1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/blkdev.h>
27 #include <linux/parser.h>
28 #include <linux/smp_lock.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/marker.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <asm/uaccess.h>
42
43 #include "ext4.h"
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "namei.h"
48 #include "group.h"
49
50 struct proc_dir_entry *ext4_proc_root;
51
52 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
53 unsigned long journal_devnum);
54 static int ext4_commit_super(struct super_block *sb,
55 struct ext4_super_block *es, int sync);
56 static void ext4_mark_recovery_complete(struct super_block *sb,
57 struct ext4_super_block *es);
58 static void ext4_clear_journal_err(struct super_block *sb,
59 struct ext4_super_block *es);
60 static int ext4_sync_fs(struct super_block *sb, int wait);
61 static const char *ext4_decode_error(struct super_block *sb, int errno,
62 char nbuf[16]);
63 static int ext4_remount(struct super_block *sb, int *flags, char *data);
64 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
65 static int ext4_unfreeze(struct super_block *sb);
66 static void ext4_write_super(struct super_block *sb);
67 static int ext4_freeze(struct super_block *sb);
68
69
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)70 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
71 struct ext4_group_desc *bg)
72 {
73 return le32_to_cpu(bg->bg_block_bitmap_lo) |
74 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
75 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
76 }
77
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)78 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
79 struct ext4_group_desc *bg)
80 {
81 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
82 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
83 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
84 }
85
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)86 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
87 struct ext4_group_desc *bg)
88 {
89 return le32_to_cpu(bg->bg_inode_table_lo) |
90 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
91 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
92 }
93
ext4_free_blks_count(struct super_block * sb,struct ext4_group_desc * bg)94 __u32 ext4_free_blks_count(struct super_block *sb,
95 struct ext4_group_desc *bg)
96 {
97 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
98 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
99 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
100 }
101
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)102 __u32 ext4_free_inodes_count(struct super_block *sb,
103 struct ext4_group_desc *bg)
104 {
105 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
106 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
107 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
108 }
109
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)110 __u32 ext4_used_dirs_count(struct super_block *sb,
111 struct ext4_group_desc *bg)
112 {
113 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
114 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
115 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
116 }
117
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)118 __u32 ext4_itable_unused_count(struct super_block *sb,
119 struct ext4_group_desc *bg)
120 {
121 return le16_to_cpu(bg->bg_itable_unused_lo) |
122 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
123 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
124 }
125
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)126 void ext4_block_bitmap_set(struct super_block *sb,
127 struct ext4_group_desc *bg, ext4_fsblk_t blk)
128 {
129 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
130 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
131 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
132 }
133
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)134 void ext4_inode_bitmap_set(struct super_block *sb,
135 struct ext4_group_desc *bg, ext4_fsblk_t blk)
136 {
137 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
138 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
139 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
140 }
141
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)142 void ext4_inode_table_set(struct super_block *sb,
143 struct ext4_group_desc *bg, ext4_fsblk_t blk)
144 {
145 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
146 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
147 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
148 }
149
ext4_free_blks_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)150 void ext4_free_blks_set(struct super_block *sb,
151 struct ext4_group_desc *bg, __u32 count)
152 {
153 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
154 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
155 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
156 }
157
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)158 void ext4_free_inodes_set(struct super_block *sb,
159 struct ext4_group_desc *bg, __u32 count)
160 {
161 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
162 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
163 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
164 }
165
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)166 void ext4_used_dirs_set(struct super_block *sb,
167 struct ext4_group_desc *bg, __u32 count)
168 {
169 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
170 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
171 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
172 }
173
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)174 void ext4_itable_unused_set(struct super_block *sb,
175 struct ext4_group_desc *bg, __u32 count)
176 {
177 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
178 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
179 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
180 }
181
182 /*
183 * Wrappers for jbd2_journal_start/end.
184 *
185 * The only special thing we need to do here is to make sure that all
186 * journal_end calls result in the superblock being marked dirty, so
187 * that sync() will call the filesystem's write_super callback if
188 * appropriate.
189 */
ext4_journal_start_sb(struct super_block * sb,int nblocks)190 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
191 {
192 journal_t *journal;
193
194 if (sb->s_flags & MS_RDONLY)
195 return ERR_PTR(-EROFS);
196
197 /* Special case here: if the journal has aborted behind our
198 * backs (eg. EIO in the commit thread), then we still need to
199 * take the FS itself readonly cleanly. */
200 journal = EXT4_SB(sb)->s_journal;
201 if (journal) {
202 if (is_journal_aborted(journal)) {
203 ext4_abort(sb, __func__,
204 "Detected aborted journal");
205 return ERR_PTR(-EROFS);
206 }
207 return jbd2_journal_start(journal, nblocks);
208 }
209 /*
210 * We're not journaling, return the appropriate indication.
211 */
212 current->journal_info = EXT4_NOJOURNAL_HANDLE;
213 return current->journal_info;
214 }
215
216 /*
217 * The only special thing we need to do here is to make sure that all
218 * jbd2_journal_stop calls result in the superblock being marked dirty, so
219 * that sync() will call the filesystem's write_super callback if
220 * appropriate.
221 */
__ext4_journal_stop(const char * where,handle_t * handle)222 int __ext4_journal_stop(const char *where, handle_t *handle)
223 {
224 struct super_block *sb;
225 int err;
226 int rc;
227
228 if (!ext4_handle_valid(handle)) {
229 /*
230 * Do this here since we don't call jbd2_journal_stop() in
231 * no-journal mode.
232 */
233 current->journal_info = NULL;
234 return 0;
235 }
236 sb = handle->h_transaction->t_journal->j_private;
237 err = handle->h_err;
238 rc = jbd2_journal_stop(handle);
239
240 if (!err)
241 err = rc;
242 if (err)
243 __ext4_std_error(sb, where, err);
244 return err;
245 }
246
ext4_journal_abort_handle(const char * caller,const char * err_fn,struct buffer_head * bh,handle_t * handle,int err)247 void ext4_journal_abort_handle(const char *caller, const char *err_fn,
248 struct buffer_head *bh, handle_t *handle, int err)
249 {
250 char nbuf[16];
251 const char *errstr = ext4_decode_error(NULL, err, nbuf);
252
253 BUG_ON(!ext4_handle_valid(handle));
254
255 if (bh)
256 BUFFER_TRACE(bh, "abort");
257
258 if (!handle->h_err)
259 handle->h_err = err;
260
261 if (is_handle_aborted(handle))
262 return;
263
264 printk(KERN_ERR "%s: aborting transaction: %s in %s\n",
265 caller, errstr, err_fn);
266
267 jbd2_journal_abort_handle(handle);
268 }
269
270 /* Deal with the reporting of failure conditions on a filesystem such as
271 * inconsistencies detected or read IO failures.
272 *
273 * On ext2, we can store the error state of the filesystem in the
274 * superblock. That is not possible on ext4, because we may have other
275 * write ordering constraints on the superblock which prevent us from
276 * writing it out straight away; and given that the journal is about to
277 * be aborted, we can't rely on the current, or future, transactions to
278 * write out the superblock safely.
279 *
280 * We'll just use the jbd2_journal_abort() error code to record an error in
281 * the journal instead. On recovery, the journal will compain about
282 * that error until we've noted it down and cleared it.
283 */
284
ext4_handle_error(struct super_block * sb)285 static void ext4_handle_error(struct super_block *sb)
286 {
287 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
288
289 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
290 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
291
292 if (sb->s_flags & MS_RDONLY)
293 return;
294
295 if (!test_opt(sb, ERRORS_CONT)) {
296 journal_t *journal = EXT4_SB(sb)->s_journal;
297
298 EXT4_SB(sb)->s_mount_opt |= EXT4_MOUNT_ABORT;
299 if (journal)
300 jbd2_journal_abort(journal, -EIO);
301 }
302 if (test_opt(sb, ERRORS_RO)) {
303 printk(KERN_CRIT "Remounting filesystem read-only\n");
304 sb->s_flags |= MS_RDONLY;
305 }
306 ext4_commit_super(sb, es, 1);
307 if (test_opt(sb, ERRORS_PANIC))
308 panic("EXT4-fs (device %s): panic forced after error\n",
309 sb->s_id);
310 }
311
ext4_error(struct super_block * sb,const char * function,const char * fmt,...)312 void ext4_error(struct super_block *sb, const char *function,
313 const char *fmt, ...)
314 {
315 va_list args;
316
317 va_start(args, fmt);
318 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function);
319 vprintk(fmt, args);
320 printk("\n");
321 va_end(args);
322
323 ext4_handle_error(sb);
324 }
325
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])326 static const char *ext4_decode_error(struct super_block *sb, int errno,
327 char nbuf[16])
328 {
329 char *errstr = NULL;
330
331 switch (errno) {
332 case -EIO:
333 errstr = "IO failure";
334 break;
335 case -ENOMEM:
336 errstr = "Out of memory";
337 break;
338 case -EROFS:
339 if (!sb || EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)
340 errstr = "Journal has aborted";
341 else
342 errstr = "Readonly filesystem";
343 break;
344 default:
345 /* If the caller passed in an extra buffer for unknown
346 * errors, textualise them now. Else we just return
347 * NULL. */
348 if (nbuf) {
349 /* Check for truncated error codes... */
350 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
351 errstr = nbuf;
352 }
353 break;
354 }
355
356 return errstr;
357 }
358
359 /* __ext4_std_error decodes expected errors from journaling functions
360 * automatically and invokes the appropriate error response. */
361
__ext4_std_error(struct super_block * sb,const char * function,int errno)362 void __ext4_std_error(struct super_block *sb, const char *function, int errno)
363 {
364 char nbuf[16];
365 const char *errstr;
366
367 /* Special case: if the error is EROFS, and we're not already
368 * inside a transaction, then there's really no point in logging
369 * an error. */
370 if (errno == -EROFS && journal_current_handle() == NULL &&
371 (sb->s_flags & MS_RDONLY))
372 return;
373
374 errstr = ext4_decode_error(sb, errno, nbuf);
375 printk(KERN_CRIT "EXT4-fs error (device %s) in %s: %s\n",
376 sb->s_id, function, errstr);
377
378 ext4_handle_error(sb);
379 }
380
381 /*
382 * ext4_abort is a much stronger failure handler than ext4_error. The
383 * abort function may be used to deal with unrecoverable failures such
384 * as journal IO errors or ENOMEM at a critical moment in log management.
385 *
386 * We unconditionally force the filesystem into an ABORT|READONLY state,
387 * unless the error response on the fs has been set to panic in which
388 * case we take the easy way out and panic immediately.
389 */
390
ext4_abort(struct super_block * sb,const char * function,const char * fmt,...)391 void ext4_abort(struct super_block *sb, const char *function,
392 const char *fmt, ...)
393 {
394 va_list args;
395
396 printk(KERN_CRIT "ext4_abort called.\n");
397
398 va_start(args, fmt);
399 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function);
400 vprintk(fmt, args);
401 printk("\n");
402 va_end(args);
403
404 if (test_opt(sb, ERRORS_PANIC))
405 panic("EXT4-fs panic from previous error\n");
406
407 if (sb->s_flags & MS_RDONLY)
408 return;
409
410 printk(KERN_CRIT "Remounting filesystem read-only\n");
411 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
412 sb->s_flags |= MS_RDONLY;
413 EXT4_SB(sb)->s_mount_opt |= EXT4_MOUNT_ABORT;
414 if (EXT4_SB(sb)->s_journal)
415 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
416 }
417
ext4_warning(struct super_block * sb,const char * function,const char * fmt,...)418 void ext4_warning(struct super_block *sb, const char *function,
419 const char *fmt, ...)
420 {
421 va_list args;
422
423 va_start(args, fmt);
424 printk(KERN_WARNING "EXT4-fs warning (device %s): %s: ",
425 sb->s_id, function);
426 vprintk(fmt, args);
427 printk("\n");
428 va_end(args);
429 }
430
ext4_grp_locked_error(struct super_block * sb,ext4_group_t grp,const char * function,const char * fmt,...)431 void ext4_grp_locked_error(struct super_block *sb, ext4_group_t grp,
432 const char *function, const char *fmt, ...)
433 __releases(bitlock)
434 __acquires(bitlock)
435 {
436 va_list args;
437 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
438
439 va_start(args, fmt);
440 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function);
441 vprintk(fmt, args);
442 printk("\n");
443 va_end(args);
444
445 if (test_opt(sb, ERRORS_CONT)) {
446 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
447 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
448 ext4_commit_super(sb, es, 0);
449 return;
450 }
451 ext4_unlock_group(sb, grp);
452 ext4_handle_error(sb);
453 /*
454 * We only get here in the ERRORS_RO case; relocking the group
455 * may be dangerous, but nothing bad will happen since the
456 * filesystem will have already been marked read/only and the
457 * journal has been aborted. We return 1 as a hint to callers
458 * who might what to use the return value from
459 * ext4_grp_locked_error() to distinguish beween the
460 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
461 * aggressively from the ext4 function in question, with a
462 * more appropriate error code.
463 */
464 ext4_lock_group(sb, grp);
465 return;
466 }
467
468
ext4_update_dynamic_rev(struct super_block * sb)469 void ext4_update_dynamic_rev(struct super_block *sb)
470 {
471 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
472
473 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
474 return;
475
476 ext4_warning(sb, __func__,
477 "updating to rev %d because of new feature flag, "
478 "running e2fsck is recommended",
479 EXT4_DYNAMIC_REV);
480
481 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
482 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
483 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
484 /* leave es->s_feature_*compat flags alone */
485 /* es->s_uuid will be set by e2fsck if empty */
486
487 /*
488 * The rest of the superblock fields should be zero, and if not it
489 * means they are likely already in use, so leave them alone. We
490 * can leave it up to e2fsck to clean up any inconsistencies there.
491 */
492 }
493
494 /*
495 * Open the external journal device
496 */
ext4_blkdev_get(dev_t dev)497 static struct block_device *ext4_blkdev_get(dev_t dev)
498 {
499 struct block_device *bdev;
500 char b[BDEVNAME_SIZE];
501
502 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
503 if (IS_ERR(bdev))
504 goto fail;
505 return bdev;
506
507 fail:
508 printk(KERN_ERR "EXT4-fs: failed to open journal device %s: %ld\n",
509 __bdevname(dev, b), PTR_ERR(bdev));
510 return NULL;
511 }
512
513 /*
514 * Release the journal device
515 */
ext4_blkdev_put(struct block_device * bdev)516 static int ext4_blkdev_put(struct block_device *bdev)
517 {
518 bd_release(bdev);
519 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
520 }
521
ext4_blkdev_remove(struct ext4_sb_info * sbi)522 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
523 {
524 struct block_device *bdev;
525 int ret = -ENODEV;
526
527 bdev = sbi->journal_bdev;
528 if (bdev) {
529 ret = ext4_blkdev_put(bdev);
530 sbi->journal_bdev = NULL;
531 }
532 return ret;
533 }
534
orphan_list_entry(struct list_head * l)535 static inline struct inode *orphan_list_entry(struct list_head *l)
536 {
537 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
538 }
539
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)540 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
541 {
542 struct list_head *l;
543
544 printk(KERN_ERR "sb orphan head is %d\n",
545 le32_to_cpu(sbi->s_es->s_last_orphan));
546
547 printk(KERN_ERR "sb_info orphan list:\n");
548 list_for_each(l, &sbi->s_orphan) {
549 struct inode *inode = orphan_list_entry(l);
550 printk(KERN_ERR " "
551 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
552 inode->i_sb->s_id, inode->i_ino, inode,
553 inode->i_mode, inode->i_nlink,
554 NEXT_ORPHAN(inode));
555 }
556 }
557
ext4_put_super(struct super_block * sb)558 static void ext4_put_super(struct super_block *sb)
559 {
560 struct ext4_sb_info *sbi = EXT4_SB(sb);
561 struct ext4_super_block *es = sbi->s_es;
562 int i, err;
563
564 ext4_mb_release(sb);
565 ext4_ext_release(sb);
566 ext4_xattr_put_super(sb);
567 if (sbi->s_journal) {
568 err = jbd2_journal_destroy(sbi->s_journal);
569 sbi->s_journal = NULL;
570 if (err < 0)
571 ext4_abort(sb, __func__,
572 "Couldn't clean up the journal");
573 }
574 if (!(sb->s_flags & MS_RDONLY)) {
575 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
576 es->s_state = cpu_to_le16(sbi->s_mount_state);
577 ext4_commit_super(sb, es, 1);
578 }
579 if (sbi->s_proc) {
580 remove_proc_entry("inode_readahead_blks", sbi->s_proc);
581 remove_proc_entry(sb->s_id, ext4_proc_root);
582 }
583
584 for (i = 0; i < sbi->s_gdb_count; i++)
585 brelse(sbi->s_group_desc[i]);
586 kfree(sbi->s_group_desc);
587 kfree(sbi->s_flex_groups);
588 percpu_counter_destroy(&sbi->s_freeblocks_counter);
589 percpu_counter_destroy(&sbi->s_freeinodes_counter);
590 percpu_counter_destroy(&sbi->s_dirs_counter);
591 percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
592 brelse(sbi->s_sbh);
593 #ifdef CONFIG_QUOTA
594 for (i = 0; i < MAXQUOTAS; i++)
595 kfree(sbi->s_qf_names[i]);
596 #endif
597
598 /* Debugging code just in case the in-memory inode orphan list
599 * isn't empty. The on-disk one can be non-empty if we've
600 * detected an error and taken the fs readonly, but the
601 * in-memory list had better be clean by this point. */
602 if (!list_empty(&sbi->s_orphan))
603 dump_orphan_list(sb, sbi);
604 J_ASSERT(list_empty(&sbi->s_orphan));
605
606 invalidate_bdev(sb->s_bdev);
607 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
608 /*
609 * Invalidate the journal device's buffers. We don't want them
610 * floating about in memory - the physical journal device may
611 * hotswapped, and it breaks the `ro-after' testing code.
612 */
613 sync_blockdev(sbi->journal_bdev);
614 invalidate_bdev(sbi->journal_bdev);
615 ext4_blkdev_remove(sbi);
616 }
617 sb->s_fs_info = NULL;
618 kfree(sbi);
619 return;
620 }
621
622 static struct kmem_cache *ext4_inode_cachep;
623
624 /*
625 * Called inside transaction, so use GFP_NOFS
626 */
ext4_alloc_inode(struct super_block * sb)627 static struct inode *ext4_alloc_inode(struct super_block *sb)
628 {
629 struct ext4_inode_info *ei;
630
631 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
632 if (!ei)
633 return NULL;
634 #ifdef CONFIG_EXT4_FS_POSIX_ACL
635 ei->i_acl = EXT4_ACL_NOT_CACHED;
636 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
637 #endif
638 ei->vfs_inode.i_version = 1;
639 ei->vfs_inode.i_data.writeback_index = 0;
640 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
641 INIT_LIST_HEAD(&ei->i_prealloc_list);
642 spin_lock_init(&ei->i_prealloc_lock);
643 /*
644 * Note: We can be called before EXT4_SB(sb)->s_journal is set,
645 * therefore it can be null here. Don't check it, just initialize
646 * jinode.
647 */
648 jbd2_journal_init_jbd_inode(&ei->jinode, &ei->vfs_inode);
649 ei->i_reserved_data_blocks = 0;
650 ei->i_reserved_meta_blocks = 0;
651 ei->i_allocated_meta_blocks = 0;
652 ei->i_delalloc_reserved_flag = 0;
653 spin_lock_init(&(ei->i_block_reservation_lock));
654 return &ei->vfs_inode;
655 }
656
ext4_destroy_inode(struct inode * inode)657 static void ext4_destroy_inode(struct inode *inode)
658 {
659 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
660 printk("EXT4 Inode %p: orphan list check failed!\n",
661 EXT4_I(inode));
662 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
663 EXT4_I(inode), sizeof(struct ext4_inode_info),
664 true);
665 dump_stack();
666 }
667 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
668 }
669
init_once(void * foo)670 static void init_once(void *foo)
671 {
672 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
673
674 INIT_LIST_HEAD(&ei->i_orphan);
675 #ifdef CONFIG_EXT4_FS_XATTR
676 init_rwsem(&ei->xattr_sem);
677 #endif
678 init_rwsem(&ei->i_data_sem);
679 inode_init_once(&ei->vfs_inode);
680 }
681
init_inodecache(void)682 static int init_inodecache(void)
683 {
684 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
685 sizeof(struct ext4_inode_info),
686 0, (SLAB_RECLAIM_ACCOUNT|
687 SLAB_MEM_SPREAD),
688 init_once);
689 if (ext4_inode_cachep == NULL)
690 return -ENOMEM;
691 return 0;
692 }
693
destroy_inodecache(void)694 static void destroy_inodecache(void)
695 {
696 kmem_cache_destroy(ext4_inode_cachep);
697 }
698
ext4_clear_inode(struct inode * inode)699 static void ext4_clear_inode(struct inode *inode)
700 {
701 #ifdef CONFIG_EXT4_FS_POSIX_ACL
702 if (EXT4_I(inode)->i_acl &&
703 EXT4_I(inode)->i_acl != EXT4_ACL_NOT_CACHED) {
704 posix_acl_release(EXT4_I(inode)->i_acl);
705 EXT4_I(inode)->i_acl = EXT4_ACL_NOT_CACHED;
706 }
707 if (EXT4_I(inode)->i_default_acl &&
708 EXT4_I(inode)->i_default_acl != EXT4_ACL_NOT_CACHED) {
709 posix_acl_release(EXT4_I(inode)->i_default_acl);
710 EXT4_I(inode)->i_default_acl = EXT4_ACL_NOT_CACHED;
711 }
712 #endif
713 ext4_discard_preallocations(inode);
714 if (EXT4_JOURNAL(inode))
715 jbd2_journal_release_jbd_inode(EXT4_SB(inode->i_sb)->s_journal,
716 &EXT4_I(inode)->jinode);
717 }
718
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)719 static inline void ext4_show_quota_options(struct seq_file *seq,
720 struct super_block *sb)
721 {
722 #if defined(CONFIG_QUOTA)
723 struct ext4_sb_info *sbi = EXT4_SB(sb);
724
725 if (sbi->s_jquota_fmt)
726 seq_printf(seq, ",jqfmt=%s",
727 (sbi->s_jquota_fmt == QFMT_VFS_OLD) ? "vfsold" : "vfsv0");
728
729 if (sbi->s_qf_names[USRQUOTA])
730 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
731
732 if (sbi->s_qf_names[GRPQUOTA])
733 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
734
735 if (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA)
736 seq_puts(seq, ",usrquota");
737
738 if (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA)
739 seq_puts(seq, ",grpquota");
740 #endif
741 }
742
743 /*
744 * Show an option if
745 * - it's set to a non-default value OR
746 * - if the per-sb default is different from the global default
747 */
ext4_show_options(struct seq_file * seq,struct vfsmount * vfs)748 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs)
749 {
750 int def_errors;
751 unsigned long def_mount_opts;
752 struct super_block *sb = vfs->mnt_sb;
753 struct ext4_sb_info *sbi = EXT4_SB(sb);
754 struct ext4_super_block *es = sbi->s_es;
755
756 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
757 def_errors = le16_to_cpu(es->s_errors);
758
759 if (sbi->s_sb_block != 1)
760 seq_printf(seq, ",sb=%llu", sbi->s_sb_block);
761 if (test_opt(sb, MINIX_DF))
762 seq_puts(seq, ",minixdf");
763 if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS))
764 seq_puts(seq, ",grpid");
765 if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS))
766 seq_puts(seq, ",nogrpid");
767 if (sbi->s_resuid != EXT4_DEF_RESUID ||
768 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) {
769 seq_printf(seq, ",resuid=%u", sbi->s_resuid);
770 }
771 if (sbi->s_resgid != EXT4_DEF_RESGID ||
772 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) {
773 seq_printf(seq, ",resgid=%u", sbi->s_resgid);
774 }
775 if (test_opt(sb, ERRORS_RO)) {
776 if (def_errors == EXT4_ERRORS_PANIC ||
777 def_errors == EXT4_ERRORS_CONTINUE) {
778 seq_puts(seq, ",errors=remount-ro");
779 }
780 }
781 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
782 seq_puts(seq, ",errors=continue");
783 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
784 seq_puts(seq, ",errors=panic");
785 if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16))
786 seq_puts(seq, ",nouid32");
787 if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG))
788 seq_puts(seq, ",debug");
789 if (test_opt(sb, OLDALLOC))
790 seq_puts(seq, ",oldalloc");
791 #ifdef CONFIG_EXT4_FS_XATTR
792 if (test_opt(sb, XATTR_USER) &&
793 !(def_mount_opts & EXT4_DEFM_XATTR_USER))
794 seq_puts(seq, ",user_xattr");
795 if (!test_opt(sb, XATTR_USER) &&
796 (def_mount_opts & EXT4_DEFM_XATTR_USER)) {
797 seq_puts(seq, ",nouser_xattr");
798 }
799 #endif
800 #ifdef CONFIG_EXT4_FS_POSIX_ACL
801 if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL))
802 seq_puts(seq, ",acl");
803 if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL))
804 seq_puts(seq, ",noacl");
805 #endif
806 if (!test_opt(sb, RESERVATION))
807 seq_puts(seq, ",noreservation");
808 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
809 seq_printf(seq, ",commit=%u",
810 (unsigned) (sbi->s_commit_interval / HZ));
811 }
812 if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) {
813 seq_printf(seq, ",min_batch_time=%u",
814 (unsigned) sbi->s_min_batch_time);
815 }
816 if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) {
817 seq_printf(seq, ",max_batch_time=%u",
818 (unsigned) sbi->s_min_batch_time);
819 }
820
821 /*
822 * We're changing the default of barrier mount option, so
823 * let's always display its mount state so it's clear what its
824 * status is.
825 */
826 seq_puts(seq, ",barrier=");
827 seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0");
828 if (test_opt(sb, JOURNAL_ASYNC_COMMIT))
829 seq_puts(seq, ",journal_async_commit");
830 if (test_opt(sb, NOBH))
831 seq_puts(seq, ",nobh");
832 if (test_opt(sb, I_VERSION))
833 seq_puts(seq, ",i_version");
834 if (!test_opt(sb, DELALLOC))
835 seq_puts(seq, ",nodelalloc");
836
837
838 if (sbi->s_stripe)
839 seq_printf(seq, ",stripe=%lu", sbi->s_stripe);
840 /*
841 * journal mode get enabled in different ways
842 * So just print the value even if we didn't specify it
843 */
844 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
845 seq_puts(seq, ",data=journal");
846 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
847 seq_puts(seq, ",data=ordered");
848 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
849 seq_puts(seq, ",data=writeback");
850
851 if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
852 seq_printf(seq, ",inode_readahead_blks=%u",
853 sbi->s_inode_readahead_blks);
854
855 if (test_opt(sb, DATA_ERR_ABORT))
856 seq_puts(seq, ",data_err=abort");
857
858 ext4_show_quota_options(seq, sb);
859 return 0;
860 }
861
862
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)863 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
864 u64 ino, u32 generation)
865 {
866 struct inode *inode;
867
868 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
869 return ERR_PTR(-ESTALE);
870 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
871 return ERR_PTR(-ESTALE);
872
873 /* iget isn't really right if the inode is currently unallocated!!
874 *
875 * ext4_read_inode will return a bad_inode if the inode had been
876 * deleted, so we should be safe.
877 *
878 * Currently we don't know the generation for parent directory, so
879 * a generation of 0 means "accept any"
880 */
881 inode = ext4_iget(sb, ino);
882 if (IS_ERR(inode))
883 return ERR_CAST(inode);
884 if (generation && inode->i_generation != generation) {
885 iput(inode);
886 return ERR_PTR(-ESTALE);
887 }
888
889 return inode;
890 }
891
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)892 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
893 int fh_len, int fh_type)
894 {
895 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
896 ext4_nfs_get_inode);
897 }
898
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)899 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
900 int fh_len, int fh_type)
901 {
902 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
903 ext4_nfs_get_inode);
904 }
905
906 /*
907 * Try to release metadata pages (indirect blocks, directories) which are
908 * mapped via the block device. Since these pages could have journal heads
909 * which would prevent try_to_free_buffers() from freeing them, we must use
910 * jbd2 layer's try_to_free_buffers() function to release them.
911 */
bdev_try_to_free_page(struct super_block * sb,struct page * page,gfp_t wait)912 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, gfp_t wait)
913 {
914 journal_t *journal = EXT4_SB(sb)->s_journal;
915
916 WARN_ON(PageChecked(page));
917 if (!page_has_buffers(page))
918 return 0;
919 if (journal)
920 return jbd2_journal_try_to_free_buffers(journal, page,
921 wait & ~__GFP_WAIT);
922 return try_to_free_buffers(page);
923 }
924
925 #ifdef CONFIG_QUOTA
926 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
927 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
928
929 static int ext4_dquot_initialize(struct inode *inode, int type);
930 static int ext4_dquot_drop(struct inode *inode);
931 static int ext4_write_dquot(struct dquot *dquot);
932 static int ext4_acquire_dquot(struct dquot *dquot);
933 static int ext4_release_dquot(struct dquot *dquot);
934 static int ext4_mark_dquot_dirty(struct dquot *dquot);
935 static int ext4_write_info(struct super_block *sb, int type);
936 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
937 char *path, int remount);
938 static int ext4_quota_on_mount(struct super_block *sb, int type);
939 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
940 size_t len, loff_t off);
941 static ssize_t ext4_quota_write(struct super_block *sb, int type,
942 const char *data, size_t len, loff_t off);
943
944 static struct dquot_operations ext4_quota_operations = {
945 .initialize = ext4_dquot_initialize,
946 .drop = ext4_dquot_drop,
947 .alloc_space = dquot_alloc_space,
948 .alloc_inode = dquot_alloc_inode,
949 .free_space = dquot_free_space,
950 .free_inode = dquot_free_inode,
951 .transfer = dquot_transfer,
952 .write_dquot = ext4_write_dquot,
953 .acquire_dquot = ext4_acquire_dquot,
954 .release_dquot = ext4_release_dquot,
955 .mark_dirty = ext4_mark_dquot_dirty,
956 .write_info = ext4_write_info,
957 .alloc_dquot = dquot_alloc,
958 .destroy_dquot = dquot_destroy,
959 };
960
961 static struct quotactl_ops ext4_qctl_operations = {
962 .quota_on = ext4_quota_on,
963 .quota_off = vfs_quota_off,
964 .quota_sync = vfs_quota_sync,
965 .get_info = vfs_get_dqinfo,
966 .set_info = vfs_set_dqinfo,
967 .get_dqblk = vfs_get_dqblk,
968 .set_dqblk = vfs_set_dqblk
969 };
970 #endif
971
972 static const struct super_operations ext4_sops = {
973 .alloc_inode = ext4_alloc_inode,
974 .destroy_inode = ext4_destroy_inode,
975 .write_inode = ext4_write_inode,
976 .dirty_inode = ext4_dirty_inode,
977 .delete_inode = ext4_delete_inode,
978 .put_super = ext4_put_super,
979 .write_super = ext4_write_super,
980 .sync_fs = ext4_sync_fs,
981 .freeze_fs = ext4_freeze,
982 .unfreeze_fs = ext4_unfreeze,
983 .statfs = ext4_statfs,
984 .remount_fs = ext4_remount,
985 .clear_inode = ext4_clear_inode,
986 .show_options = ext4_show_options,
987 #ifdef CONFIG_QUOTA
988 .quota_read = ext4_quota_read,
989 .quota_write = ext4_quota_write,
990 #endif
991 .bdev_try_to_free_page = bdev_try_to_free_page,
992 };
993
994 static const struct export_operations ext4_export_ops = {
995 .fh_to_dentry = ext4_fh_to_dentry,
996 .fh_to_parent = ext4_fh_to_parent,
997 .get_parent = ext4_get_parent,
998 };
999
1000 enum {
1001 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1002 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1003 Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov,
1004 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1005 Opt_reservation, Opt_noreservation, Opt_noload, Opt_nobh, Opt_bh,
1006 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1007 Opt_journal_update, Opt_journal_dev,
1008 Opt_journal_checksum, Opt_journal_async_commit,
1009 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1010 Opt_data_err_abort, Opt_data_err_ignore,
1011 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1012 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_quota, Opt_noquota,
1013 Opt_ignore, Opt_barrier, Opt_err, Opt_resize, Opt_usrquota,
1014 Opt_grpquota, Opt_i_version,
1015 Opt_stripe, Opt_delalloc, Opt_nodelalloc,
1016 Opt_inode_readahead_blks, Opt_journal_ioprio
1017 };
1018
1019 static const match_table_t tokens = {
1020 {Opt_bsd_df, "bsddf"},
1021 {Opt_minix_df, "minixdf"},
1022 {Opt_grpid, "grpid"},
1023 {Opt_grpid, "bsdgroups"},
1024 {Opt_nogrpid, "nogrpid"},
1025 {Opt_nogrpid, "sysvgroups"},
1026 {Opt_resgid, "resgid=%u"},
1027 {Opt_resuid, "resuid=%u"},
1028 {Opt_sb, "sb=%u"},
1029 {Opt_err_cont, "errors=continue"},
1030 {Opt_err_panic, "errors=panic"},
1031 {Opt_err_ro, "errors=remount-ro"},
1032 {Opt_nouid32, "nouid32"},
1033 {Opt_debug, "debug"},
1034 {Opt_oldalloc, "oldalloc"},
1035 {Opt_orlov, "orlov"},
1036 {Opt_user_xattr, "user_xattr"},
1037 {Opt_nouser_xattr, "nouser_xattr"},
1038 {Opt_acl, "acl"},
1039 {Opt_noacl, "noacl"},
1040 {Opt_reservation, "reservation"},
1041 {Opt_noreservation, "noreservation"},
1042 {Opt_noload, "noload"},
1043 {Opt_nobh, "nobh"},
1044 {Opt_bh, "bh"},
1045 {Opt_commit, "commit=%u"},
1046 {Opt_min_batch_time, "min_batch_time=%u"},
1047 {Opt_max_batch_time, "max_batch_time=%u"},
1048 {Opt_journal_update, "journal=update"},
1049 {Opt_journal_dev, "journal_dev=%u"},
1050 {Opt_journal_checksum, "journal_checksum"},
1051 {Opt_journal_async_commit, "journal_async_commit"},
1052 {Opt_abort, "abort"},
1053 {Opt_data_journal, "data=journal"},
1054 {Opt_data_ordered, "data=ordered"},
1055 {Opt_data_writeback, "data=writeback"},
1056 {Opt_data_err_abort, "data_err=abort"},
1057 {Opt_data_err_ignore, "data_err=ignore"},
1058 {Opt_offusrjquota, "usrjquota="},
1059 {Opt_usrjquota, "usrjquota=%s"},
1060 {Opt_offgrpjquota, "grpjquota="},
1061 {Opt_grpjquota, "grpjquota=%s"},
1062 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1063 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1064 {Opt_grpquota, "grpquota"},
1065 {Opt_noquota, "noquota"},
1066 {Opt_quota, "quota"},
1067 {Opt_usrquota, "usrquota"},
1068 {Opt_barrier, "barrier=%u"},
1069 {Opt_i_version, "i_version"},
1070 {Opt_stripe, "stripe=%u"},
1071 {Opt_resize, "resize"},
1072 {Opt_delalloc, "delalloc"},
1073 {Opt_nodelalloc, "nodelalloc"},
1074 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1075 {Opt_journal_ioprio, "journal_ioprio=%u"},
1076 {Opt_err, NULL},
1077 };
1078
get_sb_block(void ** data)1079 static ext4_fsblk_t get_sb_block(void **data)
1080 {
1081 ext4_fsblk_t sb_block;
1082 char *options = (char *) *data;
1083
1084 if (!options || strncmp(options, "sb=", 3) != 0)
1085 return 1; /* Default location */
1086 options += 3;
1087 /*todo: use simple_strtoll with >32bit ext4 */
1088 sb_block = simple_strtoul(options, &options, 0);
1089 if (*options && *options != ',') {
1090 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1091 (char *) *data);
1092 return 1;
1093 }
1094 if (*options == ',')
1095 options++;
1096 *data = (void *) options;
1097 return sb_block;
1098 }
1099
1100 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1101
parse_options(char * options,struct super_block * sb,unsigned long * journal_devnum,unsigned int * journal_ioprio,ext4_fsblk_t * n_blocks_count,int is_remount)1102 static int parse_options(char *options, struct super_block *sb,
1103 unsigned long *journal_devnum,
1104 unsigned int *journal_ioprio,
1105 ext4_fsblk_t *n_blocks_count, int is_remount)
1106 {
1107 struct ext4_sb_info *sbi = EXT4_SB(sb);
1108 char *p;
1109 substring_t args[MAX_OPT_ARGS];
1110 int data_opt = 0;
1111 int option;
1112 #ifdef CONFIG_QUOTA
1113 int qtype, qfmt;
1114 char *qname;
1115 #endif
1116
1117 if (!options)
1118 return 1;
1119
1120 while ((p = strsep(&options, ",")) != NULL) {
1121 int token;
1122 if (!*p)
1123 continue;
1124
1125 token = match_token(p, tokens, args);
1126 switch (token) {
1127 case Opt_bsd_df:
1128 clear_opt(sbi->s_mount_opt, MINIX_DF);
1129 break;
1130 case Opt_minix_df:
1131 set_opt(sbi->s_mount_opt, MINIX_DF);
1132 break;
1133 case Opt_grpid:
1134 set_opt(sbi->s_mount_opt, GRPID);
1135 break;
1136 case Opt_nogrpid:
1137 clear_opt(sbi->s_mount_opt, GRPID);
1138 break;
1139 case Opt_resuid:
1140 if (match_int(&args[0], &option))
1141 return 0;
1142 sbi->s_resuid = option;
1143 break;
1144 case Opt_resgid:
1145 if (match_int(&args[0], &option))
1146 return 0;
1147 sbi->s_resgid = option;
1148 break;
1149 case Opt_sb:
1150 /* handled by get_sb_block() instead of here */
1151 /* *sb_block = match_int(&args[0]); */
1152 break;
1153 case Opt_err_panic:
1154 clear_opt(sbi->s_mount_opt, ERRORS_CONT);
1155 clear_opt(sbi->s_mount_opt, ERRORS_RO);
1156 set_opt(sbi->s_mount_opt, ERRORS_PANIC);
1157 break;
1158 case Opt_err_ro:
1159 clear_opt(sbi->s_mount_opt, ERRORS_CONT);
1160 clear_opt(sbi->s_mount_opt, ERRORS_PANIC);
1161 set_opt(sbi->s_mount_opt, ERRORS_RO);
1162 break;
1163 case Opt_err_cont:
1164 clear_opt(sbi->s_mount_opt, ERRORS_RO);
1165 clear_opt(sbi->s_mount_opt, ERRORS_PANIC);
1166 set_opt(sbi->s_mount_opt, ERRORS_CONT);
1167 break;
1168 case Opt_nouid32:
1169 set_opt(sbi->s_mount_opt, NO_UID32);
1170 break;
1171 case Opt_debug:
1172 set_opt(sbi->s_mount_opt, DEBUG);
1173 break;
1174 case Opt_oldalloc:
1175 set_opt(sbi->s_mount_opt, OLDALLOC);
1176 break;
1177 case Opt_orlov:
1178 clear_opt(sbi->s_mount_opt, OLDALLOC);
1179 break;
1180 #ifdef CONFIG_EXT4_FS_XATTR
1181 case Opt_user_xattr:
1182 set_opt(sbi->s_mount_opt, XATTR_USER);
1183 break;
1184 case Opt_nouser_xattr:
1185 clear_opt(sbi->s_mount_opt, XATTR_USER);
1186 break;
1187 #else
1188 case Opt_user_xattr:
1189 case Opt_nouser_xattr:
1190 printk(KERN_ERR "EXT4 (no)user_xattr options "
1191 "not supported\n");
1192 break;
1193 #endif
1194 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1195 case Opt_acl:
1196 set_opt(sbi->s_mount_opt, POSIX_ACL);
1197 break;
1198 case Opt_noacl:
1199 clear_opt(sbi->s_mount_opt, POSIX_ACL);
1200 break;
1201 #else
1202 case Opt_acl:
1203 case Opt_noacl:
1204 printk(KERN_ERR "EXT4 (no)acl options "
1205 "not supported\n");
1206 break;
1207 #endif
1208 case Opt_reservation:
1209 set_opt(sbi->s_mount_opt, RESERVATION);
1210 break;
1211 case Opt_noreservation:
1212 clear_opt(sbi->s_mount_opt, RESERVATION);
1213 break;
1214 case Opt_journal_update:
1215 /* @@@ FIXME */
1216 /* Eventually we will want to be able to create
1217 a journal file here. For now, only allow the
1218 user to specify an existing inode to be the
1219 journal file. */
1220 if (is_remount) {
1221 printk(KERN_ERR "EXT4-fs: cannot specify "
1222 "journal on remount\n");
1223 return 0;
1224 }
1225 set_opt(sbi->s_mount_opt, UPDATE_JOURNAL);
1226 break;
1227 case Opt_journal_dev:
1228 if (is_remount) {
1229 printk(KERN_ERR "EXT4-fs: cannot specify "
1230 "journal on remount\n");
1231 return 0;
1232 }
1233 if (match_int(&args[0], &option))
1234 return 0;
1235 *journal_devnum = option;
1236 break;
1237 case Opt_journal_checksum:
1238 set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM);
1239 break;
1240 case Opt_journal_async_commit:
1241 set_opt(sbi->s_mount_opt, JOURNAL_ASYNC_COMMIT);
1242 set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM);
1243 break;
1244 case Opt_noload:
1245 set_opt(sbi->s_mount_opt, NOLOAD);
1246 break;
1247 case Opt_commit:
1248 if (match_int(&args[0], &option))
1249 return 0;
1250 if (option < 0)
1251 return 0;
1252 if (option == 0)
1253 option = JBD2_DEFAULT_MAX_COMMIT_AGE;
1254 sbi->s_commit_interval = HZ * option;
1255 break;
1256 case Opt_max_batch_time:
1257 if (match_int(&args[0], &option))
1258 return 0;
1259 if (option < 0)
1260 return 0;
1261 if (option == 0)
1262 option = EXT4_DEF_MAX_BATCH_TIME;
1263 sbi->s_max_batch_time = option;
1264 break;
1265 case Opt_min_batch_time:
1266 if (match_int(&args[0], &option))
1267 return 0;
1268 if (option < 0)
1269 return 0;
1270 sbi->s_min_batch_time = option;
1271 break;
1272 case Opt_data_journal:
1273 data_opt = EXT4_MOUNT_JOURNAL_DATA;
1274 goto datacheck;
1275 case Opt_data_ordered:
1276 data_opt = EXT4_MOUNT_ORDERED_DATA;
1277 goto datacheck;
1278 case Opt_data_writeback:
1279 data_opt = EXT4_MOUNT_WRITEBACK_DATA;
1280 datacheck:
1281 if (is_remount) {
1282 if ((sbi->s_mount_opt & EXT4_MOUNT_DATA_FLAGS)
1283 != data_opt) {
1284 printk(KERN_ERR
1285 "EXT4-fs: cannot change data "
1286 "mode on remount\n");
1287 return 0;
1288 }
1289 } else {
1290 sbi->s_mount_opt &= ~EXT4_MOUNT_DATA_FLAGS;
1291 sbi->s_mount_opt |= data_opt;
1292 }
1293 break;
1294 case Opt_data_err_abort:
1295 set_opt(sbi->s_mount_opt, DATA_ERR_ABORT);
1296 break;
1297 case Opt_data_err_ignore:
1298 clear_opt(sbi->s_mount_opt, DATA_ERR_ABORT);
1299 break;
1300 #ifdef CONFIG_QUOTA
1301 case Opt_usrjquota:
1302 qtype = USRQUOTA;
1303 goto set_qf_name;
1304 case Opt_grpjquota:
1305 qtype = GRPQUOTA;
1306 set_qf_name:
1307 if (sb_any_quota_loaded(sb) &&
1308 !sbi->s_qf_names[qtype]) {
1309 printk(KERN_ERR
1310 "EXT4-fs: Cannot change journaled "
1311 "quota options when quota turned on.\n");
1312 return 0;
1313 }
1314 qname = match_strdup(&args[0]);
1315 if (!qname) {
1316 printk(KERN_ERR
1317 "EXT4-fs: not enough memory for "
1318 "storing quotafile name.\n");
1319 return 0;
1320 }
1321 if (sbi->s_qf_names[qtype] &&
1322 strcmp(sbi->s_qf_names[qtype], qname)) {
1323 printk(KERN_ERR
1324 "EXT4-fs: %s quota file already "
1325 "specified.\n", QTYPE2NAME(qtype));
1326 kfree(qname);
1327 return 0;
1328 }
1329 sbi->s_qf_names[qtype] = qname;
1330 if (strchr(sbi->s_qf_names[qtype], '/')) {
1331 printk(KERN_ERR
1332 "EXT4-fs: quotafile must be on "
1333 "filesystem root.\n");
1334 kfree(sbi->s_qf_names[qtype]);
1335 sbi->s_qf_names[qtype] = NULL;
1336 return 0;
1337 }
1338 set_opt(sbi->s_mount_opt, QUOTA);
1339 break;
1340 case Opt_offusrjquota:
1341 qtype = USRQUOTA;
1342 goto clear_qf_name;
1343 case Opt_offgrpjquota:
1344 qtype = GRPQUOTA;
1345 clear_qf_name:
1346 if (sb_any_quota_loaded(sb) &&
1347 sbi->s_qf_names[qtype]) {
1348 printk(KERN_ERR "EXT4-fs: Cannot change "
1349 "journaled quota options when "
1350 "quota turned on.\n");
1351 return 0;
1352 }
1353 /*
1354 * The space will be released later when all options
1355 * are confirmed to be correct
1356 */
1357 sbi->s_qf_names[qtype] = NULL;
1358 break;
1359 case Opt_jqfmt_vfsold:
1360 qfmt = QFMT_VFS_OLD;
1361 goto set_qf_format;
1362 case Opt_jqfmt_vfsv0:
1363 qfmt = QFMT_VFS_V0;
1364 set_qf_format:
1365 if (sb_any_quota_loaded(sb) &&
1366 sbi->s_jquota_fmt != qfmt) {
1367 printk(KERN_ERR "EXT4-fs: Cannot change "
1368 "journaled quota options when "
1369 "quota turned on.\n");
1370 return 0;
1371 }
1372 sbi->s_jquota_fmt = qfmt;
1373 break;
1374 case Opt_quota:
1375 case Opt_usrquota:
1376 set_opt(sbi->s_mount_opt, QUOTA);
1377 set_opt(sbi->s_mount_opt, USRQUOTA);
1378 break;
1379 case Opt_grpquota:
1380 set_opt(sbi->s_mount_opt, QUOTA);
1381 set_opt(sbi->s_mount_opt, GRPQUOTA);
1382 break;
1383 case Opt_noquota:
1384 if (sb_any_quota_loaded(sb)) {
1385 printk(KERN_ERR "EXT4-fs: Cannot change quota "
1386 "options when quota turned on.\n");
1387 return 0;
1388 }
1389 clear_opt(sbi->s_mount_opt, QUOTA);
1390 clear_opt(sbi->s_mount_opt, USRQUOTA);
1391 clear_opt(sbi->s_mount_opt, GRPQUOTA);
1392 break;
1393 #else
1394 case Opt_quota:
1395 case Opt_usrquota:
1396 case Opt_grpquota:
1397 printk(KERN_ERR
1398 "EXT4-fs: quota options not supported.\n");
1399 break;
1400 case Opt_usrjquota:
1401 case Opt_grpjquota:
1402 case Opt_offusrjquota:
1403 case Opt_offgrpjquota:
1404 case Opt_jqfmt_vfsold:
1405 case Opt_jqfmt_vfsv0:
1406 printk(KERN_ERR
1407 "EXT4-fs: journaled quota options not "
1408 "supported.\n");
1409 break;
1410 case Opt_noquota:
1411 break;
1412 #endif
1413 case Opt_abort:
1414 set_opt(sbi->s_mount_opt, ABORT);
1415 break;
1416 case Opt_barrier:
1417 if (match_int(&args[0], &option))
1418 return 0;
1419 if (option)
1420 set_opt(sbi->s_mount_opt, BARRIER);
1421 else
1422 clear_opt(sbi->s_mount_opt, BARRIER);
1423 break;
1424 case Opt_ignore:
1425 break;
1426 case Opt_resize:
1427 if (!is_remount) {
1428 printk("EXT4-fs: resize option only available "
1429 "for remount\n");
1430 return 0;
1431 }
1432 if (match_int(&args[0], &option) != 0)
1433 return 0;
1434 *n_blocks_count = option;
1435 break;
1436 case Opt_nobh:
1437 set_opt(sbi->s_mount_opt, NOBH);
1438 break;
1439 case Opt_bh:
1440 clear_opt(sbi->s_mount_opt, NOBH);
1441 break;
1442 case Opt_i_version:
1443 set_opt(sbi->s_mount_opt, I_VERSION);
1444 sb->s_flags |= MS_I_VERSION;
1445 break;
1446 case Opt_nodelalloc:
1447 clear_opt(sbi->s_mount_opt, DELALLOC);
1448 break;
1449 case Opt_stripe:
1450 if (match_int(&args[0], &option))
1451 return 0;
1452 if (option < 0)
1453 return 0;
1454 sbi->s_stripe = option;
1455 break;
1456 case Opt_delalloc:
1457 set_opt(sbi->s_mount_opt, DELALLOC);
1458 break;
1459 case Opt_inode_readahead_blks:
1460 if (match_int(&args[0], &option))
1461 return 0;
1462 if (option < 0 || option > (1 << 30))
1463 return 0;
1464 sbi->s_inode_readahead_blks = option;
1465 break;
1466 case Opt_journal_ioprio:
1467 if (match_int(&args[0], &option))
1468 return 0;
1469 if (option < 0 || option > 7)
1470 break;
1471 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE,
1472 option);
1473 break;
1474 default:
1475 printk(KERN_ERR
1476 "EXT4-fs: Unrecognized mount option \"%s\" "
1477 "or missing value\n", p);
1478 return 0;
1479 }
1480 }
1481 #ifdef CONFIG_QUOTA
1482 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1483 if ((sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA) &&
1484 sbi->s_qf_names[USRQUOTA])
1485 clear_opt(sbi->s_mount_opt, USRQUOTA);
1486
1487 if ((sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA) &&
1488 sbi->s_qf_names[GRPQUOTA])
1489 clear_opt(sbi->s_mount_opt, GRPQUOTA);
1490
1491 if ((sbi->s_qf_names[USRQUOTA] &&
1492 (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA)) ||
1493 (sbi->s_qf_names[GRPQUOTA] &&
1494 (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA))) {
1495 printk(KERN_ERR "EXT4-fs: old and new quota "
1496 "format mixing.\n");
1497 return 0;
1498 }
1499
1500 if (!sbi->s_jquota_fmt) {
1501 printk(KERN_ERR "EXT4-fs: journaled quota format "
1502 "not specified.\n");
1503 return 0;
1504 }
1505 } else {
1506 if (sbi->s_jquota_fmt) {
1507 printk(KERN_ERR "EXT4-fs: journaled quota format "
1508 "specified with no journaling "
1509 "enabled.\n");
1510 return 0;
1511 }
1512 }
1513 #endif
1514 return 1;
1515 }
1516
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)1517 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1518 int read_only)
1519 {
1520 struct ext4_sb_info *sbi = EXT4_SB(sb);
1521 int res = 0;
1522
1523 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1524 printk(KERN_ERR "EXT4-fs warning: revision level too high, "
1525 "forcing read-only mode\n");
1526 res = MS_RDONLY;
1527 }
1528 if (read_only)
1529 return res;
1530 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1531 printk(KERN_WARNING "EXT4-fs warning: mounting unchecked fs, "
1532 "running e2fsck is recommended\n");
1533 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1534 printk(KERN_WARNING
1535 "EXT4-fs warning: mounting fs with errors, "
1536 "running e2fsck is recommended\n");
1537 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) >= 0 &&
1538 le16_to_cpu(es->s_mnt_count) >=
1539 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1540 printk(KERN_WARNING
1541 "EXT4-fs warning: maximal mount count reached, "
1542 "running e2fsck is recommended\n");
1543 else if (le32_to_cpu(es->s_checkinterval) &&
1544 (le32_to_cpu(es->s_lastcheck) +
1545 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1546 printk(KERN_WARNING
1547 "EXT4-fs warning: checktime reached, "
1548 "running e2fsck is recommended\n");
1549 if (!sbi->s_journal)
1550 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1551 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1552 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1553 le16_add_cpu(&es->s_mnt_count, 1);
1554 es->s_mtime = cpu_to_le32(get_seconds());
1555 ext4_update_dynamic_rev(sb);
1556 if (sbi->s_journal)
1557 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1558
1559 ext4_commit_super(sb, es, 1);
1560 if (test_opt(sb, DEBUG))
1561 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1562 "bpg=%lu, ipg=%lu, mo=%04lx]\n",
1563 sb->s_blocksize,
1564 sbi->s_groups_count,
1565 EXT4_BLOCKS_PER_GROUP(sb),
1566 EXT4_INODES_PER_GROUP(sb),
1567 sbi->s_mount_opt);
1568
1569 if (EXT4_SB(sb)->s_journal) {
1570 printk(KERN_INFO "EXT4 FS on %s, %s journal on %s\n",
1571 sb->s_id, EXT4_SB(sb)->s_journal->j_inode ? "internal" :
1572 "external", EXT4_SB(sb)->s_journal->j_devname);
1573 } else {
1574 printk(KERN_INFO "EXT4 FS on %s, no journal\n", sb->s_id);
1575 }
1576 return res;
1577 }
1578
ext4_fill_flex_info(struct super_block * sb)1579 static int ext4_fill_flex_info(struct super_block *sb)
1580 {
1581 struct ext4_sb_info *sbi = EXT4_SB(sb);
1582 struct ext4_group_desc *gdp = NULL;
1583 struct buffer_head *bh;
1584 ext4_group_t flex_group_count;
1585 ext4_group_t flex_group;
1586 int groups_per_flex = 0;
1587 int i;
1588
1589 if (!sbi->s_es->s_log_groups_per_flex) {
1590 sbi->s_log_groups_per_flex = 0;
1591 return 1;
1592 }
1593
1594 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1595 groups_per_flex = 1 << sbi->s_log_groups_per_flex;
1596
1597 /* We allocate both existing and potentially added groups */
1598 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
1599 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
1600 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
1601 sbi->s_flex_groups = kzalloc(flex_group_count *
1602 sizeof(struct flex_groups), GFP_KERNEL);
1603 if (sbi->s_flex_groups == NULL) {
1604 printk(KERN_ERR "EXT4-fs: not enough memory for "
1605 "%u flex groups\n", flex_group_count);
1606 goto failed;
1607 }
1608
1609 for (i = 0; i < sbi->s_groups_count; i++) {
1610 gdp = ext4_get_group_desc(sb, i, &bh);
1611
1612 flex_group = ext4_flex_group(sbi, i);
1613 sbi->s_flex_groups[flex_group].free_inodes +=
1614 ext4_free_inodes_count(sb, gdp);
1615 sbi->s_flex_groups[flex_group].free_blocks +=
1616 ext4_free_blks_count(sb, gdp);
1617 }
1618
1619 return 1;
1620 failed:
1621 return 0;
1622 }
1623
ext4_group_desc_csum(struct ext4_sb_info * sbi,__u32 block_group,struct ext4_group_desc * gdp)1624 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1625 struct ext4_group_desc *gdp)
1626 {
1627 __u16 crc = 0;
1628
1629 if (sbi->s_es->s_feature_ro_compat &
1630 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
1631 int offset = offsetof(struct ext4_group_desc, bg_checksum);
1632 __le32 le_group = cpu_to_le32(block_group);
1633
1634 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1635 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1636 crc = crc16(crc, (__u8 *)gdp, offset);
1637 offset += sizeof(gdp->bg_checksum); /* skip checksum */
1638 /* for checksum of struct ext4_group_desc do the rest...*/
1639 if ((sbi->s_es->s_feature_incompat &
1640 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1641 offset < le16_to_cpu(sbi->s_es->s_desc_size))
1642 crc = crc16(crc, (__u8 *)gdp + offset,
1643 le16_to_cpu(sbi->s_es->s_desc_size) -
1644 offset);
1645 }
1646
1647 return cpu_to_le16(crc);
1648 }
1649
ext4_group_desc_csum_verify(struct ext4_sb_info * sbi,__u32 block_group,struct ext4_group_desc * gdp)1650 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group,
1651 struct ext4_group_desc *gdp)
1652 {
1653 if ((sbi->s_es->s_feature_ro_compat &
1654 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) &&
1655 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp)))
1656 return 0;
1657
1658 return 1;
1659 }
1660
1661 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb)1662 static int ext4_check_descriptors(struct super_block *sb)
1663 {
1664 struct ext4_sb_info *sbi = EXT4_SB(sb);
1665 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
1666 ext4_fsblk_t last_block;
1667 ext4_fsblk_t block_bitmap;
1668 ext4_fsblk_t inode_bitmap;
1669 ext4_fsblk_t inode_table;
1670 int flexbg_flag = 0;
1671 ext4_group_t i;
1672
1673 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
1674 flexbg_flag = 1;
1675
1676 ext4_debug("Checking group descriptors");
1677
1678 for (i = 0; i < sbi->s_groups_count; i++) {
1679 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1680
1681 if (i == sbi->s_groups_count - 1 || flexbg_flag)
1682 last_block = ext4_blocks_count(sbi->s_es) - 1;
1683 else
1684 last_block = first_block +
1685 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1686
1687 block_bitmap = ext4_block_bitmap(sb, gdp);
1688 if (block_bitmap < first_block || block_bitmap > last_block) {
1689 printk(KERN_ERR "EXT4-fs: ext4_check_descriptors: "
1690 "Block bitmap for group %u not in group "
1691 "(block %llu)!\n", i, block_bitmap);
1692 return 0;
1693 }
1694 inode_bitmap = ext4_inode_bitmap(sb, gdp);
1695 if (inode_bitmap < first_block || inode_bitmap > last_block) {
1696 printk(KERN_ERR "EXT4-fs: ext4_check_descriptors: "
1697 "Inode bitmap for group %u not in group "
1698 "(block %llu)!\n", i, inode_bitmap);
1699 return 0;
1700 }
1701 inode_table = ext4_inode_table(sb, gdp);
1702 if (inode_table < first_block ||
1703 inode_table + sbi->s_itb_per_group - 1 > last_block) {
1704 printk(KERN_ERR "EXT4-fs: ext4_check_descriptors: "
1705 "Inode table for group %u not in group "
1706 "(block %llu)!\n", i, inode_table);
1707 return 0;
1708 }
1709 spin_lock(sb_bgl_lock(sbi, i));
1710 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) {
1711 printk(KERN_ERR "EXT4-fs: ext4_check_descriptors: "
1712 "Checksum for group %u failed (%u!=%u)\n",
1713 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
1714 gdp)), le16_to_cpu(gdp->bg_checksum));
1715 if (!(sb->s_flags & MS_RDONLY)) {
1716 spin_unlock(sb_bgl_lock(sbi, i));
1717 return 0;
1718 }
1719 }
1720 spin_unlock(sb_bgl_lock(sbi, i));
1721 if (!flexbg_flag)
1722 first_block += EXT4_BLOCKS_PER_GROUP(sb);
1723 }
1724
1725 ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb));
1726 sbi->s_es->s_free_inodes_count = cpu_to_le32(ext4_count_free_inodes(sb));
1727 return 1;
1728 }
1729
1730 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
1731 * the superblock) which were deleted from all directories, but held open by
1732 * a process at the time of a crash. We walk the list and try to delete these
1733 * inodes at recovery time (only with a read-write filesystem).
1734 *
1735 * In order to keep the orphan inode chain consistent during traversal (in
1736 * case of crash during recovery), we link each inode into the superblock
1737 * orphan list_head and handle it the same way as an inode deletion during
1738 * normal operation (which journals the operations for us).
1739 *
1740 * We only do an iget() and an iput() on each inode, which is very safe if we
1741 * accidentally point at an in-use or already deleted inode. The worst that
1742 * can happen in this case is that we get a "bit already cleared" message from
1743 * ext4_free_inode(). The only reason we would point at a wrong inode is if
1744 * e2fsck was run on this filesystem, and it must have already done the orphan
1745 * inode cleanup for us, so we can safely abort without any further action.
1746 */
ext4_orphan_cleanup(struct super_block * sb,struct ext4_super_block * es)1747 static void ext4_orphan_cleanup(struct super_block *sb,
1748 struct ext4_super_block *es)
1749 {
1750 unsigned int s_flags = sb->s_flags;
1751 int nr_orphans = 0, nr_truncates = 0;
1752 #ifdef CONFIG_QUOTA
1753 int i;
1754 #endif
1755 if (!es->s_last_orphan) {
1756 jbd_debug(4, "no orphan inodes to clean up\n");
1757 return;
1758 }
1759
1760 if (bdev_read_only(sb->s_bdev)) {
1761 printk(KERN_ERR "EXT4-fs: write access "
1762 "unavailable, skipping orphan cleanup.\n");
1763 return;
1764 }
1765
1766 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
1767 if (es->s_last_orphan)
1768 jbd_debug(1, "Errors on filesystem, "
1769 "clearing orphan list.\n");
1770 es->s_last_orphan = 0;
1771 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
1772 return;
1773 }
1774
1775 if (s_flags & MS_RDONLY) {
1776 printk(KERN_INFO "EXT4-fs: %s: orphan cleanup on readonly fs\n",
1777 sb->s_id);
1778 sb->s_flags &= ~MS_RDONLY;
1779 }
1780 #ifdef CONFIG_QUOTA
1781 /* Needed for iput() to work correctly and not trash data */
1782 sb->s_flags |= MS_ACTIVE;
1783 /* Turn on quotas so that they are updated correctly */
1784 for (i = 0; i < MAXQUOTAS; i++) {
1785 if (EXT4_SB(sb)->s_qf_names[i]) {
1786 int ret = ext4_quota_on_mount(sb, i);
1787 if (ret < 0)
1788 printk(KERN_ERR
1789 "EXT4-fs: Cannot turn on journaled "
1790 "quota: error %d\n", ret);
1791 }
1792 }
1793 #endif
1794
1795 while (es->s_last_orphan) {
1796 struct inode *inode;
1797
1798 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
1799 if (IS_ERR(inode)) {
1800 es->s_last_orphan = 0;
1801 break;
1802 }
1803
1804 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
1805 DQUOT_INIT(inode);
1806 if (inode->i_nlink) {
1807 printk(KERN_DEBUG
1808 "%s: truncating inode %lu to %lld bytes\n",
1809 __func__, inode->i_ino, inode->i_size);
1810 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
1811 inode->i_ino, inode->i_size);
1812 ext4_truncate(inode);
1813 nr_truncates++;
1814 } else {
1815 printk(KERN_DEBUG
1816 "%s: deleting unreferenced inode %lu\n",
1817 __func__, inode->i_ino);
1818 jbd_debug(2, "deleting unreferenced inode %lu\n",
1819 inode->i_ino);
1820 nr_orphans++;
1821 }
1822 iput(inode); /* The delete magic happens here! */
1823 }
1824
1825 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
1826
1827 if (nr_orphans)
1828 printk(KERN_INFO "EXT4-fs: %s: %d orphan inode%s deleted\n",
1829 sb->s_id, PLURAL(nr_orphans));
1830 if (nr_truncates)
1831 printk(KERN_INFO "EXT4-fs: %s: %d truncate%s cleaned up\n",
1832 sb->s_id, PLURAL(nr_truncates));
1833 #ifdef CONFIG_QUOTA
1834 /* Turn quotas off */
1835 for (i = 0; i < MAXQUOTAS; i++) {
1836 if (sb_dqopt(sb)->files[i])
1837 vfs_quota_off(sb, i, 0);
1838 }
1839 #endif
1840 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
1841 }
1842 /*
1843 * Maximal extent format file size.
1844 * Resulting logical blkno at s_maxbytes must fit in our on-disk
1845 * extent format containers, within a sector_t, and within i_blocks
1846 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
1847 * so that won't be a limiting factor.
1848 *
1849 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
1850 */
ext4_max_size(int blkbits,int has_huge_files)1851 static loff_t ext4_max_size(int blkbits, int has_huge_files)
1852 {
1853 loff_t res;
1854 loff_t upper_limit = MAX_LFS_FILESIZE;
1855
1856 /* small i_blocks in vfs inode? */
1857 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
1858 /*
1859 * CONFIG_LBD is not enabled implies the inode
1860 * i_block represent total blocks in 512 bytes
1861 * 32 == size of vfs inode i_blocks * 8
1862 */
1863 upper_limit = (1LL << 32) - 1;
1864
1865 /* total blocks in file system block size */
1866 upper_limit >>= (blkbits - 9);
1867 upper_limit <<= blkbits;
1868 }
1869
1870 /* 32-bit extent-start container, ee_block */
1871 res = 1LL << 32;
1872 res <<= blkbits;
1873 res -= 1;
1874
1875 /* Sanity check against vm- & vfs- imposed limits */
1876 if (res > upper_limit)
1877 res = upper_limit;
1878
1879 return res;
1880 }
1881
1882 /*
1883 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
1884 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
1885 * We need to be 1 filesystem block less than the 2^48 sector limit.
1886 */
ext4_max_bitmap_size(int bits,int has_huge_files)1887 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
1888 {
1889 loff_t res = EXT4_NDIR_BLOCKS;
1890 int meta_blocks;
1891 loff_t upper_limit;
1892 /* This is calculated to be the largest file size for a
1893 * dense, bitmapped file such that the total number of
1894 * sectors in the file, including data and all indirect blocks,
1895 * does not exceed 2^48 -1
1896 * __u32 i_blocks_lo and _u16 i_blocks_high representing the
1897 * total number of 512 bytes blocks of the file
1898 */
1899
1900 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
1901 /*
1902 * !has_huge_files or CONFIG_LBD is not enabled
1903 * implies the inode i_block represent total blocks in
1904 * 512 bytes 32 == size of vfs inode i_blocks * 8
1905 */
1906 upper_limit = (1LL << 32) - 1;
1907
1908 /* total blocks in file system block size */
1909 upper_limit >>= (bits - 9);
1910
1911 } else {
1912 /*
1913 * We use 48 bit ext4_inode i_blocks
1914 * With EXT4_HUGE_FILE_FL set the i_blocks
1915 * represent total number of blocks in
1916 * file system block size
1917 */
1918 upper_limit = (1LL << 48) - 1;
1919
1920 }
1921
1922 /* indirect blocks */
1923 meta_blocks = 1;
1924 /* double indirect blocks */
1925 meta_blocks += 1 + (1LL << (bits-2));
1926 /* tripple indirect blocks */
1927 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
1928
1929 upper_limit -= meta_blocks;
1930 upper_limit <<= bits;
1931
1932 res += 1LL << (bits-2);
1933 res += 1LL << (2*(bits-2));
1934 res += 1LL << (3*(bits-2));
1935 res <<= bits;
1936 if (res > upper_limit)
1937 res = upper_limit;
1938
1939 if (res > MAX_LFS_FILESIZE)
1940 res = MAX_LFS_FILESIZE;
1941
1942 return res;
1943 }
1944
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)1945 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
1946 ext4_fsblk_t logical_sb_block, int nr)
1947 {
1948 struct ext4_sb_info *sbi = EXT4_SB(sb);
1949 ext4_group_t bg, first_meta_bg;
1950 int has_super = 0;
1951
1952 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
1953
1954 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
1955 nr < first_meta_bg)
1956 return logical_sb_block + nr + 1;
1957 bg = sbi->s_desc_per_block * nr;
1958 if (ext4_bg_has_super(sb, bg))
1959 has_super = 1;
1960 return (has_super + ext4_group_first_block_no(sb, bg));
1961 }
1962
1963 /**
1964 * ext4_get_stripe_size: Get the stripe size.
1965 * @sbi: In memory super block info
1966 *
1967 * If we have specified it via mount option, then
1968 * use the mount option value. If the value specified at mount time is
1969 * greater than the blocks per group use the super block value.
1970 * If the super block value is greater than blocks per group return 0.
1971 * Allocator needs it be less than blocks per group.
1972 *
1973 */
ext4_get_stripe_size(struct ext4_sb_info * sbi)1974 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
1975 {
1976 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
1977 unsigned long stripe_width =
1978 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
1979
1980 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
1981 return sbi->s_stripe;
1982
1983 if (stripe_width <= sbi->s_blocks_per_group)
1984 return stripe_width;
1985
1986 if (stride <= sbi->s_blocks_per_group)
1987 return stride;
1988
1989 return 0;
1990 }
1991
ext4_fill_super(struct super_block * sb,void * data,int silent)1992 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
1993 __releases(kernel_lock)
1994 __acquires(kernel_lock)
1995
1996 {
1997 struct buffer_head *bh;
1998 struct ext4_super_block *es = NULL;
1999 struct ext4_sb_info *sbi;
2000 ext4_fsblk_t block;
2001 ext4_fsblk_t sb_block = get_sb_block(&data);
2002 ext4_fsblk_t logical_sb_block;
2003 unsigned long offset = 0;
2004 unsigned long journal_devnum = 0;
2005 unsigned long def_mount_opts;
2006 struct inode *root;
2007 char *cp;
2008 const char *descr;
2009 int ret = -EINVAL;
2010 int blocksize;
2011 unsigned int db_count;
2012 unsigned int i;
2013 int needs_recovery, has_huge_files;
2014 int features;
2015 __u64 blocks_count;
2016 int err;
2017 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
2018
2019 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2020 if (!sbi)
2021 return -ENOMEM;
2022 sb->s_fs_info = sbi;
2023 sbi->s_mount_opt = 0;
2024 sbi->s_resuid = EXT4_DEF_RESUID;
2025 sbi->s_resgid = EXT4_DEF_RESGID;
2026 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
2027 sbi->s_sb_block = sb_block;
2028
2029 unlock_kernel();
2030
2031 /* Cleanup superblock name */
2032 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
2033 *cp = '!';
2034
2035 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
2036 if (!blocksize) {
2037 printk(KERN_ERR "EXT4-fs: unable to set blocksize\n");
2038 goto out_fail;
2039 }
2040
2041 /*
2042 * The ext4 superblock will not be buffer aligned for other than 1kB
2043 * block sizes. We need to calculate the offset from buffer start.
2044 */
2045 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
2046 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
2047 offset = do_div(logical_sb_block, blocksize);
2048 } else {
2049 logical_sb_block = sb_block;
2050 }
2051
2052 if (!(bh = sb_bread(sb, logical_sb_block))) {
2053 printk(KERN_ERR "EXT4-fs: unable to read superblock\n");
2054 goto out_fail;
2055 }
2056 /*
2057 * Note: s_es must be initialized as soon as possible because
2058 * some ext4 macro-instructions depend on its value
2059 */
2060 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
2061 sbi->s_es = es;
2062 sb->s_magic = le16_to_cpu(es->s_magic);
2063 if (sb->s_magic != EXT4_SUPER_MAGIC)
2064 goto cantfind_ext4;
2065
2066 /* Set defaults before we parse the mount options */
2067 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
2068 if (def_mount_opts & EXT4_DEFM_DEBUG)
2069 set_opt(sbi->s_mount_opt, DEBUG);
2070 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
2071 set_opt(sbi->s_mount_opt, GRPID);
2072 if (def_mount_opts & EXT4_DEFM_UID16)
2073 set_opt(sbi->s_mount_opt, NO_UID32);
2074 #ifdef CONFIG_EXT4_FS_XATTR
2075 if (def_mount_opts & EXT4_DEFM_XATTR_USER)
2076 set_opt(sbi->s_mount_opt, XATTR_USER);
2077 #endif
2078 #ifdef CONFIG_EXT4_FS_POSIX_ACL
2079 if (def_mount_opts & EXT4_DEFM_ACL)
2080 set_opt(sbi->s_mount_opt, POSIX_ACL);
2081 #endif
2082 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
2083 sbi->s_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
2084 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
2085 sbi->s_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
2086 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
2087 sbi->s_mount_opt |= EXT4_MOUNT_WRITEBACK_DATA;
2088
2089 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
2090 set_opt(sbi->s_mount_opt, ERRORS_PANIC);
2091 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
2092 set_opt(sbi->s_mount_opt, ERRORS_CONT);
2093 else
2094 set_opt(sbi->s_mount_opt, ERRORS_RO);
2095
2096 sbi->s_resuid = le16_to_cpu(es->s_def_resuid);
2097 sbi->s_resgid = le16_to_cpu(es->s_def_resgid);
2098 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
2099 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
2100 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
2101
2102 set_opt(sbi->s_mount_opt, RESERVATION);
2103 set_opt(sbi->s_mount_opt, BARRIER);
2104
2105 /*
2106 * enable delayed allocation by default
2107 * Use -o nodelalloc to turn it off
2108 */
2109 set_opt(sbi->s_mount_opt, DELALLOC);
2110
2111
2112 if (!parse_options((char *) data, sb, &journal_devnum,
2113 &journal_ioprio, NULL, 0))
2114 goto failed_mount;
2115
2116 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
2117 ((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0);
2118
2119 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
2120 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
2121 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
2122 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
2123 printk(KERN_WARNING
2124 "EXT4-fs warning: feature flags set on rev 0 fs, "
2125 "running e2fsck is recommended\n");
2126
2127 /*
2128 * Check feature flags regardless of the revision level, since we
2129 * previously didn't change the revision level when setting the flags,
2130 * so there is a chance incompat flags are set on a rev 0 filesystem.
2131 */
2132 features = EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP);
2133 if (features) {
2134 printk(KERN_ERR "EXT4-fs: %s: couldn't mount because of "
2135 "unsupported optional features (%x).\n", sb->s_id,
2136 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2137 ~EXT4_FEATURE_INCOMPAT_SUPP));
2138 goto failed_mount;
2139 }
2140 features = EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP);
2141 if (!(sb->s_flags & MS_RDONLY) && features) {
2142 printk(KERN_ERR "EXT4-fs: %s: couldn't mount RDWR because of "
2143 "unsupported optional features (%x).\n", sb->s_id,
2144 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2145 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2146 goto failed_mount;
2147 }
2148 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
2149 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2150 if (has_huge_files) {
2151 /*
2152 * Large file size enabled file system can only be
2153 * mount if kernel is build with CONFIG_LBD
2154 */
2155 if (sizeof(root->i_blocks) < sizeof(u64) &&
2156 !(sb->s_flags & MS_RDONLY)) {
2157 printk(KERN_ERR "EXT4-fs: %s: Filesystem with huge "
2158 "files cannot be mounted read-write "
2159 "without CONFIG_LBD.\n", sb->s_id);
2160 goto failed_mount;
2161 }
2162 }
2163 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
2164
2165 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
2166 blocksize > EXT4_MAX_BLOCK_SIZE) {
2167 printk(KERN_ERR
2168 "EXT4-fs: Unsupported filesystem blocksize %d on %s.\n",
2169 blocksize, sb->s_id);
2170 goto failed_mount;
2171 }
2172
2173 if (sb->s_blocksize != blocksize) {
2174
2175 /* Validate the filesystem blocksize */
2176 if (!sb_set_blocksize(sb, blocksize)) {
2177 printk(KERN_ERR "EXT4-fs: bad block size %d.\n",
2178 blocksize);
2179 goto failed_mount;
2180 }
2181
2182 brelse(bh);
2183 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
2184 offset = do_div(logical_sb_block, blocksize);
2185 bh = sb_bread(sb, logical_sb_block);
2186 if (!bh) {
2187 printk(KERN_ERR
2188 "EXT4-fs: Can't read superblock on 2nd try.\n");
2189 goto failed_mount;
2190 }
2191 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset);
2192 sbi->s_es = es;
2193 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
2194 printk(KERN_ERR
2195 "EXT4-fs: Magic mismatch, very weird !\n");
2196 goto failed_mount;
2197 }
2198 }
2199
2200 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
2201 has_huge_files);
2202 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
2203
2204 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
2205 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
2206 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
2207 } else {
2208 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
2209 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
2210 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
2211 (!is_power_of_2(sbi->s_inode_size)) ||
2212 (sbi->s_inode_size > blocksize)) {
2213 printk(KERN_ERR
2214 "EXT4-fs: unsupported inode size: %d\n",
2215 sbi->s_inode_size);
2216 goto failed_mount;
2217 }
2218 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
2219 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
2220 }
2221 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
2222 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
2223 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
2224 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
2225 !is_power_of_2(sbi->s_desc_size)) {
2226 printk(KERN_ERR
2227 "EXT4-fs: unsupported descriptor size %lu\n",
2228 sbi->s_desc_size);
2229 goto failed_mount;
2230 }
2231 } else
2232 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
2233 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
2234 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
2235 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
2236 goto cantfind_ext4;
2237 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
2238 if (sbi->s_inodes_per_block == 0)
2239 goto cantfind_ext4;
2240 sbi->s_itb_per_group = sbi->s_inodes_per_group /
2241 sbi->s_inodes_per_block;
2242 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
2243 sbi->s_sbh = bh;
2244 sbi->s_mount_state = le16_to_cpu(es->s_state);
2245 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
2246 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
2247 for (i = 0; i < 4; i++)
2248 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
2249 sbi->s_def_hash_version = es->s_def_hash_version;
2250 i = le32_to_cpu(es->s_flags);
2251 if (i & EXT2_FLAGS_UNSIGNED_HASH)
2252 sbi->s_hash_unsigned = 3;
2253 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
2254 #ifdef __CHAR_UNSIGNED__
2255 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
2256 sbi->s_hash_unsigned = 3;
2257 #else
2258 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
2259 #endif
2260 sb->s_dirt = 1;
2261 }
2262
2263 if (sbi->s_blocks_per_group > blocksize * 8) {
2264 printk(KERN_ERR
2265 "EXT4-fs: #blocks per group too big: %lu\n",
2266 sbi->s_blocks_per_group);
2267 goto failed_mount;
2268 }
2269 if (sbi->s_inodes_per_group > blocksize * 8) {
2270 printk(KERN_ERR
2271 "EXT4-fs: #inodes per group too big: %lu\n",
2272 sbi->s_inodes_per_group);
2273 goto failed_mount;
2274 }
2275
2276 if (ext4_blocks_count(es) >
2277 (sector_t)(~0ULL) >> (sb->s_blocksize_bits - 9)) {
2278 printk(KERN_ERR "EXT4-fs: filesystem on %s:"
2279 " too large to mount safely\n", sb->s_id);
2280 if (sizeof(sector_t) < 8)
2281 printk(KERN_WARNING "EXT4-fs: CONFIG_LBD not "
2282 "enabled\n");
2283 goto failed_mount;
2284 }
2285
2286 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
2287 goto cantfind_ext4;
2288
2289 /*
2290 * It makes no sense for the first data block to be beyond the end
2291 * of the filesystem.
2292 */
2293 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
2294 printk(KERN_WARNING "EXT4-fs: bad geometry: first data"
2295 "block %u is beyond end of filesystem (%llu)\n",
2296 le32_to_cpu(es->s_first_data_block),
2297 ext4_blocks_count(es));
2298 goto failed_mount;
2299 }
2300 blocks_count = (ext4_blocks_count(es) -
2301 le32_to_cpu(es->s_first_data_block) +
2302 EXT4_BLOCKS_PER_GROUP(sb) - 1);
2303 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
2304 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
2305 printk(KERN_WARNING "EXT4-fs: groups count too large: %u "
2306 "(block count %llu, first data block %u, "
2307 "blocks per group %lu)\n", sbi->s_groups_count,
2308 ext4_blocks_count(es),
2309 le32_to_cpu(es->s_first_data_block),
2310 EXT4_BLOCKS_PER_GROUP(sb));
2311 goto failed_mount;
2312 }
2313 sbi->s_groups_count = blocks_count;
2314 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
2315 EXT4_DESC_PER_BLOCK(sb);
2316 sbi->s_group_desc = kmalloc(db_count * sizeof(struct buffer_head *),
2317 GFP_KERNEL);
2318 if (sbi->s_group_desc == NULL) {
2319 printk(KERN_ERR "EXT4-fs: not enough memory\n");
2320 goto failed_mount;
2321 }
2322
2323 #ifdef CONFIG_PROC_FS
2324 if (ext4_proc_root)
2325 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
2326
2327 if (sbi->s_proc)
2328 proc_create_data("inode_readahead_blks", 0644, sbi->s_proc,
2329 &ext4_ui_proc_fops,
2330 &sbi->s_inode_readahead_blks);
2331 #endif
2332
2333 bgl_lock_init(&sbi->s_blockgroup_lock);
2334
2335 for (i = 0; i < db_count; i++) {
2336 block = descriptor_loc(sb, logical_sb_block, i);
2337 sbi->s_group_desc[i] = sb_bread(sb, block);
2338 if (!sbi->s_group_desc[i]) {
2339 printk(KERN_ERR "EXT4-fs: "
2340 "can't read group descriptor %d\n", i);
2341 db_count = i;
2342 goto failed_mount2;
2343 }
2344 }
2345 if (!ext4_check_descriptors(sb)) {
2346 printk(KERN_ERR "EXT4-fs: group descriptors corrupted!\n");
2347 goto failed_mount2;
2348 }
2349 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2350 if (!ext4_fill_flex_info(sb)) {
2351 printk(KERN_ERR
2352 "EXT4-fs: unable to initialize "
2353 "flex_bg meta info!\n");
2354 goto failed_mount2;
2355 }
2356
2357 sbi->s_gdb_count = db_count;
2358 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
2359 spin_lock_init(&sbi->s_next_gen_lock);
2360
2361 err = percpu_counter_init(&sbi->s_freeblocks_counter,
2362 ext4_count_free_blocks(sb));
2363 if (!err) {
2364 err = percpu_counter_init(&sbi->s_freeinodes_counter,
2365 ext4_count_free_inodes(sb));
2366 }
2367 if (!err) {
2368 err = percpu_counter_init(&sbi->s_dirs_counter,
2369 ext4_count_dirs(sb));
2370 }
2371 if (!err) {
2372 err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0);
2373 }
2374 if (err) {
2375 printk(KERN_ERR "EXT4-fs: insufficient memory\n");
2376 goto failed_mount3;
2377 }
2378
2379 sbi->s_stripe = ext4_get_stripe_size(sbi);
2380
2381 /*
2382 * set up enough so that it can read an inode
2383 */
2384 sb->s_op = &ext4_sops;
2385 sb->s_export_op = &ext4_export_ops;
2386 sb->s_xattr = ext4_xattr_handlers;
2387 #ifdef CONFIG_QUOTA
2388 sb->s_qcop = &ext4_qctl_operations;
2389 sb->dq_op = &ext4_quota_operations;
2390 #endif
2391 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
2392
2393 sb->s_root = NULL;
2394
2395 needs_recovery = (es->s_last_orphan != 0 ||
2396 EXT4_HAS_INCOMPAT_FEATURE(sb,
2397 EXT4_FEATURE_INCOMPAT_RECOVER));
2398
2399 /*
2400 * The first inode we look at is the journal inode. Don't try
2401 * root first: it may be modified in the journal!
2402 */
2403 if (!test_opt(sb, NOLOAD) &&
2404 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
2405 if (ext4_load_journal(sb, es, journal_devnum))
2406 goto failed_mount3;
2407 if (!(sb->s_flags & MS_RDONLY) &&
2408 EXT4_SB(sb)->s_journal->j_failed_commit) {
2409 printk(KERN_CRIT "EXT4-fs error (device %s): "
2410 "ext4_fill_super: Journal transaction "
2411 "%u is corrupt\n", sb->s_id,
2412 EXT4_SB(sb)->s_journal->j_failed_commit);
2413 if (test_opt(sb, ERRORS_RO)) {
2414 printk(KERN_CRIT
2415 "Mounting filesystem read-only\n");
2416 sb->s_flags |= MS_RDONLY;
2417 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
2418 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
2419 }
2420 if (test_opt(sb, ERRORS_PANIC)) {
2421 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
2422 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
2423 ext4_commit_super(sb, es, 1);
2424 goto failed_mount4;
2425 }
2426 }
2427 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
2428 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
2429 printk(KERN_ERR "EXT4-fs: required journal recovery "
2430 "suppressed and not mounted read-only\n");
2431 goto failed_mount4;
2432 } else {
2433 clear_opt(sbi->s_mount_opt, DATA_FLAGS);
2434 set_opt(sbi->s_mount_opt, WRITEBACK_DATA);
2435 sbi->s_journal = NULL;
2436 needs_recovery = 0;
2437 goto no_journal;
2438 }
2439
2440 if (ext4_blocks_count(es) > 0xffffffffULL &&
2441 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
2442 JBD2_FEATURE_INCOMPAT_64BIT)) {
2443 printk(KERN_ERR "EXT4-fs: Failed to set 64-bit journal feature\n");
2444 goto failed_mount4;
2445 }
2446
2447 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
2448 jbd2_journal_set_features(sbi->s_journal,
2449 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
2450 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2451 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
2452 jbd2_journal_set_features(sbi->s_journal,
2453 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0);
2454 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
2455 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2456 } else {
2457 jbd2_journal_clear_features(sbi->s_journal,
2458 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
2459 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2460 }
2461
2462 /* We have now updated the journal if required, so we can
2463 * validate the data journaling mode. */
2464 switch (test_opt(sb, DATA_FLAGS)) {
2465 case 0:
2466 /* No mode set, assume a default based on the journal
2467 * capabilities: ORDERED_DATA if the journal can
2468 * cope, else JOURNAL_DATA
2469 */
2470 if (jbd2_journal_check_available_features
2471 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
2472 set_opt(sbi->s_mount_opt, ORDERED_DATA);
2473 else
2474 set_opt(sbi->s_mount_opt, JOURNAL_DATA);
2475 break;
2476
2477 case EXT4_MOUNT_ORDERED_DATA:
2478 case EXT4_MOUNT_WRITEBACK_DATA:
2479 if (!jbd2_journal_check_available_features
2480 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
2481 printk(KERN_ERR "EXT4-fs: Journal does not support "
2482 "requested data journaling mode\n");
2483 goto failed_mount4;
2484 }
2485 default:
2486 break;
2487 }
2488 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
2489
2490 no_journal:
2491
2492 if (test_opt(sb, NOBH)) {
2493 if (!(test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)) {
2494 printk(KERN_WARNING "EXT4-fs: Ignoring nobh option - "
2495 "its supported only with writeback mode\n");
2496 clear_opt(sbi->s_mount_opt, NOBH);
2497 }
2498 }
2499 /*
2500 * The jbd2_journal_load will have done any necessary log recovery,
2501 * so we can safely mount the rest of the filesystem now.
2502 */
2503
2504 root = ext4_iget(sb, EXT4_ROOT_INO);
2505 if (IS_ERR(root)) {
2506 printk(KERN_ERR "EXT4-fs: get root inode failed\n");
2507 ret = PTR_ERR(root);
2508 goto failed_mount4;
2509 }
2510 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
2511 iput(root);
2512 printk(KERN_ERR "EXT4-fs: corrupt root inode, run e2fsck\n");
2513 goto failed_mount4;
2514 }
2515 sb->s_root = d_alloc_root(root);
2516 if (!sb->s_root) {
2517 printk(KERN_ERR "EXT4-fs: get root dentry failed\n");
2518 iput(root);
2519 ret = -ENOMEM;
2520 goto failed_mount4;
2521 }
2522
2523 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY);
2524
2525 /* determine the minimum size of new large inodes, if present */
2526 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
2527 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
2528 EXT4_GOOD_OLD_INODE_SIZE;
2529 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2530 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
2531 if (sbi->s_want_extra_isize <
2532 le16_to_cpu(es->s_want_extra_isize))
2533 sbi->s_want_extra_isize =
2534 le16_to_cpu(es->s_want_extra_isize);
2535 if (sbi->s_want_extra_isize <
2536 le16_to_cpu(es->s_min_extra_isize))
2537 sbi->s_want_extra_isize =
2538 le16_to_cpu(es->s_min_extra_isize);
2539 }
2540 }
2541 /* Check if enough inode space is available */
2542 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
2543 sbi->s_inode_size) {
2544 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
2545 EXT4_GOOD_OLD_INODE_SIZE;
2546 printk(KERN_INFO "EXT4-fs: required extra inode space not"
2547 "available.\n");
2548 }
2549
2550 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
2551 printk(KERN_WARNING "EXT4-fs: Ignoring delalloc option - "
2552 "requested data journaling mode\n");
2553 clear_opt(sbi->s_mount_opt, DELALLOC);
2554 } else if (test_opt(sb, DELALLOC))
2555 printk(KERN_INFO "EXT4-fs: delayed allocation enabled\n");
2556
2557 ext4_ext_init(sb);
2558 err = ext4_mb_init(sb, needs_recovery);
2559 if (err) {
2560 printk(KERN_ERR "EXT4-fs: failed to initalize mballoc (%d)\n",
2561 err);
2562 goto failed_mount4;
2563 }
2564
2565 /*
2566 * akpm: core read_super() calls in here with the superblock locked.
2567 * That deadlocks, because orphan cleanup needs to lock the superblock
2568 * in numerous places. Here we just pop the lock - it's relatively
2569 * harmless, because we are now ready to accept write_super() requests,
2570 * and aviro says that's the only reason for hanging onto the
2571 * superblock lock.
2572 */
2573 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
2574 ext4_orphan_cleanup(sb, es);
2575 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
2576 if (needs_recovery) {
2577 printk(KERN_INFO "EXT4-fs: recovery complete.\n");
2578 ext4_mark_recovery_complete(sb, es);
2579 }
2580 if (EXT4_SB(sb)->s_journal) {
2581 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2582 descr = " journalled data mode";
2583 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2584 descr = " ordered data mode";
2585 else
2586 descr = " writeback data mode";
2587 } else
2588 descr = "out journal";
2589
2590 printk(KERN_INFO "EXT4-fs: mounted filesystem %s with%s\n",
2591 sb->s_id, descr);
2592
2593 lock_kernel();
2594 return 0;
2595
2596 cantfind_ext4:
2597 if (!silent)
2598 printk(KERN_ERR "VFS: Can't find ext4 filesystem on dev %s.\n",
2599 sb->s_id);
2600 goto failed_mount;
2601
2602 failed_mount4:
2603 printk(KERN_ERR "EXT4-fs (device %s): mount failed\n", sb->s_id);
2604 if (sbi->s_journal) {
2605 jbd2_journal_destroy(sbi->s_journal);
2606 sbi->s_journal = NULL;
2607 }
2608 failed_mount3:
2609 percpu_counter_destroy(&sbi->s_freeblocks_counter);
2610 percpu_counter_destroy(&sbi->s_freeinodes_counter);
2611 percpu_counter_destroy(&sbi->s_dirs_counter);
2612 percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
2613 failed_mount2:
2614 for (i = 0; i < db_count; i++)
2615 brelse(sbi->s_group_desc[i]);
2616 kfree(sbi->s_group_desc);
2617 failed_mount:
2618 if (sbi->s_proc) {
2619 remove_proc_entry("inode_readahead_blks", sbi->s_proc);
2620 remove_proc_entry(sb->s_id, ext4_proc_root);
2621 }
2622 #ifdef CONFIG_QUOTA
2623 for (i = 0; i < MAXQUOTAS; i++)
2624 kfree(sbi->s_qf_names[i]);
2625 #endif
2626 ext4_blkdev_remove(sbi);
2627 brelse(bh);
2628 out_fail:
2629 sb->s_fs_info = NULL;
2630 kfree(sbi);
2631 lock_kernel();
2632 return ret;
2633 }
2634
2635 /*
2636 * Setup any per-fs journal parameters now. We'll do this both on
2637 * initial mount, once the journal has been initialised but before we've
2638 * done any recovery; and again on any subsequent remount.
2639 */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)2640 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
2641 {
2642 struct ext4_sb_info *sbi = EXT4_SB(sb);
2643
2644 journal->j_commit_interval = sbi->s_commit_interval;
2645 journal->j_min_batch_time = sbi->s_min_batch_time;
2646 journal->j_max_batch_time = sbi->s_max_batch_time;
2647
2648 spin_lock(&journal->j_state_lock);
2649 if (test_opt(sb, BARRIER))
2650 journal->j_flags |= JBD2_BARRIER;
2651 else
2652 journal->j_flags &= ~JBD2_BARRIER;
2653 if (test_opt(sb, DATA_ERR_ABORT))
2654 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
2655 else
2656 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
2657 spin_unlock(&journal->j_state_lock);
2658 }
2659
ext4_get_journal(struct super_block * sb,unsigned int journal_inum)2660 static journal_t *ext4_get_journal(struct super_block *sb,
2661 unsigned int journal_inum)
2662 {
2663 struct inode *journal_inode;
2664 journal_t *journal;
2665
2666 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
2667
2668 /* First, test for the existence of a valid inode on disk. Bad
2669 * things happen if we iget() an unused inode, as the subsequent
2670 * iput() will try to delete it. */
2671
2672 journal_inode = ext4_iget(sb, journal_inum);
2673 if (IS_ERR(journal_inode)) {
2674 printk(KERN_ERR "EXT4-fs: no journal found.\n");
2675 return NULL;
2676 }
2677 if (!journal_inode->i_nlink) {
2678 make_bad_inode(journal_inode);
2679 iput(journal_inode);
2680 printk(KERN_ERR "EXT4-fs: journal inode is deleted.\n");
2681 return NULL;
2682 }
2683
2684 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
2685 journal_inode, journal_inode->i_size);
2686 if (!S_ISREG(journal_inode->i_mode)) {
2687 printk(KERN_ERR "EXT4-fs: invalid journal inode.\n");
2688 iput(journal_inode);
2689 return NULL;
2690 }
2691
2692 journal = jbd2_journal_init_inode(journal_inode);
2693 if (!journal) {
2694 printk(KERN_ERR "EXT4-fs: Could not load journal inode\n");
2695 iput(journal_inode);
2696 return NULL;
2697 }
2698 journal->j_private = sb;
2699 ext4_init_journal_params(sb, journal);
2700 return journal;
2701 }
2702
ext4_get_dev_journal(struct super_block * sb,dev_t j_dev)2703 static journal_t *ext4_get_dev_journal(struct super_block *sb,
2704 dev_t j_dev)
2705 {
2706 struct buffer_head *bh;
2707 journal_t *journal;
2708 ext4_fsblk_t start;
2709 ext4_fsblk_t len;
2710 int hblock, blocksize;
2711 ext4_fsblk_t sb_block;
2712 unsigned long offset;
2713 struct ext4_super_block *es;
2714 struct block_device *bdev;
2715
2716 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
2717
2718 bdev = ext4_blkdev_get(j_dev);
2719 if (bdev == NULL)
2720 return NULL;
2721
2722 if (bd_claim(bdev, sb)) {
2723 printk(KERN_ERR
2724 "EXT4-fs: failed to claim external journal device.\n");
2725 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
2726 return NULL;
2727 }
2728
2729 blocksize = sb->s_blocksize;
2730 hblock = bdev_hardsect_size(bdev);
2731 if (blocksize < hblock) {
2732 printk(KERN_ERR
2733 "EXT4-fs: blocksize too small for journal device.\n");
2734 goto out_bdev;
2735 }
2736
2737 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
2738 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
2739 set_blocksize(bdev, blocksize);
2740 if (!(bh = __bread(bdev, sb_block, blocksize))) {
2741 printk(KERN_ERR "EXT4-fs: couldn't read superblock of "
2742 "external journal\n");
2743 goto out_bdev;
2744 }
2745
2746 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
2747 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
2748 !(le32_to_cpu(es->s_feature_incompat) &
2749 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
2750 printk(KERN_ERR "EXT4-fs: external journal has "
2751 "bad superblock\n");
2752 brelse(bh);
2753 goto out_bdev;
2754 }
2755
2756 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
2757 printk(KERN_ERR "EXT4-fs: journal UUID does not match\n");
2758 brelse(bh);
2759 goto out_bdev;
2760 }
2761
2762 len = ext4_blocks_count(es);
2763 start = sb_block + 1;
2764 brelse(bh); /* we're done with the superblock */
2765
2766 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
2767 start, len, blocksize);
2768 if (!journal) {
2769 printk(KERN_ERR "EXT4-fs: failed to create device journal\n");
2770 goto out_bdev;
2771 }
2772 journal->j_private = sb;
2773 ll_rw_block(READ, 1, &journal->j_sb_buffer);
2774 wait_on_buffer(journal->j_sb_buffer);
2775 if (!buffer_uptodate(journal->j_sb_buffer)) {
2776 printk(KERN_ERR "EXT4-fs: I/O error on journal device\n");
2777 goto out_journal;
2778 }
2779 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
2780 printk(KERN_ERR "EXT4-fs: External journal has more than one "
2781 "user (unsupported) - %d\n",
2782 be32_to_cpu(journal->j_superblock->s_nr_users));
2783 goto out_journal;
2784 }
2785 EXT4_SB(sb)->journal_bdev = bdev;
2786 ext4_init_journal_params(sb, journal);
2787 return journal;
2788 out_journal:
2789 jbd2_journal_destroy(journal);
2790 out_bdev:
2791 ext4_blkdev_put(bdev);
2792 return NULL;
2793 }
2794
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)2795 static int ext4_load_journal(struct super_block *sb,
2796 struct ext4_super_block *es,
2797 unsigned long journal_devnum)
2798 {
2799 journal_t *journal;
2800 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
2801 dev_t journal_dev;
2802 int err = 0;
2803 int really_read_only;
2804
2805 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
2806
2807 if (journal_devnum &&
2808 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
2809 printk(KERN_INFO "EXT4-fs: external journal device major/minor "
2810 "numbers have changed\n");
2811 journal_dev = new_decode_dev(journal_devnum);
2812 } else
2813 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
2814
2815 really_read_only = bdev_read_only(sb->s_bdev);
2816
2817 /*
2818 * Are we loading a blank journal or performing recovery after a
2819 * crash? For recovery, we need to check in advance whether we
2820 * can get read-write access to the device.
2821 */
2822
2823 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
2824 if (sb->s_flags & MS_RDONLY) {
2825 printk(KERN_INFO "EXT4-fs: INFO: recovery "
2826 "required on readonly filesystem.\n");
2827 if (really_read_only) {
2828 printk(KERN_ERR "EXT4-fs: write access "
2829 "unavailable, cannot proceed.\n");
2830 return -EROFS;
2831 }
2832 printk(KERN_INFO "EXT4-fs: write access will "
2833 "be enabled during recovery.\n");
2834 }
2835 }
2836
2837 if (journal_inum && journal_dev) {
2838 printk(KERN_ERR "EXT4-fs: filesystem has both journal "
2839 "and inode journals!\n");
2840 return -EINVAL;
2841 }
2842
2843 if (journal_inum) {
2844 if (!(journal = ext4_get_journal(sb, journal_inum)))
2845 return -EINVAL;
2846 } else {
2847 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
2848 return -EINVAL;
2849 }
2850
2851 if (journal->j_flags & JBD2_BARRIER)
2852 printk(KERN_INFO "EXT4-fs: barriers enabled\n");
2853 else
2854 printk(KERN_INFO "EXT4-fs: barriers disabled\n");
2855
2856 if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) {
2857 err = jbd2_journal_update_format(journal);
2858 if (err) {
2859 printk(KERN_ERR "EXT4-fs: error updating journal.\n");
2860 jbd2_journal_destroy(journal);
2861 return err;
2862 }
2863 }
2864
2865 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
2866 err = jbd2_journal_wipe(journal, !really_read_only);
2867 if (!err)
2868 err = jbd2_journal_load(journal);
2869
2870 if (err) {
2871 printk(KERN_ERR "EXT4-fs: error loading journal.\n");
2872 jbd2_journal_destroy(journal);
2873 return err;
2874 }
2875
2876 EXT4_SB(sb)->s_journal = journal;
2877 ext4_clear_journal_err(sb, es);
2878
2879 if (journal_devnum &&
2880 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
2881 es->s_journal_dev = cpu_to_le32(journal_devnum);
2882 sb->s_dirt = 1;
2883
2884 /* Make sure we flush the recovery flag to disk. */
2885 ext4_commit_super(sb, es, 1);
2886 }
2887
2888 return 0;
2889 }
2890
ext4_commit_super(struct super_block * sb,struct ext4_super_block * es,int sync)2891 static int ext4_commit_super(struct super_block *sb,
2892 struct ext4_super_block *es, int sync)
2893 {
2894 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
2895 int error = 0;
2896
2897 if (!sbh)
2898 return error;
2899 if (buffer_write_io_error(sbh)) {
2900 /*
2901 * Oh, dear. A previous attempt to write the
2902 * superblock failed. This could happen because the
2903 * USB device was yanked out. Or it could happen to
2904 * be a transient write error and maybe the block will
2905 * be remapped. Nothing we can do but to retry the
2906 * write and hope for the best.
2907 */
2908 printk(KERN_ERR "EXT4-fs: previous I/O error to "
2909 "superblock detected for %s.\n", sb->s_id);
2910 clear_buffer_write_io_error(sbh);
2911 set_buffer_uptodate(sbh);
2912 }
2913 es->s_wtime = cpu_to_le32(get_seconds());
2914 ext4_free_blocks_count_set(es, percpu_counter_sum_positive(
2915 &EXT4_SB(sb)->s_freeblocks_counter));
2916 es->s_free_inodes_count = cpu_to_le32(percpu_counter_sum_positive(
2917 &EXT4_SB(sb)->s_freeinodes_counter));
2918
2919 BUFFER_TRACE(sbh, "marking dirty");
2920 mark_buffer_dirty(sbh);
2921 if (sync) {
2922 error = sync_dirty_buffer(sbh);
2923 if (error)
2924 return error;
2925
2926 error = buffer_write_io_error(sbh);
2927 if (error) {
2928 printk(KERN_ERR "EXT4-fs: I/O error while writing "
2929 "superblock for %s.\n", sb->s_id);
2930 clear_buffer_write_io_error(sbh);
2931 set_buffer_uptodate(sbh);
2932 }
2933 }
2934 return error;
2935 }
2936
2937
2938 /*
2939 * Have we just finished recovery? If so, and if we are mounting (or
2940 * remounting) the filesystem readonly, then we will end up with a
2941 * consistent fs on disk. Record that fact.
2942 */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)2943 static void ext4_mark_recovery_complete(struct super_block *sb,
2944 struct ext4_super_block *es)
2945 {
2946 journal_t *journal = EXT4_SB(sb)->s_journal;
2947
2948 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
2949 BUG_ON(journal != NULL);
2950 return;
2951 }
2952 jbd2_journal_lock_updates(journal);
2953 if (jbd2_journal_flush(journal) < 0)
2954 goto out;
2955
2956 lock_super(sb);
2957 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
2958 sb->s_flags & MS_RDONLY) {
2959 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
2960 sb->s_dirt = 0;
2961 ext4_commit_super(sb, es, 1);
2962 }
2963 unlock_super(sb);
2964
2965 out:
2966 jbd2_journal_unlock_updates(journal);
2967 }
2968
2969 /*
2970 * If we are mounting (or read-write remounting) a filesystem whose journal
2971 * has recorded an error from a previous lifetime, move that error to the
2972 * main filesystem now.
2973 */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)2974 static void ext4_clear_journal_err(struct super_block *sb,
2975 struct ext4_super_block *es)
2976 {
2977 journal_t *journal;
2978 int j_errno;
2979 const char *errstr;
2980
2981 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
2982
2983 journal = EXT4_SB(sb)->s_journal;
2984
2985 /*
2986 * Now check for any error status which may have been recorded in the
2987 * journal by a prior ext4_error() or ext4_abort()
2988 */
2989
2990 j_errno = jbd2_journal_errno(journal);
2991 if (j_errno) {
2992 char nbuf[16];
2993
2994 errstr = ext4_decode_error(sb, j_errno, nbuf);
2995 ext4_warning(sb, __func__, "Filesystem error recorded "
2996 "from previous mount: %s", errstr);
2997 ext4_warning(sb, __func__, "Marking fs in need of "
2998 "filesystem check.");
2999
3000 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
3001 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
3002 ext4_commit_super(sb, es, 1);
3003
3004 jbd2_journal_clear_err(journal);
3005 }
3006 }
3007
3008 /*
3009 * Force the running and committing transactions to commit,
3010 * and wait on the commit.
3011 */
ext4_force_commit(struct super_block * sb)3012 int ext4_force_commit(struct super_block *sb)
3013 {
3014 journal_t *journal;
3015 int ret = 0;
3016
3017 if (sb->s_flags & MS_RDONLY)
3018 return 0;
3019
3020 journal = EXT4_SB(sb)->s_journal;
3021 if (journal) {
3022 sb->s_dirt = 0;
3023 ret = ext4_journal_force_commit(journal);
3024 }
3025
3026 return ret;
3027 }
3028
3029 /*
3030 * Ext4 always journals updates to the superblock itself, so we don't
3031 * have to propagate any other updates to the superblock on disk at this
3032 * point. (We can probably nuke this function altogether, and remove
3033 * any mention to sb->s_dirt in all of fs/ext4; eventual cleanup...)
3034 */
ext4_write_super(struct super_block * sb)3035 static void ext4_write_super(struct super_block *sb)
3036 {
3037 if (EXT4_SB(sb)->s_journal) {
3038 if (mutex_trylock(&sb->s_lock) != 0)
3039 BUG();
3040 sb->s_dirt = 0;
3041 } else {
3042 ext4_commit_super(sb, EXT4_SB(sb)->s_es, 1);
3043 }
3044 }
3045
ext4_sync_fs(struct super_block * sb,int wait)3046 static int ext4_sync_fs(struct super_block *sb, int wait)
3047 {
3048 int ret = 0;
3049 tid_t target;
3050
3051 trace_mark(ext4_sync_fs, "dev %s wait %d", sb->s_id, wait);
3052 sb->s_dirt = 0;
3053 if (EXT4_SB(sb)->s_journal) {
3054 if (jbd2_journal_start_commit(EXT4_SB(sb)->s_journal,
3055 &target)) {
3056 if (wait)
3057 jbd2_log_wait_commit(EXT4_SB(sb)->s_journal,
3058 target);
3059 }
3060 } else {
3061 ext4_commit_super(sb, EXT4_SB(sb)->s_es, wait);
3062 }
3063 return ret;
3064 }
3065
3066 /*
3067 * LVM calls this function before a (read-only) snapshot is created. This
3068 * gives us a chance to flush the journal completely and mark the fs clean.
3069 */
ext4_freeze(struct super_block * sb)3070 static int ext4_freeze(struct super_block *sb)
3071 {
3072 int error = 0;
3073 journal_t *journal;
3074 sb->s_dirt = 0;
3075
3076 if (!(sb->s_flags & MS_RDONLY)) {
3077 journal = EXT4_SB(sb)->s_journal;
3078
3079 if (journal) {
3080 /* Now we set up the journal barrier. */
3081 jbd2_journal_lock_updates(journal);
3082
3083 /*
3084 * We don't want to clear needs_recovery flag when we
3085 * failed to flush the journal.
3086 */
3087 error = jbd2_journal_flush(journal);
3088 if (error < 0)
3089 goto out;
3090 }
3091
3092 /* Journal blocked and flushed, clear needs_recovery flag. */
3093 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
3094 error = ext4_commit_super(sb, EXT4_SB(sb)->s_es, 1);
3095 if (error)
3096 goto out;
3097 }
3098 return 0;
3099 out:
3100 jbd2_journal_unlock_updates(journal);
3101 return error;
3102 }
3103
3104 /*
3105 * Called by LVM after the snapshot is done. We need to reset the RECOVER
3106 * flag here, even though the filesystem is not technically dirty yet.
3107 */
ext4_unfreeze(struct super_block * sb)3108 static int ext4_unfreeze(struct super_block *sb)
3109 {
3110 if (EXT4_SB(sb)->s_journal && !(sb->s_flags & MS_RDONLY)) {
3111 lock_super(sb);
3112 /* Reser the needs_recovery flag before the fs is unlocked. */
3113 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
3114 ext4_commit_super(sb, EXT4_SB(sb)->s_es, 1);
3115 unlock_super(sb);
3116 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
3117 }
3118 return 0;
3119 }
3120
ext4_remount(struct super_block * sb,int * flags,char * data)3121 static int ext4_remount(struct super_block *sb, int *flags, char *data)
3122 {
3123 struct ext4_super_block *es;
3124 struct ext4_sb_info *sbi = EXT4_SB(sb);
3125 ext4_fsblk_t n_blocks_count = 0;
3126 unsigned long old_sb_flags;
3127 struct ext4_mount_options old_opts;
3128 ext4_group_t g;
3129 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3130 int err;
3131 #ifdef CONFIG_QUOTA
3132 int i;
3133 #endif
3134
3135 /* Store the original options */
3136 old_sb_flags = sb->s_flags;
3137 old_opts.s_mount_opt = sbi->s_mount_opt;
3138 old_opts.s_resuid = sbi->s_resuid;
3139 old_opts.s_resgid = sbi->s_resgid;
3140 old_opts.s_commit_interval = sbi->s_commit_interval;
3141 old_opts.s_min_batch_time = sbi->s_min_batch_time;
3142 old_opts.s_max_batch_time = sbi->s_max_batch_time;
3143 #ifdef CONFIG_QUOTA
3144 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
3145 for (i = 0; i < MAXQUOTAS; i++)
3146 old_opts.s_qf_names[i] = sbi->s_qf_names[i];
3147 #endif
3148 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
3149 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
3150
3151 /*
3152 * Allow the "check" option to be passed as a remount option.
3153 */
3154 if (!parse_options(data, sb, NULL, &journal_ioprio,
3155 &n_blocks_count, 1)) {
3156 err = -EINVAL;
3157 goto restore_opts;
3158 }
3159
3160 if (sbi->s_mount_opt & EXT4_MOUNT_ABORT)
3161 ext4_abort(sb, __func__, "Abort forced by user");
3162
3163 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3164 ((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0);
3165
3166 es = sbi->s_es;
3167
3168 if (sbi->s_journal) {
3169 ext4_init_journal_params(sb, sbi->s_journal);
3170 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3171 }
3172
3173 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) ||
3174 n_blocks_count > ext4_blocks_count(es)) {
3175 if (sbi->s_mount_opt & EXT4_MOUNT_ABORT) {
3176 err = -EROFS;
3177 goto restore_opts;
3178 }
3179
3180 if (*flags & MS_RDONLY) {
3181 /*
3182 * First of all, the unconditional stuff we have to do
3183 * to disable replay of the journal when we next remount
3184 */
3185 sb->s_flags |= MS_RDONLY;
3186
3187 /*
3188 * OK, test if we are remounting a valid rw partition
3189 * readonly, and if so set the rdonly flag and then
3190 * mark the partition as valid again.
3191 */
3192 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
3193 (sbi->s_mount_state & EXT4_VALID_FS))
3194 es->s_state = cpu_to_le16(sbi->s_mount_state);
3195
3196 /*
3197 * We have to unlock super so that we can wait for
3198 * transactions.
3199 */
3200 if (sbi->s_journal) {
3201 unlock_super(sb);
3202 ext4_mark_recovery_complete(sb, es);
3203 lock_super(sb);
3204 }
3205 } else {
3206 int ret;
3207 if ((ret = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3208 ~EXT4_FEATURE_RO_COMPAT_SUPP))) {
3209 printk(KERN_WARNING "EXT4-fs: %s: couldn't "
3210 "remount RDWR because of unsupported "
3211 "optional features (%x).\n", sb->s_id,
3212 (le32_to_cpu(sbi->s_es->s_feature_ro_compat) &
3213 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3214 err = -EROFS;
3215 goto restore_opts;
3216 }
3217
3218 /*
3219 * Make sure the group descriptor checksums
3220 * are sane. If they aren't, refuse to
3221 * remount r/w.
3222 */
3223 for (g = 0; g < sbi->s_groups_count; g++) {
3224 struct ext4_group_desc *gdp =
3225 ext4_get_group_desc(sb, g, NULL);
3226
3227 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) {
3228 printk(KERN_ERR
3229 "EXT4-fs: ext4_remount: "
3230 "Checksum for group %u failed (%u!=%u)\n",
3231 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
3232 le16_to_cpu(gdp->bg_checksum));
3233 err = -EINVAL;
3234 goto restore_opts;
3235 }
3236 }
3237
3238 /*
3239 * If we have an unprocessed orphan list hanging
3240 * around from a previously readonly bdev mount,
3241 * require a full umount/remount for now.
3242 */
3243 if (es->s_last_orphan) {
3244 printk(KERN_WARNING "EXT4-fs: %s: couldn't "
3245 "remount RDWR because of unprocessed "
3246 "orphan inode list. Please "
3247 "umount/remount instead.\n",
3248 sb->s_id);
3249 err = -EINVAL;
3250 goto restore_opts;
3251 }
3252
3253 /*
3254 * Mounting a RDONLY partition read-write, so reread
3255 * and store the current valid flag. (It may have
3256 * been changed by e2fsck since we originally mounted
3257 * the partition.)
3258 */
3259 if (sbi->s_journal)
3260 ext4_clear_journal_err(sb, es);
3261 sbi->s_mount_state = le16_to_cpu(es->s_state);
3262 if ((err = ext4_group_extend(sb, es, n_blocks_count)))
3263 goto restore_opts;
3264 if (!ext4_setup_super(sb, es, 0))
3265 sb->s_flags &= ~MS_RDONLY;
3266 }
3267 }
3268 if (sbi->s_journal == NULL)
3269 ext4_commit_super(sb, es, 1);
3270
3271 #ifdef CONFIG_QUOTA
3272 /* Release old quota file names */
3273 for (i = 0; i < MAXQUOTAS; i++)
3274 if (old_opts.s_qf_names[i] &&
3275 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
3276 kfree(old_opts.s_qf_names[i]);
3277 #endif
3278 return 0;
3279 restore_opts:
3280 sb->s_flags = old_sb_flags;
3281 sbi->s_mount_opt = old_opts.s_mount_opt;
3282 sbi->s_resuid = old_opts.s_resuid;
3283 sbi->s_resgid = old_opts.s_resgid;
3284 sbi->s_commit_interval = old_opts.s_commit_interval;
3285 sbi->s_min_batch_time = old_opts.s_min_batch_time;
3286 sbi->s_max_batch_time = old_opts.s_max_batch_time;
3287 #ifdef CONFIG_QUOTA
3288 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
3289 for (i = 0; i < MAXQUOTAS; i++) {
3290 if (sbi->s_qf_names[i] &&
3291 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
3292 kfree(sbi->s_qf_names[i]);
3293 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
3294 }
3295 #endif
3296 return err;
3297 }
3298
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)3299 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
3300 {
3301 struct super_block *sb = dentry->d_sb;
3302 struct ext4_sb_info *sbi = EXT4_SB(sb);
3303 struct ext4_super_block *es = sbi->s_es;
3304 u64 fsid;
3305
3306 if (test_opt(sb, MINIX_DF)) {
3307 sbi->s_overhead_last = 0;
3308 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) {
3309 ext4_group_t ngroups = sbi->s_groups_count, i;
3310 ext4_fsblk_t overhead = 0;
3311 smp_rmb();
3312
3313 /*
3314 * Compute the overhead (FS structures). This is constant
3315 * for a given filesystem unless the number of block groups
3316 * changes so we cache the previous value until it does.
3317 */
3318
3319 /*
3320 * All of the blocks before first_data_block are
3321 * overhead
3322 */
3323 overhead = le32_to_cpu(es->s_first_data_block);
3324
3325 /*
3326 * Add the overhead attributed to the superblock and
3327 * block group descriptors. If the sparse superblocks
3328 * feature is turned on, then not all groups have this.
3329 */
3330 for (i = 0; i < ngroups; i++) {
3331 overhead += ext4_bg_has_super(sb, i) +
3332 ext4_bg_num_gdb(sb, i);
3333 cond_resched();
3334 }
3335
3336 /*
3337 * Every block group has an inode bitmap, a block
3338 * bitmap, and an inode table.
3339 */
3340 overhead += ngroups * (2 + sbi->s_itb_per_group);
3341 sbi->s_overhead_last = overhead;
3342 smp_wmb();
3343 sbi->s_blocks_last = ext4_blocks_count(es);
3344 }
3345
3346 buf->f_type = EXT4_SUPER_MAGIC;
3347 buf->f_bsize = sb->s_blocksize;
3348 buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last;
3349 buf->f_bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) -
3350 percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter);
3351 ext4_free_blocks_count_set(es, buf->f_bfree);
3352 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
3353 if (buf->f_bfree < ext4_r_blocks_count(es))
3354 buf->f_bavail = 0;
3355 buf->f_files = le32_to_cpu(es->s_inodes_count);
3356 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
3357 es->s_free_inodes_count = cpu_to_le32(buf->f_ffree);
3358 buf->f_namelen = EXT4_NAME_LEN;
3359 fsid = le64_to_cpup((void *)es->s_uuid) ^
3360 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
3361 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
3362 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
3363 return 0;
3364 }
3365
3366 /* Helper function for writing quotas on sync - we need to start transaction before quota file
3367 * is locked for write. Otherwise the are possible deadlocks:
3368 * Process 1 Process 2
3369 * ext4_create() quota_sync()
3370 * jbd2_journal_start() write_dquot()
3371 * DQUOT_INIT() down(dqio_mutex)
3372 * down(dqio_mutex) jbd2_journal_start()
3373 *
3374 */
3375
3376 #ifdef CONFIG_QUOTA
3377
dquot_to_inode(struct dquot * dquot)3378 static inline struct inode *dquot_to_inode(struct dquot *dquot)
3379 {
3380 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
3381 }
3382
ext4_dquot_initialize(struct inode * inode,int type)3383 static int ext4_dquot_initialize(struct inode *inode, int type)
3384 {
3385 handle_t *handle;
3386 int ret, err;
3387
3388 /* We may create quota structure so we need to reserve enough blocks */
3389 handle = ext4_journal_start(inode, 2*EXT4_QUOTA_INIT_BLOCKS(inode->i_sb));
3390 if (IS_ERR(handle))
3391 return PTR_ERR(handle);
3392 ret = dquot_initialize(inode, type);
3393 err = ext4_journal_stop(handle);
3394 if (!ret)
3395 ret = err;
3396 return ret;
3397 }
3398
ext4_dquot_drop(struct inode * inode)3399 static int ext4_dquot_drop(struct inode *inode)
3400 {
3401 handle_t *handle;
3402 int ret, err;
3403
3404 /* We may delete quota structure so we need to reserve enough blocks */
3405 handle = ext4_journal_start(inode, 2*EXT4_QUOTA_DEL_BLOCKS(inode->i_sb));
3406 if (IS_ERR(handle)) {
3407 /*
3408 * We call dquot_drop() anyway to at least release references
3409 * to quota structures so that umount does not hang.
3410 */
3411 dquot_drop(inode);
3412 return PTR_ERR(handle);
3413 }
3414 ret = dquot_drop(inode);
3415 err = ext4_journal_stop(handle);
3416 if (!ret)
3417 ret = err;
3418 return ret;
3419 }
3420
ext4_write_dquot(struct dquot * dquot)3421 static int ext4_write_dquot(struct dquot *dquot)
3422 {
3423 int ret, err;
3424 handle_t *handle;
3425 struct inode *inode;
3426
3427 inode = dquot_to_inode(dquot);
3428 handle = ext4_journal_start(inode,
3429 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
3430 if (IS_ERR(handle))
3431 return PTR_ERR(handle);
3432 ret = dquot_commit(dquot);
3433 err = ext4_journal_stop(handle);
3434 if (!ret)
3435 ret = err;
3436 return ret;
3437 }
3438
ext4_acquire_dquot(struct dquot * dquot)3439 static int ext4_acquire_dquot(struct dquot *dquot)
3440 {
3441 int ret, err;
3442 handle_t *handle;
3443
3444 handle = ext4_journal_start(dquot_to_inode(dquot),
3445 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
3446 if (IS_ERR(handle))
3447 return PTR_ERR(handle);
3448 ret = dquot_acquire(dquot);
3449 err = ext4_journal_stop(handle);
3450 if (!ret)
3451 ret = err;
3452 return ret;
3453 }
3454
ext4_release_dquot(struct dquot * dquot)3455 static int ext4_release_dquot(struct dquot *dquot)
3456 {
3457 int ret, err;
3458 handle_t *handle;
3459
3460 handle = ext4_journal_start(dquot_to_inode(dquot),
3461 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
3462 if (IS_ERR(handle)) {
3463 /* Release dquot anyway to avoid endless cycle in dqput() */
3464 dquot_release(dquot);
3465 return PTR_ERR(handle);
3466 }
3467 ret = dquot_release(dquot);
3468 err = ext4_journal_stop(handle);
3469 if (!ret)
3470 ret = err;
3471 return ret;
3472 }
3473
ext4_mark_dquot_dirty(struct dquot * dquot)3474 static int ext4_mark_dquot_dirty(struct dquot *dquot)
3475 {
3476 /* Are we journaling quotas? */
3477 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
3478 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
3479 dquot_mark_dquot_dirty(dquot);
3480 return ext4_write_dquot(dquot);
3481 } else {
3482 return dquot_mark_dquot_dirty(dquot);
3483 }
3484 }
3485
ext4_write_info(struct super_block * sb,int type)3486 static int ext4_write_info(struct super_block *sb, int type)
3487 {
3488 int ret, err;
3489 handle_t *handle;
3490
3491 /* Data block + inode block */
3492 handle = ext4_journal_start(sb->s_root->d_inode, 2);
3493 if (IS_ERR(handle))
3494 return PTR_ERR(handle);
3495 ret = dquot_commit_info(sb, type);
3496 err = ext4_journal_stop(handle);
3497 if (!ret)
3498 ret = err;
3499 return ret;
3500 }
3501
3502 /*
3503 * Turn on quotas during mount time - we need to find
3504 * the quota file and such...
3505 */
ext4_quota_on_mount(struct super_block * sb,int type)3506 static int ext4_quota_on_mount(struct super_block *sb, int type)
3507 {
3508 return vfs_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
3509 EXT4_SB(sb)->s_jquota_fmt, type);
3510 }
3511
3512 /*
3513 * Standard function to be called on quota_on
3514 */
ext4_quota_on(struct super_block * sb,int type,int format_id,char * name,int remount)3515 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
3516 char *name, int remount)
3517 {
3518 int err;
3519 struct path path;
3520
3521 if (!test_opt(sb, QUOTA))
3522 return -EINVAL;
3523 /* When remounting, no checks are needed and in fact, name is NULL */
3524 if (remount)
3525 return vfs_quota_on(sb, type, format_id, name, remount);
3526
3527 err = kern_path(name, LOOKUP_FOLLOW, &path);
3528 if (err)
3529 return err;
3530
3531 /* Quotafile not on the same filesystem? */
3532 if (path.mnt->mnt_sb != sb) {
3533 path_put(&path);
3534 return -EXDEV;
3535 }
3536 /* Journaling quota? */
3537 if (EXT4_SB(sb)->s_qf_names[type]) {
3538 /* Quotafile not in fs root? */
3539 if (path.dentry->d_parent != sb->s_root)
3540 printk(KERN_WARNING
3541 "EXT4-fs: Quota file not on filesystem root. "
3542 "Journaled quota will not work.\n");
3543 }
3544
3545 /*
3546 * When we journal data on quota file, we have to flush journal to see
3547 * all updates to the file when we bypass pagecache...
3548 */
3549 if (EXT4_SB(sb)->s_journal &&
3550 ext4_should_journal_data(path.dentry->d_inode)) {
3551 /*
3552 * We don't need to lock updates but journal_flush() could
3553 * otherwise be livelocked...
3554 */
3555 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
3556 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
3557 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
3558 if (err) {
3559 path_put(&path);
3560 return err;
3561 }
3562 }
3563
3564 err = vfs_quota_on_path(sb, type, format_id, &path);
3565 path_put(&path);
3566 return err;
3567 }
3568
3569 /* Read data from quotafile - avoid pagecache and such because we cannot afford
3570 * acquiring the locks... As quota files are never truncated and quota code
3571 * itself serializes the operations (and noone else should touch the files)
3572 * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)3573 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
3574 size_t len, loff_t off)
3575 {
3576 struct inode *inode = sb_dqopt(sb)->files[type];
3577 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
3578 int err = 0;
3579 int offset = off & (sb->s_blocksize - 1);
3580 int tocopy;
3581 size_t toread;
3582 struct buffer_head *bh;
3583 loff_t i_size = i_size_read(inode);
3584
3585 if (off > i_size)
3586 return 0;
3587 if (off+len > i_size)
3588 len = i_size-off;
3589 toread = len;
3590 while (toread > 0) {
3591 tocopy = sb->s_blocksize - offset < toread ?
3592 sb->s_blocksize - offset : toread;
3593 bh = ext4_bread(NULL, inode, blk, 0, &err);
3594 if (err)
3595 return err;
3596 if (!bh) /* A hole? */
3597 memset(data, 0, tocopy);
3598 else
3599 memcpy(data, bh->b_data+offset, tocopy);
3600 brelse(bh);
3601 offset = 0;
3602 toread -= tocopy;
3603 data += tocopy;
3604 blk++;
3605 }
3606 return len;
3607 }
3608
3609 /* Write to quotafile (we know the transaction is already started and has
3610 * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)3611 static ssize_t ext4_quota_write(struct super_block *sb, int type,
3612 const char *data, size_t len, loff_t off)
3613 {
3614 struct inode *inode = sb_dqopt(sb)->files[type];
3615 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
3616 int err = 0;
3617 int offset = off & (sb->s_blocksize - 1);
3618 int tocopy;
3619 int journal_quota = EXT4_SB(sb)->s_qf_names[type] != NULL;
3620 size_t towrite = len;
3621 struct buffer_head *bh;
3622 handle_t *handle = journal_current_handle();
3623
3624 if (EXT4_SB(sb)->s_journal && !handle) {
3625 printk(KERN_WARNING "EXT4-fs: Quota write (off=%llu, len=%llu)"
3626 " cancelled because transaction is not started.\n",
3627 (unsigned long long)off, (unsigned long long)len);
3628 return -EIO;
3629 }
3630 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA);
3631 while (towrite > 0) {
3632 tocopy = sb->s_blocksize - offset < towrite ?
3633 sb->s_blocksize - offset : towrite;
3634 bh = ext4_bread(handle, inode, blk, 1, &err);
3635 if (!bh)
3636 goto out;
3637 if (journal_quota) {
3638 err = ext4_journal_get_write_access(handle, bh);
3639 if (err) {
3640 brelse(bh);
3641 goto out;
3642 }
3643 }
3644 lock_buffer(bh);
3645 memcpy(bh->b_data+offset, data, tocopy);
3646 flush_dcache_page(bh->b_page);
3647 unlock_buffer(bh);
3648 if (journal_quota)
3649 err = ext4_handle_dirty_metadata(handle, NULL, bh);
3650 else {
3651 /* Always do at least ordered writes for quotas */
3652 err = ext4_jbd2_file_inode(handle, inode);
3653 mark_buffer_dirty(bh);
3654 }
3655 brelse(bh);
3656 if (err)
3657 goto out;
3658 offset = 0;
3659 towrite -= tocopy;
3660 data += tocopy;
3661 blk++;
3662 }
3663 out:
3664 if (len == towrite) {
3665 mutex_unlock(&inode->i_mutex);
3666 return err;
3667 }
3668 if (inode->i_size < off+len-towrite) {
3669 i_size_write(inode, off+len-towrite);
3670 EXT4_I(inode)->i_disksize = inode->i_size;
3671 }
3672 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
3673 ext4_mark_inode_dirty(handle, inode);
3674 mutex_unlock(&inode->i_mutex);
3675 return len - towrite;
3676 }
3677
3678 #endif
3679
ext4_get_sb(struct file_system_type * fs_type,int flags,const char * dev_name,void * data,struct vfsmount * mnt)3680 static int ext4_get_sb(struct file_system_type *fs_type,
3681 int flags, const char *dev_name, void *data, struct vfsmount *mnt)
3682 {
3683 return get_sb_bdev(fs_type, flags, dev_name, data, ext4_fill_super, mnt);
3684 }
3685
3686 #ifdef CONFIG_PROC_FS
ext4_ui_proc_show(struct seq_file * m,void * v)3687 static int ext4_ui_proc_show(struct seq_file *m, void *v)
3688 {
3689 unsigned int *p = m->private;
3690
3691 seq_printf(m, "%u\n", *p);
3692 return 0;
3693 }
3694
ext4_ui_proc_open(struct inode * inode,struct file * file)3695 static int ext4_ui_proc_open(struct inode *inode, struct file *file)
3696 {
3697 return single_open(file, ext4_ui_proc_show, PDE(inode)->data);
3698 }
3699
ext4_ui_proc_write(struct file * file,const char __user * buf,size_t cnt,loff_t * ppos)3700 static ssize_t ext4_ui_proc_write(struct file *file, const char __user *buf,
3701 size_t cnt, loff_t *ppos)
3702 {
3703 unsigned long *p = PDE(file->f_path.dentry->d_inode)->data;
3704 char str[32];
3705
3706 if (cnt >= sizeof(str))
3707 return -EINVAL;
3708 if (copy_from_user(str, buf, cnt))
3709 return -EFAULT;
3710
3711 *p = simple_strtoul(str, NULL, 0);
3712 return cnt;
3713 }
3714
3715 const struct file_operations ext4_ui_proc_fops = {
3716 .owner = THIS_MODULE,
3717 .open = ext4_ui_proc_open,
3718 .read = seq_read,
3719 .llseek = seq_lseek,
3720 .release = single_release,
3721 .write = ext4_ui_proc_write,
3722 };
3723 #endif
3724
3725 static struct file_system_type ext4_fs_type = {
3726 .owner = THIS_MODULE,
3727 .name = "ext4",
3728 .get_sb = ext4_get_sb,
3729 .kill_sb = kill_block_super,
3730 .fs_flags = FS_REQUIRES_DEV,
3731 };
3732
3733 #ifdef CONFIG_EXT4DEV_COMPAT
ext4dev_get_sb(struct file_system_type * fs_type,int flags,const char * dev_name,void * data,struct vfsmount * mnt)3734 static int ext4dev_get_sb(struct file_system_type *fs_type,
3735 int flags, const char *dev_name, void *data, struct vfsmount *mnt)
3736 {
3737 printk(KERN_WARNING "EXT4-fs: Update your userspace programs "
3738 "to mount using ext4\n");
3739 printk(KERN_WARNING "EXT4-fs: ext4dev backwards compatibility "
3740 "will go away by 2.6.31\n");
3741 return get_sb_bdev(fs_type, flags, dev_name, data, ext4_fill_super, mnt);
3742 }
3743
3744 static struct file_system_type ext4dev_fs_type = {
3745 .owner = THIS_MODULE,
3746 .name = "ext4dev",
3747 .get_sb = ext4dev_get_sb,
3748 .kill_sb = kill_block_super,
3749 .fs_flags = FS_REQUIRES_DEV,
3750 };
3751 MODULE_ALIAS("ext4dev");
3752 #endif
3753
init_ext4_fs(void)3754 static int __init init_ext4_fs(void)
3755 {
3756 int err;
3757
3758 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
3759 err = init_ext4_mballoc();
3760 if (err)
3761 return err;
3762
3763 err = init_ext4_xattr();
3764 if (err)
3765 goto out2;
3766 err = init_inodecache();
3767 if (err)
3768 goto out1;
3769 err = register_filesystem(&ext4_fs_type);
3770 if (err)
3771 goto out;
3772 #ifdef CONFIG_EXT4DEV_COMPAT
3773 err = register_filesystem(&ext4dev_fs_type);
3774 if (err) {
3775 unregister_filesystem(&ext4_fs_type);
3776 goto out;
3777 }
3778 #endif
3779 return 0;
3780 out:
3781 destroy_inodecache();
3782 out1:
3783 exit_ext4_xattr();
3784 out2:
3785 exit_ext4_mballoc();
3786 return err;
3787 }
3788
exit_ext4_fs(void)3789 static void __exit exit_ext4_fs(void)
3790 {
3791 unregister_filesystem(&ext4_fs_type);
3792 #ifdef CONFIG_EXT4DEV_COMPAT
3793 unregister_filesystem(&ext4dev_fs_type);
3794 #endif
3795 destroy_inodecache();
3796 exit_ext4_xattr();
3797 exit_ext4_mballoc();
3798 remove_proc_entry("fs/ext4", NULL);
3799 }
3800
3801 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
3802 MODULE_DESCRIPTION("Fourth Extended Filesystem");
3803 MODULE_LICENSE("GPL");
3804 module_init(init_ext4_fs)
3805 module_exit(exit_ext4_fs)
3806