• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public Licens
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
17  */
18 
19 
20 /*
21  * mballoc.c contains the multiblocks allocation routines
22  */
23 
24 #include "mballoc.h"
25 /*
26  * MUSTDO:
27  *   - test ext4_ext_search_left() and ext4_ext_search_right()
28  *   - search for metadata in few groups
29  *
30  * TODO v4:
31  *   - normalization should take into account whether file is still open
32  *   - discard preallocations if no free space left (policy?)
33  *   - don't normalize tails
34  *   - quota
35  *   - reservation for superuser
36  *
37  * TODO v3:
38  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
39  *   - track min/max extents in each group for better group selection
40  *   - mb_mark_used() may allocate chunk right after splitting buddy
41  *   - tree of groups sorted by number of free blocks
42  *   - error handling
43  */
44 
45 /*
46  * The allocation request involve request for multiple number of blocks
47  * near to the goal(block) value specified.
48  *
49  * During initialization phase of the allocator we decide to use the group
50  * preallocation or inode preallocation depending on the size file. The
51  * size of the file could be the resulting file size we would have after
52  * allocation or the current file size which ever is larger. If the size is
53  * less that sbi->s_mb_stream_request we select the group
54  * preallocation. The default value of s_mb_stream_request is 16
55  * blocks. This can also be tuned via
56  * /proc/fs/ext4/<partition>/stream_req. The value is represented in terms
57  * of number of blocks.
58  *
59  * The main motivation for having small file use group preallocation is to
60  * ensure that we have small file closer in the disk.
61  *
62  * First stage the allocator looks at the inode prealloc list
63  * ext4_inode_info->i_prealloc_list contain list of prealloc spaces for
64  * this particular inode. The inode prealloc space is represented as:
65  *
66  * pa_lstart -> the logical start block for this prealloc space
67  * pa_pstart -> the physical start block for this prealloc space
68  * pa_len    -> lenght for this prealloc space
69  * pa_free   ->  free space available in this prealloc space
70  *
71  * The inode preallocation space is used looking at the _logical_ start
72  * block. If only the logical file block falls within the range of prealloc
73  * space we will consume the particular prealloc space. This make sure that
74  * that the we have contiguous physical blocks representing the file blocks
75  *
76  * The important thing to be noted in case of inode prealloc space is that
77  * we don't modify the values associated to inode prealloc space except
78  * pa_free.
79  *
80  * If we are not able to find blocks in the inode prealloc space and if we
81  * have the group allocation flag set then we look at the locality group
82  * prealloc space. These are per CPU prealloc list repreasented as
83  *
84  * ext4_sb_info.s_locality_groups[smp_processor_id()]
85  *
86  * The reason for having a per cpu locality group is to reduce the contention
87  * between CPUs. It is possible to get scheduled at this point.
88  *
89  * The locality group prealloc space is used looking at whether we have
90  * enough free space (pa_free) withing the prealloc space.
91  *
92  * If we can't allocate blocks via inode prealloc or/and locality group
93  * prealloc then we look at the buddy cache. The buddy cache is represented
94  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
95  * mapped to the buddy and bitmap information regarding different
96  * groups. The buddy information is attached to buddy cache inode so that
97  * we can access them through the page cache. The information regarding
98  * each group is loaded via ext4_mb_load_buddy.  The information involve
99  * block bitmap and buddy information. The information are stored in the
100  * inode as:
101  *
102  *  {                        page                        }
103  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
104  *
105  *
106  * one block each for bitmap and buddy information.  So for each group we
107  * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
108  * blocksize) blocks.  So it can have information regarding groups_per_page
109  * which is blocks_per_page/2
110  *
111  * The buddy cache inode is not stored on disk. The inode is thrown
112  * away when the filesystem is unmounted.
113  *
114  * We look for count number of blocks in the buddy cache. If we were able
115  * to locate that many free blocks we return with additional information
116  * regarding rest of the contiguous physical block available
117  *
118  * Before allocating blocks via buddy cache we normalize the request
119  * blocks. This ensure we ask for more blocks that we needed. The extra
120  * blocks that we get after allocation is added to the respective prealloc
121  * list. In case of inode preallocation we follow a list of heuristics
122  * based on file size. This can be found in ext4_mb_normalize_request. If
123  * we are doing a group prealloc we try to normalize the request to
124  * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is set to
125  * 512 blocks. This can be tuned via
126  * /proc/fs/ext4/<partition/group_prealloc. The value is represented in
127  * terms of number of blocks. If we have mounted the file system with -O
128  * stripe=<value> option the group prealloc request is normalized to the
129  * stripe value (sbi->s_stripe)
130  *
131  * The regular allocator(using the buddy cache) support few tunables.
132  *
133  * /proc/fs/ext4/<partition>/min_to_scan
134  * /proc/fs/ext4/<partition>/max_to_scan
135  * /proc/fs/ext4/<partition>/order2_req
136  *
137  * The regular allocator use buddy scan only if the request len is power of
138  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
139  * value of s_mb_order2_reqs can be tuned via
140  * /proc/fs/ext4/<partition>/order2_req.  If the request len is equal to
141  * stripe size (sbi->s_stripe), we try to search for contigous block in
142  * stripe size. This should result in better allocation on RAID setup. If
143  * not we search in the specific group using bitmap for best extents. The
144  * tunable min_to_scan and max_to_scan controll the behaviour here.
145  * min_to_scan indicate how long the mballoc __must__ look for a best
146  * extent and max_to_scanindicate how long the mballoc __can__ look for a
147  * best extent in the found extents. Searching for the blocks starts with
148  * the group specified as the goal value in allocation context via
149  * ac_g_ex. Each group is first checked based on the criteria whether it
150  * can used for allocation. ext4_mb_good_group explains how the groups are
151  * checked.
152  *
153  * Both the prealloc space are getting populated as above. So for the first
154  * request we will hit the buddy cache which will result in this prealloc
155  * space getting filled. The prealloc space is then later used for the
156  * subsequent request.
157  */
158 
159 /*
160  * mballoc operates on the following data:
161  *  - on-disk bitmap
162  *  - in-core buddy (actually includes buddy and bitmap)
163  *  - preallocation descriptors (PAs)
164  *
165  * there are two types of preallocations:
166  *  - inode
167  *    assiged to specific inode and can be used for this inode only.
168  *    it describes part of inode's space preallocated to specific
169  *    physical blocks. any block from that preallocated can be used
170  *    independent. the descriptor just tracks number of blocks left
171  *    unused. so, before taking some block from descriptor, one must
172  *    make sure corresponded logical block isn't allocated yet. this
173  *    also means that freeing any block within descriptor's range
174  *    must discard all preallocated blocks.
175  *  - locality group
176  *    assigned to specific locality group which does not translate to
177  *    permanent set of inodes: inode can join and leave group. space
178  *    from this type of preallocation can be used for any inode. thus
179  *    it's consumed from the beginning to the end.
180  *
181  * relation between them can be expressed as:
182  *    in-core buddy = on-disk bitmap + preallocation descriptors
183  *
184  * this mean blocks mballoc considers used are:
185  *  - allocated blocks (persistent)
186  *  - preallocated blocks (non-persistent)
187  *
188  * consistency in mballoc world means that at any time a block is either
189  * free or used in ALL structures. notice: "any time" should not be read
190  * literally -- time is discrete and delimited by locks.
191  *
192  *  to keep it simple, we don't use block numbers, instead we count number of
193  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
194  *
195  * all operations can be expressed as:
196  *  - init buddy:			buddy = on-disk + PAs
197  *  - new PA:				buddy += N; PA = N
198  *  - use inode PA:			on-disk += N; PA -= N
199  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
200  *  - use locality group PA		on-disk += N; PA -= N
201  *  - discard locality group PA		buddy -= PA; PA = 0
202  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
203  *        is used in real operation because we can't know actual used
204  *        bits from PA, only from on-disk bitmap
205  *
206  * if we follow this strict logic, then all operations above should be atomic.
207  * given some of them can block, we'd have to use something like semaphores
208  * killing performance on high-end SMP hardware. let's try to relax it using
209  * the following knowledge:
210  *  1) if buddy is referenced, it's already initialized
211  *  2) while block is used in buddy and the buddy is referenced,
212  *     nobody can re-allocate that block
213  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
214  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
215  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
216  *     block
217  *
218  * so, now we're building a concurrency table:
219  *  - init buddy vs.
220  *    - new PA
221  *      blocks for PA are allocated in the buddy, buddy must be referenced
222  *      until PA is linked to allocation group to avoid concurrent buddy init
223  *    - use inode PA
224  *      we need to make sure that either on-disk bitmap or PA has uptodate data
225  *      given (3) we care that PA-=N operation doesn't interfere with init
226  *    - discard inode PA
227  *      the simplest way would be to have buddy initialized by the discard
228  *    - use locality group PA
229  *      again PA-=N must be serialized with init
230  *    - discard locality group PA
231  *      the simplest way would be to have buddy initialized by the discard
232  *  - new PA vs.
233  *    - use inode PA
234  *      i_data_sem serializes them
235  *    - discard inode PA
236  *      discard process must wait until PA isn't used by another process
237  *    - use locality group PA
238  *      some mutex should serialize them
239  *    - discard locality group PA
240  *      discard process must wait until PA isn't used by another process
241  *  - use inode PA
242  *    - use inode PA
243  *      i_data_sem or another mutex should serializes them
244  *    - discard inode PA
245  *      discard process must wait until PA isn't used by another process
246  *    - use locality group PA
247  *      nothing wrong here -- they're different PAs covering different blocks
248  *    - discard locality group PA
249  *      discard process must wait until PA isn't used by another process
250  *
251  * now we're ready to make few consequences:
252  *  - PA is referenced and while it is no discard is possible
253  *  - PA is referenced until block isn't marked in on-disk bitmap
254  *  - PA changes only after on-disk bitmap
255  *  - discard must not compete with init. either init is done before
256  *    any discard or they're serialized somehow
257  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
258  *
259  * a special case when we've used PA to emptiness. no need to modify buddy
260  * in this case, but we should care about concurrent init
261  *
262  */
263 
264  /*
265  * Logic in few words:
266  *
267  *  - allocation:
268  *    load group
269  *    find blocks
270  *    mark bits in on-disk bitmap
271  *    release group
272  *
273  *  - use preallocation:
274  *    find proper PA (per-inode or group)
275  *    load group
276  *    mark bits in on-disk bitmap
277  *    release group
278  *    release PA
279  *
280  *  - free:
281  *    load group
282  *    mark bits in on-disk bitmap
283  *    release group
284  *
285  *  - discard preallocations in group:
286  *    mark PAs deleted
287  *    move them onto local list
288  *    load on-disk bitmap
289  *    load group
290  *    remove PA from object (inode or locality group)
291  *    mark free blocks in-core
292  *
293  *  - discard inode's preallocations:
294  */
295 
296 /*
297  * Locking rules
298  *
299  * Locks:
300  *  - bitlock on a group	(group)
301  *  - object (inode/locality)	(object)
302  *  - per-pa lock		(pa)
303  *
304  * Paths:
305  *  - new pa
306  *    object
307  *    group
308  *
309  *  - find and use pa:
310  *    pa
311  *
312  *  - release consumed pa:
313  *    pa
314  *    group
315  *    object
316  *
317  *  - generate in-core bitmap:
318  *    group
319  *        pa
320  *
321  *  - discard all for given object (inode, locality group):
322  *    object
323  *        pa
324  *    group
325  *
326  *  - discard all for given group:
327  *    group
328  *        pa
329  *    group
330  *        object
331  *
332  */
333 static struct kmem_cache *ext4_pspace_cachep;
334 static struct kmem_cache *ext4_ac_cachep;
335 static struct kmem_cache *ext4_free_ext_cachep;
336 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
337 					ext4_group_t group);
338 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
339 						ext4_group_t group);
340 static int ext4_mb_init_per_dev_proc(struct super_block *sb);
341 static int ext4_mb_destroy_per_dev_proc(struct super_block *sb);
342 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn);
343 
344 
345 
mb_correct_addr_and_bit(int * bit,void * addr)346 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
347 {
348 #if BITS_PER_LONG == 64
349 	*bit += ((unsigned long) addr & 7UL) << 3;
350 	addr = (void *) ((unsigned long) addr & ~7UL);
351 #elif BITS_PER_LONG == 32
352 	*bit += ((unsigned long) addr & 3UL) << 3;
353 	addr = (void *) ((unsigned long) addr & ~3UL);
354 #else
355 #error "how many bits you are?!"
356 #endif
357 	return addr;
358 }
359 
mb_test_bit(int bit,void * addr)360 static inline int mb_test_bit(int bit, void *addr)
361 {
362 	/*
363 	 * ext4_test_bit on architecture like powerpc
364 	 * needs unsigned long aligned address
365 	 */
366 	addr = mb_correct_addr_and_bit(&bit, addr);
367 	return ext4_test_bit(bit, addr);
368 }
369 
mb_set_bit(int bit,void * addr)370 static inline void mb_set_bit(int bit, void *addr)
371 {
372 	addr = mb_correct_addr_and_bit(&bit, addr);
373 	ext4_set_bit(bit, addr);
374 }
375 
mb_set_bit_atomic(spinlock_t * lock,int bit,void * addr)376 static inline void mb_set_bit_atomic(spinlock_t *lock, int bit, void *addr)
377 {
378 	addr = mb_correct_addr_and_bit(&bit, addr);
379 	ext4_set_bit_atomic(lock, bit, addr);
380 }
381 
mb_clear_bit(int bit,void * addr)382 static inline void mb_clear_bit(int bit, void *addr)
383 {
384 	addr = mb_correct_addr_and_bit(&bit, addr);
385 	ext4_clear_bit(bit, addr);
386 }
387 
mb_clear_bit_atomic(spinlock_t * lock,int bit,void * addr)388 static inline void mb_clear_bit_atomic(spinlock_t *lock, int bit, void *addr)
389 {
390 	addr = mb_correct_addr_and_bit(&bit, addr);
391 	ext4_clear_bit_atomic(lock, bit, addr);
392 }
393 
mb_find_next_zero_bit(void * addr,int max,int start)394 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
395 {
396 	int fix = 0, ret, tmpmax;
397 	addr = mb_correct_addr_and_bit(&fix, addr);
398 	tmpmax = max + fix;
399 	start += fix;
400 
401 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
402 	if (ret > max)
403 		return max;
404 	return ret;
405 }
406 
mb_find_next_bit(void * addr,int max,int start)407 static inline int mb_find_next_bit(void *addr, int max, int start)
408 {
409 	int fix = 0, ret, tmpmax;
410 	addr = mb_correct_addr_and_bit(&fix, addr);
411 	tmpmax = max + fix;
412 	start += fix;
413 
414 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
415 	if (ret > max)
416 		return max;
417 	return ret;
418 }
419 
mb_find_buddy(struct ext4_buddy * e4b,int order,int * max)420 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
421 {
422 	char *bb;
423 
424 	BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
425 	BUG_ON(max == NULL);
426 
427 	if (order > e4b->bd_blkbits + 1) {
428 		*max = 0;
429 		return NULL;
430 	}
431 
432 	/* at order 0 we see each particular block */
433 	*max = 1 << (e4b->bd_blkbits + 3);
434 	if (order == 0)
435 		return EXT4_MB_BITMAP(e4b);
436 
437 	bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
438 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
439 
440 	return bb;
441 }
442 
443 #ifdef DOUBLE_CHECK
mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)444 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
445 			   int first, int count)
446 {
447 	int i;
448 	struct super_block *sb = e4b->bd_sb;
449 
450 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
451 		return;
452 	BUG_ON(!ext4_is_group_locked(sb, e4b->bd_group));
453 	for (i = 0; i < count; i++) {
454 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
455 			ext4_fsblk_t blocknr;
456 			blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
457 			blocknr += first + i;
458 			blocknr +=
459 			    le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
460 			ext4_grp_locked_error(sb, e4b->bd_group,
461 				   __func__, "double-free of inode"
462 				   " %lu's block %llu(bit %u in group %u)",
463 				   inode ? inode->i_ino : 0, blocknr,
464 				   first + i, e4b->bd_group);
465 		}
466 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
467 	}
468 }
469 
mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)470 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
471 {
472 	int i;
473 
474 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
475 		return;
476 	BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
477 	for (i = 0; i < count; i++) {
478 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
479 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
480 	}
481 }
482 
mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)483 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
484 {
485 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
486 		unsigned char *b1, *b2;
487 		int i;
488 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
489 		b2 = (unsigned char *) bitmap;
490 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
491 			if (b1[i] != b2[i]) {
492 				printk(KERN_ERR "corruption in group %u "
493 				       "at byte %u(%u): %x in copy != %x "
494 				       "on disk/prealloc\n",
495 				       e4b->bd_group, i, i * 8, b1[i], b2[i]);
496 				BUG();
497 			}
498 		}
499 	}
500 }
501 
502 #else
mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)503 static inline void mb_free_blocks_double(struct inode *inode,
504 				struct ext4_buddy *e4b, int first, int count)
505 {
506 	return;
507 }
mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)508 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
509 						int first, int count)
510 {
511 	return;
512 }
mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)513 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
514 {
515 	return;
516 }
517 #endif
518 
519 #ifdef AGGRESSIVE_CHECK
520 
521 #define MB_CHECK_ASSERT(assert)						\
522 do {									\
523 	if (!(assert)) {						\
524 		printk(KERN_EMERG					\
525 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
526 			function, file, line, # assert);		\
527 		BUG();							\
528 	}								\
529 } while (0)
530 
__mb_check_buddy(struct ext4_buddy * e4b,char * file,const char * function,int line)531 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
532 				const char *function, int line)
533 {
534 	struct super_block *sb = e4b->bd_sb;
535 	int order = e4b->bd_blkbits + 1;
536 	int max;
537 	int max2;
538 	int i;
539 	int j;
540 	int k;
541 	int count;
542 	struct ext4_group_info *grp;
543 	int fragments = 0;
544 	int fstart;
545 	struct list_head *cur;
546 	void *buddy;
547 	void *buddy2;
548 
549 	{
550 		static int mb_check_counter;
551 		if (mb_check_counter++ % 100 != 0)
552 			return 0;
553 	}
554 
555 	while (order > 1) {
556 		buddy = mb_find_buddy(e4b, order, &max);
557 		MB_CHECK_ASSERT(buddy);
558 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
559 		MB_CHECK_ASSERT(buddy2);
560 		MB_CHECK_ASSERT(buddy != buddy2);
561 		MB_CHECK_ASSERT(max * 2 == max2);
562 
563 		count = 0;
564 		for (i = 0; i < max; i++) {
565 
566 			if (mb_test_bit(i, buddy)) {
567 				/* only single bit in buddy2 may be 1 */
568 				if (!mb_test_bit(i << 1, buddy2)) {
569 					MB_CHECK_ASSERT(
570 						mb_test_bit((i<<1)+1, buddy2));
571 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
572 					MB_CHECK_ASSERT(
573 						mb_test_bit(i << 1, buddy2));
574 				}
575 				continue;
576 			}
577 
578 			/* both bits in buddy2 must be 0 */
579 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
580 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
581 
582 			for (j = 0; j < (1 << order); j++) {
583 				k = (i * (1 << order)) + j;
584 				MB_CHECK_ASSERT(
585 					!mb_test_bit(k, EXT4_MB_BITMAP(e4b)));
586 			}
587 			count++;
588 		}
589 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
590 		order--;
591 	}
592 
593 	fstart = -1;
594 	buddy = mb_find_buddy(e4b, 0, &max);
595 	for (i = 0; i < max; i++) {
596 		if (!mb_test_bit(i, buddy)) {
597 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
598 			if (fstart == -1) {
599 				fragments++;
600 				fstart = i;
601 			}
602 			continue;
603 		}
604 		fstart = -1;
605 		/* check used bits only */
606 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
607 			buddy2 = mb_find_buddy(e4b, j, &max2);
608 			k = i >> j;
609 			MB_CHECK_ASSERT(k < max2);
610 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
611 		}
612 	}
613 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
614 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
615 
616 	grp = ext4_get_group_info(sb, e4b->bd_group);
617 	buddy = mb_find_buddy(e4b, 0, &max);
618 	list_for_each(cur, &grp->bb_prealloc_list) {
619 		ext4_group_t groupnr;
620 		struct ext4_prealloc_space *pa;
621 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
622 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
623 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
624 		for (i = 0; i < pa->pa_len; i++)
625 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
626 	}
627 	return 0;
628 }
629 #undef MB_CHECK_ASSERT
630 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
631 					__FILE__, __func__, __LINE__)
632 #else
633 #define mb_check_buddy(e4b)
634 #endif
635 
636 /* FIXME!! need more doc */
ext4_mb_mark_free_simple(struct super_block * sb,void * buddy,unsigned first,int len,struct ext4_group_info * grp)637 static void ext4_mb_mark_free_simple(struct super_block *sb,
638 				void *buddy, unsigned first, int len,
639 					struct ext4_group_info *grp)
640 {
641 	struct ext4_sb_info *sbi = EXT4_SB(sb);
642 	unsigned short min;
643 	unsigned short max;
644 	unsigned short chunk;
645 	unsigned short border;
646 
647 	BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb));
648 
649 	border = 2 << sb->s_blocksize_bits;
650 
651 	while (len > 0) {
652 		/* find how many blocks can be covered since this position */
653 		max = ffs(first | border) - 1;
654 
655 		/* find how many blocks of power 2 we need to mark */
656 		min = fls(len) - 1;
657 
658 		if (max < min)
659 			min = max;
660 		chunk = 1 << min;
661 
662 		/* mark multiblock chunks only */
663 		grp->bb_counters[min]++;
664 		if (min > 0)
665 			mb_clear_bit(first >> min,
666 				     buddy + sbi->s_mb_offsets[min]);
667 
668 		len -= chunk;
669 		first += chunk;
670 	}
671 }
672 
ext4_mb_generate_buddy(struct super_block * sb,void * buddy,void * bitmap,ext4_group_t group)673 static void ext4_mb_generate_buddy(struct super_block *sb,
674 				void *buddy, void *bitmap, ext4_group_t group)
675 {
676 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
677 	unsigned short max = EXT4_BLOCKS_PER_GROUP(sb);
678 	unsigned short i = 0;
679 	unsigned short first;
680 	unsigned short len;
681 	unsigned free = 0;
682 	unsigned fragments = 0;
683 	unsigned long long period = get_cycles();
684 
685 	/* initialize buddy from bitmap which is aggregation
686 	 * of on-disk bitmap and preallocations */
687 	i = mb_find_next_zero_bit(bitmap, max, 0);
688 	grp->bb_first_free = i;
689 	while (i < max) {
690 		fragments++;
691 		first = i;
692 		i = mb_find_next_bit(bitmap, max, i);
693 		len = i - first;
694 		free += len;
695 		if (len > 1)
696 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
697 		else
698 			grp->bb_counters[0]++;
699 		if (i < max)
700 			i = mb_find_next_zero_bit(bitmap, max, i);
701 	}
702 	grp->bb_fragments = fragments;
703 
704 	if (free != grp->bb_free) {
705 		ext4_grp_locked_error(sb, group,  __func__,
706 			"EXT4-fs: group %u: %u blocks in bitmap, %u in gd",
707 			group, free, grp->bb_free);
708 		/*
709 		 * If we intent to continue, we consider group descritor
710 		 * corrupt and update bb_free using bitmap value
711 		 */
712 		grp->bb_free = free;
713 	}
714 
715 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
716 
717 	period = get_cycles() - period;
718 	spin_lock(&EXT4_SB(sb)->s_bal_lock);
719 	EXT4_SB(sb)->s_mb_buddies_generated++;
720 	EXT4_SB(sb)->s_mb_generation_time += period;
721 	spin_unlock(&EXT4_SB(sb)->s_bal_lock);
722 }
723 
724 /* The buddy information is attached the buddy cache inode
725  * for convenience. The information regarding each group
726  * is loaded via ext4_mb_load_buddy. The information involve
727  * block bitmap and buddy information. The information are
728  * stored in the inode as
729  *
730  * {                        page                        }
731  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
732  *
733  *
734  * one block each for bitmap and buddy information.
735  * So for each group we take up 2 blocks. A page can
736  * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize)  blocks.
737  * So it can have information regarding groups_per_page which
738  * is blocks_per_page/2
739  */
740 
ext4_mb_init_cache(struct page * page,char * incore)741 static int ext4_mb_init_cache(struct page *page, char *incore)
742 {
743 	int blocksize;
744 	int blocks_per_page;
745 	int groups_per_page;
746 	int err = 0;
747 	int i;
748 	ext4_group_t first_group;
749 	int first_block;
750 	struct super_block *sb;
751 	struct buffer_head *bhs;
752 	struct buffer_head **bh;
753 	struct inode *inode;
754 	char *data;
755 	char *bitmap;
756 
757 	mb_debug("init page %lu\n", page->index);
758 
759 	inode = page->mapping->host;
760 	sb = inode->i_sb;
761 	blocksize = 1 << inode->i_blkbits;
762 	blocks_per_page = PAGE_CACHE_SIZE / blocksize;
763 
764 	groups_per_page = blocks_per_page >> 1;
765 	if (groups_per_page == 0)
766 		groups_per_page = 1;
767 
768 	/* allocate buffer_heads to read bitmaps */
769 	if (groups_per_page > 1) {
770 		err = -ENOMEM;
771 		i = sizeof(struct buffer_head *) * groups_per_page;
772 		bh = kzalloc(i, GFP_NOFS);
773 		if (bh == NULL)
774 			goto out;
775 	} else
776 		bh = &bhs;
777 
778 	first_group = page->index * blocks_per_page / 2;
779 
780 	/* read all groups the page covers into the cache */
781 	for (i = 0; i < groups_per_page; i++) {
782 		struct ext4_group_desc *desc;
783 
784 		if (first_group + i >= EXT4_SB(sb)->s_groups_count)
785 			break;
786 
787 		err = -EIO;
788 		desc = ext4_get_group_desc(sb, first_group + i, NULL);
789 		if (desc == NULL)
790 			goto out;
791 
792 		err = -ENOMEM;
793 		bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc));
794 		if (bh[i] == NULL)
795 			goto out;
796 
797 		if (bitmap_uptodate(bh[i]))
798 			continue;
799 
800 		lock_buffer(bh[i]);
801 		if (bitmap_uptodate(bh[i])) {
802 			unlock_buffer(bh[i]);
803 			continue;
804 		}
805 		spin_lock(sb_bgl_lock(EXT4_SB(sb), first_group + i));
806 		if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
807 			ext4_init_block_bitmap(sb, bh[i],
808 						first_group + i, desc);
809 			set_bitmap_uptodate(bh[i]);
810 			set_buffer_uptodate(bh[i]);
811 			spin_unlock(sb_bgl_lock(EXT4_SB(sb), first_group + i));
812 			unlock_buffer(bh[i]);
813 			continue;
814 		}
815 		spin_unlock(sb_bgl_lock(EXT4_SB(sb), first_group + i));
816 		if (buffer_uptodate(bh[i])) {
817 			/*
818 			 * if not uninit if bh is uptodate,
819 			 * bitmap is also uptodate
820 			 */
821 			set_bitmap_uptodate(bh[i]);
822 			unlock_buffer(bh[i]);
823 			continue;
824 		}
825 		get_bh(bh[i]);
826 		/*
827 		 * submit the buffer_head for read. We can
828 		 * safely mark the bitmap as uptodate now.
829 		 * We do it here so the bitmap uptodate bit
830 		 * get set with buffer lock held.
831 		 */
832 		set_bitmap_uptodate(bh[i]);
833 		bh[i]->b_end_io = end_buffer_read_sync;
834 		submit_bh(READ, bh[i]);
835 		mb_debug("read bitmap for group %u\n", first_group + i);
836 	}
837 
838 	/* wait for I/O completion */
839 	for (i = 0; i < groups_per_page && bh[i]; i++)
840 		wait_on_buffer(bh[i]);
841 
842 	err = -EIO;
843 	for (i = 0; i < groups_per_page && bh[i]; i++)
844 		if (!buffer_uptodate(bh[i]))
845 			goto out;
846 
847 	err = 0;
848 	first_block = page->index * blocks_per_page;
849 	/* init the page  */
850 	memset(page_address(page), 0xff, PAGE_CACHE_SIZE);
851 	for (i = 0; i < blocks_per_page; i++) {
852 		int group;
853 		struct ext4_group_info *grinfo;
854 
855 		group = (first_block + i) >> 1;
856 		if (group >= EXT4_SB(sb)->s_groups_count)
857 			break;
858 
859 		/*
860 		 * data carry information regarding this
861 		 * particular group in the format specified
862 		 * above
863 		 *
864 		 */
865 		data = page_address(page) + (i * blocksize);
866 		bitmap = bh[group - first_group]->b_data;
867 
868 		/*
869 		 * We place the buddy block and bitmap block
870 		 * close together
871 		 */
872 		if ((first_block + i) & 1) {
873 			/* this is block of buddy */
874 			BUG_ON(incore == NULL);
875 			mb_debug("put buddy for group %u in page %lu/%x\n",
876 				group, page->index, i * blocksize);
877 			grinfo = ext4_get_group_info(sb, group);
878 			grinfo->bb_fragments = 0;
879 			memset(grinfo->bb_counters, 0,
880 			       sizeof(unsigned short)*(sb->s_blocksize_bits+2));
881 			/*
882 			 * incore got set to the group block bitmap below
883 			 */
884 			ext4_lock_group(sb, group);
885 			ext4_mb_generate_buddy(sb, data, incore, group);
886 			ext4_unlock_group(sb, group);
887 			incore = NULL;
888 		} else {
889 			/* this is block of bitmap */
890 			BUG_ON(incore != NULL);
891 			mb_debug("put bitmap for group %u in page %lu/%x\n",
892 				group, page->index, i * blocksize);
893 
894 			/* see comments in ext4_mb_put_pa() */
895 			ext4_lock_group(sb, group);
896 			memcpy(data, bitmap, blocksize);
897 
898 			/* mark all preallocated blks used in in-core bitmap */
899 			ext4_mb_generate_from_pa(sb, data, group);
900 			ext4_mb_generate_from_freelist(sb, data, group);
901 			ext4_unlock_group(sb, group);
902 
903 			/* set incore so that the buddy information can be
904 			 * generated using this
905 			 */
906 			incore = data;
907 		}
908 	}
909 	SetPageUptodate(page);
910 
911 out:
912 	if (bh) {
913 		for (i = 0; i < groups_per_page && bh[i]; i++)
914 			brelse(bh[i]);
915 		if (bh != &bhs)
916 			kfree(bh);
917 	}
918 	return err;
919 }
920 
921 static noinline_for_stack int
ext4_mb_load_buddy(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b)922 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
923 					struct ext4_buddy *e4b)
924 {
925 	int blocks_per_page;
926 	int block;
927 	int pnum;
928 	int poff;
929 	struct page *page;
930 	int ret;
931 	struct ext4_group_info *grp;
932 	struct ext4_sb_info *sbi = EXT4_SB(sb);
933 	struct inode *inode = sbi->s_buddy_cache;
934 
935 	mb_debug("load group %u\n", group);
936 
937 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
938 	grp = ext4_get_group_info(sb, group);
939 
940 	e4b->bd_blkbits = sb->s_blocksize_bits;
941 	e4b->bd_info = ext4_get_group_info(sb, group);
942 	e4b->bd_sb = sb;
943 	e4b->bd_group = group;
944 	e4b->bd_buddy_page = NULL;
945 	e4b->bd_bitmap_page = NULL;
946 	e4b->alloc_semp = &grp->alloc_sem;
947 
948 	/* Take the read lock on the group alloc
949 	 * sem. This would make sure a parallel
950 	 * ext4_mb_init_group happening on other
951 	 * groups mapped by the page is blocked
952 	 * till we are done with allocation
953 	 */
954 	down_read(e4b->alloc_semp);
955 
956 	/*
957 	 * the buddy cache inode stores the block bitmap
958 	 * and buddy information in consecutive blocks.
959 	 * So for each group we need two blocks.
960 	 */
961 	block = group * 2;
962 	pnum = block / blocks_per_page;
963 	poff = block % blocks_per_page;
964 
965 	/* we could use find_or_create_page(), but it locks page
966 	 * what we'd like to avoid in fast path ... */
967 	page = find_get_page(inode->i_mapping, pnum);
968 	if (page == NULL || !PageUptodate(page)) {
969 		if (page)
970 			/*
971 			 * drop the page reference and try
972 			 * to get the page with lock. If we
973 			 * are not uptodate that implies
974 			 * somebody just created the page but
975 			 * is yet to initialize the same. So
976 			 * wait for it to initialize.
977 			 */
978 			page_cache_release(page);
979 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
980 		if (page) {
981 			BUG_ON(page->mapping != inode->i_mapping);
982 			if (!PageUptodate(page)) {
983 				ret = ext4_mb_init_cache(page, NULL);
984 				if (ret) {
985 					unlock_page(page);
986 					goto err;
987 				}
988 				mb_cmp_bitmaps(e4b, page_address(page) +
989 					       (poff * sb->s_blocksize));
990 			}
991 			unlock_page(page);
992 		}
993 	}
994 	if (page == NULL || !PageUptodate(page)) {
995 		ret = -EIO;
996 		goto err;
997 	}
998 	e4b->bd_bitmap_page = page;
999 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1000 	mark_page_accessed(page);
1001 
1002 	block++;
1003 	pnum = block / blocks_per_page;
1004 	poff = block % blocks_per_page;
1005 
1006 	page = find_get_page(inode->i_mapping, pnum);
1007 	if (page == NULL || !PageUptodate(page)) {
1008 		if (page)
1009 			page_cache_release(page);
1010 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1011 		if (page) {
1012 			BUG_ON(page->mapping != inode->i_mapping);
1013 			if (!PageUptodate(page)) {
1014 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1015 				if (ret) {
1016 					unlock_page(page);
1017 					goto err;
1018 				}
1019 			}
1020 			unlock_page(page);
1021 		}
1022 	}
1023 	if (page == NULL || !PageUptodate(page)) {
1024 		ret = -EIO;
1025 		goto err;
1026 	}
1027 	e4b->bd_buddy_page = page;
1028 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1029 	mark_page_accessed(page);
1030 
1031 	BUG_ON(e4b->bd_bitmap_page == NULL);
1032 	BUG_ON(e4b->bd_buddy_page == NULL);
1033 
1034 	return 0;
1035 
1036 err:
1037 	if (e4b->bd_bitmap_page)
1038 		page_cache_release(e4b->bd_bitmap_page);
1039 	if (e4b->bd_buddy_page)
1040 		page_cache_release(e4b->bd_buddy_page);
1041 	e4b->bd_buddy = NULL;
1042 	e4b->bd_bitmap = NULL;
1043 
1044 	/* Done with the buddy cache */
1045 	up_read(e4b->alloc_semp);
1046 	return ret;
1047 }
1048 
ext4_mb_release_desc(struct ext4_buddy * e4b)1049 static void ext4_mb_release_desc(struct ext4_buddy *e4b)
1050 {
1051 	if (e4b->bd_bitmap_page)
1052 		page_cache_release(e4b->bd_bitmap_page);
1053 	if (e4b->bd_buddy_page)
1054 		page_cache_release(e4b->bd_buddy_page);
1055 	/* Done with the buddy cache */
1056 	if (e4b->alloc_semp)
1057 		up_read(e4b->alloc_semp);
1058 }
1059 
1060 
mb_find_order_for_block(struct ext4_buddy * e4b,int block)1061 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1062 {
1063 	int order = 1;
1064 	void *bb;
1065 
1066 	BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
1067 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1068 
1069 	bb = EXT4_MB_BUDDY(e4b);
1070 	while (order <= e4b->bd_blkbits + 1) {
1071 		block = block >> 1;
1072 		if (!mb_test_bit(block, bb)) {
1073 			/* this block is part of buddy of order 'order' */
1074 			return order;
1075 		}
1076 		bb += 1 << (e4b->bd_blkbits - order);
1077 		order++;
1078 	}
1079 	return 0;
1080 }
1081 
mb_clear_bits(spinlock_t * lock,void * bm,int cur,int len)1082 static void mb_clear_bits(spinlock_t *lock, void *bm, int cur, int len)
1083 {
1084 	__u32 *addr;
1085 
1086 	len = cur + len;
1087 	while (cur < len) {
1088 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1089 			/* fast path: clear whole word at once */
1090 			addr = bm + (cur >> 3);
1091 			*addr = 0;
1092 			cur += 32;
1093 			continue;
1094 		}
1095 		if (lock)
1096 			mb_clear_bit_atomic(lock, cur, bm);
1097 		else
1098 			mb_clear_bit(cur, bm);
1099 		cur++;
1100 	}
1101 }
1102 
mb_set_bits(spinlock_t * lock,void * bm,int cur,int len)1103 static void mb_set_bits(spinlock_t *lock, void *bm, int cur, int len)
1104 {
1105 	__u32 *addr;
1106 
1107 	len = cur + len;
1108 	while (cur < len) {
1109 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1110 			/* fast path: set whole word at once */
1111 			addr = bm + (cur >> 3);
1112 			*addr = 0xffffffff;
1113 			cur += 32;
1114 			continue;
1115 		}
1116 		if (lock)
1117 			mb_set_bit_atomic(lock, cur, bm);
1118 		else
1119 			mb_set_bit(cur, bm);
1120 		cur++;
1121 	}
1122 }
1123 
mb_free_blocks(struct inode * inode,struct ext4_buddy * e4b,int first,int count)1124 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1125 			  int first, int count)
1126 {
1127 	int block = 0;
1128 	int max = 0;
1129 	int order;
1130 	void *buddy;
1131 	void *buddy2;
1132 	struct super_block *sb = e4b->bd_sb;
1133 
1134 	BUG_ON(first + count > (sb->s_blocksize << 3));
1135 	BUG_ON(!ext4_is_group_locked(sb, e4b->bd_group));
1136 	mb_check_buddy(e4b);
1137 	mb_free_blocks_double(inode, e4b, first, count);
1138 
1139 	e4b->bd_info->bb_free += count;
1140 	if (first < e4b->bd_info->bb_first_free)
1141 		e4b->bd_info->bb_first_free = first;
1142 
1143 	/* let's maintain fragments counter */
1144 	if (first != 0)
1145 		block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b));
1146 	if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1147 		max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b));
1148 	if (block && max)
1149 		e4b->bd_info->bb_fragments--;
1150 	else if (!block && !max)
1151 		e4b->bd_info->bb_fragments++;
1152 
1153 	/* let's maintain buddy itself */
1154 	while (count-- > 0) {
1155 		block = first++;
1156 		order = 0;
1157 
1158 		if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) {
1159 			ext4_fsblk_t blocknr;
1160 			blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
1161 			blocknr += block;
1162 			blocknr +=
1163 			    le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
1164 			ext4_grp_locked_error(sb, e4b->bd_group,
1165 				   __func__, "double-free of inode"
1166 				   " %lu's block %llu(bit %u in group %u)",
1167 				   inode ? inode->i_ino : 0, blocknr, block,
1168 				   e4b->bd_group);
1169 		}
1170 		mb_clear_bit(block, EXT4_MB_BITMAP(e4b));
1171 		e4b->bd_info->bb_counters[order]++;
1172 
1173 		/* start of the buddy */
1174 		buddy = mb_find_buddy(e4b, order, &max);
1175 
1176 		do {
1177 			block &= ~1UL;
1178 			if (mb_test_bit(block, buddy) ||
1179 					mb_test_bit(block + 1, buddy))
1180 				break;
1181 
1182 			/* both the buddies are free, try to coalesce them */
1183 			buddy2 = mb_find_buddy(e4b, order + 1, &max);
1184 
1185 			if (!buddy2)
1186 				break;
1187 
1188 			if (order > 0) {
1189 				/* for special purposes, we don't set
1190 				 * free bits in bitmap */
1191 				mb_set_bit(block, buddy);
1192 				mb_set_bit(block + 1, buddy);
1193 			}
1194 			e4b->bd_info->bb_counters[order]--;
1195 			e4b->bd_info->bb_counters[order]--;
1196 
1197 			block = block >> 1;
1198 			order++;
1199 			e4b->bd_info->bb_counters[order]++;
1200 
1201 			mb_clear_bit(block, buddy2);
1202 			buddy = buddy2;
1203 		} while (1);
1204 	}
1205 	mb_check_buddy(e4b);
1206 }
1207 
mb_find_extent(struct ext4_buddy * e4b,int order,int block,int needed,struct ext4_free_extent * ex)1208 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
1209 				int needed, struct ext4_free_extent *ex)
1210 {
1211 	int next = block;
1212 	int max;
1213 	int ord;
1214 	void *buddy;
1215 
1216 	BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
1217 	BUG_ON(ex == NULL);
1218 
1219 	buddy = mb_find_buddy(e4b, order, &max);
1220 	BUG_ON(buddy == NULL);
1221 	BUG_ON(block >= max);
1222 	if (mb_test_bit(block, buddy)) {
1223 		ex->fe_len = 0;
1224 		ex->fe_start = 0;
1225 		ex->fe_group = 0;
1226 		return 0;
1227 	}
1228 
1229 	/* FIXME dorp order completely ? */
1230 	if (likely(order == 0)) {
1231 		/* find actual order */
1232 		order = mb_find_order_for_block(e4b, block);
1233 		block = block >> order;
1234 	}
1235 
1236 	ex->fe_len = 1 << order;
1237 	ex->fe_start = block << order;
1238 	ex->fe_group = e4b->bd_group;
1239 
1240 	/* calc difference from given start */
1241 	next = next - ex->fe_start;
1242 	ex->fe_len -= next;
1243 	ex->fe_start += next;
1244 
1245 	while (needed > ex->fe_len &&
1246 	       (buddy = mb_find_buddy(e4b, order, &max))) {
1247 
1248 		if (block + 1 >= max)
1249 			break;
1250 
1251 		next = (block + 1) * (1 << order);
1252 		if (mb_test_bit(next, EXT4_MB_BITMAP(e4b)))
1253 			break;
1254 
1255 		ord = mb_find_order_for_block(e4b, next);
1256 
1257 		order = ord;
1258 		block = next >> order;
1259 		ex->fe_len += 1 << order;
1260 	}
1261 
1262 	BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1263 	return ex->fe_len;
1264 }
1265 
mb_mark_used(struct ext4_buddy * e4b,struct ext4_free_extent * ex)1266 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1267 {
1268 	int ord;
1269 	int mlen = 0;
1270 	int max = 0;
1271 	int cur;
1272 	int start = ex->fe_start;
1273 	int len = ex->fe_len;
1274 	unsigned ret = 0;
1275 	int len0 = len;
1276 	void *buddy;
1277 
1278 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1279 	BUG_ON(e4b->bd_group != ex->fe_group);
1280 	BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
1281 	mb_check_buddy(e4b);
1282 	mb_mark_used_double(e4b, start, len);
1283 
1284 	e4b->bd_info->bb_free -= len;
1285 	if (e4b->bd_info->bb_first_free == start)
1286 		e4b->bd_info->bb_first_free += len;
1287 
1288 	/* let's maintain fragments counter */
1289 	if (start != 0)
1290 		mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b));
1291 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1292 		max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b));
1293 	if (mlen && max)
1294 		e4b->bd_info->bb_fragments++;
1295 	else if (!mlen && !max)
1296 		e4b->bd_info->bb_fragments--;
1297 
1298 	/* let's maintain buddy itself */
1299 	while (len) {
1300 		ord = mb_find_order_for_block(e4b, start);
1301 
1302 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1303 			/* the whole chunk may be allocated at once! */
1304 			mlen = 1 << ord;
1305 			buddy = mb_find_buddy(e4b, ord, &max);
1306 			BUG_ON((start >> ord) >= max);
1307 			mb_set_bit(start >> ord, buddy);
1308 			e4b->bd_info->bb_counters[ord]--;
1309 			start += mlen;
1310 			len -= mlen;
1311 			BUG_ON(len < 0);
1312 			continue;
1313 		}
1314 
1315 		/* store for history */
1316 		if (ret == 0)
1317 			ret = len | (ord << 16);
1318 
1319 		/* we have to split large buddy */
1320 		BUG_ON(ord <= 0);
1321 		buddy = mb_find_buddy(e4b, ord, &max);
1322 		mb_set_bit(start >> ord, buddy);
1323 		e4b->bd_info->bb_counters[ord]--;
1324 
1325 		ord--;
1326 		cur = (start >> ord) & ~1U;
1327 		buddy = mb_find_buddy(e4b, ord, &max);
1328 		mb_clear_bit(cur, buddy);
1329 		mb_clear_bit(cur + 1, buddy);
1330 		e4b->bd_info->bb_counters[ord]++;
1331 		e4b->bd_info->bb_counters[ord]++;
1332 	}
1333 
1334 	mb_set_bits(sb_bgl_lock(EXT4_SB(e4b->bd_sb), ex->fe_group),
1335 			EXT4_MB_BITMAP(e4b), ex->fe_start, len0);
1336 	mb_check_buddy(e4b);
1337 
1338 	return ret;
1339 }
1340 
1341 /*
1342  * Must be called under group lock!
1343  */
ext4_mb_use_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1344 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1345 					struct ext4_buddy *e4b)
1346 {
1347 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1348 	int ret;
1349 
1350 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1351 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1352 
1353 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1354 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1355 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1356 
1357 	/* preallocation can change ac_b_ex, thus we store actually
1358 	 * allocated blocks for history */
1359 	ac->ac_f_ex = ac->ac_b_ex;
1360 
1361 	ac->ac_status = AC_STATUS_FOUND;
1362 	ac->ac_tail = ret & 0xffff;
1363 	ac->ac_buddy = ret >> 16;
1364 
1365 	/*
1366 	 * take the page reference. We want the page to be pinned
1367 	 * so that we don't get a ext4_mb_init_cache_call for this
1368 	 * group until we update the bitmap. That would mean we
1369 	 * double allocate blocks. The reference is dropped
1370 	 * in ext4_mb_release_context
1371 	 */
1372 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
1373 	get_page(ac->ac_bitmap_page);
1374 	ac->ac_buddy_page = e4b->bd_buddy_page;
1375 	get_page(ac->ac_buddy_page);
1376 	/* on allocation we use ac to track the held semaphore */
1377 	ac->alloc_semp =  e4b->alloc_semp;
1378 	e4b->alloc_semp = NULL;
1379 	/* store last allocated for subsequent stream allocation */
1380 	if ((ac->ac_flags & EXT4_MB_HINT_DATA)) {
1381 		spin_lock(&sbi->s_md_lock);
1382 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1383 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1384 		spin_unlock(&sbi->s_md_lock);
1385 	}
1386 }
1387 
1388 /*
1389  * regular allocator, for general purposes allocation
1390  */
1391 
ext4_mb_check_limits(struct ext4_allocation_context * ac,struct ext4_buddy * e4b,int finish_group)1392 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1393 					struct ext4_buddy *e4b,
1394 					int finish_group)
1395 {
1396 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1397 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1398 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1399 	struct ext4_free_extent ex;
1400 	int max;
1401 
1402 	if (ac->ac_status == AC_STATUS_FOUND)
1403 		return;
1404 	/*
1405 	 * We don't want to scan for a whole year
1406 	 */
1407 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
1408 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1409 		ac->ac_status = AC_STATUS_BREAK;
1410 		return;
1411 	}
1412 
1413 	/*
1414 	 * Haven't found good chunk so far, let's continue
1415 	 */
1416 	if (bex->fe_len < gex->fe_len)
1417 		return;
1418 
1419 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1420 			&& bex->fe_group == e4b->bd_group) {
1421 		/* recheck chunk's availability - we don't know
1422 		 * when it was found (within this lock-unlock
1423 		 * period or not) */
1424 		max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
1425 		if (max >= gex->fe_len) {
1426 			ext4_mb_use_best_found(ac, e4b);
1427 			return;
1428 		}
1429 	}
1430 }
1431 
1432 /*
1433  * The routine checks whether found extent is good enough. If it is,
1434  * then the extent gets marked used and flag is set to the context
1435  * to stop scanning. Otherwise, the extent is compared with the
1436  * previous found extent and if new one is better, then it's stored
1437  * in the context. Later, the best found extent will be used, if
1438  * mballoc can't find good enough extent.
1439  *
1440  * FIXME: real allocation policy is to be designed yet!
1441  */
ext4_mb_measure_extent(struct ext4_allocation_context * ac,struct ext4_free_extent * ex,struct ext4_buddy * e4b)1442 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1443 					struct ext4_free_extent *ex,
1444 					struct ext4_buddy *e4b)
1445 {
1446 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1447 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1448 
1449 	BUG_ON(ex->fe_len <= 0);
1450 	BUG_ON(ex->fe_len > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1451 	BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1452 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1453 
1454 	ac->ac_found++;
1455 
1456 	/*
1457 	 * The special case - take what you catch first
1458 	 */
1459 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1460 		*bex = *ex;
1461 		ext4_mb_use_best_found(ac, e4b);
1462 		return;
1463 	}
1464 
1465 	/*
1466 	 * Let's check whether the chuck is good enough
1467 	 */
1468 	if (ex->fe_len == gex->fe_len) {
1469 		*bex = *ex;
1470 		ext4_mb_use_best_found(ac, e4b);
1471 		return;
1472 	}
1473 
1474 	/*
1475 	 * If this is first found extent, just store it in the context
1476 	 */
1477 	if (bex->fe_len == 0) {
1478 		*bex = *ex;
1479 		return;
1480 	}
1481 
1482 	/*
1483 	 * If new found extent is better, store it in the context
1484 	 */
1485 	if (bex->fe_len < gex->fe_len) {
1486 		/* if the request isn't satisfied, any found extent
1487 		 * larger than previous best one is better */
1488 		if (ex->fe_len > bex->fe_len)
1489 			*bex = *ex;
1490 	} else if (ex->fe_len > gex->fe_len) {
1491 		/* if the request is satisfied, then we try to find
1492 		 * an extent that still satisfy the request, but is
1493 		 * smaller than previous one */
1494 		if (ex->fe_len < bex->fe_len)
1495 			*bex = *ex;
1496 	}
1497 
1498 	ext4_mb_check_limits(ac, e4b, 0);
1499 }
1500 
ext4_mb_try_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1501 static int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1502 					struct ext4_buddy *e4b)
1503 {
1504 	struct ext4_free_extent ex = ac->ac_b_ex;
1505 	ext4_group_t group = ex.fe_group;
1506 	int max;
1507 	int err;
1508 
1509 	BUG_ON(ex.fe_len <= 0);
1510 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1511 	if (err)
1512 		return err;
1513 
1514 	ext4_lock_group(ac->ac_sb, group);
1515 	max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
1516 
1517 	if (max > 0) {
1518 		ac->ac_b_ex = ex;
1519 		ext4_mb_use_best_found(ac, e4b);
1520 	}
1521 
1522 	ext4_unlock_group(ac->ac_sb, group);
1523 	ext4_mb_release_desc(e4b);
1524 
1525 	return 0;
1526 }
1527 
ext4_mb_find_by_goal(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1528 static int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1529 				struct ext4_buddy *e4b)
1530 {
1531 	ext4_group_t group = ac->ac_g_ex.fe_group;
1532 	int max;
1533 	int err;
1534 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1535 	struct ext4_super_block *es = sbi->s_es;
1536 	struct ext4_free_extent ex;
1537 
1538 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1539 		return 0;
1540 
1541 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1542 	if (err)
1543 		return err;
1544 
1545 	ext4_lock_group(ac->ac_sb, group);
1546 	max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
1547 			     ac->ac_g_ex.fe_len, &ex);
1548 
1549 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1550 		ext4_fsblk_t start;
1551 
1552 		start = (e4b->bd_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) +
1553 			ex.fe_start + le32_to_cpu(es->s_first_data_block);
1554 		/* use do_div to get remainder (would be 64-bit modulo) */
1555 		if (do_div(start, sbi->s_stripe) == 0) {
1556 			ac->ac_found++;
1557 			ac->ac_b_ex = ex;
1558 			ext4_mb_use_best_found(ac, e4b);
1559 		}
1560 	} else if (max >= ac->ac_g_ex.fe_len) {
1561 		BUG_ON(ex.fe_len <= 0);
1562 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1563 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1564 		ac->ac_found++;
1565 		ac->ac_b_ex = ex;
1566 		ext4_mb_use_best_found(ac, e4b);
1567 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1568 		/* Sometimes, caller may want to merge even small
1569 		 * number of blocks to an existing extent */
1570 		BUG_ON(ex.fe_len <= 0);
1571 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1572 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1573 		ac->ac_found++;
1574 		ac->ac_b_ex = ex;
1575 		ext4_mb_use_best_found(ac, e4b);
1576 	}
1577 	ext4_unlock_group(ac->ac_sb, group);
1578 	ext4_mb_release_desc(e4b);
1579 
1580 	return 0;
1581 }
1582 
1583 /*
1584  * The routine scans buddy structures (not bitmap!) from given order
1585  * to max order and tries to find big enough chunk to satisfy the req
1586  */
ext4_mb_simple_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1587 static void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1588 					struct ext4_buddy *e4b)
1589 {
1590 	struct super_block *sb = ac->ac_sb;
1591 	struct ext4_group_info *grp = e4b->bd_info;
1592 	void *buddy;
1593 	int i;
1594 	int k;
1595 	int max;
1596 
1597 	BUG_ON(ac->ac_2order <= 0);
1598 	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1599 		if (grp->bb_counters[i] == 0)
1600 			continue;
1601 
1602 		buddy = mb_find_buddy(e4b, i, &max);
1603 		BUG_ON(buddy == NULL);
1604 
1605 		k = mb_find_next_zero_bit(buddy, max, 0);
1606 		BUG_ON(k >= max);
1607 
1608 		ac->ac_found++;
1609 
1610 		ac->ac_b_ex.fe_len = 1 << i;
1611 		ac->ac_b_ex.fe_start = k << i;
1612 		ac->ac_b_ex.fe_group = e4b->bd_group;
1613 
1614 		ext4_mb_use_best_found(ac, e4b);
1615 
1616 		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1617 
1618 		if (EXT4_SB(sb)->s_mb_stats)
1619 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1620 
1621 		break;
1622 	}
1623 }
1624 
1625 /*
1626  * The routine scans the group and measures all found extents.
1627  * In order to optimize scanning, caller must pass number of
1628  * free blocks in the group, so the routine can know upper limit.
1629  */
ext4_mb_complex_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1630 static void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1631 					struct ext4_buddy *e4b)
1632 {
1633 	struct super_block *sb = ac->ac_sb;
1634 	void *bitmap = EXT4_MB_BITMAP(e4b);
1635 	struct ext4_free_extent ex;
1636 	int i;
1637 	int free;
1638 
1639 	free = e4b->bd_info->bb_free;
1640 	BUG_ON(free <= 0);
1641 
1642 	i = e4b->bd_info->bb_first_free;
1643 
1644 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1645 		i = mb_find_next_zero_bit(bitmap,
1646 						EXT4_BLOCKS_PER_GROUP(sb), i);
1647 		if (i >= EXT4_BLOCKS_PER_GROUP(sb)) {
1648 			/*
1649 			 * IF we have corrupt bitmap, we won't find any
1650 			 * free blocks even though group info says we
1651 			 * we have free blocks
1652 			 */
1653 			ext4_grp_locked_error(sb, e4b->bd_group,
1654 					__func__, "%d free blocks as per "
1655 					"group info. But bitmap says 0",
1656 					free);
1657 			break;
1658 		}
1659 
1660 		mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
1661 		BUG_ON(ex.fe_len <= 0);
1662 		if (free < ex.fe_len) {
1663 			ext4_grp_locked_error(sb, e4b->bd_group,
1664 					__func__, "%d free blocks as per "
1665 					"group info. But got %d blocks",
1666 					free, ex.fe_len);
1667 			/*
1668 			 * The number of free blocks differs. This mostly
1669 			 * indicate that the bitmap is corrupt. So exit
1670 			 * without claiming the space.
1671 			 */
1672 			break;
1673 		}
1674 
1675 		ext4_mb_measure_extent(ac, &ex, e4b);
1676 
1677 		i += ex.fe_len;
1678 		free -= ex.fe_len;
1679 	}
1680 
1681 	ext4_mb_check_limits(ac, e4b, 1);
1682 }
1683 
1684 /*
1685  * This is a special case for storages like raid5
1686  * we try to find stripe-aligned chunks for stripe-size requests
1687  * XXX should do so at least for multiples of stripe size as well
1688  */
ext4_mb_scan_aligned(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1689 static void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1690 				 struct ext4_buddy *e4b)
1691 {
1692 	struct super_block *sb = ac->ac_sb;
1693 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1694 	void *bitmap = EXT4_MB_BITMAP(e4b);
1695 	struct ext4_free_extent ex;
1696 	ext4_fsblk_t first_group_block;
1697 	ext4_fsblk_t a;
1698 	ext4_grpblk_t i;
1699 	int max;
1700 
1701 	BUG_ON(sbi->s_stripe == 0);
1702 
1703 	/* find first stripe-aligned block in group */
1704 	first_group_block = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb)
1705 		+ le32_to_cpu(sbi->s_es->s_first_data_block);
1706 	a = first_group_block + sbi->s_stripe - 1;
1707 	do_div(a, sbi->s_stripe);
1708 	i = (a * sbi->s_stripe) - first_group_block;
1709 
1710 	while (i < EXT4_BLOCKS_PER_GROUP(sb)) {
1711 		if (!mb_test_bit(i, bitmap)) {
1712 			max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
1713 			if (max >= sbi->s_stripe) {
1714 				ac->ac_found++;
1715 				ac->ac_b_ex = ex;
1716 				ext4_mb_use_best_found(ac, e4b);
1717 				break;
1718 			}
1719 		}
1720 		i += sbi->s_stripe;
1721 	}
1722 }
1723 
ext4_mb_good_group(struct ext4_allocation_context * ac,ext4_group_t group,int cr)1724 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1725 				ext4_group_t group, int cr)
1726 {
1727 	unsigned free, fragments;
1728 	unsigned i, bits;
1729 	struct ext4_group_desc *desc;
1730 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1731 
1732 	BUG_ON(cr < 0 || cr >= 4);
1733 	BUG_ON(EXT4_MB_GRP_NEED_INIT(grp));
1734 
1735 	free = grp->bb_free;
1736 	fragments = grp->bb_fragments;
1737 	if (free == 0)
1738 		return 0;
1739 	if (fragments == 0)
1740 		return 0;
1741 
1742 	switch (cr) {
1743 	case 0:
1744 		BUG_ON(ac->ac_2order == 0);
1745 		/* If this group is uninitialized, skip it initially */
1746 		desc = ext4_get_group_desc(ac->ac_sb, group, NULL);
1747 		if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))
1748 			return 0;
1749 
1750 		bits = ac->ac_sb->s_blocksize_bits + 1;
1751 		for (i = ac->ac_2order; i <= bits; i++)
1752 			if (grp->bb_counters[i] > 0)
1753 				return 1;
1754 		break;
1755 	case 1:
1756 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
1757 			return 1;
1758 		break;
1759 	case 2:
1760 		if (free >= ac->ac_g_ex.fe_len)
1761 			return 1;
1762 		break;
1763 	case 3:
1764 		return 1;
1765 	default:
1766 		BUG();
1767 	}
1768 
1769 	return 0;
1770 }
1771 
1772 /*
1773  * lock the group_info alloc_sem of all the groups
1774  * belonging to the same buddy cache page. This
1775  * make sure other parallel operation on the buddy
1776  * cache doesn't happen  whild holding the buddy cache
1777  * lock
1778  */
ext4_mb_get_buddy_cache_lock(struct super_block * sb,ext4_group_t group)1779 int ext4_mb_get_buddy_cache_lock(struct super_block *sb, ext4_group_t group)
1780 {
1781 	int i;
1782 	int block, pnum;
1783 	int blocks_per_page;
1784 	int groups_per_page;
1785 	ext4_group_t first_group;
1786 	struct ext4_group_info *grp;
1787 
1788 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1789 	/*
1790 	 * the buddy cache inode stores the block bitmap
1791 	 * and buddy information in consecutive blocks.
1792 	 * So for each group we need two blocks.
1793 	 */
1794 	block = group * 2;
1795 	pnum = block / blocks_per_page;
1796 	first_group = pnum * blocks_per_page / 2;
1797 
1798 	groups_per_page = blocks_per_page >> 1;
1799 	if (groups_per_page == 0)
1800 		groups_per_page = 1;
1801 	/* read all groups the page covers into the cache */
1802 	for (i = 0; i < groups_per_page; i++) {
1803 
1804 		if ((first_group + i) >= EXT4_SB(sb)->s_groups_count)
1805 			break;
1806 		grp = ext4_get_group_info(sb, first_group + i);
1807 		/* take all groups write allocation
1808 		 * semaphore. This make sure there is
1809 		 * no block allocation going on in any
1810 		 * of that groups
1811 		 */
1812 		down_write_nested(&grp->alloc_sem, i);
1813 	}
1814 	return i;
1815 }
1816 
ext4_mb_put_buddy_cache_lock(struct super_block * sb,ext4_group_t group,int locked_group)1817 void ext4_mb_put_buddy_cache_lock(struct super_block *sb,
1818 					ext4_group_t group, int locked_group)
1819 {
1820 	int i;
1821 	int block, pnum;
1822 	int blocks_per_page;
1823 	ext4_group_t first_group;
1824 	struct ext4_group_info *grp;
1825 
1826 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1827 	/*
1828 	 * the buddy cache inode stores the block bitmap
1829 	 * and buddy information in consecutive blocks.
1830 	 * So for each group we need two blocks.
1831 	 */
1832 	block = group * 2;
1833 	pnum = block / blocks_per_page;
1834 	first_group = pnum * blocks_per_page / 2;
1835 	/* release locks on all the groups */
1836 	for (i = 0; i < locked_group; i++) {
1837 
1838 		grp = ext4_get_group_info(sb, first_group + i);
1839 		/* take all groups write allocation
1840 		 * semaphore. This make sure there is
1841 		 * no block allocation going on in any
1842 		 * of that groups
1843 		 */
1844 		up_write(&grp->alloc_sem);
1845 	}
1846 
1847 }
1848 
ext4_mb_init_group(struct super_block * sb,ext4_group_t group)1849 static int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1850 {
1851 
1852 	int ret;
1853 	void *bitmap;
1854 	int blocks_per_page;
1855 	int block, pnum, poff;
1856 	int num_grp_locked = 0;
1857 	struct ext4_group_info *this_grp;
1858 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1859 	struct inode *inode = sbi->s_buddy_cache;
1860 	struct page *page = NULL, *bitmap_page = NULL;
1861 
1862 	mb_debug("init group %lu\n", group);
1863 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1864 	this_grp = ext4_get_group_info(sb, group);
1865 	/*
1866 	 * This ensures we don't add group
1867 	 * to this buddy cache via resize
1868 	 */
1869 	num_grp_locked =  ext4_mb_get_buddy_cache_lock(sb, group);
1870 	if (!EXT4_MB_GRP_NEED_INIT(this_grp)) {
1871 		/*
1872 		 * somebody initialized the group
1873 		 * return without doing anything
1874 		 */
1875 		ret = 0;
1876 		goto err;
1877 	}
1878 	/*
1879 	 * the buddy cache inode stores the block bitmap
1880 	 * and buddy information in consecutive blocks.
1881 	 * So for each group we need two blocks.
1882 	 */
1883 	block = group * 2;
1884 	pnum = block / blocks_per_page;
1885 	poff = block % blocks_per_page;
1886 	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1887 	if (page) {
1888 		BUG_ON(page->mapping != inode->i_mapping);
1889 		ret = ext4_mb_init_cache(page, NULL);
1890 		if (ret) {
1891 			unlock_page(page);
1892 			goto err;
1893 		}
1894 		unlock_page(page);
1895 	}
1896 	if (page == NULL || !PageUptodate(page)) {
1897 		ret = -EIO;
1898 		goto err;
1899 	}
1900 	mark_page_accessed(page);
1901 	bitmap_page = page;
1902 	bitmap = page_address(page) + (poff * sb->s_blocksize);
1903 
1904 	/* init buddy cache */
1905 	block++;
1906 	pnum = block / blocks_per_page;
1907 	poff = block % blocks_per_page;
1908 	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1909 	if (page == bitmap_page) {
1910 		/*
1911 		 * If both the bitmap and buddy are in
1912 		 * the same page we don't need to force
1913 		 * init the buddy
1914 		 */
1915 		unlock_page(page);
1916 	} else if (page) {
1917 		BUG_ON(page->mapping != inode->i_mapping);
1918 		ret = ext4_mb_init_cache(page, bitmap);
1919 		if (ret) {
1920 			unlock_page(page);
1921 			goto err;
1922 		}
1923 		unlock_page(page);
1924 	}
1925 	if (page == NULL || !PageUptodate(page)) {
1926 		ret = -EIO;
1927 		goto err;
1928 	}
1929 	mark_page_accessed(page);
1930 err:
1931 	ext4_mb_put_buddy_cache_lock(sb, group, num_grp_locked);
1932 	if (bitmap_page)
1933 		page_cache_release(bitmap_page);
1934 	if (page)
1935 		page_cache_release(page);
1936 	return ret;
1937 }
1938 
1939 static noinline_for_stack int
ext4_mb_regular_allocator(struct ext4_allocation_context * ac)1940 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1941 {
1942 	ext4_group_t group;
1943 	ext4_group_t i;
1944 	int cr;
1945 	int err = 0;
1946 	int bsbits;
1947 	struct ext4_sb_info *sbi;
1948 	struct super_block *sb;
1949 	struct ext4_buddy e4b;
1950 	loff_t size, isize;
1951 
1952 	sb = ac->ac_sb;
1953 	sbi = EXT4_SB(sb);
1954 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1955 
1956 	/* first, try the goal */
1957 	err = ext4_mb_find_by_goal(ac, &e4b);
1958 	if (err || ac->ac_status == AC_STATUS_FOUND)
1959 		goto out;
1960 
1961 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
1962 		goto out;
1963 
1964 	/*
1965 	 * ac->ac2_order is set only if the fe_len is a power of 2
1966 	 * if ac2_order is set we also set criteria to 0 so that we
1967 	 * try exact allocation using buddy.
1968 	 */
1969 	i = fls(ac->ac_g_ex.fe_len);
1970 	ac->ac_2order = 0;
1971 	/*
1972 	 * We search using buddy data only if the order of the request
1973 	 * is greater than equal to the sbi_s_mb_order2_reqs
1974 	 * You can tune it via /proc/fs/ext4/<partition>/order2_req
1975 	 */
1976 	if (i >= sbi->s_mb_order2_reqs) {
1977 		/*
1978 		 * This should tell if fe_len is exactly power of 2
1979 		 */
1980 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
1981 			ac->ac_2order = i - 1;
1982 	}
1983 
1984 	bsbits = ac->ac_sb->s_blocksize_bits;
1985 	/* if stream allocation is enabled, use global goal */
1986 	size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
1987 	isize = i_size_read(ac->ac_inode) >> bsbits;
1988 	if (size < isize)
1989 		size = isize;
1990 
1991 	if (size < sbi->s_mb_stream_request &&
1992 			(ac->ac_flags & EXT4_MB_HINT_DATA)) {
1993 		/* TBD: may be hot point */
1994 		spin_lock(&sbi->s_md_lock);
1995 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
1996 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
1997 		spin_unlock(&sbi->s_md_lock);
1998 	}
1999 	/* Let's just scan groups to find more-less suitable blocks */
2000 	cr = ac->ac_2order ? 0 : 1;
2001 	/*
2002 	 * cr == 0 try to get exact allocation,
2003 	 * cr == 3  try to get anything
2004 	 */
2005 repeat:
2006 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2007 		ac->ac_criteria = cr;
2008 		/*
2009 		 * searching for the right group start
2010 		 * from the goal value specified
2011 		 */
2012 		group = ac->ac_g_ex.fe_group;
2013 
2014 		for (i = 0; i < EXT4_SB(sb)->s_groups_count; group++, i++) {
2015 			struct ext4_group_info *grp;
2016 			struct ext4_group_desc *desc;
2017 
2018 			if (group == EXT4_SB(sb)->s_groups_count)
2019 				group = 0;
2020 
2021 			/* quick check to skip empty groups */
2022 			grp = ext4_get_group_info(sb, group);
2023 			if (grp->bb_free == 0)
2024 				continue;
2025 
2026 			/*
2027 			 * if the group is already init we check whether it is
2028 			 * a good group and if not we don't load the buddy
2029 			 */
2030 			if (EXT4_MB_GRP_NEED_INIT(grp)) {
2031 				/*
2032 				 * we need full data about the group
2033 				 * to make a good selection
2034 				 */
2035 				err = ext4_mb_init_group(sb, group);
2036 				if (err)
2037 					goto out;
2038 			}
2039 
2040 			/*
2041 			 * If the particular group doesn't satisfy our
2042 			 * criteria we continue with the next group
2043 			 */
2044 			if (!ext4_mb_good_group(ac, group, cr))
2045 				continue;
2046 
2047 			err = ext4_mb_load_buddy(sb, group, &e4b);
2048 			if (err)
2049 				goto out;
2050 
2051 			ext4_lock_group(sb, group);
2052 			if (!ext4_mb_good_group(ac, group, cr)) {
2053 				/* someone did allocation from this group */
2054 				ext4_unlock_group(sb, group);
2055 				ext4_mb_release_desc(&e4b);
2056 				continue;
2057 			}
2058 
2059 			ac->ac_groups_scanned++;
2060 			desc = ext4_get_group_desc(sb, group, NULL);
2061 			if (cr == 0 || (desc->bg_flags &
2062 					cpu_to_le16(EXT4_BG_BLOCK_UNINIT) &&
2063 					ac->ac_2order != 0))
2064 				ext4_mb_simple_scan_group(ac, &e4b);
2065 			else if (cr == 1 &&
2066 					ac->ac_g_ex.fe_len == sbi->s_stripe)
2067 				ext4_mb_scan_aligned(ac, &e4b);
2068 			else
2069 				ext4_mb_complex_scan_group(ac, &e4b);
2070 
2071 			ext4_unlock_group(sb, group);
2072 			ext4_mb_release_desc(&e4b);
2073 
2074 			if (ac->ac_status != AC_STATUS_CONTINUE)
2075 				break;
2076 		}
2077 	}
2078 
2079 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2080 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2081 		/*
2082 		 * We've been searching too long. Let's try to allocate
2083 		 * the best chunk we've found so far
2084 		 */
2085 
2086 		ext4_mb_try_best_found(ac, &e4b);
2087 		if (ac->ac_status != AC_STATUS_FOUND) {
2088 			/*
2089 			 * Someone more lucky has already allocated it.
2090 			 * The only thing we can do is just take first
2091 			 * found block(s)
2092 			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2093 			 */
2094 			ac->ac_b_ex.fe_group = 0;
2095 			ac->ac_b_ex.fe_start = 0;
2096 			ac->ac_b_ex.fe_len = 0;
2097 			ac->ac_status = AC_STATUS_CONTINUE;
2098 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2099 			cr = 3;
2100 			atomic_inc(&sbi->s_mb_lost_chunks);
2101 			goto repeat;
2102 		}
2103 	}
2104 out:
2105 	return err;
2106 }
2107 
2108 #ifdef EXT4_MB_HISTORY
2109 struct ext4_mb_proc_session {
2110 	struct ext4_mb_history *history;
2111 	struct super_block *sb;
2112 	int start;
2113 	int max;
2114 };
2115 
ext4_mb_history_skip_empty(struct ext4_mb_proc_session * s,struct ext4_mb_history * hs,int first)2116 static void *ext4_mb_history_skip_empty(struct ext4_mb_proc_session *s,
2117 					struct ext4_mb_history *hs,
2118 					int first)
2119 {
2120 	if (hs == s->history + s->max)
2121 		hs = s->history;
2122 	if (!first && hs == s->history + s->start)
2123 		return NULL;
2124 	while (hs->orig.fe_len == 0) {
2125 		hs++;
2126 		if (hs == s->history + s->max)
2127 			hs = s->history;
2128 		if (hs == s->history + s->start)
2129 			return NULL;
2130 	}
2131 	return hs;
2132 }
2133 
ext4_mb_seq_history_start(struct seq_file * seq,loff_t * pos)2134 static void *ext4_mb_seq_history_start(struct seq_file *seq, loff_t *pos)
2135 {
2136 	struct ext4_mb_proc_session *s = seq->private;
2137 	struct ext4_mb_history *hs;
2138 	int l = *pos;
2139 
2140 	if (l == 0)
2141 		return SEQ_START_TOKEN;
2142 	hs = ext4_mb_history_skip_empty(s, s->history + s->start, 1);
2143 	if (!hs)
2144 		return NULL;
2145 	while (--l && (hs = ext4_mb_history_skip_empty(s, ++hs, 0)) != NULL);
2146 	return hs;
2147 }
2148 
ext4_mb_seq_history_next(struct seq_file * seq,void * v,loff_t * pos)2149 static void *ext4_mb_seq_history_next(struct seq_file *seq, void *v,
2150 				      loff_t *pos)
2151 {
2152 	struct ext4_mb_proc_session *s = seq->private;
2153 	struct ext4_mb_history *hs = v;
2154 
2155 	++*pos;
2156 	if (v == SEQ_START_TOKEN)
2157 		return ext4_mb_history_skip_empty(s, s->history + s->start, 1);
2158 	else
2159 		return ext4_mb_history_skip_empty(s, ++hs, 0);
2160 }
2161 
ext4_mb_seq_history_show(struct seq_file * seq,void * v)2162 static int ext4_mb_seq_history_show(struct seq_file *seq, void *v)
2163 {
2164 	char buf[25], buf2[25], buf3[25], *fmt;
2165 	struct ext4_mb_history *hs = v;
2166 
2167 	if (v == SEQ_START_TOKEN) {
2168 		seq_printf(seq, "%-5s %-8s %-23s %-23s %-23s %-5s "
2169 				"%-5s %-2s %-5s %-5s %-5s %-6s\n",
2170 			  "pid", "inode", "original", "goal", "result", "found",
2171 			   "grps", "cr", "flags", "merge", "tail", "broken");
2172 		return 0;
2173 	}
2174 
2175 	if (hs->op == EXT4_MB_HISTORY_ALLOC) {
2176 		fmt = "%-5u %-8u %-23s %-23s %-23s %-5u %-5u %-2u "
2177 			"%-5u %-5s %-5u %-6u\n";
2178 		sprintf(buf2, "%u/%d/%u@%u", hs->result.fe_group,
2179 			hs->result.fe_start, hs->result.fe_len,
2180 			hs->result.fe_logical);
2181 		sprintf(buf, "%u/%d/%u@%u", hs->orig.fe_group,
2182 			hs->orig.fe_start, hs->orig.fe_len,
2183 			hs->orig.fe_logical);
2184 		sprintf(buf3, "%u/%d/%u@%u", hs->goal.fe_group,
2185 			hs->goal.fe_start, hs->goal.fe_len,
2186 			hs->goal.fe_logical);
2187 		seq_printf(seq, fmt, hs->pid, hs->ino, buf, buf3, buf2,
2188 				hs->found, hs->groups, hs->cr, hs->flags,
2189 				hs->merged ? "M" : "", hs->tail,
2190 				hs->buddy ? 1 << hs->buddy : 0);
2191 	} else if (hs->op == EXT4_MB_HISTORY_PREALLOC) {
2192 		fmt = "%-5u %-8u %-23s %-23s %-23s\n";
2193 		sprintf(buf2, "%u/%d/%u@%u", hs->result.fe_group,
2194 			hs->result.fe_start, hs->result.fe_len,
2195 			hs->result.fe_logical);
2196 		sprintf(buf, "%u/%d/%u@%u", hs->orig.fe_group,
2197 			hs->orig.fe_start, hs->orig.fe_len,
2198 			hs->orig.fe_logical);
2199 		seq_printf(seq, fmt, hs->pid, hs->ino, buf, "", buf2);
2200 	} else if (hs->op == EXT4_MB_HISTORY_DISCARD) {
2201 		sprintf(buf2, "%u/%d/%u", hs->result.fe_group,
2202 			hs->result.fe_start, hs->result.fe_len);
2203 		seq_printf(seq, "%-5u %-8u %-23s discard\n",
2204 				hs->pid, hs->ino, buf2);
2205 	} else if (hs->op == EXT4_MB_HISTORY_FREE) {
2206 		sprintf(buf2, "%u/%d/%u", hs->result.fe_group,
2207 			hs->result.fe_start, hs->result.fe_len);
2208 		seq_printf(seq, "%-5u %-8u %-23s free\n",
2209 				hs->pid, hs->ino, buf2);
2210 	}
2211 	return 0;
2212 }
2213 
ext4_mb_seq_history_stop(struct seq_file * seq,void * v)2214 static void ext4_mb_seq_history_stop(struct seq_file *seq, void *v)
2215 {
2216 }
2217 
2218 static struct seq_operations ext4_mb_seq_history_ops = {
2219 	.start  = ext4_mb_seq_history_start,
2220 	.next   = ext4_mb_seq_history_next,
2221 	.stop   = ext4_mb_seq_history_stop,
2222 	.show   = ext4_mb_seq_history_show,
2223 };
2224 
ext4_mb_seq_history_open(struct inode * inode,struct file * file)2225 static int ext4_mb_seq_history_open(struct inode *inode, struct file *file)
2226 {
2227 	struct super_block *sb = PDE(inode)->data;
2228 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2229 	struct ext4_mb_proc_session *s;
2230 	int rc;
2231 	int size;
2232 
2233 	if (unlikely(sbi->s_mb_history == NULL))
2234 		return -ENOMEM;
2235 	s = kmalloc(sizeof(*s), GFP_KERNEL);
2236 	if (s == NULL)
2237 		return -ENOMEM;
2238 	s->sb = sb;
2239 	size = sizeof(struct ext4_mb_history) * sbi->s_mb_history_max;
2240 	s->history = kmalloc(size, GFP_KERNEL);
2241 	if (s->history == NULL) {
2242 		kfree(s);
2243 		return -ENOMEM;
2244 	}
2245 
2246 	spin_lock(&sbi->s_mb_history_lock);
2247 	memcpy(s->history, sbi->s_mb_history, size);
2248 	s->max = sbi->s_mb_history_max;
2249 	s->start = sbi->s_mb_history_cur % s->max;
2250 	spin_unlock(&sbi->s_mb_history_lock);
2251 
2252 	rc = seq_open(file, &ext4_mb_seq_history_ops);
2253 	if (rc == 0) {
2254 		struct seq_file *m = (struct seq_file *)file->private_data;
2255 		m->private = s;
2256 	} else {
2257 		kfree(s->history);
2258 		kfree(s);
2259 	}
2260 	return rc;
2261 
2262 }
2263 
ext4_mb_seq_history_release(struct inode * inode,struct file * file)2264 static int ext4_mb_seq_history_release(struct inode *inode, struct file *file)
2265 {
2266 	struct seq_file *seq = (struct seq_file *)file->private_data;
2267 	struct ext4_mb_proc_session *s = seq->private;
2268 	kfree(s->history);
2269 	kfree(s);
2270 	return seq_release(inode, file);
2271 }
2272 
ext4_mb_seq_history_write(struct file * file,const char __user * buffer,size_t count,loff_t * ppos)2273 static ssize_t ext4_mb_seq_history_write(struct file *file,
2274 				const char __user *buffer,
2275 				size_t count, loff_t *ppos)
2276 {
2277 	struct seq_file *seq = (struct seq_file *)file->private_data;
2278 	struct ext4_mb_proc_session *s = seq->private;
2279 	struct super_block *sb = s->sb;
2280 	char str[32];
2281 	int value;
2282 
2283 	if (count >= sizeof(str)) {
2284 		printk(KERN_ERR "EXT4-fs: %s string too long, max %u bytes\n",
2285 				"mb_history", (int)sizeof(str));
2286 		return -EOVERFLOW;
2287 	}
2288 
2289 	if (copy_from_user(str, buffer, count))
2290 		return -EFAULT;
2291 
2292 	value = simple_strtol(str, NULL, 0);
2293 	if (value < 0)
2294 		return -ERANGE;
2295 	EXT4_SB(sb)->s_mb_history_filter = value;
2296 
2297 	return count;
2298 }
2299 
2300 static struct file_operations ext4_mb_seq_history_fops = {
2301 	.owner		= THIS_MODULE,
2302 	.open		= ext4_mb_seq_history_open,
2303 	.read		= seq_read,
2304 	.write		= ext4_mb_seq_history_write,
2305 	.llseek		= seq_lseek,
2306 	.release	= ext4_mb_seq_history_release,
2307 };
2308 
ext4_mb_seq_groups_start(struct seq_file * seq,loff_t * pos)2309 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2310 {
2311 	struct super_block *sb = seq->private;
2312 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2313 	ext4_group_t group;
2314 
2315 	if (*pos < 0 || *pos >= sbi->s_groups_count)
2316 		return NULL;
2317 
2318 	group = *pos + 1;
2319 	return (void *) ((unsigned long) group);
2320 }
2321 
ext4_mb_seq_groups_next(struct seq_file * seq,void * v,loff_t * pos)2322 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2323 {
2324 	struct super_block *sb = seq->private;
2325 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2326 	ext4_group_t group;
2327 
2328 	++*pos;
2329 	if (*pos < 0 || *pos >= sbi->s_groups_count)
2330 		return NULL;
2331 	group = *pos + 1;
2332 	return (void *) ((unsigned long) group);
2333 }
2334 
ext4_mb_seq_groups_show(struct seq_file * seq,void * v)2335 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2336 {
2337 	struct super_block *sb = seq->private;
2338 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2339 	int i;
2340 	int err;
2341 	struct ext4_buddy e4b;
2342 	struct sg {
2343 		struct ext4_group_info info;
2344 		unsigned short counters[16];
2345 	} sg;
2346 
2347 	group--;
2348 	if (group == 0)
2349 		seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2350 				"[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2351 				  "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2352 			   "group", "free", "frags", "first",
2353 			   "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2354 			   "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2355 
2356 	i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2357 		sizeof(struct ext4_group_info);
2358 	err = ext4_mb_load_buddy(sb, group, &e4b);
2359 	if (err) {
2360 		seq_printf(seq, "#%-5u: I/O error\n", group);
2361 		return 0;
2362 	}
2363 	ext4_lock_group(sb, group);
2364 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2365 	ext4_unlock_group(sb, group);
2366 	ext4_mb_release_desc(&e4b);
2367 
2368 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2369 			sg.info.bb_fragments, sg.info.bb_first_free);
2370 	for (i = 0; i <= 13; i++)
2371 		seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2372 				sg.info.bb_counters[i] : 0);
2373 	seq_printf(seq, " ]\n");
2374 
2375 	return 0;
2376 }
2377 
ext4_mb_seq_groups_stop(struct seq_file * seq,void * v)2378 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2379 {
2380 }
2381 
2382 static struct seq_operations ext4_mb_seq_groups_ops = {
2383 	.start  = ext4_mb_seq_groups_start,
2384 	.next   = ext4_mb_seq_groups_next,
2385 	.stop   = ext4_mb_seq_groups_stop,
2386 	.show   = ext4_mb_seq_groups_show,
2387 };
2388 
ext4_mb_seq_groups_open(struct inode * inode,struct file * file)2389 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2390 {
2391 	struct super_block *sb = PDE(inode)->data;
2392 	int rc;
2393 
2394 	rc = seq_open(file, &ext4_mb_seq_groups_ops);
2395 	if (rc == 0) {
2396 		struct seq_file *m = (struct seq_file *)file->private_data;
2397 		m->private = sb;
2398 	}
2399 	return rc;
2400 
2401 }
2402 
2403 static struct file_operations ext4_mb_seq_groups_fops = {
2404 	.owner		= THIS_MODULE,
2405 	.open		= ext4_mb_seq_groups_open,
2406 	.read		= seq_read,
2407 	.llseek		= seq_lseek,
2408 	.release	= seq_release,
2409 };
2410 
ext4_mb_history_release(struct super_block * sb)2411 static void ext4_mb_history_release(struct super_block *sb)
2412 {
2413 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2414 
2415 	if (sbi->s_proc != NULL) {
2416 		remove_proc_entry("mb_groups", sbi->s_proc);
2417 		remove_proc_entry("mb_history", sbi->s_proc);
2418 	}
2419 	kfree(sbi->s_mb_history);
2420 }
2421 
ext4_mb_history_init(struct super_block * sb)2422 static void ext4_mb_history_init(struct super_block *sb)
2423 {
2424 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2425 	int i;
2426 
2427 	if (sbi->s_proc != NULL) {
2428 		proc_create_data("mb_history", S_IRUGO, sbi->s_proc,
2429 				 &ext4_mb_seq_history_fops, sb);
2430 		proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2431 				 &ext4_mb_seq_groups_fops, sb);
2432 	}
2433 
2434 	sbi->s_mb_history_max = 1000;
2435 	sbi->s_mb_history_cur = 0;
2436 	spin_lock_init(&sbi->s_mb_history_lock);
2437 	i = sbi->s_mb_history_max * sizeof(struct ext4_mb_history);
2438 	sbi->s_mb_history = kzalloc(i, GFP_KERNEL);
2439 	/* if we can't allocate history, then we simple won't use it */
2440 }
2441 
2442 static noinline_for_stack void
ext4_mb_store_history(struct ext4_allocation_context * ac)2443 ext4_mb_store_history(struct ext4_allocation_context *ac)
2444 {
2445 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2446 	struct ext4_mb_history h;
2447 
2448 	if (unlikely(sbi->s_mb_history == NULL))
2449 		return;
2450 
2451 	if (!(ac->ac_op & sbi->s_mb_history_filter))
2452 		return;
2453 
2454 	h.op = ac->ac_op;
2455 	h.pid = current->pid;
2456 	h.ino = ac->ac_inode ? ac->ac_inode->i_ino : 0;
2457 	h.orig = ac->ac_o_ex;
2458 	h.result = ac->ac_b_ex;
2459 	h.flags = ac->ac_flags;
2460 	h.found = ac->ac_found;
2461 	h.groups = ac->ac_groups_scanned;
2462 	h.cr = ac->ac_criteria;
2463 	h.tail = ac->ac_tail;
2464 	h.buddy = ac->ac_buddy;
2465 	h.merged = 0;
2466 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) {
2467 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
2468 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
2469 			h.merged = 1;
2470 		h.goal = ac->ac_g_ex;
2471 		h.result = ac->ac_f_ex;
2472 	}
2473 
2474 	spin_lock(&sbi->s_mb_history_lock);
2475 	memcpy(sbi->s_mb_history + sbi->s_mb_history_cur, &h, sizeof(h));
2476 	if (++sbi->s_mb_history_cur >= sbi->s_mb_history_max)
2477 		sbi->s_mb_history_cur = 0;
2478 	spin_unlock(&sbi->s_mb_history_lock);
2479 }
2480 
2481 #else
2482 #define ext4_mb_history_release(sb)
2483 #define ext4_mb_history_init(sb)
2484 #endif
2485 
2486 
2487 /* Create and initialize ext4_group_info data for the given group. */
ext4_mb_add_groupinfo(struct super_block * sb,ext4_group_t group,struct ext4_group_desc * desc)2488 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2489 			  struct ext4_group_desc *desc)
2490 {
2491 	int i, len;
2492 	int metalen = 0;
2493 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2494 	struct ext4_group_info **meta_group_info;
2495 
2496 	/*
2497 	 * First check if this group is the first of a reserved block.
2498 	 * If it's true, we have to allocate a new table of pointers
2499 	 * to ext4_group_info structures
2500 	 */
2501 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2502 		metalen = sizeof(*meta_group_info) <<
2503 			EXT4_DESC_PER_BLOCK_BITS(sb);
2504 		meta_group_info = kmalloc(metalen, GFP_KERNEL);
2505 		if (meta_group_info == NULL) {
2506 			printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2507 			       "buddy group\n");
2508 			goto exit_meta_group_info;
2509 		}
2510 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2511 			meta_group_info;
2512 	}
2513 
2514 	/*
2515 	 * calculate needed size. if change bb_counters size,
2516 	 * don't forget about ext4_mb_generate_buddy()
2517 	 */
2518 	len = offsetof(typeof(**meta_group_info),
2519 		       bb_counters[sb->s_blocksize_bits + 2]);
2520 
2521 	meta_group_info =
2522 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2523 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2524 
2525 	meta_group_info[i] = kzalloc(len, GFP_KERNEL);
2526 	if (meta_group_info[i] == NULL) {
2527 		printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n");
2528 		goto exit_group_info;
2529 	}
2530 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2531 		&(meta_group_info[i]->bb_state));
2532 
2533 	/*
2534 	 * initialize bb_free to be able to skip
2535 	 * empty groups without initialization
2536 	 */
2537 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2538 		meta_group_info[i]->bb_free =
2539 			ext4_free_blocks_after_init(sb, group, desc);
2540 	} else {
2541 		meta_group_info[i]->bb_free =
2542 			ext4_free_blks_count(sb, desc);
2543 	}
2544 
2545 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2546 	init_rwsem(&meta_group_info[i]->alloc_sem);
2547 	meta_group_info[i]->bb_free_root.rb_node = NULL;;
2548 
2549 #ifdef DOUBLE_CHECK
2550 	{
2551 		struct buffer_head *bh;
2552 		meta_group_info[i]->bb_bitmap =
2553 			kmalloc(sb->s_blocksize, GFP_KERNEL);
2554 		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2555 		bh = ext4_read_block_bitmap(sb, group);
2556 		BUG_ON(bh == NULL);
2557 		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2558 			sb->s_blocksize);
2559 		put_bh(bh);
2560 	}
2561 #endif
2562 
2563 	return 0;
2564 
2565 exit_group_info:
2566 	/* If a meta_group_info table has been allocated, release it now */
2567 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0)
2568 		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2569 exit_meta_group_info:
2570 	return -ENOMEM;
2571 } /* ext4_mb_add_groupinfo */
2572 
2573 /*
2574  * Update an existing group.
2575  * This function is used for online resize
2576  */
ext4_mb_update_group_info(struct ext4_group_info * grp,ext4_grpblk_t add)2577 void ext4_mb_update_group_info(struct ext4_group_info *grp, ext4_grpblk_t add)
2578 {
2579 	grp->bb_free += add;
2580 }
2581 
ext4_mb_init_backend(struct super_block * sb)2582 static int ext4_mb_init_backend(struct super_block *sb)
2583 {
2584 	ext4_group_t i;
2585 	int metalen;
2586 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2587 	struct ext4_super_block *es = sbi->s_es;
2588 	int num_meta_group_infos;
2589 	int num_meta_group_infos_max;
2590 	int array_size;
2591 	struct ext4_group_info **meta_group_info;
2592 	struct ext4_group_desc *desc;
2593 
2594 	/* This is the number of blocks used by GDT */
2595 	num_meta_group_infos = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) -
2596 				1) >> EXT4_DESC_PER_BLOCK_BITS(sb);
2597 
2598 	/*
2599 	 * This is the total number of blocks used by GDT including
2600 	 * the number of reserved blocks for GDT.
2601 	 * The s_group_info array is allocated with this value
2602 	 * to allow a clean online resize without a complex
2603 	 * manipulation of pointer.
2604 	 * The drawback is the unused memory when no resize
2605 	 * occurs but it's very low in terms of pages
2606 	 * (see comments below)
2607 	 * Need to handle this properly when META_BG resizing is allowed
2608 	 */
2609 	num_meta_group_infos_max = num_meta_group_infos +
2610 				le16_to_cpu(es->s_reserved_gdt_blocks);
2611 
2612 	/*
2613 	 * array_size is the size of s_group_info array. We round it
2614 	 * to the next power of two because this approximation is done
2615 	 * internally by kmalloc so we can have some more memory
2616 	 * for free here (e.g. may be used for META_BG resize).
2617 	 */
2618 	array_size = 1;
2619 	while (array_size < sizeof(*sbi->s_group_info) *
2620 	       num_meta_group_infos_max)
2621 		array_size = array_size << 1;
2622 	/* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2623 	 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2624 	 * So a two level scheme suffices for now. */
2625 	sbi->s_group_info = kmalloc(array_size, GFP_KERNEL);
2626 	if (sbi->s_group_info == NULL) {
2627 		printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n");
2628 		return -ENOMEM;
2629 	}
2630 	sbi->s_buddy_cache = new_inode(sb);
2631 	if (sbi->s_buddy_cache == NULL) {
2632 		printk(KERN_ERR "EXT4-fs: can't get new inode\n");
2633 		goto err_freesgi;
2634 	}
2635 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2636 
2637 	metalen = sizeof(*meta_group_info) << EXT4_DESC_PER_BLOCK_BITS(sb);
2638 	for (i = 0; i < num_meta_group_infos; i++) {
2639 		if ((i + 1) == num_meta_group_infos)
2640 			metalen = sizeof(*meta_group_info) *
2641 				(sbi->s_groups_count -
2642 					(i << EXT4_DESC_PER_BLOCK_BITS(sb)));
2643 		meta_group_info = kmalloc(metalen, GFP_KERNEL);
2644 		if (meta_group_info == NULL) {
2645 			printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2646 			       "buddy group\n");
2647 			goto err_freemeta;
2648 		}
2649 		sbi->s_group_info[i] = meta_group_info;
2650 	}
2651 
2652 	for (i = 0; i < sbi->s_groups_count; i++) {
2653 		desc = ext4_get_group_desc(sb, i, NULL);
2654 		if (desc == NULL) {
2655 			printk(KERN_ERR
2656 				"EXT4-fs: can't read descriptor %u\n", i);
2657 			goto err_freebuddy;
2658 		}
2659 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2660 			goto err_freebuddy;
2661 	}
2662 
2663 	return 0;
2664 
2665 err_freebuddy:
2666 	while (i-- > 0)
2667 		kfree(ext4_get_group_info(sb, i));
2668 	i = num_meta_group_infos;
2669 err_freemeta:
2670 	while (i-- > 0)
2671 		kfree(sbi->s_group_info[i]);
2672 	iput(sbi->s_buddy_cache);
2673 err_freesgi:
2674 	kfree(sbi->s_group_info);
2675 	return -ENOMEM;
2676 }
2677 
ext4_mb_init(struct super_block * sb,int needs_recovery)2678 int ext4_mb_init(struct super_block *sb, int needs_recovery)
2679 {
2680 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2681 	unsigned i, j;
2682 	unsigned offset;
2683 	unsigned max;
2684 	int ret;
2685 
2686 	i = (sb->s_blocksize_bits + 2) * sizeof(unsigned short);
2687 
2688 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2689 	if (sbi->s_mb_offsets == NULL) {
2690 		return -ENOMEM;
2691 	}
2692 
2693 	i = (sb->s_blocksize_bits + 2) * sizeof(unsigned int);
2694 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2695 	if (sbi->s_mb_maxs == NULL) {
2696 		kfree(sbi->s_mb_maxs);
2697 		return -ENOMEM;
2698 	}
2699 
2700 	/* order 0 is regular bitmap */
2701 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2702 	sbi->s_mb_offsets[0] = 0;
2703 
2704 	i = 1;
2705 	offset = 0;
2706 	max = sb->s_blocksize << 2;
2707 	do {
2708 		sbi->s_mb_offsets[i] = offset;
2709 		sbi->s_mb_maxs[i] = max;
2710 		offset += 1 << (sb->s_blocksize_bits - i);
2711 		max = max >> 1;
2712 		i++;
2713 	} while (i <= sb->s_blocksize_bits + 1);
2714 
2715 	/* init file for buddy data */
2716 	ret = ext4_mb_init_backend(sb);
2717 	if (ret != 0) {
2718 		kfree(sbi->s_mb_offsets);
2719 		kfree(sbi->s_mb_maxs);
2720 		return ret;
2721 	}
2722 
2723 	spin_lock_init(&sbi->s_md_lock);
2724 	spin_lock_init(&sbi->s_bal_lock);
2725 
2726 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2727 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2728 	sbi->s_mb_stats = MB_DEFAULT_STATS;
2729 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2730 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2731 	sbi->s_mb_history_filter = EXT4_MB_HISTORY_DEFAULT;
2732 	sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC;
2733 
2734 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2735 	if (sbi->s_locality_groups == NULL) {
2736 		kfree(sbi->s_mb_offsets);
2737 		kfree(sbi->s_mb_maxs);
2738 		return -ENOMEM;
2739 	}
2740 	for_each_possible_cpu(i) {
2741 		struct ext4_locality_group *lg;
2742 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2743 		mutex_init(&lg->lg_mutex);
2744 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
2745 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2746 		spin_lock_init(&lg->lg_prealloc_lock);
2747 	}
2748 
2749 	ext4_mb_init_per_dev_proc(sb);
2750 	ext4_mb_history_init(sb);
2751 
2752 	if (sbi->s_journal)
2753 		sbi->s_journal->j_commit_callback = release_blocks_on_commit;
2754 
2755 	printk(KERN_INFO "EXT4-fs: mballoc enabled\n");
2756 	return 0;
2757 }
2758 
2759 /* need to called with ext4 group lock (ext4_lock_group) */
ext4_mb_cleanup_pa(struct ext4_group_info * grp)2760 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2761 {
2762 	struct ext4_prealloc_space *pa;
2763 	struct list_head *cur, *tmp;
2764 	int count = 0;
2765 
2766 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2767 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2768 		list_del(&pa->pa_group_list);
2769 		count++;
2770 		kmem_cache_free(ext4_pspace_cachep, pa);
2771 	}
2772 	if (count)
2773 		mb_debug("mballoc: %u PAs left\n", count);
2774 
2775 }
2776 
ext4_mb_release(struct super_block * sb)2777 int ext4_mb_release(struct super_block *sb)
2778 {
2779 	ext4_group_t i;
2780 	int num_meta_group_infos;
2781 	struct ext4_group_info *grinfo;
2782 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2783 
2784 	if (sbi->s_group_info) {
2785 		for (i = 0; i < sbi->s_groups_count; i++) {
2786 			grinfo = ext4_get_group_info(sb, i);
2787 #ifdef DOUBLE_CHECK
2788 			kfree(grinfo->bb_bitmap);
2789 #endif
2790 			ext4_lock_group(sb, i);
2791 			ext4_mb_cleanup_pa(grinfo);
2792 			ext4_unlock_group(sb, i);
2793 			kfree(grinfo);
2794 		}
2795 		num_meta_group_infos = (sbi->s_groups_count +
2796 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
2797 			EXT4_DESC_PER_BLOCK_BITS(sb);
2798 		for (i = 0; i < num_meta_group_infos; i++)
2799 			kfree(sbi->s_group_info[i]);
2800 		kfree(sbi->s_group_info);
2801 	}
2802 	kfree(sbi->s_mb_offsets);
2803 	kfree(sbi->s_mb_maxs);
2804 	if (sbi->s_buddy_cache)
2805 		iput(sbi->s_buddy_cache);
2806 	if (sbi->s_mb_stats) {
2807 		printk(KERN_INFO
2808 		       "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n",
2809 				atomic_read(&sbi->s_bal_allocated),
2810 				atomic_read(&sbi->s_bal_reqs),
2811 				atomic_read(&sbi->s_bal_success));
2812 		printk(KERN_INFO
2813 		      "EXT4-fs: mballoc: %u extents scanned, %u goal hits, "
2814 				"%u 2^N hits, %u breaks, %u lost\n",
2815 				atomic_read(&sbi->s_bal_ex_scanned),
2816 				atomic_read(&sbi->s_bal_goals),
2817 				atomic_read(&sbi->s_bal_2orders),
2818 				atomic_read(&sbi->s_bal_breaks),
2819 				atomic_read(&sbi->s_mb_lost_chunks));
2820 		printk(KERN_INFO
2821 		       "EXT4-fs: mballoc: %lu generated and it took %Lu\n",
2822 				sbi->s_mb_buddies_generated++,
2823 				sbi->s_mb_generation_time);
2824 		printk(KERN_INFO
2825 		       "EXT4-fs: mballoc: %u preallocated, %u discarded\n",
2826 				atomic_read(&sbi->s_mb_preallocated),
2827 				atomic_read(&sbi->s_mb_discarded));
2828 	}
2829 
2830 	free_percpu(sbi->s_locality_groups);
2831 	ext4_mb_history_release(sb);
2832 	ext4_mb_destroy_per_dev_proc(sb);
2833 
2834 	return 0;
2835 }
2836 
2837 /*
2838  * This function is called by the jbd2 layer once the commit has finished,
2839  * so we know we can free the blocks that were released with that commit.
2840  */
release_blocks_on_commit(journal_t * journal,transaction_t * txn)2841 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn)
2842 {
2843 	struct super_block *sb = journal->j_private;
2844 	struct ext4_buddy e4b;
2845 	struct ext4_group_info *db;
2846 	int err, count = 0, count2 = 0;
2847 	struct ext4_free_data *entry;
2848 	ext4_fsblk_t discard_block;
2849 	struct list_head *l, *ltmp;
2850 
2851 	list_for_each_safe(l, ltmp, &txn->t_private_list) {
2852 		entry = list_entry(l, struct ext4_free_data, list);
2853 
2854 		mb_debug("gonna free %u blocks in group %u (0x%p):",
2855 			 entry->count, entry->group, entry);
2856 
2857 		err = ext4_mb_load_buddy(sb, entry->group, &e4b);
2858 		/* we expect to find existing buddy because it's pinned */
2859 		BUG_ON(err != 0);
2860 
2861 		db = e4b.bd_info;
2862 		/* there are blocks to put in buddy to make them really free */
2863 		count += entry->count;
2864 		count2++;
2865 		ext4_lock_group(sb, entry->group);
2866 		/* Take it out of per group rb tree */
2867 		rb_erase(&entry->node, &(db->bb_free_root));
2868 		mb_free_blocks(NULL, &e4b, entry->start_blk, entry->count);
2869 
2870 		if (!db->bb_free_root.rb_node) {
2871 			/* No more items in the per group rb tree
2872 			 * balance refcounts from ext4_mb_free_metadata()
2873 			 */
2874 			page_cache_release(e4b.bd_buddy_page);
2875 			page_cache_release(e4b.bd_bitmap_page);
2876 		}
2877 		ext4_unlock_group(sb, entry->group);
2878 		discard_block = (ext4_fsblk_t) entry->group * EXT4_BLOCKS_PER_GROUP(sb)
2879 			+ entry->start_blk
2880 			+ le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
2881 		trace_mark(ext4_discard_blocks, "dev %s blk %llu count %u",
2882 			   sb->s_id, (unsigned long long) discard_block,
2883 			   entry->count);
2884 		sb_issue_discard(sb, discard_block, entry->count);
2885 
2886 		kmem_cache_free(ext4_free_ext_cachep, entry);
2887 		ext4_mb_release_desc(&e4b);
2888 	}
2889 
2890 	mb_debug("freed %u blocks in %u structures\n", count, count2);
2891 }
2892 
2893 #define EXT4_MB_STATS_NAME		"stats"
2894 #define EXT4_MB_MAX_TO_SCAN_NAME	"max_to_scan"
2895 #define EXT4_MB_MIN_TO_SCAN_NAME	"min_to_scan"
2896 #define EXT4_MB_ORDER2_REQ		"order2_req"
2897 #define EXT4_MB_STREAM_REQ		"stream_req"
2898 #define EXT4_MB_GROUP_PREALLOC		"group_prealloc"
2899 
ext4_mb_init_per_dev_proc(struct super_block * sb)2900 static int ext4_mb_init_per_dev_proc(struct super_block *sb)
2901 {
2902 #ifdef CONFIG_PROC_FS
2903 	mode_t mode = S_IFREG | S_IRUGO | S_IWUSR;
2904 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2905 	struct proc_dir_entry *proc;
2906 
2907 	if (sbi->s_proc == NULL)
2908 		return -EINVAL;
2909 
2910 	EXT4_PROC_HANDLER(EXT4_MB_STATS_NAME, mb_stats);
2911 	EXT4_PROC_HANDLER(EXT4_MB_MAX_TO_SCAN_NAME, mb_max_to_scan);
2912 	EXT4_PROC_HANDLER(EXT4_MB_MIN_TO_SCAN_NAME, mb_min_to_scan);
2913 	EXT4_PROC_HANDLER(EXT4_MB_ORDER2_REQ, mb_order2_reqs);
2914 	EXT4_PROC_HANDLER(EXT4_MB_STREAM_REQ, mb_stream_request);
2915 	EXT4_PROC_HANDLER(EXT4_MB_GROUP_PREALLOC, mb_group_prealloc);
2916 	return 0;
2917 
2918 err_out:
2919 	remove_proc_entry(EXT4_MB_GROUP_PREALLOC, sbi->s_proc);
2920 	remove_proc_entry(EXT4_MB_STREAM_REQ, sbi->s_proc);
2921 	remove_proc_entry(EXT4_MB_ORDER2_REQ, sbi->s_proc);
2922 	remove_proc_entry(EXT4_MB_MIN_TO_SCAN_NAME, sbi->s_proc);
2923 	remove_proc_entry(EXT4_MB_MAX_TO_SCAN_NAME, sbi->s_proc);
2924 	remove_proc_entry(EXT4_MB_STATS_NAME, sbi->s_proc);
2925 	return -ENOMEM;
2926 #else
2927 	return 0;
2928 #endif
2929 }
2930 
ext4_mb_destroy_per_dev_proc(struct super_block * sb)2931 static int ext4_mb_destroy_per_dev_proc(struct super_block *sb)
2932 {
2933 #ifdef CONFIG_PROC_FS
2934 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2935 
2936 	if (sbi->s_proc == NULL)
2937 		return -EINVAL;
2938 
2939 	remove_proc_entry(EXT4_MB_GROUP_PREALLOC, sbi->s_proc);
2940 	remove_proc_entry(EXT4_MB_STREAM_REQ, sbi->s_proc);
2941 	remove_proc_entry(EXT4_MB_ORDER2_REQ, sbi->s_proc);
2942 	remove_proc_entry(EXT4_MB_MIN_TO_SCAN_NAME, sbi->s_proc);
2943 	remove_proc_entry(EXT4_MB_MAX_TO_SCAN_NAME, sbi->s_proc);
2944 	remove_proc_entry(EXT4_MB_STATS_NAME, sbi->s_proc);
2945 #endif
2946 	return 0;
2947 }
2948 
init_ext4_mballoc(void)2949 int __init init_ext4_mballoc(void)
2950 {
2951 	ext4_pspace_cachep =
2952 		kmem_cache_create("ext4_prealloc_space",
2953 				     sizeof(struct ext4_prealloc_space),
2954 				     0, SLAB_RECLAIM_ACCOUNT, NULL);
2955 	if (ext4_pspace_cachep == NULL)
2956 		return -ENOMEM;
2957 
2958 	ext4_ac_cachep =
2959 		kmem_cache_create("ext4_alloc_context",
2960 				     sizeof(struct ext4_allocation_context),
2961 				     0, SLAB_RECLAIM_ACCOUNT, NULL);
2962 	if (ext4_ac_cachep == NULL) {
2963 		kmem_cache_destroy(ext4_pspace_cachep);
2964 		return -ENOMEM;
2965 	}
2966 
2967 	ext4_free_ext_cachep =
2968 		kmem_cache_create("ext4_free_block_extents",
2969 				     sizeof(struct ext4_free_data),
2970 				     0, SLAB_RECLAIM_ACCOUNT, NULL);
2971 	if (ext4_free_ext_cachep == NULL) {
2972 		kmem_cache_destroy(ext4_pspace_cachep);
2973 		kmem_cache_destroy(ext4_ac_cachep);
2974 		return -ENOMEM;
2975 	}
2976 	return 0;
2977 }
2978 
exit_ext4_mballoc(void)2979 void exit_ext4_mballoc(void)
2980 {
2981 	/* XXX: synchronize_rcu(); */
2982 	kmem_cache_destroy(ext4_pspace_cachep);
2983 	kmem_cache_destroy(ext4_ac_cachep);
2984 	kmem_cache_destroy(ext4_free_ext_cachep);
2985 }
2986 
2987 
2988 /*
2989  * Check quota and mark choosed space (ac->ac_b_ex) non-free in bitmaps
2990  * Returns 0 if success or error code
2991  */
2992 static noinline_for_stack int
ext4_mb_mark_diskspace_used(struct ext4_allocation_context * ac,handle_t * handle,unsigned int reserv_blks)2993 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2994 				handle_t *handle, unsigned int reserv_blks)
2995 {
2996 	struct buffer_head *bitmap_bh = NULL;
2997 	struct ext4_super_block *es;
2998 	struct ext4_group_desc *gdp;
2999 	struct buffer_head *gdp_bh;
3000 	struct ext4_sb_info *sbi;
3001 	struct super_block *sb;
3002 	ext4_fsblk_t block;
3003 	int err, len;
3004 
3005 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3006 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
3007 
3008 	sb = ac->ac_sb;
3009 	sbi = EXT4_SB(sb);
3010 	es = sbi->s_es;
3011 
3012 
3013 	err = -EIO;
3014 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
3015 	if (!bitmap_bh)
3016 		goto out_err;
3017 
3018 	err = ext4_journal_get_write_access(handle, bitmap_bh);
3019 	if (err)
3020 		goto out_err;
3021 
3022 	err = -EIO;
3023 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
3024 	if (!gdp)
3025 		goto out_err;
3026 
3027 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
3028 			ext4_free_blks_count(sb, gdp));
3029 
3030 	err = ext4_journal_get_write_access(handle, gdp_bh);
3031 	if (err)
3032 		goto out_err;
3033 
3034 	block = ac->ac_b_ex.fe_group * EXT4_BLOCKS_PER_GROUP(sb)
3035 		+ ac->ac_b_ex.fe_start
3036 		+ le32_to_cpu(es->s_first_data_block);
3037 
3038 	len = ac->ac_b_ex.fe_len;
3039 	if (in_range(ext4_block_bitmap(sb, gdp), block, len) ||
3040 	    in_range(ext4_inode_bitmap(sb, gdp), block, len) ||
3041 	    in_range(block, ext4_inode_table(sb, gdp),
3042 		     EXT4_SB(sb)->s_itb_per_group) ||
3043 	    in_range(block + len - 1, ext4_inode_table(sb, gdp),
3044 		     EXT4_SB(sb)->s_itb_per_group)) {
3045 		ext4_error(sb, __func__,
3046 			   "Allocating block %llu in system zone of %d group\n",
3047 			   block, ac->ac_b_ex.fe_group);
3048 		/* File system mounted not to panic on error
3049 		 * Fix the bitmap and repeat the block allocation
3050 		 * We leak some of the blocks here.
3051 		 */
3052 		mb_set_bits(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group),
3053 				bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3054 				ac->ac_b_ex.fe_len);
3055 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3056 		if (!err)
3057 			err = -EAGAIN;
3058 		goto out_err;
3059 	}
3060 #ifdef AGGRESSIVE_CHECK
3061 	{
3062 		int i;
3063 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3064 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3065 						bitmap_bh->b_data));
3066 		}
3067 	}
3068 #endif
3069 	spin_lock(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group));
3070 	mb_set_bits(NULL, bitmap_bh->b_data,
3071 				ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len);
3072 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
3073 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3074 		ext4_free_blks_set(sb, gdp,
3075 					ext4_free_blocks_after_init(sb,
3076 					ac->ac_b_ex.fe_group, gdp));
3077 	}
3078 	len = ext4_free_blks_count(sb, gdp) - ac->ac_b_ex.fe_len;
3079 	ext4_free_blks_set(sb, gdp, len);
3080 	gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
3081 	spin_unlock(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group));
3082 	percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len);
3083 	/*
3084 	 * Now reduce the dirty block count also. Should not go negative
3085 	 */
3086 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3087 		/* release all the reserved blocks if non delalloc */
3088 		percpu_counter_sub(&sbi->s_dirtyblocks_counter, reserv_blks);
3089 	else
3090 		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
3091 						ac->ac_b_ex.fe_len);
3092 
3093 	if (sbi->s_log_groups_per_flex) {
3094 		ext4_group_t flex_group = ext4_flex_group(sbi,
3095 							  ac->ac_b_ex.fe_group);
3096 		spin_lock(sb_bgl_lock(sbi, flex_group));
3097 		sbi->s_flex_groups[flex_group].free_blocks -= ac->ac_b_ex.fe_len;
3098 		spin_unlock(sb_bgl_lock(sbi, flex_group));
3099 	}
3100 
3101 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3102 	if (err)
3103 		goto out_err;
3104 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3105 
3106 out_err:
3107 	sb->s_dirt = 1;
3108 	brelse(bitmap_bh);
3109 	return err;
3110 }
3111 
3112 /*
3113  * here we normalize request for locality group
3114  * Group request are normalized to s_strip size if we set the same via mount
3115  * option. If not we set it to s_mb_group_prealloc which can be configured via
3116  * /proc/fs/ext4/<partition>/group_prealloc
3117  *
3118  * XXX: should we try to preallocate more than the group has now?
3119  */
ext4_mb_normalize_group_request(struct ext4_allocation_context * ac)3120 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3121 {
3122 	struct super_block *sb = ac->ac_sb;
3123 	struct ext4_locality_group *lg = ac->ac_lg;
3124 
3125 	BUG_ON(lg == NULL);
3126 	if (EXT4_SB(sb)->s_stripe)
3127 		ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe;
3128 	else
3129 		ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3130 	mb_debug("#%u: goal %u blocks for locality group\n",
3131 		current->pid, ac->ac_g_ex.fe_len);
3132 }
3133 
3134 /*
3135  * Normalization means making request better in terms of
3136  * size and alignment
3137  */
3138 static noinline_for_stack void
ext4_mb_normalize_request(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)3139 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3140 				struct ext4_allocation_request *ar)
3141 {
3142 	int bsbits, max;
3143 	ext4_lblk_t end;
3144 	loff_t size, orig_size, start_off;
3145 	ext4_lblk_t start, orig_start;
3146 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3147 	struct ext4_prealloc_space *pa;
3148 
3149 	/* do normalize only data requests, metadata requests
3150 	   do not need preallocation */
3151 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3152 		return;
3153 
3154 	/* sometime caller may want exact blocks */
3155 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3156 		return;
3157 
3158 	/* caller may indicate that preallocation isn't
3159 	 * required (it's a tail, for example) */
3160 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3161 		return;
3162 
3163 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3164 		ext4_mb_normalize_group_request(ac);
3165 		return ;
3166 	}
3167 
3168 	bsbits = ac->ac_sb->s_blocksize_bits;
3169 
3170 	/* first, let's learn actual file size
3171 	 * given current request is allocated */
3172 	size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
3173 	size = size << bsbits;
3174 	if (size < i_size_read(ac->ac_inode))
3175 		size = i_size_read(ac->ac_inode);
3176 
3177 	/* max size of free chunks */
3178 	max = 2 << bsbits;
3179 
3180 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
3181 		(req <= (size) || max <= (chunk_size))
3182 
3183 	/* first, try to predict filesize */
3184 	/* XXX: should this table be tunable? */
3185 	start_off = 0;
3186 	if (size <= 16 * 1024) {
3187 		size = 16 * 1024;
3188 	} else if (size <= 32 * 1024) {
3189 		size = 32 * 1024;
3190 	} else if (size <= 64 * 1024) {
3191 		size = 64 * 1024;
3192 	} else if (size <= 128 * 1024) {
3193 		size = 128 * 1024;
3194 	} else if (size <= 256 * 1024) {
3195 		size = 256 * 1024;
3196 	} else if (size <= 512 * 1024) {
3197 		size = 512 * 1024;
3198 	} else if (size <= 1024 * 1024) {
3199 		size = 1024 * 1024;
3200 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3201 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3202 						(21 - bsbits)) << 21;
3203 		size = 2 * 1024 * 1024;
3204 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3205 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3206 							(22 - bsbits)) << 22;
3207 		size = 4 * 1024 * 1024;
3208 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3209 					(8<<20)>>bsbits, max, 8 * 1024)) {
3210 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3211 							(23 - bsbits)) << 23;
3212 		size = 8 * 1024 * 1024;
3213 	} else {
3214 		start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
3215 		size	  = ac->ac_o_ex.fe_len << bsbits;
3216 	}
3217 	orig_size = size = size >> bsbits;
3218 	orig_start = start = start_off >> bsbits;
3219 
3220 	/* don't cover already allocated blocks in selected range */
3221 	if (ar->pleft && start <= ar->lleft) {
3222 		size -= ar->lleft + 1 - start;
3223 		start = ar->lleft + 1;
3224 	}
3225 	if (ar->pright && start + size - 1 >= ar->lright)
3226 		size -= start + size - ar->lright;
3227 
3228 	end = start + size;
3229 
3230 	/* check we don't cross already preallocated blocks */
3231 	rcu_read_lock();
3232 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3233 		ext4_lblk_t pa_end;
3234 
3235 		if (pa->pa_deleted)
3236 			continue;
3237 		spin_lock(&pa->pa_lock);
3238 		if (pa->pa_deleted) {
3239 			spin_unlock(&pa->pa_lock);
3240 			continue;
3241 		}
3242 
3243 		pa_end = pa->pa_lstart + pa->pa_len;
3244 
3245 		/* PA must not overlap original request */
3246 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3247 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
3248 
3249 		/* skip PA normalized request doesn't overlap with */
3250 		if (pa->pa_lstart >= end) {
3251 			spin_unlock(&pa->pa_lock);
3252 			continue;
3253 		}
3254 		if (pa_end <= start) {
3255 			spin_unlock(&pa->pa_lock);
3256 			continue;
3257 		}
3258 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3259 
3260 		if (pa_end <= ac->ac_o_ex.fe_logical) {
3261 			BUG_ON(pa_end < start);
3262 			start = pa_end;
3263 		}
3264 
3265 		if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3266 			BUG_ON(pa->pa_lstart > end);
3267 			end = pa->pa_lstart;
3268 		}
3269 		spin_unlock(&pa->pa_lock);
3270 	}
3271 	rcu_read_unlock();
3272 	size = end - start;
3273 
3274 	/* XXX: extra loop to check we really don't overlap preallocations */
3275 	rcu_read_lock();
3276 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3277 		ext4_lblk_t pa_end;
3278 		spin_lock(&pa->pa_lock);
3279 		if (pa->pa_deleted == 0) {
3280 			pa_end = pa->pa_lstart + pa->pa_len;
3281 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3282 		}
3283 		spin_unlock(&pa->pa_lock);
3284 	}
3285 	rcu_read_unlock();
3286 
3287 	if (start + size <= ac->ac_o_ex.fe_logical &&
3288 			start > ac->ac_o_ex.fe_logical) {
3289 		printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n",
3290 			(unsigned long) start, (unsigned long) size,
3291 			(unsigned long) ac->ac_o_ex.fe_logical);
3292 	}
3293 	BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3294 			start > ac->ac_o_ex.fe_logical);
3295 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3296 
3297 	/* now prepare goal request */
3298 
3299 	/* XXX: is it better to align blocks WRT to logical
3300 	 * placement or satisfy big request as is */
3301 	ac->ac_g_ex.fe_logical = start;
3302 	ac->ac_g_ex.fe_len = size;
3303 
3304 	/* define goal start in order to merge */
3305 	if (ar->pright && (ar->lright == (start + size))) {
3306 		/* merge to the right */
3307 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3308 						&ac->ac_f_ex.fe_group,
3309 						&ac->ac_f_ex.fe_start);
3310 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3311 	}
3312 	if (ar->pleft && (ar->lleft + 1 == start)) {
3313 		/* merge to the left */
3314 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3315 						&ac->ac_f_ex.fe_group,
3316 						&ac->ac_f_ex.fe_start);
3317 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3318 	}
3319 
3320 	mb_debug("goal: %u(was %u) blocks at %u\n", (unsigned) size,
3321 		(unsigned) orig_size, (unsigned) start);
3322 }
3323 
ext4_mb_collect_stats(struct ext4_allocation_context * ac)3324 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3325 {
3326 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3327 
3328 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3329 		atomic_inc(&sbi->s_bal_reqs);
3330 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3331 		if (ac->ac_o_ex.fe_len >= ac->ac_g_ex.fe_len)
3332 			atomic_inc(&sbi->s_bal_success);
3333 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3334 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3335 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3336 			atomic_inc(&sbi->s_bal_goals);
3337 		if (ac->ac_found > sbi->s_mb_max_to_scan)
3338 			atomic_inc(&sbi->s_bal_breaks);
3339 	}
3340 
3341 	ext4_mb_store_history(ac);
3342 }
3343 
3344 /*
3345  * use blocks preallocated to inode
3346  */
ext4_mb_use_inode_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)3347 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3348 				struct ext4_prealloc_space *pa)
3349 {
3350 	ext4_fsblk_t start;
3351 	ext4_fsblk_t end;
3352 	int len;
3353 
3354 	/* found preallocated blocks, use them */
3355 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3356 	end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len);
3357 	len = end - start;
3358 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3359 					&ac->ac_b_ex.fe_start);
3360 	ac->ac_b_ex.fe_len = len;
3361 	ac->ac_status = AC_STATUS_FOUND;
3362 	ac->ac_pa = pa;
3363 
3364 	BUG_ON(start < pa->pa_pstart);
3365 	BUG_ON(start + len > pa->pa_pstart + pa->pa_len);
3366 	BUG_ON(pa->pa_free < len);
3367 	pa->pa_free -= len;
3368 
3369 	mb_debug("use %llu/%u from inode pa %p\n", start, len, pa);
3370 }
3371 
3372 /*
3373  * use blocks preallocated to locality group
3374  */
ext4_mb_use_group_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)3375 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3376 				struct ext4_prealloc_space *pa)
3377 {
3378 	unsigned int len = ac->ac_o_ex.fe_len;
3379 
3380 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3381 					&ac->ac_b_ex.fe_group,
3382 					&ac->ac_b_ex.fe_start);
3383 	ac->ac_b_ex.fe_len = len;
3384 	ac->ac_status = AC_STATUS_FOUND;
3385 	ac->ac_pa = pa;
3386 
3387 	/* we don't correct pa_pstart or pa_plen here to avoid
3388 	 * possible race when the group is being loaded concurrently
3389 	 * instead we correct pa later, after blocks are marked
3390 	 * in on-disk bitmap -- see ext4_mb_release_context()
3391 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3392 	 */
3393 	mb_debug("use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3394 }
3395 
3396 /*
3397  * Return the prealloc space that have minimal distance
3398  * from the goal block. @cpa is the prealloc
3399  * space that is having currently known minimal distance
3400  * from the goal block.
3401  */
3402 static struct ext4_prealloc_space *
ext4_mb_check_group_pa(ext4_fsblk_t goal_block,struct ext4_prealloc_space * pa,struct ext4_prealloc_space * cpa)3403 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3404 			struct ext4_prealloc_space *pa,
3405 			struct ext4_prealloc_space *cpa)
3406 {
3407 	ext4_fsblk_t cur_distance, new_distance;
3408 
3409 	if (cpa == NULL) {
3410 		atomic_inc(&pa->pa_count);
3411 		return pa;
3412 	}
3413 	cur_distance = abs(goal_block - cpa->pa_pstart);
3414 	new_distance = abs(goal_block - pa->pa_pstart);
3415 
3416 	if (cur_distance < new_distance)
3417 		return cpa;
3418 
3419 	/* drop the previous reference */
3420 	atomic_dec(&cpa->pa_count);
3421 	atomic_inc(&pa->pa_count);
3422 	return pa;
3423 }
3424 
3425 /*
3426  * search goal blocks in preallocated space
3427  */
3428 static noinline_for_stack int
ext4_mb_use_preallocated(struct ext4_allocation_context * ac)3429 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3430 {
3431 	int order, i;
3432 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3433 	struct ext4_locality_group *lg;
3434 	struct ext4_prealloc_space *pa, *cpa = NULL;
3435 	ext4_fsblk_t goal_block;
3436 
3437 	/* only data can be preallocated */
3438 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3439 		return 0;
3440 
3441 	/* first, try per-file preallocation */
3442 	rcu_read_lock();
3443 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3444 
3445 		/* all fields in this condition don't change,
3446 		 * so we can skip locking for them */
3447 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3448 			ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len)
3449 			continue;
3450 
3451 		/* found preallocated blocks, use them */
3452 		spin_lock(&pa->pa_lock);
3453 		if (pa->pa_deleted == 0 && pa->pa_free) {
3454 			atomic_inc(&pa->pa_count);
3455 			ext4_mb_use_inode_pa(ac, pa);
3456 			spin_unlock(&pa->pa_lock);
3457 			ac->ac_criteria = 10;
3458 			rcu_read_unlock();
3459 			return 1;
3460 		}
3461 		spin_unlock(&pa->pa_lock);
3462 	}
3463 	rcu_read_unlock();
3464 
3465 	/* can we use group allocation? */
3466 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3467 		return 0;
3468 
3469 	/* inode may have no locality group for some reason */
3470 	lg = ac->ac_lg;
3471 	if (lg == NULL)
3472 		return 0;
3473 	order  = fls(ac->ac_o_ex.fe_len) - 1;
3474 	if (order > PREALLOC_TB_SIZE - 1)
3475 		/* The max size of hash table is PREALLOC_TB_SIZE */
3476 		order = PREALLOC_TB_SIZE - 1;
3477 
3478 	goal_block = ac->ac_g_ex.fe_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb) +
3479 		     ac->ac_g_ex.fe_start +
3480 		     le32_to_cpu(EXT4_SB(ac->ac_sb)->s_es->s_first_data_block);
3481 	/*
3482 	 * search for the prealloc space that is having
3483 	 * minimal distance from the goal block.
3484 	 */
3485 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
3486 		rcu_read_lock();
3487 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3488 					pa_inode_list) {
3489 			spin_lock(&pa->pa_lock);
3490 			if (pa->pa_deleted == 0 &&
3491 					pa->pa_free >= ac->ac_o_ex.fe_len) {
3492 
3493 				cpa = ext4_mb_check_group_pa(goal_block,
3494 								pa, cpa);
3495 			}
3496 			spin_unlock(&pa->pa_lock);
3497 		}
3498 		rcu_read_unlock();
3499 	}
3500 	if (cpa) {
3501 		ext4_mb_use_group_pa(ac, cpa);
3502 		ac->ac_criteria = 20;
3503 		return 1;
3504 	}
3505 	return 0;
3506 }
3507 
3508 /*
3509  * the function goes through all block freed in the group
3510  * but not yet committed and marks them used in in-core bitmap.
3511  * buddy must be generated from this bitmap
3512  * Need to be called with ext4 group lock (ext4_lock_group)
3513  */
ext4_mb_generate_from_freelist(struct super_block * sb,void * bitmap,ext4_group_t group)3514 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3515 						ext4_group_t group)
3516 {
3517 	struct rb_node *n;
3518 	struct ext4_group_info *grp;
3519 	struct ext4_free_data *entry;
3520 
3521 	grp = ext4_get_group_info(sb, group);
3522 	n = rb_first(&(grp->bb_free_root));
3523 
3524 	while (n) {
3525 		entry = rb_entry(n, struct ext4_free_data, node);
3526 		mb_set_bits(sb_bgl_lock(EXT4_SB(sb), group),
3527 				bitmap, entry->start_blk,
3528 				entry->count);
3529 		n = rb_next(n);
3530 	}
3531 	return;
3532 }
3533 
3534 /*
3535  * the function goes through all preallocation in this group and marks them
3536  * used in in-core bitmap. buddy must be generated from this bitmap
3537  * Need to be called with ext4 group lock (ext4_lock_group)
3538  */
ext4_mb_generate_from_pa(struct super_block * sb,void * bitmap,ext4_group_t group)3539 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3540 					ext4_group_t group)
3541 {
3542 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3543 	struct ext4_prealloc_space *pa;
3544 	struct list_head *cur;
3545 	ext4_group_t groupnr;
3546 	ext4_grpblk_t start;
3547 	int preallocated = 0;
3548 	int count = 0;
3549 	int len;
3550 
3551 	/* all form of preallocation discards first load group,
3552 	 * so the only competing code is preallocation use.
3553 	 * we don't need any locking here
3554 	 * notice we do NOT ignore preallocations with pa_deleted
3555 	 * otherwise we could leave used blocks available for
3556 	 * allocation in buddy when concurrent ext4_mb_put_pa()
3557 	 * is dropping preallocation
3558 	 */
3559 	list_for_each(cur, &grp->bb_prealloc_list) {
3560 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3561 		spin_lock(&pa->pa_lock);
3562 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3563 					     &groupnr, &start);
3564 		len = pa->pa_len;
3565 		spin_unlock(&pa->pa_lock);
3566 		if (unlikely(len == 0))
3567 			continue;
3568 		BUG_ON(groupnr != group);
3569 		mb_set_bits(sb_bgl_lock(EXT4_SB(sb), group),
3570 						bitmap, start, len);
3571 		preallocated += len;
3572 		count++;
3573 	}
3574 	mb_debug("prellocated %u for group %u\n", preallocated, group);
3575 }
3576 
ext4_mb_pa_callback(struct rcu_head * head)3577 static void ext4_mb_pa_callback(struct rcu_head *head)
3578 {
3579 	struct ext4_prealloc_space *pa;
3580 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3581 	kmem_cache_free(ext4_pspace_cachep, pa);
3582 }
3583 
3584 /*
3585  * drops a reference to preallocated space descriptor
3586  * if this was the last reference and the space is consumed
3587  */
ext4_mb_put_pa(struct ext4_allocation_context * ac,struct super_block * sb,struct ext4_prealloc_space * pa)3588 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3589 			struct super_block *sb, struct ext4_prealloc_space *pa)
3590 {
3591 	ext4_group_t grp;
3592 	ext4_fsblk_t grp_blk;
3593 
3594 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3595 		return;
3596 
3597 	/* in this short window concurrent discard can set pa_deleted */
3598 	spin_lock(&pa->pa_lock);
3599 	if (pa->pa_deleted == 1) {
3600 		spin_unlock(&pa->pa_lock);
3601 		return;
3602 	}
3603 
3604 	pa->pa_deleted = 1;
3605 	spin_unlock(&pa->pa_lock);
3606 
3607 	grp_blk = pa->pa_pstart;
3608 	/* If linear, pa_pstart may be in the next group when pa is used up */
3609 	if (pa->pa_linear)
3610 		grp_blk--;
3611 
3612 	ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL);
3613 
3614 	/*
3615 	 * possible race:
3616 	 *
3617 	 *  P1 (buddy init)			P2 (regular allocation)
3618 	 *					find block B in PA
3619 	 *  copy on-disk bitmap to buddy
3620 	 *  					mark B in on-disk bitmap
3621 	 *					drop PA from group
3622 	 *  mark all PAs in buddy
3623 	 *
3624 	 * thus, P1 initializes buddy with B available. to prevent this
3625 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3626 	 * against that pair
3627 	 */
3628 	ext4_lock_group(sb, grp);
3629 	list_del(&pa->pa_group_list);
3630 	ext4_unlock_group(sb, grp);
3631 
3632 	spin_lock(pa->pa_obj_lock);
3633 	list_del_rcu(&pa->pa_inode_list);
3634 	spin_unlock(pa->pa_obj_lock);
3635 
3636 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3637 }
3638 
3639 /*
3640  * creates new preallocated space for given inode
3641  */
3642 static noinline_for_stack int
ext4_mb_new_inode_pa(struct ext4_allocation_context * ac)3643 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3644 {
3645 	struct super_block *sb = ac->ac_sb;
3646 	struct ext4_prealloc_space *pa;
3647 	struct ext4_group_info *grp;
3648 	struct ext4_inode_info *ei;
3649 
3650 	/* preallocate only when found space is larger then requested */
3651 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3652 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3653 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3654 
3655 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3656 	if (pa == NULL)
3657 		return -ENOMEM;
3658 
3659 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3660 		int winl;
3661 		int wins;
3662 		int win;
3663 		int offs;
3664 
3665 		/* we can't allocate as much as normalizer wants.
3666 		 * so, found space must get proper lstart
3667 		 * to cover original request */
3668 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3669 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3670 
3671 		/* we're limited by original request in that
3672 		 * logical block must be covered any way
3673 		 * winl is window we can move our chunk within */
3674 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3675 
3676 		/* also, we should cover whole original request */
3677 		wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len;
3678 
3679 		/* the smallest one defines real window */
3680 		win = min(winl, wins);
3681 
3682 		offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len;
3683 		if (offs && offs < win)
3684 			win = offs;
3685 
3686 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win;
3687 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3688 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3689 	}
3690 
3691 	/* preallocation can change ac_b_ex, thus we store actually
3692 	 * allocated blocks for history */
3693 	ac->ac_f_ex = ac->ac_b_ex;
3694 
3695 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
3696 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3697 	pa->pa_len = ac->ac_b_ex.fe_len;
3698 	pa->pa_free = pa->pa_len;
3699 	atomic_set(&pa->pa_count, 1);
3700 	spin_lock_init(&pa->pa_lock);
3701 	INIT_LIST_HEAD(&pa->pa_inode_list);
3702 	INIT_LIST_HEAD(&pa->pa_group_list);
3703 	pa->pa_deleted = 0;
3704 	pa->pa_linear = 0;
3705 
3706 	mb_debug("new inode pa %p: %llu/%u for %u\n", pa,
3707 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3708 	trace_mark(ext4_mb_new_inode_pa,
3709 		   "dev %s ino %lu pstart %llu len %u lstart %u",
3710 		   sb->s_id, ac->ac_inode->i_ino,
3711 		   pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3712 
3713 	ext4_mb_use_inode_pa(ac, pa);
3714 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3715 
3716 	ei = EXT4_I(ac->ac_inode);
3717 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3718 
3719 	pa->pa_obj_lock = &ei->i_prealloc_lock;
3720 	pa->pa_inode = ac->ac_inode;
3721 
3722 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3723 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3724 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3725 
3726 	spin_lock(pa->pa_obj_lock);
3727 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3728 	spin_unlock(pa->pa_obj_lock);
3729 
3730 	return 0;
3731 }
3732 
3733 /*
3734  * creates new preallocated space for locality group inodes belongs to
3735  */
3736 static noinline_for_stack int
ext4_mb_new_group_pa(struct ext4_allocation_context * ac)3737 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3738 {
3739 	struct super_block *sb = ac->ac_sb;
3740 	struct ext4_locality_group *lg;
3741 	struct ext4_prealloc_space *pa;
3742 	struct ext4_group_info *grp;
3743 
3744 	/* preallocate only when found space is larger then requested */
3745 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3746 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3747 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3748 
3749 	BUG_ON(ext4_pspace_cachep == NULL);
3750 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3751 	if (pa == NULL)
3752 		return -ENOMEM;
3753 
3754 	/* preallocation can change ac_b_ex, thus we store actually
3755 	 * allocated blocks for history */
3756 	ac->ac_f_ex = ac->ac_b_ex;
3757 
3758 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3759 	pa->pa_lstart = pa->pa_pstart;
3760 	pa->pa_len = ac->ac_b_ex.fe_len;
3761 	pa->pa_free = pa->pa_len;
3762 	atomic_set(&pa->pa_count, 1);
3763 	spin_lock_init(&pa->pa_lock);
3764 	INIT_LIST_HEAD(&pa->pa_inode_list);
3765 	INIT_LIST_HEAD(&pa->pa_group_list);
3766 	pa->pa_deleted = 0;
3767 	pa->pa_linear = 1;
3768 
3769 	mb_debug("new group pa %p: %llu/%u for %u\n", pa,
3770 		 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3771 	trace_mark(ext4_mb_new_group_pa, "dev %s pstart %llu len %u lstart %u",
3772 		   sb->s_id, pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3773 
3774 	ext4_mb_use_group_pa(ac, pa);
3775 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3776 
3777 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3778 	lg = ac->ac_lg;
3779 	BUG_ON(lg == NULL);
3780 
3781 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
3782 	pa->pa_inode = NULL;
3783 
3784 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3785 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3786 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3787 
3788 	/*
3789 	 * We will later add the new pa to the right bucket
3790 	 * after updating the pa_free in ext4_mb_release_context
3791 	 */
3792 	return 0;
3793 }
3794 
ext4_mb_new_preallocation(struct ext4_allocation_context * ac)3795 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3796 {
3797 	int err;
3798 
3799 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3800 		err = ext4_mb_new_group_pa(ac);
3801 	else
3802 		err = ext4_mb_new_inode_pa(ac);
3803 	return err;
3804 }
3805 
3806 /*
3807  * finds all unused blocks in on-disk bitmap, frees them in
3808  * in-core bitmap and buddy.
3809  * @pa must be unlinked from inode and group lists, so that
3810  * nobody else can find/use it.
3811  * the caller MUST hold group/inode locks.
3812  * TODO: optimize the case when there are no in-core structures yet
3813  */
3814 static noinline_for_stack int
ext4_mb_release_inode_pa(struct ext4_buddy * e4b,struct buffer_head * bitmap_bh,struct ext4_prealloc_space * pa,struct ext4_allocation_context * ac)3815 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3816 			struct ext4_prealloc_space *pa,
3817 			struct ext4_allocation_context *ac)
3818 {
3819 	struct super_block *sb = e4b->bd_sb;
3820 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3821 	unsigned int end;
3822 	unsigned int next;
3823 	ext4_group_t group;
3824 	ext4_grpblk_t bit;
3825 	unsigned long long grp_blk_start;
3826 	sector_t start;
3827 	int err = 0;
3828 	int free = 0;
3829 
3830 	BUG_ON(pa->pa_deleted == 0);
3831 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3832 	grp_blk_start = pa->pa_pstart - bit;
3833 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3834 	end = bit + pa->pa_len;
3835 
3836 	if (ac) {
3837 		ac->ac_sb = sb;
3838 		ac->ac_inode = pa->pa_inode;
3839 		ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3840 	}
3841 
3842 	while (bit < end) {
3843 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3844 		if (bit >= end)
3845 			break;
3846 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3847 		start = group * EXT4_BLOCKS_PER_GROUP(sb) + bit +
3848 				le32_to_cpu(sbi->s_es->s_first_data_block);
3849 		mb_debug("    free preallocated %u/%u in group %u\n",
3850 				(unsigned) start, (unsigned) next - bit,
3851 				(unsigned) group);
3852 		free += next - bit;
3853 
3854 		if (ac) {
3855 			ac->ac_b_ex.fe_group = group;
3856 			ac->ac_b_ex.fe_start = bit;
3857 			ac->ac_b_ex.fe_len = next - bit;
3858 			ac->ac_b_ex.fe_logical = 0;
3859 			ext4_mb_store_history(ac);
3860 		}
3861 
3862 		trace_mark(ext4_mb_release_inode_pa,
3863 			   "dev %s ino %lu block %llu count %u",
3864 			   sb->s_id, pa->pa_inode->i_ino, grp_blk_start + bit,
3865 			   next - bit);
3866 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3867 		bit = next + 1;
3868 	}
3869 	if (free != pa->pa_free) {
3870 		printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n",
3871 			pa, (unsigned long) pa->pa_lstart,
3872 			(unsigned long) pa->pa_pstart,
3873 			(unsigned long) pa->pa_len);
3874 		ext4_grp_locked_error(sb, group,
3875 					__func__, "free %u, pa_free %u",
3876 					free, pa->pa_free);
3877 		/*
3878 		 * pa is already deleted so we use the value obtained
3879 		 * from the bitmap and continue.
3880 		 */
3881 	}
3882 	atomic_add(free, &sbi->s_mb_discarded);
3883 
3884 	return err;
3885 }
3886 
3887 static noinline_for_stack int
ext4_mb_release_group_pa(struct ext4_buddy * e4b,struct ext4_prealloc_space * pa,struct ext4_allocation_context * ac)3888 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3889 				struct ext4_prealloc_space *pa,
3890 				struct ext4_allocation_context *ac)
3891 {
3892 	struct super_block *sb = e4b->bd_sb;
3893 	ext4_group_t group;
3894 	ext4_grpblk_t bit;
3895 
3896 	if (ac)
3897 		ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3898 
3899 	trace_mark(ext4_mb_release_group_pa, "dev %s pstart %llu len %d",
3900 		   sb->s_id, pa->pa_pstart, pa->pa_len);
3901 	BUG_ON(pa->pa_deleted == 0);
3902 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3903 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3904 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3905 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3906 
3907 	if (ac) {
3908 		ac->ac_sb = sb;
3909 		ac->ac_inode = NULL;
3910 		ac->ac_b_ex.fe_group = group;
3911 		ac->ac_b_ex.fe_start = bit;
3912 		ac->ac_b_ex.fe_len = pa->pa_len;
3913 		ac->ac_b_ex.fe_logical = 0;
3914 		ext4_mb_store_history(ac);
3915 	}
3916 
3917 	return 0;
3918 }
3919 
3920 /*
3921  * releases all preallocations in given group
3922  *
3923  * first, we need to decide discard policy:
3924  * - when do we discard
3925  *   1) ENOSPC
3926  * - how many do we discard
3927  *   1) how many requested
3928  */
3929 static noinline_for_stack int
ext4_mb_discard_group_preallocations(struct super_block * sb,ext4_group_t group,int needed)3930 ext4_mb_discard_group_preallocations(struct super_block *sb,
3931 					ext4_group_t group, int needed)
3932 {
3933 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3934 	struct buffer_head *bitmap_bh = NULL;
3935 	struct ext4_prealloc_space *pa, *tmp;
3936 	struct ext4_allocation_context *ac;
3937 	struct list_head list;
3938 	struct ext4_buddy e4b;
3939 	int err;
3940 	int busy = 0;
3941 	int free = 0;
3942 
3943 	mb_debug("discard preallocation for group %u\n", group);
3944 
3945 	if (list_empty(&grp->bb_prealloc_list))
3946 		return 0;
3947 
3948 	bitmap_bh = ext4_read_block_bitmap(sb, group);
3949 	if (bitmap_bh == NULL) {
3950 		ext4_error(sb, __func__, "Error in reading block "
3951 				"bitmap for %u", group);
3952 		return 0;
3953 	}
3954 
3955 	err = ext4_mb_load_buddy(sb, group, &e4b);
3956 	if (err) {
3957 		ext4_error(sb, __func__, "Error in loading buddy "
3958 				"information for %u", group);
3959 		put_bh(bitmap_bh);
3960 		return 0;
3961 	}
3962 
3963 	if (needed == 0)
3964 		needed = EXT4_BLOCKS_PER_GROUP(sb) + 1;
3965 
3966 	INIT_LIST_HEAD(&list);
3967 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
3968 repeat:
3969 	ext4_lock_group(sb, group);
3970 	list_for_each_entry_safe(pa, tmp,
3971 				&grp->bb_prealloc_list, pa_group_list) {
3972 		spin_lock(&pa->pa_lock);
3973 		if (atomic_read(&pa->pa_count)) {
3974 			spin_unlock(&pa->pa_lock);
3975 			busy = 1;
3976 			continue;
3977 		}
3978 		if (pa->pa_deleted) {
3979 			spin_unlock(&pa->pa_lock);
3980 			continue;
3981 		}
3982 
3983 		/* seems this one can be freed ... */
3984 		pa->pa_deleted = 1;
3985 
3986 		/* we can trust pa_free ... */
3987 		free += pa->pa_free;
3988 
3989 		spin_unlock(&pa->pa_lock);
3990 
3991 		list_del(&pa->pa_group_list);
3992 		list_add(&pa->u.pa_tmp_list, &list);
3993 	}
3994 
3995 	/* if we still need more blocks and some PAs were used, try again */
3996 	if (free < needed && busy) {
3997 		busy = 0;
3998 		ext4_unlock_group(sb, group);
3999 		/*
4000 		 * Yield the CPU here so that we don't get soft lockup
4001 		 * in non preempt case.
4002 		 */
4003 		yield();
4004 		goto repeat;
4005 	}
4006 
4007 	/* found anything to free? */
4008 	if (list_empty(&list)) {
4009 		BUG_ON(free != 0);
4010 		goto out;
4011 	}
4012 
4013 	/* now free all selected PAs */
4014 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4015 
4016 		/* remove from object (inode or locality group) */
4017 		spin_lock(pa->pa_obj_lock);
4018 		list_del_rcu(&pa->pa_inode_list);
4019 		spin_unlock(pa->pa_obj_lock);
4020 
4021 		if (pa->pa_linear)
4022 			ext4_mb_release_group_pa(&e4b, pa, ac);
4023 		else
4024 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
4025 
4026 		list_del(&pa->u.pa_tmp_list);
4027 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4028 	}
4029 
4030 out:
4031 	ext4_unlock_group(sb, group);
4032 	if (ac)
4033 		kmem_cache_free(ext4_ac_cachep, ac);
4034 	ext4_mb_release_desc(&e4b);
4035 	put_bh(bitmap_bh);
4036 	return free;
4037 }
4038 
4039 /*
4040  * releases all non-used preallocated blocks for given inode
4041  *
4042  * It's important to discard preallocations under i_data_sem
4043  * We don't want another block to be served from the prealloc
4044  * space when we are discarding the inode prealloc space.
4045  *
4046  * FIXME!! Make sure it is valid at all the call sites
4047  */
ext4_discard_preallocations(struct inode * inode)4048 void ext4_discard_preallocations(struct inode *inode)
4049 {
4050 	struct ext4_inode_info *ei = EXT4_I(inode);
4051 	struct super_block *sb = inode->i_sb;
4052 	struct buffer_head *bitmap_bh = NULL;
4053 	struct ext4_prealloc_space *pa, *tmp;
4054 	struct ext4_allocation_context *ac;
4055 	ext4_group_t group = 0;
4056 	struct list_head list;
4057 	struct ext4_buddy e4b;
4058 	int err;
4059 
4060 	if (!S_ISREG(inode->i_mode)) {
4061 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4062 		return;
4063 	}
4064 
4065 	mb_debug("discard preallocation for inode %lu\n", inode->i_ino);
4066 	trace_mark(ext4_discard_preallocations, "dev %s ino %lu", sb->s_id,
4067 		   inode->i_ino);
4068 
4069 	INIT_LIST_HEAD(&list);
4070 
4071 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4072 repeat:
4073 	/* first, collect all pa's in the inode */
4074 	spin_lock(&ei->i_prealloc_lock);
4075 	while (!list_empty(&ei->i_prealloc_list)) {
4076 		pa = list_entry(ei->i_prealloc_list.next,
4077 				struct ext4_prealloc_space, pa_inode_list);
4078 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4079 		spin_lock(&pa->pa_lock);
4080 		if (atomic_read(&pa->pa_count)) {
4081 			/* this shouldn't happen often - nobody should
4082 			 * use preallocation while we're discarding it */
4083 			spin_unlock(&pa->pa_lock);
4084 			spin_unlock(&ei->i_prealloc_lock);
4085 			printk(KERN_ERR "uh-oh! used pa while discarding\n");
4086 			WARN_ON(1);
4087 			schedule_timeout_uninterruptible(HZ);
4088 			goto repeat;
4089 
4090 		}
4091 		if (pa->pa_deleted == 0) {
4092 			pa->pa_deleted = 1;
4093 			spin_unlock(&pa->pa_lock);
4094 			list_del_rcu(&pa->pa_inode_list);
4095 			list_add(&pa->u.pa_tmp_list, &list);
4096 			continue;
4097 		}
4098 
4099 		/* someone is deleting pa right now */
4100 		spin_unlock(&pa->pa_lock);
4101 		spin_unlock(&ei->i_prealloc_lock);
4102 
4103 		/* we have to wait here because pa_deleted
4104 		 * doesn't mean pa is already unlinked from
4105 		 * the list. as we might be called from
4106 		 * ->clear_inode() the inode will get freed
4107 		 * and concurrent thread which is unlinking
4108 		 * pa from inode's list may access already
4109 		 * freed memory, bad-bad-bad */
4110 
4111 		/* XXX: if this happens too often, we can
4112 		 * add a flag to force wait only in case
4113 		 * of ->clear_inode(), but not in case of
4114 		 * regular truncate */
4115 		schedule_timeout_uninterruptible(HZ);
4116 		goto repeat;
4117 	}
4118 	spin_unlock(&ei->i_prealloc_lock);
4119 
4120 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4121 		BUG_ON(pa->pa_linear != 0);
4122 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4123 
4124 		err = ext4_mb_load_buddy(sb, group, &e4b);
4125 		if (err) {
4126 			ext4_error(sb, __func__, "Error in loading buddy "
4127 					"information for %u", group);
4128 			continue;
4129 		}
4130 
4131 		bitmap_bh = ext4_read_block_bitmap(sb, group);
4132 		if (bitmap_bh == NULL) {
4133 			ext4_error(sb, __func__, "Error in reading block "
4134 					"bitmap for %u", group);
4135 			ext4_mb_release_desc(&e4b);
4136 			continue;
4137 		}
4138 
4139 		ext4_lock_group(sb, group);
4140 		list_del(&pa->pa_group_list);
4141 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
4142 		ext4_unlock_group(sb, group);
4143 
4144 		ext4_mb_release_desc(&e4b);
4145 		put_bh(bitmap_bh);
4146 
4147 		list_del(&pa->u.pa_tmp_list);
4148 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4149 	}
4150 	if (ac)
4151 		kmem_cache_free(ext4_ac_cachep, ac);
4152 }
4153 
4154 /*
4155  * finds all preallocated spaces and return blocks being freed to them
4156  * if preallocated space becomes full (no block is used from the space)
4157  * then the function frees space in buddy
4158  * XXX: at the moment, truncate (which is the only way to free blocks)
4159  * discards all preallocations
4160  */
ext4_mb_return_to_preallocation(struct inode * inode,struct ext4_buddy * e4b,sector_t block,int count)4161 static void ext4_mb_return_to_preallocation(struct inode *inode,
4162 					struct ext4_buddy *e4b,
4163 					sector_t block, int count)
4164 {
4165 	BUG_ON(!list_empty(&EXT4_I(inode)->i_prealloc_list));
4166 }
4167 #ifdef MB_DEBUG
ext4_mb_show_ac(struct ext4_allocation_context * ac)4168 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4169 {
4170 	struct super_block *sb = ac->ac_sb;
4171 	ext4_group_t i;
4172 
4173 	printk(KERN_ERR "EXT4-fs: Can't allocate:"
4174 			" Allocation context details:\n");
4175 	printk(KERN_ERR "EXT4-fs: status %d flags %d\n",
4176 			ac->ac_status, ac->ac_flags);
4177 	printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, "
4178 			"best %lu/%lu/%lu@%lu cr %d\n",
4179 			(unsigned long)ac->ac_o_ex.fe_group,
4180 			(unsigned long)ac->ac_o_ex.fe_start,
4181 			(unsigned long)ac->ac_o_ex.fe_len,
4182 			(unsigned long)ac->ac_o_ex.fe_logical,
4183 			(unsigned long)ac->ac_g_ex.fe_group,
4184 			(unsigned long)ac->ac_g_ex.fe_start,
4185 			(unsigned long)ac->ac_g_ex.fe_len,
4186 			(unsigned long)ac->ac_g_ex.fe_logical,
4187 			(unsigned long)ac->ac_b_ex.fe_group,
4188 			(unsigned long)ac->ac_b_ex.fe_start,
4189 			(unsigned long)ac->ac_b_ex.fe_len,
4190 			(unsigned long)ac->ac_b_ex.fe_logical,
4191 			(int)ac->ac_criteria);
4192 	printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned,
4193 		ac->ac_found);
4194 	printk(KERN_ERR "EXT4-fs: groups: \n");
4195 	for (i = 0; i < EXT4_SB(sb)->s_groups_count; i++) {
4196 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4197 		struct ext4_prealloc_space *pa;
4198 		ext4_grpblk_t start;
4199 		struct list_head *cur;
4200 		ext4_lock_group(sb, i);
4201 		list_for_each(cur, &grp->bb_prealloc_list) {
4202 			pa = list_entry(cur, struct ext4_prealloc_space,
4203 					pa_group_list);
4204 			spin_lock(&pa->pa_lock);
4205 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4206 						     NULL, &start);
4207 			spin_unlock(&pa->pa_lock);
4208 			printk(KERN_ERR "PA:%lu:%d:%u \n", i,
4209 							start, pa->pa_len);
4210 		}
4211 		ext4_unlock_group(sb, i);
4212 
4213 		if (grp->bb_free == 0)
4214 			continue;
4215 		printk(KERN_ERR "%lu: %d/%d \n",
4216 		       i, grp->bb_free, grp->bb_fragments);
4217 	}
4218 	printk(KERN_ERR "\n");
4219 }
4220 #else
ext4_mb_show_ac(struct ext4_allocation_context * ac)4221 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4222 {
4223 	return;
4224 }
4225 #endif
4226 
4227 /*
4228  * We use locality group preallocation for small size file. The size of the
4229  * file is determined by the current size or the resulting size after
4230  * allocation which ever is larger
4231  *
4232  * One can tune this size via /proc/fs/ext4/<partition>/stream_req
4233  */
ext4_mb_group_or_file(struct ext4_allocation_context * ac)4234 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4235 {
4236 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4237 	int bsbits = ac->ac_sb->s_blocksize_bits;
4238 	loff_t size, isize;
4239 
4240 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4241 		return;
4242 
4243 	size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
4244 	isize = i_size_read(ac->ac_inode) >> bsbits;
4245 	size = max(size, isize);
4246 
4247 	/* don't use group allocation for large files */
4248 	if (size >= sbi->s_mb_stream_request)
4249 		return;
4250 
4251 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4252 		return;
4253 
4254 	BUG_ON(ac->ac_lg != NULL);
4255 	/*
4256 	 * locality group prealloc space are per cpu. The reason for having
4257 	 * per cpu locality group is to reduce the contention between block
4258 	 * request from multiple CPUs.
4259 	 */
4260 	ac->ac_lg = per_cpu_ptr(sbi->s_locality_groups, raw_smp_processor_id());
4261 
4262 	/* we're going to use group allocation */
4263 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4264 
4265 	/* serialize all allocations in the group */
4266 	mutex_lock(&ac->ac_lg->lg_mutex);
4267 }
4268 
4269 static noinline_for_stack int
ext4_mb_initialize_context(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)4270 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4271 				struct ext4_allocation_request *ar)
4272 {
4273 	struct super_block *sb = ar->inode->i_sb;
4274 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4275 	struct ext4_super_block *es = sbi->s_es;
4276 	ext4_group_t group;
4277 	unsigned int len;
4278 	ext4_fsblk_t goal;
4279 	ext4_grpblk_t block;
4280 
4281 	/* we can't allocate > group size */
4282 	len = ar->len;
4283 
4284 	/* just a dirty hack to filter too big requests  */
4285 	if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10)
4286 		len = EXT4_BLOCKS_PER_GROUP(sb) - 10;
4287 
4288 	/* start searching from the goal */
4289 	goal = ar->goal;
4290 	if (goal < le32_to_cpu(es->s_first_data_block) ||
4291 			goal >= ext4_blocks_count(es))
4292 		goal = le32_to_cpu(es->s_first_data_block);
4293 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
4294 
4295 	/* set up allocation goals */
4296 	ac->ac_b_ex.fe_logical = ar->logical;
4297 	ac->ac_b_ex.fe_group = 0;
4298 	ac->ac_b_ex.fe_start = 0;
4299 	ac->ac_b_ex.fe_len = 0;
4300 	ac->ac_status = AC_STATUS_CONTINUE;
4301 	ac->ac_groups_scanned = 0;
4302 	ac->ac_ex_scanned = 0;
4303 	ac->ac_found = 0;
4304 	ac->ac_sb = sb;
4305 	ac->ac_inode = ar->inode;
4306 	ac->ac_o_ex.fe_logical = ar->logical;
4307 	ac->ac_o_ex.fe_group = group;
4308 	ac->ac_o_ex.fe_start = block;
4309 	ac->ac_o_ex.fe_len = len;
4310 	ac->ac_g_ex.fe_logical = ar->logical;
4311 	ac->ac_g_ex.fe_group = group;
4312 	ac->ac_g_ex.fe_start = block;
4313 	ac->ac_g_ex.fe_len = len;
4314 	ac->ac_f_ex.fe_len = 0;
4315 	ac->ac_flags = ar->flags;
4316 	ac->ac_2order = 0;
4317 	ac->ac_criteria = 0;
4318 	ac->ac_pa = NULL;
4319 	ac->ac_bitmap_page = NULL;
4320 	ac->ac_buddy_page = NULL;
4321 	ac->alloc_semp = NULL;
4322 	ac->ac_lg = NULL;
4323 
4324 	/* we have to define context: we'll we work with a file or
4325 	 * locality group. this is a policy, actually */
4326 	ext4_mb_group_or_file(ac);
4327 
4328 	mb_debug("init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4329 			"left: %u/%u, right %u/%u to %swritable\n",
4330 			(unsigned) ar->len, (unsigned) ar->logical,
4331 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4332 			(unsigned) ar->lleft, (unsigned) ar->pleft,
4333 			(unsigned) ar->lright, (unsigned) ar->pright,
4334 			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4335 	return 0;
4336 
4337 }
4338 
4339 static noinline_for_stack void
ext4_mb_discard_lg_preallocations(struct super_block * sb,struct ext4_locality_group * lg,int order,int total_entries)4340 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4341 					struct ext4_locality_group *lg,
4342 					int order, int total_entries)
4343 {
4344 	ext4_group_t group = 0;
4345 	struct ext4_buddy e4b;
4346 	struct list_head discard_list;
4347 	struct ext4_prealloc_space *pa, *tmp;
4348 	struct ext4_allocation_context *ac;
4349 
4350 	mb_debug("discard locality group preallocation\n");
4351 
4352 	INIT_LIST_HEAD(&discard_list);
4353 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4354 
4355 	spin_lock(&lg->lg_prealloc_lock);
4356 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4357 						pa_inode_list) {
4358 		spin_lock(&pa->pa_lock);
4359 		if (atomic_read(&pa->pa_count)) {
4360 			/*
4361 			 * This is the pa that we just used
4362 			 * for block allocation. So don't
4363 			 * free that
4364 			 */
4365 			spin_unlock(&pa->pa_lock);
4366 			continue;
4367 		}
4368 		if (pa->pa_deleted) {
4369 			spin_unlock(&pa->pa_lock);
4370 			continue;
4371 		}
4372 		/* only lg prealloc space */
4373 		BUG_ON(!pa->pa_linear);
4374 
4375 		/* seems this one can be freed ... */
4376 		pa->pa_deleted = 1;
4377 		spin_unlock(&pa->pa_lock);
4378 
4379 		list_del_rcu(&pa->pa_inode_list);
4380 		list_add(&pa->u.pa_tmp_list, &discard_list);
4381 
4382 		total_entries--;
4383 		if (total_entries <= 5) {
4384 			/*
4385 			 * we want to keep only 5 entries
4386 			 * allowing it to grow to 8. This
4387 			 * mak sure we don't call discard
4388 			 * soon for this list.
4389 			 */
4390 			break;
4391 		}
4392 	}
4393 	spin_unlock(&lg->lg_prealloc_lock);
4394 
4395 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4396 
4397 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4398 		if (ext4_mb_load_buddy(sb, group, &e4b)) {
4399 			ext4_error(sb, __func__, "Error in loading buddy "
4400 					"information for %u", group);
4401 			continue;
4402 		}
4403 		ext4_lock_group(sb, group);
4404 		list_del(&pa->pa_group_list);
4405 		ext4_mb_release_group_pa(&e4b, pa, ac);
4406 		ext4_unlock_group(sb, group);
4407 
4408 		ext4_mb_release_desc(&e4b);
4409 		list_del(&pa->u.pa_tmp_list);
4410 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4411 	}
4412 	if (ac)
4413 		kmem_cache_free(ext4_ac_cachep, ac);
4414 }
4415 
4416 /*
4417  * We have incremented pa_count. So it cannot be freed at this
4418  * point. Also we hold lg_mutex. So no parallel allocation is
4419  * possible from this lg. That means pa_free cannot be updated.
4420  *
4421  * A parallel ext4_mb_discard_group_preallocations is possible.
4422  * which can cause the lg_prealloc_list to be updated.
4423  */
4424 
ext4_mb_add_n_trim(struct ext4_allocation_context * ac)4425 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4426 {
4427 	int order, added = 0, lg_prealloc_count = 1;
4428 	struct super_block *sb = ac->ac_sb;
4429 	struct ext4_locality_group *lg = ac->ac_lg;
4430 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4431 
4432 	order = fls(pa->pa_free) - 1;
4433 	if (order > PREALLOC_TB_SIZE - 1)
4434 		/* The max size of hash table is PREALLOC_TB_SIZE */
4435 		order = PREALLOC_TB_SIZE - 1;
4436 	/* Add the prealloc space to lg */
4437 	rcu_read_lock();
4438 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4439 						pa_inode_list) {
4440 		spin_lock(&tmp_pa->pa_lock);
4441 		if (tmp_pa->pa_deleted) {
4442 			spin_unlock(&pa->pa_lock);
4443 			continue;
4444 		}
4445 		if (!added && pa->pa_free < tmp_pa->pa_free) {
4446 			/* Add to the tail of the previous entry */
4447 			list_add_tail_rcu(&pa->pa_inode_list,
4448 						&tmp_pa->pa_inode_list);
4449 			added = 1;
4450 			/*
4451 			 * we want to count the total
4452 			 * number of entries in the list
4453 			 */
4454 		}
4455 		spin_unlock(&tmp_pa->pa_lock);
4456 		lg_prealloc_count++;
4457 	}
4458 	if (!added)
4459 		list_add_tail_rcu(&pa->pa_inode_list,
4460 					&lg->lg_prealloc_list[order]);
4461 	rcu_read_unlock();
4462 
4463 	/* Now trim the list to be not more than 8 elements */
4464 	if (lg_prealloc_count > 8) {
4465 		ext4_mb_discard_lg_preallocations(sb, lg,
4466 						order, lg_prealloc_count);
4467 		return;
4468 	}
4469 	return ;
4470 }
4471 
4472 /*
4473  * release all resource we used in allocation
4474  */
ext4_mb_release_context(struct ext4_allocation_context * ac)4475 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4476 {
4477 	struct ext4_prealloc_space *pa = ac->ac_pa;
4478 	if (pa) {
4479 		if (pa->pa_linear) {
4480 			/* see comment in ext4_mb_use_group_pa() */
4481 			spin_lock(&pa->pa_lock);
4482 			pa->pa_pstart += ac->ac_b_ex.fe_len;
4483 			pa->pa_lstart += ac->ac_b_ex.fe_len;
4484 			pa->pa_free -= ac->ac_b_ex.fe_len;
4485 			pa->pa_len -= ac->ac_b_ex.fe_len;
4486 			spin_unlock(&pa->pa_lock);
4487 		}
4488 	}
4489 	if (ac->alloc_semp)
4490 		up_read(ac->alloc_semp);
4491 	if (pa) {
4492 		/*
4493 		 * We want to add the pa to the right bucket.
4494 		 * Remove it from the list and while adding
4495 		 * make sure the list to which we are adding
4496 		 * doesn't grow big.  We need to release
4497 		 * alloc_semp before calling ext4_mb_add_n_trim()
4498 		 */
4499 		if (pa->pa_linear && likely(pa->pa_free)) {
4500 			spin_lock(pa->pa_obj_lock);
4501 			list_del_rcu(&pa->pa_inode_list);
4502 			spin_unlock(pa->pa_obj_lock);
4503 			ext4_mb_add_n_trim(ac);
4504 		}
4505 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
4506 	}
4507 	if (ac->ac_bitmap_page)
4508 		page_cache_release(ac->ac_bitmap_page);
4509 	if (ac->ac_buddy_page)
4510 		page_cache_release(ac->ac_buddy_page);
4511 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4512 		mutex_unlock(&ac->ac_lg->lg_mutex);
4513 	ext4_mb_collect_stats(ac);
4514 	return 0;
4515 }
4516 
ext4_mb_discard_preallocations(struct super_block * sb,int needed)4517 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4518 {
4519 	ext4_group_t i;
4520 	int ret;
4521 	int freed = 0;
4522 
4523 	trace_mark(ext4_mb_discard_preallocations, "dev %s needed %d",
4524 		   sb->s_id, needed);
4525 	for (i = 0; i < EXT4_SB(sb)->s_groups_count && needed > 0; i++) {
4526 		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4527 		freed += ret;
4528 		needed -= ret;
4529 	}
4530 
4531 	return freed;
4532 }
4533 
4534 /*
4535  * Main entry point into mballoc to allocate blocks
4536  * it tries to use preallocation first, then falls back
4537  * to usual allocation
4538  */
ext4_mb_new_blocks(handle_t * handle,struct ext4_allocation_request * ar,int * errp)4539 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4540 				 struct ext4_allocation_request *ar, int *errp)
4541 {
4542 	int freed;
4543 	struct ext4_allocation_context *ac = NULL;
4544 	struct ext4_sb_info *sbi;
4545 	struct super_block *sb;
4546 	ext4_fsblk_t block = 0;
4547 	unsigned int inquota;
4548 	unsigned int reserv_blks = 0;
4549 
4550 	sb = ar->inode->i_sb;
4551 	sbi = EXT4_SB(sb);
4552 
4553 	trace_mark(ext4_request_blocks, "dev %s flags %u len %u ino %lu "
4554 		   "lblk %llu goal %llu lleft %llu lright %llu "
4555 		   "pleft %llu pright %llu ",
4556 		   sb->s_id, ar->flags, ar->len,
4557 		   ar->inode ? ar->inode->i_ino : 0,
4558 		   (unsigned long long) ar->logical,
4559 		   (unsigned long long) ar->goal,
4560 		   (unsigned long long) ar->lleft,
4561 		   (unsigned long long) ar->lright,
4562 		   (unsigned long long) ar->pleft,
4563 		   (unsigned long long) ar->pright);
4564 
4565 	if (!EXT4_I(ar->inode)->i_delalloc_reserved_flag) {
4566 		/*
4567 		 * With delalloc we already reserved the blocks
4568 		 */
4569 		while (ar->len && ext4_claim_free_blocks(sbi, ar->len)) {
4570 			/* let others to free the space */
4571 			yield();
4572 			ar->len = ar->len >> 1;
4573 		}
4574 		if (!ar->len) {
4575 			*errp = -ENOSPC;
4576 			return 0;
4577 		}
4578 		reserv_blks = ar->len;
4579 	}
4580 	while (ar->len && DQUOT_ALLOC_BLOCK(ar->inode, ar->len)) {
4581 		ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4582 		ar->len--;
4583 	}
4584 	if (ar->len == 0) {
4585 		*errp = -EDQUOT;
4586 		goto out3;
4587 	}
4588 	inquota = ar->len;
4589 
4590 	if (EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4591 		ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4592 
4593 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4594 	if (!ac) {
4595 		ar->len = 0;
4596 		*errp = -ENOMEM;
4597 		goto out1;
4598 	}
4599 
4600 	*errp = ext4_mb_initialize_context(ac, ar);
4601 	if (*errp) {
4602 		ar->len = 0;
4603 		goto out2;
4604 	}
4605 
4606 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4607 	if (!ext4_mb_use_preallocated(ac)) {
4608 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4609 		ext4_mb_normalize_request(ac, ar);
4610 repeat:
4611 		/* allocate space in core */
4612 		ext4_mb_regular_allocator(ac);
4613 
4614 		/* as we've just preallocated more space than
4615 		 * user requested orinally, we store allocated
4616 		 * space in a special descriptor */
4617 		if (ac->ac_status == AC_STATUS_FOUND &&
4618 				ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4619 			ext4_mb_new_preallocation(ac);
4620 	}
4621 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4622 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_blks);
4623 		if (*errp ==  -EAGAIN) {
4624 			/*
4625 			 * drop the reference that we took
4626 			 * in ext4_mb_use_best_found
4627 			 */
4628 			ext4_mb_release_context(ac);
4629 			ac->ac_b_ex.fe_group = 0;
4630 			ac->ac_b_ex.fe_start = 0;
4631 			ac->ac_b_ex.fe_len = 0;
4632 			ac->ac_status = AC_STATUS_CONTINUE;
4633 			goto repeat;
4634 		} else if (*errp) {
4635 			ac->ac_b_ex.fe_len = 0;
4636 			ar->len = 0;
4637 			ext4_mb_show_ac(ac);
4638 		} else {
4639 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4640 			ar->len = ac->ac_b_ex.fe_len;
4641 		}
4642 	} else {
4643 		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4644 		if (freed)
4645 			goto repeat;
4646 		*errp = -ENOSPC;
4647 		ac->ac_b_ex.fe_len = 0;
4648 		ar->len = 0;
4649 		ext4_mb_show_ac(ac);
4650 	}
4651 
4652 	ext4_mb_release_context(ac);
4653 
4654 out2:
4655 	kmem_cache_free(ext4_ac_cachep, ac);
4656 out1:
4657 	if (ar->len < inquota)
4658 		DQUOT_FREE_BLOCK(ar->inode, inquota - ar->len);
4659 out3:
4660 	if (!ar->len) {
4661 		if (!EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4662 			/* release all the reserved blocks if non delalloc */
4663 			percpu_counter_sub(&sbi->s_dirtyblocks_counter,
4664 						reserv_blks);
4665 	}
4666 
4667 	trace_mark(ext4_allocate_blocks,
4668 		   "dev %s block %llu flags %u len %u ino %lu "
4669 		   "logical %llu goal %llu lleft %llu lright %llu "
4670 		   "pleft %llu pright %llu ",
4671 		   sb->s_id, (unsigned long long) block,
4672 		   ar->flags, ar->len, ar->inode ? ar->inode->i_ino : 0,
4673 		   (unsigned long long) ar->logical,
4674 		   (unsigned long long) ar->goal,
4675 		   (unsigned long long) ar->lleft,
4676 		   (unsigned long long) ar->lright,
4677 		   (unsigned long long) ar->pleft,
4678 		   (unsigned long long) ar->pright);
4679 
4680 	return block;
4681 }
4682 
4683 /*
4684  * We can merge two free data extents only if the physical blocks
4685  * are contiguous, AND the extents were freed by the same transaction,
4686  * AND the blocks are associated with the same group.
4687  */
can_merge(struct ext4_free_data * entry1,struct ext4_free_data * entry2)4688 static int can_merge(struct ext4_free_data *entry1,
4689 			struct ext4_free_data *entry2)
4690 {
4691 	if ((entry1->t_tid == entry2->t_tid) &&
4692 	    (entry1->group == entry2->group) &&
4693 	    ((entry1->start_blk + entry1->count) == entry2->start_blk))
4694 		return 1;
4695 	return 0;
4696 }
4697 
4698 static noinline_for_stack int
ext4_mb_free_metadata(handle_t * handle,struct ext4_buddy * e4b,struct ext4_free_data * new_entry)4699 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4700 		      struct ext4_free_data *new_entry)
4701 {
4702 	ext4_grpblk_t block;
4703 	struct ext4_free_data *entry;
4704 	struct ext4_group_info *db = e4b->bd_info;
4705 	struct super_block *sb = e4b->bd_sb;
4706 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4707 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
4708 	struct rb_node *parent = NULL, *new_node;
4709 
4710 	BUG_ON(!ext4_handle_valid(handle));
4711 	BUG_ON(e4b->bd_bitmap_page == NULL);
4712 	BUG_ON(e4b->bd_buddy_page == NULL);
4713 
4714 	new_node = &new_entry->node;
4715 	block = new_entry->start_blk;
4716 
4717 	if (!*n) {
4718 		/* first free block exent. We need to
4719 		   protect buddy cache from being freed,
4720 		 * otherwise we'll refresh it from
4721 		 * on-disk bitmap and lose not-yet-available
4722 		 * blocks */
4723 		page_cache_get(e4b->bd_buddy_page);
4724 		page_cache_get(e4b->bd_bitmap_page);
4725 	}
4726 	while (*n) {
4727 		parent = *n;
4728 		entry = rb_entry(parent, struct ext4_free_data, node);
4729 		if (block < entry->start_blk)
4730 			n = &(*n)->rb_left;
4731 		else if (block >= (entry->start_blk + entry->count))
4732 			n = &(*n)->rb_right;
4733 		else {
4734 			ext4_grp_locked_error(sb, e4b->bd_group, __func__,
4735 					"Double free of blocks %d (%d %d)",
4736 					block, entry->start_blk, entry->count);
4737 			return 0;
4738 		}
4739 	}
4740 
4741 	rb_link_node(new_node, parent, n);
4742 	rb_insert_color(new_node, &db->bb_free_root);
4743 
4744 	/* Now try to see the extent can be merged to left and right */
4745 	node = rb_prev(new_node);
4746 	if (node) {
4747 		entry = rb_entry(node, struct ext4_free_data, node);
4748 		if (can_merge(entry, new_entry)) {
4749 			new_entry->start_blk = entry->start_blk;
4750 			new_entry->count += entry->count;
4751 			rb_erase(node, &(db->bb_free_root));
4752 			spin_lock(&sbi->s_md_lock);
4753 			list_del(&entry->list);
4754 			spin_unlock(&sbi->s_md_lock);
4755 			kmem_cache_free(ext4_free_ext_cachep, entry);
4756 		}
4757 	}
4758 
4759 	node = rb_next(new_node);
4760 	if (node) {
4761 		entry = rb_entry(node, struct ext4_free_data, node);
4762 		if (can_merge(new_entry, entry)) {
4763 			new_entry->count += entry->count;
4764 			rb_erase(node, &(db->bb_free_root));
4765 			spin_lock(&sbi->s_md_lock);
4766 			list_del(&entry->list);
4767 			spin_unlock(&sbi->s_md_lock);
4768 			kmem_cache_free(ext4_free_ext_cachep, entry);
4769 		}
4770 	}
4771 	/* Add the extent to transaction's private list */
4772 	spin_lock(&sbi->s_md_lock);
4773 	list_add(&new_entry->list, &handle->h_transaction->t_private_list);
4774 	spin_unlock(&sbi->s_md_lock);
4775 	return 0;
4776 }
4777 
4778 /*
4779  * Main entry point into mballoc to free blocks
4780  */
ext4_mb_free_blocks(handle_t * handle,struct inode * inode,unsigned long block,unsigned long count,int metadata,unsigned long * freed)4781 void ext4_mb_free_blocks(handle_t *handle, struct inode *inode,
4782 			unsigned long block, unsigned long count,
4783 			int metadata, unsigned long *freed)
4784 {
4785 	struct buffer_head *bitmap_bh = NULL;
4786 	struct super_block *sb = inode->i_sb;
4787 	struct ext4_allocation_context *ac = NULL;
4788 	struct ext4_group_desc *gdp;
4789 	struct ext4_super_block *es;
4790 	unsigned int overflow;
4791 	ext4_grpblk_t bit;
4792 	struct buffer_head *gd_bh;
4793 	ext4_group_t block_group;
4794 	struct ext4_sb_info *sbi;
4795 	struct ext4_buddy e4b;
4796 	int err = 0;
4797 	int ret;
4798 
4799 	*freed = 0;
4800 
4801 	sbi = EXT4_SB(sb);
4802 	es = EXT4_SB(sb)->s_es;
4803 	if (block < le32_to_cpu(es->s_first_data_block) ||
4804 	    block + count < block ||
4805 	    block + count > ext4_blocks_count(es)) {
4806 		ext4_error(sb, __func__,
4807 			    "Freeing blocks not in datazone - "
4808 			    "block = %lu, count = %lu", block, count);
4809 		goto error_return;
4810 	}
4811 
4812 	ext4_debug("freeing block %lu\n", block);
4813 	trace_mark(ext4_free_blocks,
4814 		   "dev %s block %llu count %lu metadata %d ino %lu",
4815 		   sb->s_id, (unsigned long long) block, count, metadata,
4816 		   inode ? inode->i_ino : 0);
4817 
4818 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4819 	if (ac) {
4820 		ac->ac_op = EXT4_MB_HISTORY_FREE;
4821 		ac->ac_inode = inode;
4822 		ac->ac_sb = sb;
4823 	}
4824 
4825 do_more:
4826 	overflow = 0;
4827 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4828 
4829 	/*
4830 	 * Check to see if we are freeing blocks across a group
4831 	 * boundary.
4832 	 */
4833 	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4834 		overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
4835 		count -= overflow;
4836 	}
4837 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4838 	if (!bitmap_bh) {
4839 		err = -EIO;
4840 		goto error_return;
4841 	}
4842 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4843 	if (!gdp) {
4844 		err = -EIO;
4845 		goto error_return;
4846 	}
4847 
4848 	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4849 	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4850 	    in_range(block, ext4_inode_table(sb, gdp),
4851 		      EXT4_SB(sb)->s_itb_per_group) ||
4852 	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4853 		      EXT4_SB(sb)->s_itb_per_group)) {
4854 
4855 		ext4_error(sb, __func__,
4856 			   "Freeing blocks in system zone - "
4857 			   "Block = %lu, count = %lu", block, count);
4858 		/* err = 0. ext4_std_error should be a no op */
4859 		goto error_return;
4860 	}
4861 
4862 	BUFFER_TRACE(bitmap_bh, "getting write access");
4863 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4864 	if (err)
4865 		goto error_return;
4866 
4867 	/*
4868 	 * We are about to modify some metadata.  Call the journal APIs
4869 	 * to unshare ->b_data if a currently-committing transaction is
4870 	 * using it
4871 	 */
4872 	BUFFER_TRACE(gd_bh, "get_write_access");
4873 	err = ext4_journal_get_write_access(handle, gd_bh);
4874 	if (err)
4875 		goto error_return;
4876 #ifdef AGGRESSIVE_CHECK
4877 	{
4878 		int i;
4879 		for (i = 0; i < count; i++)
4880 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4881 	}
4882 #endif
4883 	if (ac) {
4884 		ac->ac_b_ex.fe_group = block_group;
4885 		ac->ac_b_ex.fe_start = bit;
4886 		ac->ac_b_ex.fe_len = count;
4887 		ext4_mb_store_history(ac);
4888 	}
4889 
4890 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4891 	if (err)
4892 		goto error_return;
4893 	if (metadata && ext4_handle_valid(handle)) {
4894 		struct ext4_free_data *new_entry;
4895 		/*
4896 		 * blocks being freed are metadata. these blocks shouldn't
4897 		 * be used until this transaction is committed
4898 		 */
4899 		new_entry  = kmem_cache_alloc(ext4_free_ext_cachep, GFP_NOFS);
4900 		new_entry->start_blk = bit;
4901 		new_entry->group  = block_group;
4902 		new_entry->count = count;
4903 		new_entry->t_tid = handle->h_transaction->t_tid;
4904 		ext4_lock_group(sb, block_group);
4905 		mb_clear_bits(sb_bgl_lock(sbi, block_group), bitmap_bh->b_data,
4906 				bit, count);
4907 		ext4_mb_free_metadata(handle, &e4b, new_entry);
4908 		ext4_unlock_group(sb, block_group);
4909 	} else {
4910 		ext4_lock_group(sb, block_group);
4911 		/* need to update group_info->bb_free and bitmap
4912 		 * with group lock held. generate_buddy look at
4913 		 * them with group lock_held
4914 		 */
4915 		mb_clear_bits(sb_bgl_lock(sbi, block_group), bitmap_bh->b_data,
4916 				bit, count);
4917 		mb_free_blocks(inode, &e4b, bit, count);
4918 		ext4_mb_return_to_preallocation(inode, &e4b, block, count);
4919 		ext4_unlock_group(sb, block_group);
4920 	}
4921 
4922 	spin_lock(sb_bgl_lock(sbi, block_group));
4923 	ret = ext4_free_blks_count(sb, gdp) + count;
4924 	ext4_free_blks_set(sb, gdp, ret);
4925 	gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
4926 	spin_unlock(sb_bgl_lock(sbi, block_group));
4927 	percpu_counter_add(&sbi->s_freeblocks_counter, count);
4928 
4929 	if (sbi->s_log_groups_per_flex) {
4930 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4931 		spin_lock(sb_bgl_lock(sbi, flex_group));
4932 		sbi->s_flex_groups[flex_group].free_blocks += count;
4933 		spin_unlock(sb_bgl_lock(sbi, flex_group));
4934 	}
4935 
4936 	ext4_mb_release_desc(&e4b);
4937 
4938 	*freed += count;
4939 
4940 	/* We dirtied the bitmap block */
4941 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4942 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4943 
4944 	/* And the group descriptor block */
4945 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4946 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4947 	if (!err)
4948 		err = ret;
4949 
4950 	if (overflow && !err) {
4951 		block += count;
4952 		count = overflow;
4953 		put_bh(bitmap_bh);
4954 		goto do_more;
4955 	}
4956 	sb->s_dirt = 1;
4957 error_return:
4958 	brelse(bitmap_bh);
4959 	ext4_std_error(sb, err);
4960 	if (ac)
4961 		kmem_cache_free(ext4_ac_cachep, ac);
4962 	return;
4963 }
4964