
4465 ext4_mb_discard_lg_preallocations(sb, lg,
4466 order, lg_prealloc_count);
4467 return;
4468 }
4469 return ;
4470 }
4471
4472 /*
4473 * release all resource we used in allocation
4474 */
ext4_mb_release_context(struct ext4_allocation_context * ac)4475 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4476 {
4477 struct ext4_prealloc_space *pa = ac->ac_pa;
4478 if (pa) {
4479 if (pa->pa_linear) {
4480 /* see comment in ext4_mb_use_group_pa() */
4481 spin_lock(&pa->pa_lock);
4482 pa->pa_pstart += ac->ac_b_ex.fe_len;
4483 pa->pa_lstart += ac->ac_b_ex.fe_len;
4484 pa->pa_free -= ac->ac_b_ex.fe_len;
4485 pa->pa_len -= ac->ac_b_ex.fe_len;
4486 spin_unlock(&pa->pa_lock);
4487 }
4488 }
4489 if (ac->alloc_semp)
4490 up_read(ac->alloc_semp);
4491 if (pa) {
4492 /*
4493 * We want to add the pa to the right bucket.
4494 * Remove it from the list and while adding
4495 * make sure the list to which we are adding
4496 * doesn't grow big. We need to release
4497 * alloc_semp before calling ext4_mb_add_n_trim()
4498 */
4499 if (pa->pa_linear && likely(pa->pa_free)) {
4500 spin_lock(pa->pa_obj_lock);
4501 list_del_rcu(&pa->pa_inode_list);
4502 spin_unlock(pa->pa_obj_lock);
4503 ext4_mb_add_n_trim(ac);
4504 }
4505 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4506 }
4507 if (ac->ac_bitmap_page)
4508 page_cache_release(ac->ac_bitmap_page);
4509 if (ac->ac_buddy_page)
4510 page_cache_release(ac->ac_buddy_page);
4511 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4512 mutex_unlock(&ac->ac_lg->lg_mutex);
4513 ext4_mb_collect_stats(ac);
4514 return 0;
4515 }
4516
ext4_mb_discard_preallocations(struct super_block * sb,int needed)4517 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4518 {
4519 ext4_group_t i;
4520 int ret;
4521 int freed = 0;
4522
4523 trace_mark(ext4_mb_discard_preallocations, "dev %s needed %d",
4524 sb->s_id, needed);
4525 for (i = 0; i < EXT4_SB(sb)->s_groups_count && needed > 0; i++) {
4526 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4527 freed += ret;
4528 needed -= ret;
4529 }
4530
4531 return freed;
4532 }
4533
4534 /*
4535 * Main entry point into mballoc to allocate blocks
4536 * it tries to use preallocation first, then falls back
4537 * to usual allocation
4538 */
ext4_mb_new_blocks(handle_t * handle,struct ext4_allocation_request * ar,int * errp)4539 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4540 struct ext4_allocation_request *ar, int *errp)
4541 {
4542 int freed;
4543 struct ext4_allocation_context *ac = NULL;
4544 struct ext4_sb_info *sbi;
4545 struct super_block *sb;
4546 ext4_fsblk_t block = 0;
4547 unsigned int inquota;
4548 unsigned int reserv_blks = 0;
4549
4550 sb = ar->inode->i_sb;
4551 sbi = EXT4_SB(sb);
4552
4553 trace_mark(ext4_request_blocks, "dev %s flags %u len %u ino %lu "
4554 "lblk %llu goal %llu lleft %llu lright %llu "
4555 "pleft %llu pright %llu ",
4556 sb->s_id, ar->flags, ar->len,
4557 ar->inode ? ar->inode->i_ino : 0,
4558 (unsigned long long) ar->logical,
4559 (unsigned long long) ar->goal,
4560 (unsigned long long) ar->lleft,
4561 (unsigned long long) ar->lright,
4562 (unsigned long long) ar->pleft,
4563 (unsigned long long) ar->pright);
4564
4565 if (!EXT4_I(ar->inode)->i_delalloc_reserved_flag) {
4566 /*
4567 * With delalloc we already reserved the blocks
4568 */
4569 while (ar->len && ext4_claim_free_blocks(sbi, ar->len)) {
4570 /* let others to free the space */
4571 yield();
4572 ar->len = ar->len >> 1;
4573 }
4574 if (!ar->len) {
4575 *errp = -ENOSPC;
4576 return 0;
4577 }
4578 reserv_blks = ar->len;
4579 }
4580 while (ar->len && DQUOT_ALLOC_BLOCK(ar->inode, ar->len)) {
4581 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4582 ar->len--;
4583 }
4584 if (ar->len == 0) {
4585 *errp = -EDQUOT;
4586 goto out3;
4587 }
4588 inquota = ar->len;
4589
4590 if (EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4591 ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4592
4593 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4594 if (!ac) {
4595 ar->len = 0;
4596 *errp = -ENOMEM;
4597 goto out1;
4598 }
4599
4600 *errp = ext4_mb_initialize_context(ac, ar);
4601 if (*errp) {
4602 ar->len = 0;
4603 goto out2;
4604 }
4605
4606 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4607 if (!ext4_mb_use_preallocated(ac)) {
4608 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4609 ext4_mb_normalize_request(ac, ar);
4610 repeat:
4611 /* allocate space in core */
4612 ext4_mb_regular_allocator(ac);
4613
4614 /* as we've just preallocated more space than
4615 * user requested orinally, we store allocated
4616 * space in a special descriptor */
4617 if (ac->ac_status == AC_STATUS_FOUND &&
4618 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4619 ext4_mb_new_preallocation(ac);
4620 }
4621 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4622 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_blks);
4623 if (*errp == -EAGAIN) {
4624 /*
4625 * drop the reference that we took
4626 * in ext4_mb_use_best_found
4627 */
4628 ext4_mb_release_context(ac);
4629 ac->ac_b_ex.fe_group = 0;
4630 ac->ac_b_ex.fe_start = 0;
4631 ac->ac_b_ex.fe_len = 0;
4632 ac->ac_status = AC_STATUS_CONTINUE;
4633 goto repeat;
4634 } else if (*errp) {
4635 ac->ac_b_ex.fe_len = 0;
4636 ar->len = 0;
4637 ext4_mb_show_ac(ac);
4638 } else {
4639 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4640 ar->len = ac->ac_b_ex.fe_len;
4641 }
4642 } else {
4643 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4644 if (freed)
4645 goto repeat;
4646 *errp = -ENOSPC;
4647 ac->ac_b_ex.fe_len = 0;
4648 ar->len = 0;
4649 ext4_mb_show_ac(ac);
4650 }
4651
4652 ext4_mb_release_context(ac);
4653
4654 out2:
4655 kmem_cache_free(ext4_ac_cachep, ac);
4656 out1:
4657 if (ar->len < inquota)
4658 DQUOT_FREE_BLOCK(ar->inode, inquota - ar->len);
4659 out3:
4660 if (!ar->len) {
4661 if (!EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4662 /* release all the reserved blocks if non delalloc */
4663 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
4664 reserv_blks);
4665 }
4666
4667 trace_mark(ext4_allocate_blocks,
4668 "dev %s block %llu flags %u len %u ino %lu "
4669 "logical %llu goal %llu lleft %llu lright %llu "
4670 "pleft %llu pright %llu ",
4671 sb->s_id, (unsigned long long) block,
4672 ar->flags, ar->len, ar->inode ? ar->inode->i_ino : 0,
4673 (unsigned long long) ar->logical,
4674 (unsigned long long) ar->goal,
4675 (unsigned long long) ar->lleft,
4676 (unsigned long long) ar->lright,
4677 (unsigned long long) ar->pleft,
4678 (unsigned long long) ar->pright);
4679
4680 return block;
4681 }
4682
4683 /*
4684 * We can merge two free data extents only if the physical blocks
4685 * are contiguous, AND the extents were freed by the same transaction,
4686 * AND the blocks are associated with the same group.
4687 */
can_merge(struct ext4_free_data * entry1,struct ext4_free_data * entry2)4688 static int can_merge(struct ext4_free_data *entry1,
4689 struct ext4_free_data *entry2)
4690 {
4691 if ((entry1->t_tid == entry2->t_tid) &&
4692 (entry1->group == entry2->group) &&
4693 ((entry1->start_blk + entry1->count) == entry2->start_blk))
4694 return 1;
4695 return 0;
4696 }
4697
4698 static noinline_for_stack int
ext4_mb_free_metadata(handle_t * handle,struct ext4_buddy * e4b,struct ext4_free_data * new_entry)4699 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4700 struct ext4_free_data *new_entry)
4701 {
4702 ext4_grpblk_t block;
4703 struct ext4_free_data *entry;
4704 struct ext4_group_info *db = e4b->bd_info;
4705 struct super_block *sb = e4b->bd_sb;
4706 struct ext4_sb_info *sbi = EXT4_SB(sb);
4707 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4708 struct rb_node *parent = NULL, *new_node;
4709
4710 BUG_ON(!ext4_handle_valid(handle));
4711 BUG_ON(e4b->bd_bitmap_page == NULL);
4712 BUG_ON(e4b->bd_buddy_page == NULL);
4713
4714 new_node = &new_entry->node;
4715 block = new_entry->start_blk;
4716
4717 if (!*n) {
4718 /* first free block exent. We need to
4719 protect buddy cache from being freed,
4720 * otherwise we'll refresh it from
4721 * on-disk bitmap and lose not-yet-available
4722 * blocks */
4723 page_cache_get(e4b->bd_buddy_page);
4724 page_cache_get(e4b->bd_bitmap_page);
4725 }
4726 while (*n) {
4727 parent = *n;
4728 entry = rb_entry(parent, struct ext4_free_data, node);
4729 if (block < entry->start_blk)
4730 n = &(*n)->rb_left;
4731 else if (block >= (entry->start_blk + entry->count))
4732 n = &(*n)->rb_right;
4733 else {
4734 ext4_grp_locked_error(sb, e4b->bd_group, __func__,
4735 "Double free of blocks %d (%d %d)",
4736 block, entry->start_blk, entry->count);
4737 return 0;
4738 }
4739 }
4740
4741 rb_link_node(new_node, parent, n);
4742 rb_insert_color(new_node, &db->bb_free_root);
4743
4744 /* Now try to see the extent can be merged to left and right */
4745 node = rb_prev(new_node);
4746 if (node) {
4747 entry = rb_entry(node, struct ext4_free_data, node);
4748 if (can_merge(entry, new_entry)) {
4749 new_entry->start_blk = entry->start_blk;
4750 new_entry->count += entry->count;
4751 rb_erase(node, &(db->bb_free_root));
4752 spin_lock(&sbi->s_md_lock);
4753 list_del(&entry->list);
4754 spin_unlock(&sbi->s_md_lock);
4755 kmem_cache_free(ext4_free_ext_cachep, entry);
4756 }
4757 }
4758
4759 node = rb_next(new_node);
4760 if (node) {
4761 entry = rb_entry(node, struct ext4_free_data, node);
4762 if (can_merge(new_entry, entry)) {
4763 new_entry->count += entry->count;
4764 rb_erase(node, &(db->bb_free_root));
4765 spin_lock(&sbi->s_md_lock);
4766 list_del(&entry->list);
4767 spin_unlock(&sbi->s_md_lock);
4768 kmem_cache_free(ext4_free_ext_cachep, entry);
4769 }
4770 }
4771 /* Add the extent to transaction's private list */
4772 spin_lock(&sbi->s_md_lock);
4773 list_add(&new_entry->list, &handle->h_transaction->t_private_list);
4774 spin_unlock(&sbi->s_md_lock);
4775 return 0;
4776 }
4777
4778 /*
4779 * Main entry point into mballoc to free blocks
4780 */
ext4_mb_free_blocks(handle_t * handle,struct inode * inode,unsigned long block,unsigned long count,int metadata,unsigned long * freed)4781 void ext4_mb_free_blocks(handle_t *handle, struct inode *inode,
4782 unsigned long block, unsigned long count,
4783 int metadata, unsigned long *freed)
4784 {
4785 struct buffer_head *bitmap_bh = NULL;
4786 struct super_block *sb = inode->i_sb;
4787 struct ext4_allocation_context *ac = NULL;
4788 struct ext4_group_desc *gdp;
4789 struct ext4_super_block *es;
4790 unsigned int overflow;
4791 ext4_grpblk_t bit;
4792 struct buffer_head *gd_bh;
4793 ext4_group_t block_group;
4794 struct ext4_sb_info *sbi;
4795 struct ext4_buddy e4b;
4796 int err = 0;
4797 int ret;
4798
4799 *freed = 0;
4800
4801 sbi = EXT4_SB(sb);
4802 es = EXT4_SB(sb)->s_es;
4803 if (block < le32_to_cpu(es->s_first_data_block) ||
4804 block + count < block ||
4805 block + count > ext4_blocks_count(es)) {
4806 ext4_error(sb, __func__,
4807 "Freeing blocks not in datazone - "
4808 "block = %lu, count = %lu", block, count);
4809 goto error_return;
4810 }
4811
4812 ext4_debug("freeing block %lu\n", block);
4813 trace_mark(ext4_free_blocks,
4814 "dev %s block %llu count %lu metadata %d ino %lu",
4815 sb->s_id, (unsigned long long) block, count, metadata,
4816 inode ? inode->i_ino : 0);
4817
4818 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4819 if (ac) {
4820 ac->ac_op = EXT4_MB_HISTORY_FREE;
4821 ac->ac_inode = inode;
4822 ac->ac_sb = sb;
4823 }
4824
4825 do_more:
4826 overflow = 0;
4827 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4828
4829 /*
4830 * Check to see if we are freeing blocks across a group
4831 * boundary.
4832 */
4833 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4834 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
4835 count -= overflow;
4836 }
4837 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4838 if (!bitmap_bh) {
4839 err = -EIO;
4840 goto error_return;
4841 }
4842 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4843 if (!gdp) {
4844 err = -EIO;
4845 goto error_return;
4846 }
4847
4848 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4849 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4850 in_range(block, ext4_inode_table(sb, gdp),
4851 EXT4_SB(sb)->s_itb_per_group) ||
4852 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4853 EXT4_SB(sb)->s_itb_per_group)) {
4854
4855 ext4_error(sb, __func__,
4856 "Freeing blocks in system zone - "
4857 "Block = %lu, count = %lu", block, count);
4858 /* err = 0. ext4_std_error should be a no op */
4859 goto error_return;
4860 }
4861
4862 BUFFER_TRACE(bitmap_bh, "getting write access");
4863 err = ext4_journal_get_write_access(handle, bitmap_bh);
4864 if (err)
4865 goto error_return;
4866
4867 /*
4868 * We are about to modify some metadata. Call the journal APIs
4869 * to unshare ->b_data if a currently-committing transaction is
4870 * using it
4871 */
4872 BUFFER_TRACE(gd_bh, "get_write_access");
4873 err = ext4_journal_get_write_access(handle, gd_bh);
4874 if (err)
4875 goto error_return;
4876 #ifdef AGGRESSIVE_CHECK
4877 {
4878 int i;
4879 for (i = 0; i < count; i++)
4880 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4881 }
4882 #endif
4883 if (ac) {
4884 ac->ac_b_ex.fe_group = block_group;
4885 ac->ac_b_ex.fe_start = bit;
4886 ac->ac_b_ex.fe_len = count;
4887 ext4_mb_store_history(ac);
4888 }
4889
4890 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4891 if (err)
4892 goto error_return;
4893 if (metadata && ext4_handle_valid(handle)) {
4894 struct ext4_free_data *new_entry;
4895 /*
4896 * blocks being freed are metadata. these blocks shouldn't
4897 * be used until this transaction is committed
4898 */
4899 new_entry = kmem_cache_alloc(ext4_free_ext_cachep, GFP_NOFS);
4900 new_entry->start_blk = bit;
4901 new_entry->group = block_group;
4902 new_entry->count = count;
4903 new_entry->t_tid = handle->h_transaction->t_tid;
4904 ext4_lock_group(sb, block_group);
4905 mb_clear_bits(sb_bgl_lock(sbi, block_group), bitmap_bh->b_data,
4906 bit, count);
4907 ext4_mb_free_metadata(handle, &e4b, new_entry);
4908 ext4_unlock_group(sb, block_group);
4909 } else {
4910 ext4_lock_group(sb, block_group);
4911 /* need to update group_info->bb_free and bitmap
4912 * with group lock held. generate_buddy look at
4913 * them with group lock_held
4914 */
4915 mb_clear_bits(sb_bgl_lock(sbi, block_group), bitmap_bh->b_data,
4916 bit, count);
4917 mb_free_blocks(inode, &e4b, bit, count);
4918 ext4_mb_return_to_preallocation(inode, &e4b, block, count);
4919 ext4_unlock_group(sb, block_group);
4920 }
4921
4922 spin_lock(sb_bgl_lock(sbi, block_group));
4923 ret = ext4_free_blks_count(sb, gdp) + count;
4924 ext4_free_blks_set(sb, gdp, ret);
4925 gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
4926 spin_unlock(sb_bgl_lock(sbi, block_group));
4927 percpu_counter_add(&sbi->s_freeblocks_counter, count);
4928
4929 if (sbi->s_log_groups_per_flex) {
4930 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4931 spin_lock(sb_bgl_lock(sbi, flex_group));
4932 sbi->s_flex_groups[flex_group].free_blocks += count;
4933 spin_unlock(sb_bgl_lock(sbi, flex_group));
4934 }
4935
4936 ext4_mb_release_desc(&e4b);
4937
4938 *freed += count;
4939
4940 /* We dirtied the bitmap block */
4941 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4942 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4943
4944 /* And the group descriptor block */
4945 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4946 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4947 if (!err)
4948 err = ret;
4949
4950 if (overflow && !err) {
4951 block += count;
4952 count = overflow;
4953 put_bh(bitmap_bh);
4954 goto do_more;
4955 }
4956 sb->s_dirt = 1;
4957 error_return:
4958 brelse(bitmap_bh);
4959 ext4_std_error(sb, err);
4960 if (ac)
4961 kmem_cache_free(ext4_ac_cachep, ac);
4962 return;
4963 }
4964