• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2008 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/i2c-algo-bit.h>
18 #include <linux/mii.h>
19 #include "net_driver.h"
20 #include "bitfield.h"
21 #include "efx.h"
22 #include "mac.h"
23 #include "spi.h"
24 #include "falcon.h"
25 #include "falcon_hwdefs.h"
26 #include "falcon_io.h"
27 #include "mdio_10g.h"
28 #include "phy.h"
29 #include "boards.h"
30 #include "workarounds.h"
31 
32 /* Falcon hardware control.
33  * Falcon is the internal codename for the SFC4000 controller that is
34  * present in SFE400X evaluation boards
35  */
36 
37 /**
38  * struct falcon_nic_data - Falcon NIC state
39  * @next_buffer_table: First available buffer table id
40  * @pci_dev2: The secondary PCI device if present
41  * @i2c_data: Operations and state for I2C bit-bashing algorithm
42  */
43 struct falcon_nic_data {
44 	unsigned next_buffer_table;
45 	struct pci_dev *pci_dev2;
46 	struct i2c_algo_bit_data i2c_data;
47 };
48 
49 /**************************************************************************
50  *
51  * Configurable values
52  *
53  **************************************************************************
54  */
55 
56 static int disable_dma_stats;
57 
58 /* This is set to 16 for a good reason.  In summary, if larger than
59  * 16, the descriptor cache holds more than a default socket
60  * buffer's worth of packets (for UDP we can only have at most one
61  * socket buffer's worth outstanding).  This combined with the fact
62  * that we only get 1 TX event per descriptor cache means the NIC
63  * goes idle.
64  */
65 #define TX_DC_ENTRIES 16
66 #define TX_DC_ENTRIES_ORDER 0
67 #define TX_DC_BASE 0x130000
68 
69 #define RX_DC_ENTRIES 64
70 #define RX_DC_ENTRIES_ORDER 2
71 #define RX_DC_BASE 0x100000
72 
73 static const unsigned int
74 /* "Large" EEPROM device: Atmel AT25640 or similar
75  * 8 KB, 16-bit address, 32 B write block */
76 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
77 		     | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
78 		     | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
79 /* Default flash device: Atmel AT25F1024
80  * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
81 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
82 		      | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
83 		      | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
84 		      | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
85 		      | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
86 
87 /* RX FIFO XOFF watermark
88  *
89  * When the amount of the RX FIFO increases used increases past this
90  * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
91  * This also has an effect on RX/TX arbitration
92  */
93 static int rx_xoff_thresh_bytes = -1;
94 module_param(rx_xoff_thresh_bytes, int, 0644);
95 MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
96 
97 /* RX FIFO XON watermark
98  *
99  * When the amount of the RX FIFO used decreases below this
100  * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
101  * This also has an effect on RX/TX arbitration
102  */
103 static int rx_xon_thresh_bytes = -1;
104 module_param(rx_xon_thresh_bytes, int, 0644);
105 MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
106 
107 /* TX descriptor ring size - min 512 max 4k */
108 #define FALCON_TXD_RING_ORDER TX_DESCQ_SIZE_1K
109 #define FALCON_TXD_RING_SIZE 1024
110 #define FALCON_TXD_RING_MASK (FALCON_TXD_RING_SIZE - 1)
111 
112 /* RX descriptor ring size - min 512 max 4k */
113 #define FALCON_RXD_RING_ORDER RX_DESCQ_SIZE_1K
114 #define FALCON_RXD_RING_SIZE 1024
115 #define FALCON_RXD_RING_MASK (FALCON_RXD_RING_SIZE - 1)
116 
117 /* Event queue size - max 32k */
118 #define FALCON_EVQ_ORDER EVQ_SIZE_4K
119 #define FALCON_EVQ_SIZE 4096
120 #define FALCON_EVQ_MASK (FALCON_EVQ_SIZE - 1)
121 
122 /* Max number of internal errors. After this resets will not be performed */
123 #define FALCON_MAX_INT_ERRORS 4
124 
125 /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
126  */
127 #define FALCON_FLUSH_INTERVAL 10
128 #define FALCON_FLUSH_POLL_COUNT 100
129 
130 /**************************************************************************
131  *
132  * Falcon constants
133  *
134  **************************************************************************
135  */
136 
137 /* DMA address mask */
138 #define FALCON_DMA_MASK DMA_BIT_MASK(46)
139 
140 /* TX DMA length mask (13-bit) */
141 #define FALCON_TX_DMA_MASK (4096 - 1)
142 
143 /* Size and alignment of special buffers (4KB) */
144 #define FALCON_BUF_SIZE 4096
145 
146 /* Dummy SRAM size code */
147 #define SRM_NB_BSZ_ONCHIP_ONLY (-1)
148 
149 /* Be nice if these (or equiv.) were in linux/pci_regs.h, but they're not. */
150 #define PCI_EXP_DEVCAP_PWR_VAL_LBN	18
151 #define PCI_EXP_DEVCAP_PWR_SCL_LBN	26
152 #define PCI_EXP_DEVCTL_PAYLOAD_LBN	5
153 #define PCI_EXP_LNKSTA_LNK_WID		0x3f0
154 #define PCI_EXP_LNKSTA_LNK_WID_LBN	4
155 
156 #define FALCON_IS_DUAL_FUNC(efx)		\
157 	(falcon_rev(efx) < FALCON_REV_B0)
158 
159 /**************************************************************************
160  *
161  * Falcon hardware access
162  *
163  **************************************************************************/
164 
165 /* Read the current event from the event queue */
falcon_event(struct efx_channel * channel,unsigned int index)166 static inline efx_qword_t *falcon_event(struct efx_channel *channel,
167 					unsigned int index)
168 {
169 	return (((efx_qword_t *) (channel->eventq.addr)) + index);
170 }
171 
172 /* See if an event is present
173  *
174  * We check both the high and low dword of the event for all ones.  We
175  * wrote all ones when we cleared the event, and no valid event can
176  * have all ones in either its high or low dwords.  This approach is
177  * robust against reordering.
178  *
179  * Note that using a single 64-bit comparison is incorrect; even
180  * though the CPU read will be atomic, the DMA write may not be.
181  */
falcon_event_present(efx_qword_t * event)182 static inline int falcon_event_present(efx_qword_t *event)
183 {
184 	return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
185 		  EFX_DWORD_IS_ALL_ONES(event->dword[1])));
186 }
187 
188 /**************************************************************************
189  *
190  * I2C bus - this is a bit-bashing interface using GPIO pins
191  * Note that it uses the output enables to tristate the outputs
192  * SDA is the data pin and SCL is the clock
193  *
194  **************************************************************************
195  */
falcon_setsda(void * data,int state)196 static void falcon_setsda(void *data, int state)
197 {
198 	struct efx_nic *efx = (struct efx_nic *)data;
199 	efx_oword_t reg;
200 
201 	falcon_read(efx, &reg, GPIO_CTL_REG_KER);
202 	EFX_SET_OWORD_FIELD(reg, GPIO3_OEN, !state);
203 	falcon_write(efx, &reg, GPIO_CTL_REG_KER);
204 }
205 
falcon_setscl(void * data,int state)206 static void falcon_setscl(void *data, int state)
207 {
208 	struct efx_nic *efx = (struct efx_nic *)data;
209 	efx_oword_t reg;
210 
211 	falcon_read(efx, &reg, GPIO_CTL_REG_KER);
212 	EFX_SET_OWORD_FIELD(reg, GPIO0_OEN, !state);
213 	falcon_write(efx, &reg, GPIO_CTL_REG_KER);
214 }
215 
falcon_getsda(void * data)216 static int falcon_getsda(void *data)
217 {
218 	struct efx_nic *efx = (struct efx_nic *)data;
219 	efx_oword_t reg;
220 
221 	falcon_read(efx, &reg, GPIO_CTL_REG_KER);
222 	return EFX_OWORD_FIELD(reg, GPIO3_IN);
223 }
224 
falcon_getscl(void * data)225 static int falcon_getscl(void *data)
226 {
227 	struct efx_nic *efx = (struct efx_nic *)data;
228 	efx_oword_t reg;
229 
230 	falcon_read(efx, &reg, GPIO_CTL_REG_KER);
231 	return EFX_OWORD_FIELD(reg, GPIO0_IN);
232 }
233 
234 static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
235 	.setsda		= falcon_setsda,
236 	.setscl		= falcon_setscl,
237 	.getsda		= falcon_getsda,
238 	.getscl		= falcon_getscl,
239 	.udelay		= 5,
240 	/* Wait up to 50 ms for slave to let us pull SCL high */
241 	.timeout	= DIV_ROUND_UP(HZ, 20),
242 };
243 
244 /**************************************************************************
245  *
246  * Falcon special buffer handling
247  * Special buffers are used for event queues and the TX and RX
248  * descriptor rings.
249  *
250  *************************************************************************/
251 
252 /*
253  * Initialise a Falcon special buffer
254  *
255  * This will define a buffer (previously allocated via
256  * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
257  * it to be used for event queues, descriptor rings etc.
258  */
259 static void
falcon_init_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)260 falcon_init_special_buffer(struct efx_nic *efx,
261 			   struct efx_special_buffer *buffer)
262 {
263 	efx_qword_t buf_desc;
264 	int index;
265 	dma_addr_t dma_addr;
266 	int i;
267 
268 	EFX_BUG_ON_PARANOID(!buffer->addr);
269 
270 	/* Write buffer descriptors to NIC */
271 	for (i = 0; i < buffer->entries; i++) {
272 		index = buffer->index + i;
273 		dma_addr = buffer->dma_addr + (i * 4096);
274 		EFX_LOG(efx, "mapping special buffer %d at %llx\n",
275 			index, (unsigned long long)dma_addr);
276 		EFX_POPULATE_QWORD_4(buf_desc,
277 				     IP_DAT_BUF_SIZE, IP_DAT_BUF_SIZE_4K,
278 				     BUF_ADR_REGION, 0,
279 				     BUF_ADR_FBUF, (dma_addr >> 12),
280 				     BUF_OWNER_ID_FBUF, 0);
281 		falcon_write_sram(efx, &buf_desc, index);
282 	}
283 }
284 
285 /* Unmaps a buffer from Falcon and clears the buffer table entries */
286 static void
falcon_fini_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)287 falcon_fini_special_buffer(struct efx_nic *efx,
288 			   struct efx_special_buffer *buffer)
289 {
290 	efx_oword_t buf_tbl_upd;
291 	unsigned int start = buffer->index;
292 	unsigned int end = (buffer->index + buffer->entries - 1);
293 
294 	if (!buffer->entries)
295 		return;
296 
297 	EFX_LOG(efx, "unmapping special buffers %d-%d\n",
298 		buffer->index, buffer->index + buffer->entries - 1);
299 
300 	EFX_POPULATE_OWORD_4(buf_tbl_upd,
301 			     BUF_UPD_CMD, 0,
302 			     BUF_CLR_CMD, 1,
303 			     BUF_CLR_END_ID, end,
304 			     BUF_CLR_START_ID, start);
305 	falcon_write(efx, &buf_tbl_upd, BUF_TBL_UPD_REG_KER);
306 }
307 
308 /*
309  * Allocate a new Falcon special buffer
310  *
311  * This allocates memory for a new buffer, clears it and allocates a
312  * new buffer ID range.  It does not write into Falcon's buffer table.
313  *
314  * This call will allocate 4KB buffers, since Falcon can't use 8KB
315  * buffers for event queues and descriptor rings.
316  */
falcon_alloc_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer,unsigned int len)317 static int falcon_alloc_special_buffer(struct efx_nic *efx,
318 				       struct efx_special_buffer *buffer,
319 				       unsigned int len)
320 {
321 	struct falcon_nic_data *nic_data = efx->nic_data;
322 
323 	len = ALIGN(len, FALCON_BUF_SIZE);
324 
325 	buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
326 					    &buffer->dma_addr);
327 	if (!buffer->addr)
328 		return -ENOMEM;
329 	buffer->len = len;
330 	buffer->entries = len / FALCON_BUF_SIZE;
331 	BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));
332 
333 	/* All zeros is a potentially valid event so memset to 0xff */
334 	memset(buffer->addr, 0xff, len);
335 
336 	/* Select new buffer ID */
337 	buffer->index = nic_data->next_buffer_table;
338 	nic_data->next_buffer_table += buffer->entries;
339 
340 	EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
341 		"(virt %p phys %lx)\n", buffer->index,
342 		buffer->index + buffer->entries - 1,
343 		(unsigned long long)buffer->dma_addr, len,
344 		buffer->addr, virt_to_phys(buffer->addr));
345 
346 	return 0;
347 }
348 
falcon_free_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)349 static void falcon_free_special_buffer(struct efx_nic *efx,
350 				       struct efx_special_buffer *buffer)
351 {
352 	if (!buffer->addr)
353 		return;
354 
355 	EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
356 		"(virt %p phys %lx)\n", buffer->index,
357 		buffer->index + buffer->entries - 1,
358 		(unsigned long long)buffer->dma_addr, buffer->len,
359 		buffer->addr, virt_to_phys(buffer->addr));
360 
361 	pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
362 			    buffer->dma_addr);
363 	buffer->addr = NULL;
364 	buffer->entries = 0;
365 }
366 
367 /**************************************************************************
368  *
369  * Falcon generic buffer handling
370  * These buffers are used for interrupt status and MAC stats
371  *
372  **************************************************************************/
373 
falcon_alloc_buffer(struct efx_nic * efx,struct efx_buffer * buffer,unsigned int len)374 static int falcon_alloc_buffer(struct efx_nic *efx,
375 			       struct efx_buffer *buffer, unsigned int len)
376 {
377 	buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
378 					    &buffer->dma_addr);
379 	if (!buffer->addr)
380 		return -ENOMEM;
381 	buffer->len = len;
382 	memset(buffer->addr, 0, len);
383 	return 0;
384 }
385 
falcon_free_buffer(struct efx_nic * efx,struct efx_buffer * buffer)386 static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
387 {
388 	if (buffer->addr) {
389 		pci_free_consistent(efx->pci_dev, buffer->len,
390 				    buffer->addr, buffer->dma_addr);
391 		buffer->addr = NULL;
392 	}
393 }
394 
395 /**************************************************************************
396  *
397  * Falcon TX path
398  *
399  **************************************************************************/
400 
401 /* Returns a pointer to the specified transmit descriptor in the TX
402  * descriptor queue belonging to the specified channel.
403  */
falcon_tx_desc(struct efx_tx_queue * tx_queue,unsigned int index)404 static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
405 					       unsigned int index)
406 {
407 	return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
408 }
409 
410 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
falcon_notify_tx_desc(struct efx_tx_queue * tx_queue)411 static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
412 {
413 	unsigned write_ptr;
414 	efx_dword_t reg;
415 
416 	write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
417 	EFX_POPULATE_DWORD_1(reg, TX_DESC_WPTR_DWORD, write_ptr);
418 	falcon_writel_page(tx_queue->efx, &reg,
419 			   TX_DESC_UPD_REG_KER_DWORD, tx_queue->queue);
420 }
421 
422 
423 /* For each entry inserted into the software descriptor ring, create a
424  * descriptor in the hardware TX descriptor ring (in host memory), and
425  * write a doorbell.
426  */
falcon_push_buffers(struct efx_tx_queue * tx_queue)427 void falcon_push_buffers(struct efx_tx_queue *tx_queue)
428 {
429 
430 	struct efx_tx_buffer *buffer;
431 	efx_qword_t *txd;
432 	unsigned write_ptr;
433 
434 	BUG_ON(tx_queue->write_count == tx_queue->insert_count);
435 
436 	do {
437 		write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
438 		buffer = &tx_queue->buffer[write_ptr];
439 		txd = falcon_tx_desc(tx_queue, write_ptr);
440 		++tx_queue->write_count;
441 
442 		/* Create TX descriptor ring entry */
443 		EFX_POPULATE_QWORD_5(*txd,
444 				     TX_KER_PORT, 0,
445 				     TX_KER_CONT, buffer->continuation,
446 				     TX_KER_BYTE_CNT, buffer->len,
447 				     TX_KER_BUF_REGION, 0,
448 				     TX_KER_BUF_ADR, buffer->dma_addr);
449 	} while (tx_queue->write_count != tx_queue->insert_count);
450 
451 	wmb(); /* Ensure descriptors are written before they are fetched */
452 	falcon_notify_tx_desc(tx_queue);
453 }
454 
455 /* Allocate hardware resources for a TX queue */
falcon_probe_tx(struct efx_tx_queue * tx_queue)456 int falcon_probe_tx(struct efx_tx_queue *tx_queue)
457 {
458 	struct efx_nic *efx = tx_queue->efx;
459 	return falcon_alloc_special_buffer(efx, &tx_queue->txd,
460 					   FALCON_TXD_RING_SIZE *
461 					   sizeof(efx_qword_t));
462 }
463 
falcon_init_tx(struct efx_tx_queue * tx_queue)464 void falcon_init_tx(struct efx_tx_queue *tx_queue)
465 {
466 	efx_oword_t tx_desc_ptr;
467 	struct efx_nic *efx = tx_queue->efx;
468 
469 	tx_queue->flushed = false;
470 
471 	/* Pin TX descriptor ring */
472 	falcon_init_special_buffer(efx, &tx_queue->txd);
473 
474 	/* Push TX descriptor ring to card */
475 	EFX_POPULATE_OWORD_10(tx_desc_ptr,
476 			      TX_DESCQ_EN, 1,
477 			      TX_ISCSI_DDIG_EN, 0,
478 			      TX_ISCSI_HDIG_EN, 0,
479 			      TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
480 			      TX_DESCQ_EVQ_ID, tx_queue->channel->channel,
481 			      TX_DESCQ_OWNER_ID, 0,
482 			      TX_DESCQ_LABEL, tx_queue->queue,
483 			      TX_DESCQ_SIZE, FALCON_TXD_RING_ORDER,
484 			      TX_DESCQ_TYPE, 0,
485 			      TX_NON_IP_DROP_DIS_B0, 1);
486 
487 	if (falcon_rev(efx) >= FALCON_REV_B0) {
488 		int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
489 		EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_IP_CHKSM_DIS_B0, !csum);
490 		EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_TCP_CHKSM_DIS_B0, !csum);
491 	}
492 
493 	falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
494 			   tx_queue->queue);
495 
496 	if (falcon_rev(efx) < FALCON_REV_B0) {
497 		efx_oword_t reg;
498 
499 		/* Only 128 bits in this register */
500 		BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
501 
502 		falcon_read(efx, &reg, TX_CHKSM_CFG_REG_KER_A1);
503 		if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
504 			clear_bit_le(tx_queue->queue, (void *)&reg);
505 		else
506 			set_bit_le(tx_queue->queue, (void *)&reg);
507 		falcon_write(efx, &reg, TX_CHKSM_CFG_REG_KER_A1);
508 	}
509 }
510 
falcon_flush_tx_queue(struct efx_tx_queue * tx_queue)511 static void falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
512 {
513 	struct efx_nic *efx = tx_queue->efx;
514 	efx_oword_t tx_flush_descq;
515 
516 	/* Post a flush command */
517 	EFX_POPULATE_OWORD_2(tx_flush_descq,
518 			     TX_FLUSH_DESCQ_CMD, 1,
519 			     TX_FLUSH_DESCQ, tx_queue->queue);
520 	falcon_write(efx, &tx_flush_descq, TX_FLUSH_DESCQ_REG_KER);
521 }
522 
falcon_fini_tx(struct efx_tx_queue * tx_queue)523 void falcon_fini_tx(struct efx_tx_queue *tx_queue)
524 {
525 	struct efx_nic *efx = tx_queue->efx;
526 	efx_oword_t tx_desc_ptr;
527 
528 	/* The queue should have been flushed */
529 	WARN_ON(!tx_queue->flushed);
530 
531 	/* Remove TX descriptor ring from card */
532 	EFX_ZERO_OWORD(tx_desc_ptr);
533 	falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
534 			   tx_queue->queue);
535 
536 	/* Unpin TX descriptor ring */
537 	falcon_fini_special_buffer(efx, &tx_queue->txd);
538 }
539 
540 /* Free buffers backing TX queue */
falcon_remove_tx(struct efx_tx_queue * tx_queue)541 void falcon_remove_tx(struct efx_tx_queue *tx_queue)
542 {
543 	falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
544 }
545 
546 /**************************************************************************
547  *
548  * Falcon RX path
549  *
550  **************************************************************************/
551 
552 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
falcon_rx_desc(struct efx_rx_queue * rx_queue,unsigned int index)553 static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
554 					       unsigned int index)
555 {
556 	return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
557 }
558 
559 /* This creates an entry in the RX descriptor queue */
falcon_build_rx_desc(struct efx_rx_queue * rx_queue,unsigned index)560 static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
561 					unsigned index)
562 {
563 	struct efx_rx_buffer *rx_buf;
564 	efx_qword_t *rxd;
565 
566 	rxd = falcon_rx_desc(rx_queue, index);
567 	rx_buf = efx_rx_buffer(rx_queue, index);
568 	EFX_POPULATE_QWORD_3(*rxd,
569 			     RX_KER_BUF_SIZE,
570 			     rx_buf->len -
571 			     rx_queue->efx->type->rx_buffer_padding,
572 			     RX_KER_BUF_REGION, 0,
573 			     RX_KER_BUF_ADR, rx_buf->dma_addr);
574 }
575 
576 /* This writes to the RX_DESC_WPTR register for the specified receive
577  * descriptor ring.
578  */
falcon_notify_rx_desc(struct efx_rx_queue * rx_queue)579 void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
580 {
581 	efx_dword_t reg;
582 	unsigned write_ptr;
583 
584 	while (rx_queue->notified_count != rx_queue->added_count) {
585 		falcon_build_rx_desc(rx_queue,
586 				     rx_queue->notified_count &
587 				     FALCON_RXD_RING_MASK);
588 		++rx_queue->notified_count;
589 	}
590 
591 	wmb();
592 	write_ptr = rx_queue->added_count & FALCON_RXD_RING_MASK;
593 	EFX_POPULATE_DWORD_1(reg, RX_DESC_WPTR_DWORD, write_ptr);
594 	falcon_writel_page(rx_queue->efx, &reg,
595 			   RX_DESC_UPD_REG_KER_DWORD, rx_queue->queue);
596 }
597 
falcon_probe_rx(struct efx_rx_queue * rx_queue)598 int falcon_probe_rx(struct efx_rx_queue *rx_queue)
599 {
600 	struct efx_nic *efx = rx_queue->efx;
601 	return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
602 					   FALCON_RXD_RING_SIZE *
603 					   sizeof(efx_qword_t));
604 }
605 
falcon_init_rx(struct efx_rx_queue * rx_queue)606 void falcon_init_rx(struct efx_rx_queue *rx_queue)
607 {
608 	efx_oword_t rx_desc_ptr;
609 	struct efx_nic *efx = rx_queue->efx;
610 	bool is_b0 = falcon_rev(efx) >= FALCON_REV_B0;
611 	bool iscsi_digest_en = is_b0;
612 
613 	EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
614 		rx_queue->queue, rx_queue->rxd.index,
615 		rx_queue->rxd.index + rx_queue->rxd.entries - 1);
616 
617 	rx_queue->flushed = false;
618 
619 	/* Pin RX descriptor ring */
620 	falcon_init_special_buffer(efx, &rx_queue->rxd);
621 
622 	/* Push RX descriptor ring to card */
623 	EFX_POPULATE_OWORD_10(rx_desc_ptr,
624 			      RX_ISCSI_DDIG_EN, iscsi_digest_en,
625 			      RX_ISCSI_HDIG_EN, iscsi_digest_en,
626 			      RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
627 			      RX_DESCQ_EVQ_ID, rx_queue->channel->channel,
628 			      RX_DESCQ_OWNER_ID, 0,
629 			      RX_DESCQ_LABEL, rx_queue->queue,
630 			      RX_DESCQ_SIZE, FALCON_RXD_RING_ORDER,
631 			      RX_DESCQ_TYPE, 0 /* kernel queue */ ,
632 			      /* For >=B0 this is scatter so disable */
633 			      RX_DESCQ_JUMBO, !is_b0,
634 			      RX_DESCQ_EN, 1);
635 	falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
636 			   rx_queue->queue);
637 }
638 
falcon_flush_rx_queue(struct efx_rx_queue * rx_queue)639 static void falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
640 {
641 	struct efx_nic *efx = rx_queue->efx;
642 	efx_oword_t rx_flush_descq;
643 
644 	/* Post a flush command */
645 	EFX_POPULATE_OWORD_2(rx_flush_descq,
646 			     RX_FLUSH_DESCQ_CMD, 1,
647 			     RX_FLUSH_DESCQ, rx_queue->queue);
648 	falcon_write(efx, &rx_flush_descq, RX_FLUSH_DESCQ_REG_KER);
649 }
650 
falcon_fini_rx(struct efx_rx_queue * rx_queue)651 void falcon_fini_rx(struct efx_rx_queue *rx_queue)
652 {
653 	efx_oword_t rx_desc_ptr;
654 	struct efx_nic *efx = rx_queue->efx;
655 
656 	/* The queue should already have been flushed */
657 	WARN_ON(!rx_queue->flushed);
658 
659 	/* Remove RX descriptor ring from card */
660 	EFX_ZERO_OWORD(rx_desc_ptr);
661 	falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
662 			   rx_queue->queue);
663 
664 	/* Unpin RX descriptor ring */
665 	falcon_fini_special_buffer(efx, &rx_queue->rxd);
666 }
667 
668 /* Free buffers backing RX queue */
falcon_remove_rx(struct efx_rx_queue * rx_queue)669 void falcon_remove_rx(struct efx_rx_queue *rx_queue)
670 {
671 	falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
672 }
673 
674 /**************************************************************************
675  *
676  * Falcon event queue processing
677  * Event queues are processed by per-channel tasklets.
678  *
679  **************************************************************************/
680 
681 /* Update a channel's event queue's read pointer (RPTR) register
682  *
683  * This writes the EVQ_RPTR_REG register for the specified channel's
684  * event queue.
685  *
686  * Note that EVQ_RPTR_REG contains the index of the "last read" event,
687  * whereas channel->eventq_read_ptr contains the index of the "next to
688  * read" event.
689  */
falcon_eventq_read_ack(struct efx_channel * channel)690 void falcon_eventq_read_ack(struct efx_channel *channel)
691 {
692 	efx_dword_t reg;
693 	struct efx_nic *efx = channel->efx;
694 
695 	EFX_POPULATE_DWORD_1(reg, EVQ_RPTR_DWORD, channel->eventq_read_ptr);
696 	falcon_writel_table(efx, &reg, efx->type->evq_rptr_tbl_base,
697 			    channel->channel);
698 }
699 
700 /* Use HW to insert a SW defined event */
falcon_generate_event(struct efx_channel * channel,efx_qword_t * event)701 void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
702 {
703 	efx_oword_t drv_ev_reg;
704 
705 	EFX_POPULATE_OWORD_2(drv_ev_reg,
706 			     DRV_EV_QID, channel->channel,
707 			     DRV_EV_DATA,
708 			     EFX_QWORD_FIELD64(*event, WHOLE_EVENT));
709 	falcon_write(channel->efx, &drv_ev_reg, DRV_EV_REG_KER);
710 }
711 
712 /* Handle a transmit completion event
713  *
714  * Falcon batches TX completion events; the message we receive is of
715  * the form "complete all TX events up to this index".
716  */
falcon_handle_tx_event(struct efx_channel * channel,efx_qword_t * event)717 static void falcon_handle_tx_event(struct efx_channel *channel,
718 				   efx_qword_t *event)
719 {
720 	unsigned int tx_ev_desc_ptr;
721 	unsigned int tx_ev_q_label;
722 	struct efx_tx_queue *tx_queue;
723 	struct efx_nic *efx = channel->efx;
724 
725 	if (likely(EFX_QWORD_FIELD(*event, TX_EV_COMP))) {
726 		/* Transmit completion */
727 		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, TX_EV_DESC_PTR);
728 		tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
729 		tx_queue = &efx->tx_queue[tx_ev_q_label];
730 		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
731 	} else if (EFX_QWORD_FIELD(*event, TX_EV_WQ_FF_FULL)) {
732 		/* Rewrite the FIFO write pointer */
733 		tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
734 		tx_queue = &efx->tx_queue[tx_ev_q_label];
735 
736 		if (efx_dev_registered(efx))
737 			netif_tx_lock(efx->net_dev);
738 		falcon_notify_tx_desc(tx_queue);
739 		if (efx_dev_registered(efx))
740 			netif_tx_unlock(efx->net_dev);
741 	} else if (EFX_QWORD_FIELD(*event, TX_EV_PKT_ERR) &&
742 		   EFX_WORKAROUND_10727(efx)) {
743 		efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
744 	} else {
745 		EFX_ERR(efx, "channel %d unexpected TX event "
746 			EFX_QWORD_FMT"\n", channel->channel,
747 			EFX_QWORD_VAL(*event));
748 	}
749 }
750 
751 /* Detect errors included in the rx_evt_pkt_ok bit. */
falcon_handle_rx_not_ok(struct efx_rx_queue * rx_queue,const efx_qword_t * event,bool * rx_ev_pkt_ok,bool * discard)752 static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
753 				    const efx_qword_t *event,
754 				    bool *rx_ev_pkt_ok,
755 				    bool *discard)
756 {
757 	struct efx_nic *efx = rx_queue->efx;
758 	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
759 	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
760 	bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
761 	bool rx_ev_other_err, rx_ev_pause_frm;
762 	bool rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt;
763 	unsigned rx_ev_pkt_type;
764 
765 	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
766 	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
767 	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, RX_EV_TOBE_DISC);
768 	rx_ev_pkt_type = EFX_QWORD_FIELD(*event, RX_EV_PKT_TYPE);
769 	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
770 						 RX_EV_BUF_OWNER_ID_ERR);
771 	rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, RX_EV_IF_FRAG_ERR);
772 	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
773 						  RX_EV_IP_HDR_CHKSUM_ERR);
774 	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
775 						   RX_EV_TCP_UDP_CHKSUM_ERR);
776 	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, RX_EV_ETH_CRC_ERR);
777 	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, RX_EV_FRM_TRUNC);
778 	rx_ev_drib_nib = ((falcon_rev(efx) >= FALCON_REV_B0) ?
779 			  0 : EFX_QWORD_FIELD(*event, RX_EV_DRIB_NIB));
780 	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, RX_EV_PAUSE_FRM_ERR);
781 
782 	/* Every error apart from tobe_disc and pause_frm */
783 	rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
784 			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
785 			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
786 
787 	/* Count errors that are not in MAC stats.  Ignore expected
788 	 * checksum errors during self-test. */
789 	if (rx_ev_frm_trunc)
790 		++rx_queue->channel->n_rx_frm_trunc;
791 	else if (rx_ev_tobe_disc)
792 		++rx_queue->channel->n_rx_tobe_disc;
793 	else if (!efx->loopback_selftest) {
794 		if (rx_ev_ip_hdr_chksum_err)
795 			++rx_queue->channel->n_rx_ip_hdr_chksum_err;
796 		else if (rx_ev_tcp_udp_chksum_err)
797 			++rx_queue->channel->n_rx_tcp_udp_chksum_err;
798 	}
799 	if (rx_ev_ip_frag_err)
800 		++rx_queue->channel->n_rx_ip_frag_err;
801 
802 	/* The frame must be discarded if any of these are true. */
803 	*discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
804 		    rx_ev_tobe_disc | rx_ev_pause_frm);
805 
806 	/* TOBE_DISC is expected on unicast mismatches; don't print out an
807 	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
808 	 * to a FIFO overflow.
809 	 */
810 #ifdef EFX_ENABLE_DEBUG
811 	if (rx_ev_other_err) {
812 		EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
813 			    EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
814 			    rx_queue->queue, EFX_QWORD_VAL(*event),
815 			    rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
816 			    rx_ev_ip_hdr_chksum_err ?
817 			    " [IP_HDR_CHKSUM_ERR]" : "",
818 			    rx_ev_tcp_udp_chksum_err ?
819 			    " [TCP_UDP_CHKSUM_ERR]" : "",
820 			    rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
821 			    rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
822 			    rx_ev_drib_nib ? " [DRIB_NIB]" : "",
823 			    rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
824 			    rx_ev_pause_frm ? " [PAUSE]" : "");
825 	}
826 #endif
827 }
828 
829 /* Handle receive events that are not in-order. */
falcon_handle_rx_bad_index(struct efx_rx_queue * rx_queue,unsigned index)830 static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
831 				       unsigned index)
832 {
833 	struct efx_nic *efx = rx_queue->efx;
834 	unsigned expected, dropped;
835 
836 	expected = rx_queue->removed_count & FALCON_RXD_RING_MASK;
837 	dropped = ((index + FALCON_RXD_RING_SIZE - expected) &
838 		   FALCON_RXD_RING_MASK);
839 	EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
840 		dropped, index, expected);
841 
842 	efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
843 			   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
844 }
845 
846 /* Handle a packet received event
847  *
848  * Falcon silicon gives a "discard" flag if it's a unicast packet with the
849  * wrong destination address
850  * Also "is multicast" and "matches multicast filter" flags can be used to
851  * discard non-matching multicast packets.
852  */
falcon_handle_rx_event(struct efx_channel * channel,const efx_qword_t * event)853 static void falcon_handle_rx_event(struct efx_channel *channel,
854 				   const efx_qword_t *event)
855 {
856 	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
857 	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
858 	unsigned expected_ptr;
859 	bool rx_ev_pkt_ok, discard = false, checksummed;
860 	struct efx_rx_queue *rx_queue;
861 	struct efx_nic *efx = channel->efx;
862 
863 	/* Basic packet information */
864 	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, RX_EV_BYTE_CNT);
865 	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, RX_EV_PKT_OK);
866 	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
867 	WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_JUMBO_CONT));
868 	WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_SOP) != 1);
869 	WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_Q_LABEL) != channel->channel);
870 
871 	rx_queue = &efx->rx_queue[channel->channel];
872 
873 	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, RX_EV_DESC_PTR);
874 	expected_ptr = rx_queue->removed_count & FALCON_RXD_RING_MASK;
875 	if (unlikely(rx_ev_desc_ptr != expected_ptr))
876 		falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
877 
878 	if (likely(rx_ev_pkt_ok)) {
879 		/* If packet is marked as OK and packet type is TCP/IPv4 or
880 		 * UDP/IPv4, then we can rely on the hardware checksum.
881 		 */
882 		checksummed = RX_EV_HDR_TYPE_HAS_CHECKSUMS(rx_ev_hdr_type);
883 	} else {
884 		falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
885 					&discard);
886 		checksummed = false;
887 	}
888 
889 	/* Detect multicast packets that didn't match the filter */
890 	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
891 	if (rx_ev_mcast_pkt) {
892 		unsigned int rx_ev_mcast_hash_match =
893 			EFX_QWORD_FIELD(*event, RX_EV_MCAST_HASH_MATCH);
894 
895 		if (unlikely(!rx_ev_mcast_hash_match))
896 			discard = true;
897 	}
898 
899 	/* Handle received packet */
900 	efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
901 		      checksummed, discard);
902 }
903 
904 /* Global events are basically PHY events */
falcon_handle_global_event(struct efx_channel * channel,efx_qword_t * event)905 static void falcon_handle_global_event(struct efx_channel *channel,
906 				       efx_qword_t *event)
907 {
908 	struct efx_nic *efx = channel->efx;
909 	bool handled = false;
910 
911 	if (EFX_QWORD_FIELD(*event, G_PHY0_INTR) ||
912 	    EFX_QWORD_FIELD(*event, G_PHY1_INTR) ||
913 	    EFX_QWORD_FIELD(*event, XG_PHY_INTR) ||
914 	    EFX_QWORD_FIELD(*event, XFP_PHY_INTR)) {
915 		efx->phy_op->clear_interrupt(efx);
916 		queue_work(efx->workqueue, &efx->phy_work);
917 		handled = true;
918 	}
919 
920 	if ((falcon_rev(efx) >= FALCON_REV_B0) &&
921 	    EFX_QWORD_FIELD(*event, XG_MNT_INTR_B0)) {
922 		queue_work(efx->workqueue, &efx->mac_work);
923 		handled = true;
924 	}
925 
926 	if (EFX_QWORD_FIELD_VER(efx, *event, RX_RECOVERY)) {
927 		EFX_ERR(efx, "channel %d seen global RX_RESET "
928 			"event. Resetting.\n", channel->channel);
929 
930 		atomic_inc(&efx->rx_reset);
931 		efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
932 				   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
933 		handled = true;
934 	}
935 
936 	if (!handled)
937 		EFX_ERR(efx, "channel %d unknown global event "
938 			EFX_QWORD_FMT "\n", channel->channel,
939 			EFX_QWORD_VAL(*event));
940 }
941 
falcon_handle_driver_event(struct efx_channel * channel,efx_qword_t * event)942 static void falcon_handle_driver_event(struct efx_channel *channel,
943 				       efx_qword_t *event)
944 {
945 	struct efx_nic *efx = channel->efx;
946 	unsigned int ev_sub_code;
947 	unsigned int ev_sub_data;
948 
949 	ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
950 	ev_sub_data = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_DATA);
951 
952 	switch (ev_sub_code) {
953 	case TX_DESCQ_FLS_DONE_EV_DECODE:
954 		EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
955 			  channel->channel, ev_sub_data);
956 		break;
957 	case RX_DESCQ_FLS_DONE_EV_DECODE:
958 		EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
959 			  channel->channel, ev_sub_data);
960 		break;
961 	case EVQ_INIT_DONE_EV_DECODE:
962 		EFX_LOG(efx, "channel %d EVQ %d initialised\n",
963 			channel->channel, ev_sub_data);
964 		break;
965 	case SRM_UPD_DONE_EV_DECODE:
966 		EFX_TRACE(efx, "channel %d SRAM update done\n",
967 			  channel->channel);
968 		break;
969 	case WAKE_UP_EV_DECODE:
970 		EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
971 			  channel->channel, ev_sub_data);
972 		break;
973 	case TIMER_EV_DECODE:
974 		EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
975 			  channel->channel, ev_sub_data);
976 		break;
977 	case RX_RECOVERY_EV_DECODE:
978 		EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
979 			"Resetting.\n", channel->channel);
980 		atomic_inc(&efx->rx_reset);
981 		efx_schedule_reset(efx,
982 				   EFX_WORKAROUND_6555(efx) ?
983 				   RESET_TYPE_RX_RECOVERY :
984 				   RESET_TYPE_DISABLE);
985 		break;
986 	case RX_DSC_ERROR_EV_DECODE:
987 		EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
988 			" RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
989 		efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
990 		break;
991 	case TX_DSC_ERROR_EV_DECODE:
992 		EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
993 			" TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
994 		efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
995 		break;
996 	default:
997 		EFX_TRACE(efx, "channel %d unknown driver event code %d "
998 			  "data %04x\n", channel->channel, ev_sub_code,
999 			  ev_sub_data);
1000 		break;
1001 	}
1002 }
1003 
falcon_process_eventq(struct efx_channel * channel,int rx_quota)1004 int falcon_process_eventq(struct efx_channel *channel, int rx_quota)
1005 {
1006 	unsigned int read_ptr;
1007 	efx_qword_t event, *p_event;
1008 	int ev_code;
1009 	int rx_packets = 0;
1010 
1011 	read_ptr = channel->eventq_read_ptr;
1012 
1013 	do {
1014 		p_event = falcon_event(channel, read_ptr);
1015 		event = *p_event;
1016 
1017 		if (!falcon_event_present(&event))
1018 			/* End of events */
1019 			break;
1020 
1021 		EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
1022 			  channel->channel, EFX_QWORD_VAL(event));
1023 
1024 		/* Clear this event by marking it all ones */
1025 		EFX_SET_QWORD(*p_event);
1026 
1027 		ev_code = EFX_QWORD_FIELD(event, EV_CODE);
1028 
1029 		switch (ev_code) {
1030 		case RX_IP_EV_DECODE:
1031 			falcon_handle_rx_event(channel, &event);
1032 			++rx_packets;
1033 			break;
1034 		case TX_IP_EV_DECODE:
1035 			falcon_handle_tx_event(channel, &event);
1036 			break;
1037 		case DRV_GEN_EV_DECODE:
1038 			channel->eventq_magic
1039 				= EFX_QWORD_FIELD(event, EVQ_MAGIC);
1040 			EFX_LOG(channel->efx, "channel %d received generated "
1041 				"event "EFX_QWORD_FMT"\n", channel->channel,
1042 				EFX_QWORD_VAL(event));
1043 			break;
1044 		case GLOBAL_EV_DECODE:
1045 			falcon_handle_global_event(channel, &event);
1046 			break;
1047 		case DRIVER_EV_DECODE:
1048 			falcon_handle_driver_event(channel, &event);
1049 			break;
1050 		default:
1051 			EFX_ERR(channel->efx, "channel %d unknown event type %d"
1052 				" (data " EFX_QWORD_FMT ")\n", channel->channel,
1053 				ev_code, EFX_QWORD_VAL(event));
1054 		}
1055 
1056 		/* Increment read pointer */
1057 		read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
1058 
1059 	} while (rx_packets < rx_quota);
1060 
1061 	channel->eventq_read_ptr = read_ptr;
1062 	return rx_packets;
1063 }
1064 
falcon_set_int_moderation(struct efx_channel * channel)1065 void falcon_set_int_moderation(struct efx_channel *channel)
1066 {
1067 	efx_dword_t timer_cmd;
1068 	struct efx_nic *efx = channel->efx;
1069 
1070 	/* Set timer register */
1071 	if (channel->irq_moderation) {
1072 		/* Round to resolution supported by hardware.  The value we
1073 		 * program is based at 0.  So actual interrupt moderation
1074 		 * achieved is ((x + 1) * res).
1075 		 */
1076 		unsigned int res = 5;
1077 		channel->irq_moderation -= (channel->irq_moderation % res);
1078 		if (channel->irq_moderation < res)
1079 			channel->irq_moderation = res;
1080 		EFX_POPULATE_DWORD_2(timer_cmd,
1081 				     TIMER_MODE, TIMER_MODE_INT_HLDOFF,
1082 				     TIMER_VAL,
1083 				     (channel->irq_moderation / res) - 1);
1084 	} else {
1085 		EFX_POPULATE_DWORD_2(timer_cmd,
1086 				     TIMER_MODE, TIMER_MODE_DIS,
1087 				     TIMER_VAL, 0);
1088 	}
1089 	falcon_writel_page_locked(efx, &timer_cmd, TIMER_CMD_REG_KER,
1090 				  channel->channel);
1091 
1092 }
1093 
1094 /* Allocate buffer table entries for event queue */
falcon_probe_eventq(struct efx_channel * channel)1095 int falcon_probe_eventq(struct efx_channel *channel)
1096 {
1097 	struct efx_nic *efx = channel->efx;
1098 	unsigned int evq_size;
1099 
1100 	evq_size = FALCON_EVQ_SIZE * sizeof(efx_qword_t);
1101 	return falcon_alloc_special_buffer(efx, &channel->eventq, evq_size);
1102 }
1103 
falcon_init_eventq(struct efx_channel * channel)1104 void falcon_init_eventq(struct efx_channel *channel)
1105 {
1106 	efx_oword_t evq_ptr;
1107 	struct efx_nic *efx = channel->efx;
1108 
1109 	EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
1110 		channel->channel, channel->eventq.index,
1111 		channel->eventq.index + channel->eventq.entries - 1);
1112 
1113 	/* Pin event queue buffer */
1114 	falcon_init_special_buffer(efx, &channel->eventq);
1115 
1116 	/* Fill event queue with all ones (i.e. empty events) */
1117 	memset(channel->eventq.addr, 0xff, channel->eventq.len);
1118 
1119 	/* Push event queue to card */
1120 	EFX_POPULATE_OWORD_3(evq_ptr,
1121 			     EVQ_EN, 1,
1122 			     EVQ_SIZE, FALCON_EVQ_ORDER,
1123 			     EVQ_BUF_BASE_ID, channel->eventq.index);
1124 	falcon_write_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
1125 			   channel->channel);
1126 
1127 	falcon_set_int_moderation(channel);
1128 }
1129 
falcon_fini_eventq(struct efx_channel * channel)1130 void falcon_fini_eventq(struct efx_channel *channel)
1131 {
1132 	efx_oword_t eventq_ptr;
1133 	struct efx_nic *efx = channel->efx;
1134 
1135 	/* Remove event queue from card */
1136 	EFX_ZERO_OWORD(eventq_ptr);
1137 	falcon_write_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
1138 			   channel->channel);
1139 
1140 	/* Unpin event queue */
1141 	falcon_fini_special_buffer(efx, &channel->eventq);
1142 }
1143 
1144 /* Free buffers backing event queue */
falcon_remove_eventq(struct efx_channel * channel)1145 void falcon_remove_eventq(struct efx_channel *channel)
1146 {
1147 	falcon_free_special_buffer(channel->efx, &channel->eventq);
1148 }
1149 
1150 
1151 /* Generates a test event on the event queue.  A subsequent call to
1152  * process_eventq() should pick up the event and place the value of
1153  * "magic" into channel->eventq_magic;
1154  */
falcon_generate_test_event(struct efx_channel * channel,unsigned int magic)1155 void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
1156 {
1157 	efx_qword_t test_event;
1158 
1159 	EFX_POPULATE_QWORD_2(test_event,
1160 			     EV_CODE, DRV_GEN_EV_DECODE,
1161 			     EVQ_MAGIC, magic);
1162 	falcon_generate_event(channel, &test_event);
1163 }
1164 
falcon_sim_phy_event(struct efx_nic * efx)1165 void falcon_sim_phy_event(struct efx_nic *efx)
1166 {
1167 	efx_qword_t phy_event;
1168 
1169 	EFX_POPULATE_QWORD_1(phy_event, EV_CODE, GLOBAL_EV_DECODE);
1170 	if (EFX_IS10G(efx))
1171 		EFX_SET_OWORD_FIELD(phy_event, XG_PHY_INTR, 1);
1172 	else
1173 		EFX_SET_OWORD_FIELD(phy_event, G_PHY0_INTR, 1);
1174 
1175 	falcon_generate_event(&efx->channel[0], &phy_event);
1176 }
1177 
1178 /**************************************************************************
1179  *
1180  * Flush handling
1181  *
1182  **************************************************************************/
1183 
1184 
falcon_poll_flush_events(struct efx_nic * efx)1185 static void falcon_poll_flush_events(struct efx_nic *efx)
1186 {
1187 	struct efx_channel *channel = &efx->channel[0];
1188 	struct efx_tx_queue *tx_queue;
1189 	struct efx_rx_queue *rx_queue;
1190 	unsigned int read_ptr, i;
1191 
1192 	read_ptr = channel->eventq_read_ptr;
1193 	for (i = 0; i < FALCON_EVQ_SIZE; ++i) {
1194 		efx_qword_t *event = falcon_event(channel, read_ptr);
1195 		int ev_code, ev_sub_code, ev_queue;
1196 		bool ev_failed;
1197 		if (!falcon_event_present(event))
1198 			break;
1199 
1200 		ev_code = EFX_QWORD_FIELD(*event, EV_CODE);
1201 		if (ev_code != DRIVER_EV_DECODE)
1202 			continue;
1203 
1204 		ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
1205 		switch (ev_sub_code) {
1206 		case TX_DESCQ_FLS_DONE_EV_DECODE:
1207 			ev_queue = EFX_QWORD_FIELD(*event,
1208 						   DRIVER_EV_TX_DESCQ_ID);
1209 			if (ev_queue < EFX_TX_QUEUE_COUNT) {
1210 				tx_queue = efx->tx_queue + ev_queue;
1211 				tx_queue->flushed = true;
1212 			}
1213 			break;
1214 		case RX_DESCQ_FLS_DONE_EV_DECODE:
1215 			ev_queue = EFX_QWORD_FIELD(*event,
1216 						   DRIVER_EV_RX_DESCQ_ID);
1217 			ev_failed = EFX_QWORD_FIELD(*event,
1218 						    DRIVER_EV_RX_FLUSH_FAIL);
1219 			if (ev_queue < efx->n_rx_queues) {
1220 				rx_queue = efx->rx_queue + ev_queue;
1221 
1222 				/* retry the rx flush */
1223 				if (ev_failed)
1224 					falcon_flush_rx_queue(rx_queue);
1225 				else
1226 					rx_queue->flushed = true;
1227 			}
1228 			break;
1229 		}
1230 
1231 		read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
1232 	}
1233 }
1234 
1235 /* Handle tx and rx flushes at the same time, since they run in
1236  * parallel in the hardware and there's no reason for us to
1237  * serialise them */
falcon_flush_queues(struct efx_nic * efx)1238 int falcon_flush_queues(struct efx_nic *efx)
1239 {
1240 	struct efx_rx_queue *rx_queue;
1241 	struct efx_tx_queue *tx_queue;
1242 	int i;
1243 	bool outstanding;
1244 
1245 	/* Issue flush requests */
1246 	efx_for_each_tx_queue(tx_queue, efx) {
1247 		tx_queue->flushed = false;
1248 		falcon_flush_tx_queue(tx_queue);
1249 	}
1250 	efx_for_each_rx_queue(rx_queue, efx) {
1251 		rx_queue->flushed = false;
1252 		falcon_flush_rx_queue(rx_queue);
1253 	}
1254 
1255 	/* Poll the evq looking for flush completions. Since we're not pushing
1256 	 * any more rx or tx descriptors at this point, we're in no danger of
1257 	 * overflowing the evq whilst we wait */
1258 	for (i = 0; i < FALCON_FLUSH_POLL_COUNT; ++i) {
1259 		msleep(FALCON_FLUSH_INTERVAL);
1260 		falcon_poll_flush_events(efx);
1261 
1262 		/* Check if every queue has been succesfully flushed */
1263 		outstanding = false;
1264 		efx_for_each_tx_queue(tx_queue, efx)
1265 			outstanding |= !tx_queue->flushed;
1266 		efx_for_each_rx_queue(rx_queue, efx)
1267 			outstanding |= !rx_queue->flushed;
1268 		if (!outstanding)
1269 			return 0;
1270 	}
1271 
1272 	/* Mark the queues as all flushed. We're going to return failure
1273 	 * leading to a reset, or fake up success anyway. "flushed" now
1274 	 * indicates that we tried to flush. */
1275 	efx_for_each_tx_queue(tx_queue, efx) {
1276 		if (!tx_queue->flushed)
1277 			EFX_ERR(efx, "tx queue %d flush command timed out\n",
1278 				tx_queue->queue);
1279 		tx_queue->flushed = true;
1280 	}
1281 	efx_for_each_rx_queue(rx_queue, efx) {
1282 		if (!rx_queue->flushed)
1283 			EFX_ERR(efx, "rx queue %d flush command timed out\n",
1284 				rx_queue->queue);
1285 		rx_queue->flushed = true;
1286 	}
1287 
1288 	if (EFX_WORKAROUND_7803(efx))
1289 		return 0;
1290 
1291 	return -ETIMEDOUT;
1292 }
1293 
1294 /**************************************************************************
1295  *
1296  * Falcon hardware interrupts
1297  * The hardware interrupt handler does very little work; all the event
1298  * queue processing is carried out by per-channel tasklets.
1299  *
1300  **************************************************************************/
1301 
1302 /* Enable/disable/generate Falcon interrupts */
falcon_interrupts(struct efx_nic * efx,int enabled,int force)1303 static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
1304 				     int force)
1305 {
1306 	efx_oword_t int_en_reg_ker;
1307 
1308 	EFX_POPULATE_OWORD_2(int_en_reg_ker,
1309 			     KER_INT_KER, force,
1310 			     DRV_INT_EN_KER, enabled);
1311 	falcon_write(efx, &int_en_reg_ker, INT_EN_REG_KER);
1312 }
1313 
falcon_enable_interrupts(struct efx_nic * efx)1314 void falcon_enable_interrupts(struct efx_nic *efx)
1315 {
1316 	efx_oword_t int_adr_reg_ker;
1317 	struct efx_channel *channel;
1318 
1319 	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1320 	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1321 
1322 	/* Program address */
1323 	EFX_POPULATE_OWORD_2(int_adr_reg_ker,
1324 			     NORM_INT_VEC_DIS_KER, EFX_INT_MODE_USE_MSI(efx),
1325 			     INT_ADR_KER, efx->irq_status.dma_addr);
1326 	falcon_write(efx, &int_adr_reg_ker, INT_ADR_REG_KER);
1327 
1328 	/* Enable interrupts */
1329 	falcon_interrupts(efx, 1, 0);
1330 
1331 	/* Force processing of all the channels to get the EVQ RPTRs up to
1332 	   date */
1333 	efx_for_each_channel(channel, efx)
1334 		efx_schedule_channel(channel);
1335 }
1336 
falcon_disable_interrupts(struct efx_nic * efx)1337 void falcon_disable_interrupts(struct efx_nic *efx)
1338 {
1339 	/* Disable interrupts */
1340 	falcon_interrupts(efx, 0, 0);
1341 }
1342 
1343 /* Generate a Falcon test interrupt
1344  * Interrupt must already have been enabled, otherwise nasty things
1345  * may happen.
1346  */
falcon_generate_interrupt(struct efx_nic * efx)1347 void falcon_generate_interrupt(struct efx_nic *efx)
1348 {
1349 	falcon_interrupts(efx, 1, 1);
1350 }
1351 
1352 /* Acknowledge a legacy interrupt from Falcon
1353  *
1354  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
1355  *
1356  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
1357  * BIU. Interrupt acknowledge is read sensitive so must write instead
1358  * (then read to ensure the BIU collector is flushed)
1359  *
1360  * NB most hardware supports MSI interrupts
1361  */
falcon_irq_ack_a1(struct efx_nic * efx)1362 static inline void falcon_irq_ack_a1(struct efx_nic *efx)
1363 {
1364 	efx_dword_t reg;
1365 
1366 	EFX_POPULATE_DWORD_1(reg, INT_ACK_DUMMY_DATA, 0xb7eb7e);
1367 	falcon_writel(efx, &reg, INT_ACK_REG_KER_A1);
1368 	falcon_readl(efx, &reg, WORK_AROUND_BROKEN_PCI_READS_REG_KER_A1);
1369 }
1370 
1371 /* Process a fatal interrupt
1372  * Disable bus mastering ASAP and schedule a reset
1373  */
falcon_fatal_interrupt(struct efx_nic * efx)1374 static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
1375 {
1376 	struct falcon_nic_data *nic_data = efx->nic_data;
1377 	efx_oword_t *int_ker = efx->irq_status.addr;
1378 	efx_oword_t fatal_intr;
1379 	int error, mem_perr;
1380 	static int n_int_errors;
1381 
1382 	falcon_read(efx, &fatal_intr, FATAL_INTR_REG_KER);
1383 	error = EFX_OWORD_FIELD(fatal_intr, INT_KER_ERROR);
1384 
1385 	EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
1386 		EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1387 		EFX_OWORD_VAL(fatal_intr),
1388 		error ? "disabling bus mastering" : "no recognised error");
1389 	if (error == 0)
1390 		goto out;
1391 
1392 	/* If this is a memory parity error dump which blocks are offending */
1393 	mem_perr = EFX_OWORD_FIELD(fatal_intr, MEM_PERR_INT_KER);
1394 	if (mem_perr) {
1395 		efx_oword_t reg;
1396 		falcon_read(efx, &reg, MEM_STAT_REG_KER);
1397 		EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
1398 			EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
1399 	}
1400 
1401 	/* Disable both devices */
1402 	pci_clear_master(efx->pci_dev);
1403 	if (FALCON_IS_DUAL_FUNC(efx))
1404 		pci_clear_master(nic_data->pci_dev2);
1405 	falcon_disable_interrupts(efx);
1406 
1407 	if (++n_int_errors < FALCON_MAX_INT_ERRORS) {
1408 		EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
1409 		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1410 	} else {
1411 		EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
1412 			"NIC will be disabled\n");
1413 		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1414 	}
1415 out:
1416 	return IRQ_HANDLED;
1417 }
1418 
1419 /* Handle a legacy interrupt from Falcon
1420  * Acknowledges the interrupt and schedule event queue processing.
1421  */
falcon_legacy_interrupt_b0(int irq,void * dev_id)1422 static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
1423 {
1424 	struct efx_nic *efx = dev_id;
1425 	efx_oword_t *int_ker = efx->irq_status.addr;
1426 	struct efx_channel *channel;
1427 	efx_dword_t reg;
1428 	u32 queues;
1429 	int syserr;
1430 
1431 	/* Read the ISR which also ACKs the interrupts */
1432 	falcon_readl(efx, &reg, INT_ISR0_B0);
1433 	queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1434 
1435 	/* Check to see if we have a serious error condition */
1436 	syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1437 	if (unlikely(syserr))
1438 		return falcon_fatal_interrupt(efx);
1439 
1440 	if (queues == 0)
1441 		return IRQ_NONE;
1442 
1443 	efx->last_irq_cpu = raw_smp_processor_id();
1444 	EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1445 		  irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1446 
1447 	/* Schedule processing of any interrupting queues */
1448 	channel = &efx->channel[0];
1449 	while (queues) {
1450 		if (queues & 0x01)
1451 			efx_schedule_channel(channel);
1452 		channel++;
1453 		queues >>= 1;
1454 	}
1455 
1456 	return IRQ_HANDLED;
1457 }
1458 
1459 
falcon_legacy_interrupt_a1(int irq,void * dev_id)1460 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
1461 {
1462 	struct efx_nic *efx = dev_id;
1463 	efx_oword_t *int_ker = efx->irq_status.addr;
1464 	struct efx_channel *channel;
1465 	int syserr;
1466 	int queues;
1467 
1468 	/* Check to see if this is our interrupt.  If it isn't, we
1469 	 * exit without having touched the hardware.
1470 	 */
1471 	if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
1472 		EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
1473 			  raw_smp_processor_id());
1474 		return IRQ_NONE;
1475 	}
1476 	efx->last_irq_cpu = raw_smp_processor_id();
1477 	EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1478 		  irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1479 
1480 	/* Check to see if we have a serious error condition */
1481 	syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1482 	if (unlikely(syserr))
1483 		return falcon_fatal_interrupt(efx);
1484 
1485 	/* Determine interrupting queues, clear interrupt status
1486 	 * register and acknowledge the device interrupt.
1487 	 */
1488 	BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS);
1489 	queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS);
1490 	EFX_ZERO_OWORD(*int_ker);
1491 	wmb(); /* Ensure the vector is cleared before interrupt ack */
1492 	falcon_irq_ack_a1(efx);
1493 
1494 	/* Schedule processing of any interrupting queues */
1495 	channel = &efx->channel[0];
1496 	while (queues) {
1497 		if (queues & 0x01)
1498 			efx_schedule_channel(channel);
1499 		channel++;
1500 		queues >>= 1;
1501 	}
1502 
1503 	return IRQ_HANDLED;
1504 }
1505 
1506 /* Handle an MSI interrupt from Falcon
1507  *
1508  * Handle an MSI hardware interrupt.  This routine schedules event
1509  * queue processing.  No interrupt acknowledgement cycle is necessary.
1510  * Also, we never need to check that the interrupt is for us, since
1511  * MSI interrupts cannot be shared.
1512  */
falcon_msi_interrupt(int irq,void * dev_id)1513 static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
1514 {
1515 	struct efx_channel *channel = dev_id;
1516 	struct efx_nic *efx = channel->efx;
1517 	efx_oword_t *int_ker = efx->irq_status.addr;
1518 	int syserr;
1519 
1520 	efx->last_irq_cpu = raw_smp_processor_id();
1521 	EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1522 		  irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1523 
1524 	/* Check to see if we have a serious error condition */
1525 	syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1526 	if (unlikely(syserr))
1527 		return falcon_fatal_interrupt(efx);
1528 
1529 	/* Schedule processing of the channel */
1530 	efx_schedule_channel(channel);
1531 
1532 	return IRQ_HANDLED;
1533 }
1534 
1535 
1536 /* Setup RSS indirection table.
1537  * This maps from the hash value of the packet to RXQ
1538  */
falcon_setup_rss_indir_table(struct efx_nic * efx)1539 static void falcon_setup_rss_indir_table(struct efx_nic *efx)
1540 {
1541 	int i = 0;
1542 	unsigned long offset;
1543 	efx_dword_t dword;
1544 
1545 	if (falcon_rev(efx) < FALCON_REV_B0)
1546 		return;
1547 
1548 	for (offset = RX_RSS_INDIR_TBL_B0;
1549 	     offset < RX_RSS_INDIR_TBL_B0 + 0x800;
1550 	     offset += 0x10) {
1551 		EFX_POPULATE_DWORD_1(dword, RX_RSS_INDIR_ENT_B0,
1552 				     i % efx->n_rx_queues);
1553 		falcon_writel(efx, &dword, offset);
1554 		i++;
1555 	}
1556 }
1557 
1558 /* Hook interrupt handler(s)
1559  * Try MSI and then legacy interrupts.
1560  */
falcon_init_interrupt(struct efx_nic * efx)1561 int falcon_init_interrupt(struct efx_nic *efx)
1562 {
1563 	struct efx_channel *channel;
1564 	int rc;
1565 
1566 	if (!EFX_INT_MODE_USE_MSI(efx)) {
1567 		irq_handler_t handler;
1568 		if (falcon_rev(efx) >= FALCON_REV_B0)
1569 			handler = falcon_legacy_interrupt_b0;
1570 		else
1571 			handler = falcon_legacy_interrupt_a1;
1572 
1573 		rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1574 				 efx->name, efx);
1575 		if (rc) {
1576 			EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
1577 				efx->pci_dev->irq);
1578 			goto fail1;
1579 		}
1580 		return 0;
1581 	}
1582 
1583 	/* Hook MSI or MSI-X interrupt */
1584 	efx_for_each_channel(channel, efx) {
1585 		rc = request_irq(channel->irq, falcon_msi_interrupt,
1586 				 IRQF_PROBE_SHARED, /* Not shared */
1587 				 channel->name, channel);
1588 		if (rc) {
1589 			EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
1590 			goto fail2;
1591 		}
1592 	}
1593 
1594 	return 0;
1595 
1596  fail2:
1597 	efx_for_each_channel(channel, efx)
1598 		free_irq(channel->irq, channel);
1599  fail1:
1600 	return rc;
1601 }
1602 
falcon_fini_interrupt(struct efx_nic * efx)1603 void falcon_fini_interrupt(struct efx_nic *efx)
1604 {
1605 	struct efx_channel *channel;
1606 	efx_oword_t reg;
1607 
1608 	/* Disable MSI/MSI-X interrupts */
1609 	efx_for_each_channel(channel, efx) {
1610 		if (channel->irq)
1611 			free_irq(channel->irq, channel);
1612 	}
1613 
1614 	/* ACK legacy interrupt */
1615 	if (falcon_rev(efx) >= FALCON_REV_B0)
1616 		falcon_read(efx, &reg, INT_ISR0_B0);
1617 	else
1618 		falcon_irq_ack_a1(efx);
1619 
1620 	/* Disable legacy interrupt */
1621 	if (efx->legacy_irq)
1622 		free_irq(efx->legacy_irq, efx);
1623 }
1624 
1625 /**************************************************************************
1626  *
1627  * EEPROM/flash
1628  *
1629  **************************************************************************
1630  */
1631 
1632 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
1633 
falcon_spi_poll(struct efx_nic * efx)1634 static int falcon_spi_poll(struct efx_nic *efx)
1635 {
1636 	efx_oword_t reg;
1637 	falcon_read(efx, &reg, EE_SPI_HCMD_REG_KER);
1638 	return EFX_OWORD_FIELD(reg, EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
1639 }
1640 
1641 /* Wait for SPI command completion */
falcon_spi_wait(struct efx_nic * efx)1642 static int falcon_spi_wait(struct efx_nic *efx)
1643 {
1644 	/* Most commands will finish quickly, so we start polling at
1645 	 * very short intervals.  Sometimes the command may have to
1646 	 * wait for VPD or expansion ROM access outside of our
1647 	 * control, so we allow up to 100 ms. */
1648 	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
1649 	int i;
1650 
1651 	for (i = 0; i < 10; i++) {
1652 		if (!falcon_spi_poll(efx))
1653 			return 0;
1654 		udelay(10);
1655 	}
1656 
1657 	for (;;) {
1658 		if (!falcon_spi_poll(efx))
1659 			return 0;
1660 		if (time_after_eq(jiffies, timeout)) {
1661 			EFX_ERR(efx, "timed out waiting for SPI\n");
1662 			return -ETIMEDOUT;
1663 		}
1664 		schedule_timeout_uninterruptible(1);
1665 	}
1666 }
1667 
falcon_spi_cmd(const struct efx_spi_device * spi,unsigned int command,int address,const void * in,void * out,size_t len)1668 int falcon_spi_cmd(const struct efx_spi_device *spi,
1669 		   unsigned int command, int address,
1670 		   const void *in, void *out, size_t len)
1671 {
1672 	struct efx_nic *efx = spi->efx;
1673 	bool addressed = (address >= 0);
1674 	bool reading = (out != NULL);
1675 	efx_oword_t reg;
1676 	int rc;
1677 
1678 	/* Input validation */
1679 	if (len > FALCON_SPI_MAX_LEN)
1680 		return -EINVAL;
1681 	BUG_ON(!mutex_is_locked(&efx->spi_lock));
1682 
1683 	/* Check that previous command is not still running */
1684 	rc = falcon_spi_poll(efx);
1685 	if (rc)
1686 		return rc;
1687 
1688 	/* Program address register, if we have an address */
1689 	if (addressed) {
1690 		EFX_POPULATE_OWORD_1(reg, EE_SPI_HADR_ADR, address);
1691 		falcon_write(efx, &reg, EE_SPI_HADR_REG_KER);
1692 	}
1693 
1694 	/* Program data register, if we have data */
1695 	if (in != NULL) {
1696 		memcpy(&reg, in, len);
1697 		falcon_write(efx, &reg, EE_SPI_HDATA_REG_KER);
1698 	}
1699 
1700 	/* Issue read/write command */
1701 	EFX_POPULATE_OWORD_7(reg,
1702 			     EE_SPI_HCMD_CMD_EN, 1,
1703 			     EE_SPI_HCMD_SF_SEL, spi->device_id,
1704 			     EE_SPI_HCMD_DABCNT, len,
1705 			     EE_SPI_HCMD_READ, reading,
1706 			     EE_SPI_HCMD_DUBCNT, 0,
1707 			     EE_SPI_HCMD_ADBCNT,
1708 			     (addressed ? spi->addr_len : 0),
1709 			     EE_SPI_HCMD_ENC, command);
1710 	falcon_write(efx, &reg, EE_SPI_HCMD_REG_KER);
1711 
1712 	/* Wait for read/write to complete */
1713 	rc = falcon_spi_wait(efx);
1714 	if (rc)
1715 		return rc;
1716 
1717 	/* Read data */
1718 	if (out != NULL) {
1719 		falcon_read(efx, &reg, EE_SPI_HDATA_REG_KER);
1720 		memcpy(out, &reg, len);
1721 	}
1722 
1723 	return 0;
1724 }
1725 
1726 static size_t
falcon_spi_write_limit(const struct efx_spi_device * spi,size_t start)1727 falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
1728 {
1729 	return min(FALCON_SPI_MAX_LEN,
1730 		   (spi->block_size - (start & (spi->block_size - 1))));
1731 }
1732 
1733 static inline u8
efx_spi_munge_command(const struct efx_spi_device * spi,const u8 command,const unsigned int address)1734 efx_spi_munge_command(const struct efx_spi_device *spi,
1735 		      const u8 command, const unsigned int address)
1736 {
1737 	return command | (((address >> 8) & spi->munge_address) << 3);
1738 }
1739 
1740 /* Wait up to 10 ms for buffered write completion */
falcon_spi_wait_write(const struct efx_spi_device * spi)1741 int falcon_spi_wait_write(const struct efx_spi_device *spi)
1742 {
1743 	struct efx_nic *efx = spi->efx;
1744 	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
1745 	u8 status;
1746 	int rc;
1747 
1748 	for (;;) {
1749 		rc = falcon_spi_cmd(spi, SPI_RDSR, -1, NULL,
1750 				    &status, sizeof(status));
1751 		if (rc)
1752 			return rc;
1753 		if (!(status & SPI_STATUS_NRDY))
1754 			return 0;
1755 		if (time_after_eq(jiffies, timeout)) {
1756 			EFX_ERR(efx, "SPI write timeout on device %d"
1757 				" last status=0x%02x\n",
1758 				spi->device_id, status);
1759 			return -ETIMEDOUT;
1760 		}
1761 		schedule_timeout_uninterruptible(1);
1762 	}
1763 }
1764 
falcon_spi_read(const struct efx_spi_device * spi,loff_t start,size_t len,size_t * retlen,u8 * buffer)1765 int falcon_spi_read(const struct efx_spi_device *spi, loff_t start,
1766 		    size_t len, size_t *retlen, u8 *buffer)
1767 {
1768 	size_t block_len, pos = 0;
1769 	unsigned int command;
1770 	int rc = 0;
1771 
1772 	while (pos < len) {
1773 		block_len = min(len - pos, FALCON_SPI_MAX_LEN);
1774 
1775 		command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1776 		rc = falcon_spi_cmd(spi, command, start + pos, NULL,
1777 				    buffer + pos, block_len);
1778 		if (rc)
1779 			break;
1780 		pos += block_len;
1781 
1782 		/* Avoid locking up the system */
1783 		cond_resched();
1784 		if (signal_pending(current)) {
1785 			rc = -EINTR;
1786 			break;
1787 		}
1788 	}
1789 
1790 	if (retlen)
1791 		*retlen = pos;
1792 	return rc;
1793 }
1794 
falcon_spi_write(const struct efx_spi_device * spi,loff_t start,size_t len,size_t * retlen,const u8 * buffer)1795 int falcon_spi_write(const struct efx_spi_device *spi, loff_t start,
1796 		     size_t len, size_t *retlen, const u8 *buffer)
1797 {
1798 	u8 verify_buffer[FALCON_SPI_MAX_LEN];
1799 	size_t block_len, pos = 0;
1800 	unsigned int command;
1801 	int rc = 0;
1802 
1803 	while (pos < len) {
1804 		rc = falcon_spi_cmd(spi, SPI_WREN, -1, NULL, NULL, 0);
1805 		if (rc)
1806 			break;
1807 
1808 		block_len = min(len - pos,
1809 				falcon_spi_write_limit(spi, start + pos));
1810 		command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
1811 		rc = falcon_spi_cmd(spi, command, start + pos,
1812 				    buffer + pos, NULL, block_len);
1813 		if (rc)
1814 			break;
1815 
1816 		rc = falcon_spi_wait_write(spi);
1817 		if (rc)
1818 			break;
1819 
1820 		command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1821 		rc = falcon_spi_cmd(spi, command, start + pos,
1822 				    NULL, verify_buffer, block_len);
1823 		if (memcmp(verify_buffer, buffer + pos, block_len)) {
1824 			rc = -EIO;
1825 			break;
1826 		}
1827 
1828 		pos += block_len;
1829 
1830 		/* Avoid locking up the system */
1831 		cond_resched();
1832 		if (signal_pending(current)) {
1833 			rc = -EINTR;
1834 			break;
1835 		}
1836 	}
1837 
1838 	if (retlen)
1839 		*retlen = pos;
1840 	return rc;
1841 }
1842 
1843 /**************************************************************************
1844  *
1845  * MAC wrapper
1846  *
1847  **************************************************************************
1848  */
1849 
falcon_reset_macs(struct efx_nic * efx)1850 static int falcon_reset_macs(struct efx_nic *efx)
1851 {
1852 	efx_oword_t reg;
1853 	int count;
1854 
1855 	if (falcon_rev(efx) < FALCON_REV_B0) {
1856 		/* It's not safe to use GLB_CTL_REG to reset the
1857 		 * macs, so instead use the internal MAC resets
1858 		 */
1859 		if (!EFX_IS10G(efx)) {
1860 			EFX_POPULATE_OWORD_1(reg, GM_SW_RST, 1);
1861 			falcon_write(efx, &reg, GM_CFG1_REG);
1862 			udelay(1000);
1863 
1864 			EFX_POPULATE_OWORD_1(reg, GM_SW_RST, 0);
1865 			falcon_write(efx, &reg, GM_CFG1_REG);
1866 			udelay(1000);
1867 			return 0;
1868 		} else {
1869 			EFX_POPULATE_OWORD_1(reg, XM_CORE_RST, 1);
1870 			falcon_write(efx, &reg, XM_GLB_CFG_REG);
1871 
1872 			for (count = 0; count < 10000; count++) {
1873 				falcon_read(efx, &reg, XM_GLB_CFG_REG);
1874 				if (EFX_OWORD_FIELD(reg, XM_CORE_RST) == 0)
1875 					return 0;
1876 				udelay(10);
1877 			}
1878 
1879 			EFX_ERR(efx, "timed out waiting for XMAC core reset\n");
1880 			return -ETIMEDOUT;
1881 		}
1882 	}
1883 
1884 	/* MAC stats will fail whilst the TX fifo is draining. Serialise
1885 	 * the drain sequence with the statistics fetch */
1886 	efx_stats_disable(efx);
1887 
1888 	falcon_read(efx, &reg, MAC0_CTRL_REG_KER);
1889 	EFX_SET_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0, 1);
1890 	falcon_write(efx, &reg, MAC0_CTRL_REG_KER);
1891 
1892 	falcon_read(efx, &reg, GLB_CTL_REG_KER);
1893 	EFX_SET_OWORD_FIELD(reg, RST_XGTX, 1);
1894 	EFX_SET_OWORD_FIELD(reg, RST_XGRX, 1);
1895 	EFX_SET_OWORD_FIELD(reg, RST_EM, 1);
1896 	falcon_write(efx, &reg, GLB_CTL_REG_KER);
1897 
1898 	count = 0;
1899 	while (1) {
1900 		falcon_read(efx, &reg, GLB_CTL_REG_KER);
1901 		if (!EFX_OWORD_FIELD(reg, RST_XGTX) &&
1902 		    !EFX_OWORD_FIELD(reg, RST_XGRX) &&
1903 		    !EFX_OWORD_FIELD(reg, RST_EM)) {
1904 			EFX_LOG(efx, "Completed MAC reset after %d loops\n",
1905 				count);
1906 			break;
1907 		}
1908 		if (count > 20) {
1909 			EFX_ERR(efx, "MAC reset failed\n");
1910 			break;
1911 		}
1912 		count++;
1913 		udelay(10);
1914 	}
1915 
1916 	efx_stats_enable(efx);
1917 
1918 	/* If we've reset the EM block and the link is up, then
1919 	 * we'll have to kick the XAUI link so the PHY can recover */
1920 	if (efx->link_up && EFX_IS10G(efx) && EFX_WORKAROUND_5147(efx))
1921 		falcon_reset_xaui(efx);
1922 
1923 	return 0;
1924 }
1925 
falcon_drain_tx_fifo(struct efx_nic * efx)1926 void falcon_drain_tx_fifo(struct efx_nic *efx)
1927 {
1928 	efx_oword_t reg;
1929 
1930 	if ((falcon_rev(efx) < FALCON_REV_B0) ||
1931 	    (efx->loopback_mode != LOOPBACK_NONE))
1932 		return;
1933 
1934 	falcon_read(efx, &reg, MAC0_CTRL_REG_KER);
1935 	/* There is no point in draining more than once */
1936 	if (EFX_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0))
1937 		return;
1938 
1939 	falcon_reset_macs(efx);
1940 }
1941 
falcon_deconfigure_mac_wrapper(struct efx_nic * efx)1942 void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1943 {
1944 	efx_oword_t reg;
1945 
1946 	if (falcon_rev(efx) < FALCON_REV_B0)
1947 		return;
1948 
1949 	/* Isolate the MAC -> RX */
1950 	falcon_read(efx, &reg, RX_CFG_REG_KER);
1951 	EFX_SET_OWORD_FIELD(reg, RX_INGR_EN_B0, 0);
1952 	falcon_write(efx, &reg, RX_CFG_REG_KER);
1953 
1954 	if (!efx->link_up)
1955 		falcon_drain_tx_fifo(efx);
1956 }
1957 
falcon_reconfigure_mac_wrapper(struct efx_nic * efx)1958 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1959 {
1960 	efx_oword_t reg;
1961 	int link_speed;
1962 	bool tx_fc;
1963 
1964 	switch (efx->link_speed) {
1965 	case 10000: link_speed = 3; break;
1966 	case 1000:  link_speed = 2; break;
1967 	case 100:   link_speed = 1; break;
1968 	default:    link_speed = 0; break;
1969 	}
1970 	/* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1971 	 * as advertised.  Disable to ensure packets are not
1972 	 * indefinitely held and TX queue can be flushed at any point
1973 	 * while the link is down. */
1974 	EFX_POPULATE_OWORD_5(reg,
1975 			     MAC_XOFF_VAL, 0xffff /* max pause time */,
1976 			     MAC_BCAD_ACPT, 1,
1977 			     MAC_UC_PROM, efx->promiscuous,
1978 			     MAC_LINK_STATUS, 1, /* always set */
1979 			     MAC_SPEED, link_speed);
1980 	/* On B0, MAC backpressure can be disabled and packets get
1981 	 * discarded. */
1982 	if (falcon_rev(efx) >= FALCON_REV_B0) {
1983 		EFX_SET_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0,
1984 				    !efx->link_up);
1985 	}
1986 
1987 	falcon_write(efx, &reg, MAC0_CTRL_REG_KER);
1988 
1989 	/* Restore the multicast hash registers. */
1990 	falcon_set_multicast_hash(efx);
1991 
1992 	/* Transmission of pause frames when RX crosses the threshold is
1993 	 * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
1994 	 * Action on receipt of pause frames is controller by XM_DIS_FCNTL */
1995 	tx_fc = !!(efx->link_fc & EFX_FC_TX);
1996 	falcon_read(efx, &reg, RX_CFG_REG_KER);
1997 	EFX_SET_OWORD_FIELD_VER(efx, reg, RX_XOFF_MAC_EN, tx_fc);
1998 
1999 	/* Unisolate the MAC -> RX */
2000 	if (falcon_rev(efx) >= FALCON_REV_B0)
2001 		EFX_SET_OWORD_FIELD(reg, RX_INGR_EN_B0, 1);
2002 	falcon_write(efx, &reg, RX_CFG_REG_KER);
2003 }
2004 
falcon_dma_stats(struct efx_nic * efx,unsigned int done_offset)2005 int falcon_dma_stats(struct efx_nic *efx, unsigned int done_offset)
2006 {
2007 	efx_oword_t reg;
2008 	u32 *dma_done;
2009 	int i;
2010 
2011 	if (disable_dma_stats)
2012 		return 0;
2013 
2014 	/* Statistics fetch will fail if the MAC is in TX drain */
2015 	if (falcon_rev(efx) >= FALCON_REV_B0) {
2016 		efx_oword_t temp;
2017 		falcon_read(efx, &temp, MAC0_CTRL_REG_KER);
2018 		if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0))
2019 			return 0;
2020 	}
2021 
2022 	dma_done = (efx->stats_buffer.addr + done_offset);
2023 	*dma_done = FALCON_STATS_NOT_DONE;
2024 	wmb(); /* ensure done flag is clear */
2025 
2026 	/* Initiate DMA transfer of stats */
2027 	EFX_POPULATE_OWORD_2(reg,
2028 			     MAC_STAT_DMA_CMD, 1,
2029 			     MAC_STAT_DMA_ADR,
2030 			     efx->stats_buffer.dma_addr);
2031 	falcon_write(efx, &reg, MAC0_STAT_DMA_REG_KER);
2032 
2033 	/* Wait for transfer to complete */
2034 	for (i = 0; i < 400; i++) {
2035 		if (*(volatile u32 *)dma_done == FALCON_STATS_DONE) {
2036 			rmb(); /* Ensure the stats are valid. */
2037 			return 0;
2038 		}
2039 		udelay(10);
2040 	}
2041 
2042 	EFX_ERR(efx, "timed out waiting for statistics\n");
2043 	return -ETIMEDOUT;
2044 }
2045 
2046 /**************************************************************************
2047  *
2048  * PHY access via GMII
2049  *
2050  **************************************************************************
2051  */
2052 
2053 /* Use the top bit of the MII PHY id to indicate the PHY type
2054  * (1G/10G), with the remaining bits as the actual PHY id.
2055  *
2056  * This allows us to avoid leaking information from the mii_if_info
2057  * structure into other data structures.
2058  */
2059 #define FALCON_PHY_ID_ID_WIDTH  EFX_WIDTH(MD_PRT_DEV_ADR)
2060 #define FALCON_PHY_ID_ID_MASK   ((1 << FALCON_PHY_ID_ID_WIDTH) - 1)
2061 #define FALCON_PHY_ID_WIDTH     (FALCON_PHY_ID_ID_WIDTH + 1)
2062 #define FALCON_PHY_ID_MASK      ((1 << FALCON_PHY_ID_WIDTH) - 1)
2063 #define FALCON_PHY_ID_10G       (1 << (FALCON_PHY_ID_WIDTH - 1))
2064 
2065 
2066 /* Packing the clause 45 port and device fields into a single value */
2067 #define MD_PRT_ADR_COMP_LBN   (MD_PRT_ADR_LBN - MD_DEV_ADR_LBN)
2068 #define MD_PRT_ADR_COMP_WIDTH  MD_PRT_ADR_WIDTH
2069 #define MD_DEV_ADR_COMP_LBN    0
2070 #define MD_DEV_ADR_COMP_WIDTH  MD_DEV_ADR_WIDTH
2071 
2072 
2073 /* Wait for GMII access to complete */
falcon_gmii_wait(struct efx_nic * efx)2074 static int falcon_gmii_wait(struct efx_nic *efx)
2075 {
2076 	efx_dword_t md_stat;
2077 	int count;
2078 
2079 	/* wait upto 50ms - taken max from datasheet */
2080 	for (count = 0; count < 5000; count++) {
2081 		falcon_readl(efx, &md_stat, MD_STAT_REG_KER);
2082 		if (EFX_DWORD_FIELD(md_stat, MD_BSY) == 0) {
2083 			if (EFX_DWORD_FIELD(md_stat, MD_LNFL) != 0 ||
2084 			    EFX_DWORD_FIELD(md_stat, MD_BSERR) != 0) {
2085 				EFX_ERR(efx, "error from GMII access "
2086 					EFX_DWORD_FMT"\n",
2087 					EFX_DWORD_VAL(md_stat));
2088 				return -EIO;
2089 			}
2090 			return 0;
2091 		}
2092 		udelay(10);
2093 	}
2094 	EFX_ERR(efx, "timed out waiting for GMII\n");
2095 	return -ETIMEDOUT;
2096 }
2097 
2098 /* Writes a GMII register of a PHY connected to Falcon using MDIO. */
falcon_mdio_write(struct net_device * net_dev,int phy_id,int addr,int value)2099 static void falcon_mdio_write(struct net_device *net_dev, int phy_id,
2100 			      int addr, int value)
2101 {
2102 	struct efx_nic *efx = netdev_priv(net_dev);
2103 	unsigned int phy_id2 = phy_id & FALCON_PHY_ID_ID_MASK;
2104 	efx_oword_t reg;
2105 
2106 	/* The 'generic' prt/dev packing in mdio_10g.h is conveniently
2107 	 * chosen so that the only current user, Falcon, can take the
2108 	 * packed value and use them directly.
2109 	 * Fail to build if this assumption is broken.
2110 	 */
2111 	BUILD_BUG_ON(FALCON_PHY_ID_10G != MDIO45_XPRT_ID_IS10G);
2112 	BUILD_BUG_ON(FALCON_PHY_ID_ID_WIDTH != MDIO45_PRT_DEV_WIDTH);
2113 	BUILD_BUG_ON(MD_PRT_ADR_COMP_LBN != MDIO45_PRT_ID_COMP_LBN);
2114 	BUILD_BUG_ON(MD_DEV_ADR_COMP_LBN != MDIO45_DEV_ID_COMP_LBN);
2115 
2116 	if (phy_id2 == PHY_ADDR_INVALID)
2117 		return;
2118 
2119 	/* See falcon_mdio_read for an explanation. */
2120 	if (!(phy_id & FALCON_PHY_ID_10G)) {
2121 		int mmd = ffs(efx->phy_op->mmds) - 1;
2122 		EFX_TRACE(efx, "Fixing erroneous clause22 write\n");
2123 		phy_id2 = mdio_clause45_pack(phy_id2, mmd)
2124 			& FALCON_PHY_ID_ID_MASK;
2125 	}
2126 
2127 	EFX_REGDUMP(efx, "writing GMII %d register %02x with %04x\n", phy_id,
2128 		    addr, value);
2129 
2130 	spin_lock_bh(&efx->phy_lock);
2131 
2132 	/* Check MII not currently being accessed */
2133 	if (falcon_gmii_wait(efx) != 0)
2134 		goto out;
2135 
2136 	/* Write the address/ID register */
2137 	EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
2138 	falcon_write(efx, &reg, MD_PHY_ADR_REG_KER);
2139 
2140 	EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_id2);
2141 	falcon_write(efx, &reg, MD_ID_REG_KER);
2142 
2143 	/* Write data */
2144 	EFX_POPULATE_OWORD_1(reg, MD_TXD, value);
2145 	falcon_write(efx, &reg, MD_TXD_REG_KER);
2146 
2147 	EFX_POPULATE_OWORD_2(reg,
2148 			     MD_WRC, 1,
2149 			     MD_GC, 0);
2150 	falcon_write(efx, &reg, MD_CS_REG_KER);
2151 
2152 	/* Wait for data to be written */
2153 	if (falcon_gmii_wait(efx) != 0) {
2154 		/* Abort the write operation */
2155 		EFX_POPULATE_OWORD_2(reg,
2156 				     MD_WRC, 0,
2157 				     MD_GC, 1);
2158 		falcon_write(efx, &reg, MD_CS_REG_KER);
2159 		udelay(10);
2160 	}
2161 
2162  out:
2163 	spin_unlock_bh(&efx->phy_lock);
2164 }
2165 
2166 /* Reads a GMII register from a PHY connected to Falcon.  If no value
2167  * could be read, -1 will be returned. */
falcon_mdio_read(struct net_device * net_dev,int phy_id,int addr)2168 static int falcon_mdio_read(struct net_device *net_dev, int phy_id, int addr)
2169 {
2170 	struct efx_nic *efx = netdev_priv(net_dev);
2171 	unsigned int phy_addr = phy_id & FALCON_PHY_ID_ID_MASK;
2172 	efx_oword_t reg;
2173 	int value = -1;
2174 
2175 	if (phy_addr == PHY_ADDR_INVALID)
2176 		return -1;
2177 
2178 	/* Our PHY code knows whether it needs to talk clause 22(1G) or 45(10G)
2179 	 * but the generic Linux code does not make any distinction or have
2180 	 * any state for this.
2181 	 * We spot the case where someone tried to talk 22 to a 45 PHY and
2182 	 * redirect the request to the lowest numbered MMD as a clause45
2183 	 * request. This is enough to allow simple queries like id and link
2184 	 * state to succeed. TODO: We may need to do more in future.
2185 	 */
2186 	if (!(phy_id & FALCON_PHY_ID_10G)) {
2187 		int mmd = ffs(efx->phy_op->mmds) - 1;
2188 		EFX_TRACE(efx, "Fixing erroneous clause22 read\n");
2189 		phy_addr = mdio_clause45_pack(phy_addr, mmd)
2190 			& FALCON_PHY_ID_ID_MASK;
2191 	}
2192 
2193 	spin_lock_bh(&efx->phy_lock);
2194 
2195 	/* Check MII not currently being accessed */
2196 	if (falcon_gmii_wait(efx) != 0)
2197 		goto out;
2198 
2199 	EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
2200 	falcon_write(efx, &reg, MD_PHY_ADR_REG_KER);
2201 
2202 	EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_addr);
2203 	falcon_write(efx, &reg, MD_ID_REG_KER);
2204 
2205 	/* Request data to be read */
2206 	EFX_POPULATE_OWORD_2(reg, MD_RDC, 1, MD_GC, 0);
2207 	falcon_write(efx, &reg, MD_CS_REG_KER);
2208 
2209 	/* Wait for data to become available */
2210 	value = falcon_gmii_wait(efx);
2211 	if (value == 0) {
2212 		falcon_read(efx, &reg, MD_RXD_REG_KER);
2213 		value = EFX_OWORD_FIELD(reg, MD_RXD);
2214 		EFX_REGDUMP(efx, "read from GMII %d register %02x, got %04x\n",
2215 			    phy_id, addr, value);
2216 	} else {
2217 		/* Abort the read operation */
2218 		EFX_POPULATE_OWORD_2(reg,
2219 				     MD_RIC, 0,
2220 				     MD_GC, 1);
2221 		falcon_write(efx, &reg, MD_CS_REG_KER);
2222 
2223 		EFX_LOG(efx, "read from GMII 0x%x register %02x, got "
2224 			"error %d\n", phy_id, addr, value);
2225 	}
2226 
2227  out:
2228 	spin_unlock_bh(&efx->phy_lock);
2229 
2230 	return value;
2231 }
2232 
falcon_init_mdio(struct mii_if_info * gmii)2233 static void falcon_init_mdio(struct mii_if_info *gmii)
2234 {
2235 	gmii->mdio_read = falcon_mdio_read;
2236 	gmii->mdio_write = falcon_mdio_write;
2237 	gmii->phy_id_mask = FALCON_PHY_ID_MASK;
2238 	gmii->reg_num_mask = ((1 << EFX_WIDTH(MD_PHY_ADR)) - 1);
2239 }
2240 
falcon_probe_phy(struct efx_nic * efx)2241 static int falcon_probe_phy(struct efx_nic *efx)
2242 {
2243 	switch (efx->phy_type) {
2244 	case PHY_TYPE_SFX7101:
2245 		efx->phy_op = &falcon_sfx7101_phy_ops;
2246 		break;
2247 	case PHY_TYPE_SFT9001A:
2248 	case PHY_TYPE_SFT9001B:
2249 		efx->phy_op = &falcon_sft9001_phy_ops;
2250 		break;
2251 	case PHY_TYPE_QT2022C2:
2252 		efx->phy_op = &falcon_xfp_phy_ops;
2253 		break;
2254 	default:
2255 		EFX_ERR(efx, "Unknown PHY type %d\n",
2256 			efx->phy_type);
2257 		return -1;
2258 	}
2259 
2260 	if (efx->phy_op->macs & EFX_XMAC)
2261 		efx->loopback_modes |= ((1 << LOOPBACK_XGMII) |
2262 					(1 << LOOPBACK_XGXS) |
2263 					(1 << LOOPBACK_XAUI));
2264 	if (efx->phy_op->macs & EFX_GMAC)
2265 		efx->loopback_modes |= (1 << LOOPBACK_GMAC);
2266 	efx->loopback_modes |= efx->phy_op->loopbacks;
2267 
2268 	return 0;
2269 }
2270 
falcon_switch_mac(struct efx_nic * efx)2271 int falcon_switch_mac(struct efx_nic *efx)
2272 {
2273 	struct efx_mac_operations *old_mac_op = efx->mac_op;
2274 	efx_oword_t nic_stat;
2275 	unsigned strap_val;
2276 	int rc = 0;
2277 
2278 	/* Don't try to fetch MAC stats while we're switching MACs */
2279 	efx_stats_disable(efx);
2280 
2281 	/* Internal loopbacks override the phy speed setting */
2282 	if (efx->loopback_mode == LOOPBACK_GMAC) {
2283 		efx->link_speed = 1000;
2284 		efx->link_fd = true;
2285 	} else if (LOOPBACK_INTERNAL(efx)) {
2286 		efx->link_speed = 10000;
2287 		efx->link_fd = true;
2288 	}
2289 
2290 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
2291 	efx->mac_op = (EFX_IS10G(efx) ?
2292 		       &falcon_xmac_operations : &falcon_gmac_operations);
2293 
2294 	/* Always push the NIC_STAT_REG setting even if the mac hasn't
2295 	 * changed, because this function is run post online reset */
2296 	falcon_read(efx, &nic_stat, NIC_STAT_REG);
2297 	strap_val = EFX_IS10G(efx) ? 5 : 3;
2298 	if (falcon_rev(efx) >= FALCON_REV_B0) {
2299 		EFX_SET_OWORD_FIELD(nic_stat, EE_STRAP_EN, 1);
2300 		EFX_SET_OWORD_FIELD(nic_stat, EE_STRAP_OVR, strap_val);
2301 		falcon_write(efx, &nic_stat, NIC_STAT_REG);
2302 	} else {
2303 		/* Falcon A1 does not support 1G/10G speed switching
2304 		 * and must not be used with a PHY that does. */
2305 		BUG_ON(EFX_OWORD_FIELD(nic_stat, STRAP_PINS) != strap_val);
2306 	}
2307 
2308 	if (old_mac_op == efx->mac_op)
2309 		goto out;
2310 
2311 	EFX_LOG(efx, "selected %cMAC\n", EFX_IS10G(efx) ? 'X' : 'G');
2312 	/* Not all macs support a mac-level link state */
2313 	efx->mac_up = true;
2314 
2315 	rc = falcon_reset_macs(efx);
2316 out:
2317 	efx_stats_enable(efx);
2318 	return rc;
2319 }
2320 
2321 /* This call is responsible for hooking in the MAC and PHY operations */
falcon_probe_port(struct efx_nic * efx)2322 int falcon_probe_port(struct efx_nic *efx)
2323 {
2324 	int rc;
2325 
2326 	/* Hook in PHY operations table */
2327 	rc = falcon_probe_phy(efx);
2328 	if (rc)
2329 		return rc;
2330 
2331 	/* Set up GMII structure for PHY */
2332 	efx->mii.supports_gmii = true;
2333 	falcon_init_mdio(&efx->mii);
2334 
2335 	/* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
2336 	if (falcon_rev(efx) >= FALCON_REV_B0)
2337 		efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
2338 	else
2339 		efx->wanted_fc = EFX_FC_RX;
2340 
2341 	/* Allocate buffer for stats */
2342 	rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
2343 				 FALCON_MAC_STATS_SIZE);
2344 	if (rc)
2345 		return rc;
2346 	EFX_LOG(efx, "stats buffer at %llx (virt %p phys %lx)\n",
2347 		(unsigned long long)efx->stats_buffer.dma_addr,
2348 		efx->stats_buffer.addr,
2349 		virt_to_phys(efx->stats_buffer.addr));
2350 
2351 	return 0;
2352 }
2353 
falcon_remove_port(struct efx_nic * efx)2354 void falcon_remove_port(struct efx_nic *efx)
2355 {
2356 	falcon_free_buffer(efx, &efx->stats_buffer);
2357 }
2358 
2359 /**************************************************************************
2360  *
2361  * Multicast filtering
2362  *
2363  **************************************************************************
2364  */
2365 
falcon_set_multicast_hash(struct efx_nic * efx)2366 void falcon_set_multicast_hash(struct efx_nic *efx)
2367 {
2368 	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2369 
2370 	/* Broadcast packets go through the multicast hash filter.
2371 	 * ether_crc_le() of the broadcast address is 0xbe2612ff
2372 	 * so we always add bit 0xff to the mask.
2373 	 */
2374 	set_bit_le(0xff, mc_hash->byte);
2375 
2376 	falcon_write(efx, &mc_hash->oword[0], MAC_MCAST_HASH_REG0_KER);
2377 	falcon_write(efx, &mc_hash->oword[1], MAC_MCAST_HASH_REG1_KER);
2378 }
2379 
2380 
2381 /**************************************************************************
2382  *
2383  * Falcon test code
2384  *
2385  **************************************************************************/
2386 
falcon_read_nvram(struct efx_nic * efx,struct falcon_nvconfig * nvconfig_out)2387 int falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
2388 {
2389 	struct falcon_nvconfig *nvconfig;
2390 	struct efx_spi_device *spi;
2391 	void *region;
2392 	int rc, magic_num, struct_ver;
2393 	__le16 *word, *limit;
2394 	u32 csum;
2395 
2396 	spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
2397 	if (!spi)
2398 		return -EINVAL;
2399 
2400 	region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
2401 	if (!region)
2402 		return -ENOMEM;
2403 	nvconfig = region + NVCONFIG_OFFSET;
2404 
2405 	mutex_lock(&efx->spi_lock);
2406 	rc = falcon_spi_read(spi, 0, FALCON_NVCONFIG_END, NULL, region);
2407 	mutex_unlock(&efx->spi_lock);
2408 	if (rc) {
2409 		EFX_ERR(efx, "Failed to read %s\n",
2410 			efx->spi_flash ? "flash" : "EEPROM");
2411 		rc = -EIO;
2412 		goto out;
2413 	}
2414 
2415 	magic_num = le16_to_cpu(nvconfig->board_magic_num);
2416 	struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
2417 
2418 	rc = -EINVAL;
2419 	if (magic_num != NVCONFIG_BOARD_MAGIC_NUM) {
2420 		EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num);
2421 		goto out;
2422 	}
2423 	if (struct_ver < 2) {
2424 		EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver);
2425 		goto out;
2426 	} else if (struct_ver < 4) {
2427 		word = &nvconfig->board_magic_num;
2428 		limit = (__le16 *) (nvconfig + 1);
2429 	} else {
2430 		word = region;
2431 		limit = region + FALCON_NVCONFIG_END;
2432 	}
2433 	for (csum = 0; word < limit; ++word)
2434 		csum += le16_to_cpu(*word);
2435 
2436 	if (~csum & 0xffff) {
2437 		EFX_ERR(efx, "NVRAM has incorrect checksum\n");
2438 		goto out;
2439 	}
2440 
2441 	rc = 0;
2442 	if (nvconfig_out)
2443 		memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
2444 
2445  out:
2446 	kfree(region);
2447 	return rc;
2448 }
2449 
2450 /* Registers tested in the falcon register test */
2451 static struct {
2452 	unsigned address;
2453 	efx_oword_t mask;
2454 } efx_test_registers[] = {
2455 	{ ADR_REGION_REG_KER,
2456 	  EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
2457 	{ RX_CFG_REG_KER,
2458 	  EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
2459 	{ TX_CFG_REG_KER,
2460 	  EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
2461 	{ TX_CFG2_REG_KER,
2462 	  EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
2463 	{ MAC0_CTRL_REG_KER,
2464 	  EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
2465 	{ SRM_TX_DC_CFG_REG_KER,
2466 	  EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
2467 	{ RX_DC_CFG_REG_KER,
2468 	  EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
2469 	{ RX_DC_PF_WM_REG_KER,
2470 	  EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
2471 	{ DP_CTRL_REG,
2472 	  EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
2473 	{ GM_CFG2_REG,
2474 	  EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
2475 	{ GMF_CFG0_REG,
2476 	  EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
2477 	{ XM_GLB_CFG_REG,
2478 	  EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
2479 	{ XM_TX_CFG_REG,
2480 	  EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
2481 	{ XM_RX_CFG_REG,
2482 	  EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
2483 	{ XM_RX_PARAM_REG,
2484 	  EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
2485 	{ XM_FC_REG,
2486 	  EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
2487 	{ XM_ADR_LO_REG,
2488 	  EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
2489 	{ XX_SD_CTL_REG,
2490 	  EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
2491 };
2492 
efx_masked_compare_oword(const efx_oword_t * a,const efx_oword_t * b,const efx_oword_t * mask)2493 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
2494 				     const efx_oword_t *mask)
2495 {
2496 	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
2497 		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
2498 }
2499 
falcon_test_registers(struct efx_nic * efx)2500 int falcon_test_registers(struct efx_nic *efx)
2501 {
2502 	unsigned address = 0, i, j;
2503 	efx_oword_t mask, imask, original, reg, buf;
2504 
2505 	/* Falcon should be in loopback to isolate the XMAC from the PHY */
2506 	WARN_ON(!LOOPBACK_INTERNAL(efx));
2507 
2508 	for (i = 0; i < ARRAY_SIZE(efx_test_registers); ++i) {
2509 		address = efx_test_registers[i].address;
2510 		mask = imask = efx_test_registers[i].mask;
2511 		EFX_INVERT_OWORD(imask);
2512 
2513 		falcon_read(efx, &original, address);
2514 
2515 		/* bit sweep on and off */
2516 		for (j = 0; j < 128; j++) {
2517 			if (!EFX_EXTRACT_OWORD32(mask, j, j))
2518 				continue;
2519 
2520 			/* Test this testable bit can be set in isolation */
2521 			EFX_AND_OWORD(reg, original, mask);
2522 			EFX_SET_OWORD32(reg, j, j, 1);
2523 
2524 			falcon_write(efx, &reg, address);
2525 			falcon_read(efx, &buf, address);
2526 
2527 			if (efx_masked_compare_oword(&reg, &buf, &mask))
2528 				goto fail;
2529 
2530 			/* Test this testable bit can be cleared in isolation */
2531 			EFX_OR_OWORD(reg, original, mask);
2532 			EFX_SET_OWORD32(reg, j, j, 0);
2533 
2534 			falcon_write(efx, &reg, address);
2535 			falcon_read(efx, &buf, address);
2536 
2537 			if (efx_masked_compare_oword(&reg, &buf, &mask))
2538 				goto fail;
2539 		}
2540 
2541 		falcon_write(efx, &original, address);
2542 	}
2543 
2544 	return 0;
2545 
2546 fail:
2547 	EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
2548 		" at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
2549 		EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
2550 	return -EIO;
2551 }
2552 
2553 /**************************************************************************
2554  *
2555  * Device reset
2556  *
2557  **************************************************************************
2558  */
2559 
2560 /* Resets NIC to known state.  This routine must be called in process
2561  * context and is allowed to sleep. */
falcon_reset_hw(struct efx_nic * efx,enum reset_type method)2562 int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2563 {
2564 	struct falcon_nic_data *nic_data = efx->nic_data;
2565 	efx_oword_t glb_ctl_reg_ker;
2566 	int rc;
2567 
2568 	EFX_LOG(efx, "performing hardware reset (%d)\n", method);
2569 
2570 	/* Initiate device reset */
2571 	if (method == RESET_TYPE_WORLD) {
2572 		rc = pci_save_state(efx->pci_dev);
2573 		if (rc) {
2574 			EFX_ERR(efx, "failed to backup PCI state of primary "
2575 				"function prior to hardware reset\n");
2576 			goto fail1;
2577 		}
2578 		if (FALCON_IS_DUAL_FUNC(efx)) {
2579 			rc = pci_save_state(nic_data->pci_dev2);
2580 			if (rc) {
2581 				EFX_ERR(efx, "failed to backup PCI state of "
2582 					"secondary function prior to "
2583 					"hardware reset\n");
2584 				goto fail2;
2585 			}
2586 		}
2587 
2588 		EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2589 				     EXT_PHY_RST_DUR, 0x7,
2590 				     SWRST, 1);
2591 	} else {
2592 		int reset_phy = (method == RESET_TYPE_INVISIBLE ?
2593 				 EXCLUDE_FROM_RESET : 0);
2594 
2595 		EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2596 				     EXT_PHY_RST_CTL, reset_phy,
2597 				     PCIE_CORE_RST_CTL, EXCLUDE_FROM_RESET,
2598 				     PCIE_NSTCK_RST_CTL, EXCLUDE_FROM_RESET,
2599 				     PCIE_SD_RST_CTL, EXCLUDE_FROM_RESET,
2600 				     EE_RST_CTL, EXCLUDE_FROM_RESET,
2601 				     EXT_PHY_RST_DUR, 0x7 /* 10ms */,
2602 				     SWRST, 1);
2603 	}
2604 	falcon_write(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
2605 
2606 	EFX_LOG(efx, "waiting for hardware reset\n");
2607 	schedule_timeout_uninterruptible(HZ / 20);
2608 
2609 	/* Restore PCI configuration if needed */
2610 	if (method == RESET_TYPE_WORLD) {
2611 		if (FALCON_IS_DUAL_FUNC(efx)) {
2612 			rc = pci_restore_state(nic_data->pci_dev2);
2613 			if (rc) {
2614 				EFX_ERR(efx, "failed to restore PCI config for "
2615 					"the secondary function\n");
2616 				goto fail3;
2617 			}
2618 		}
2619 		rc = pci_restore_state(efx->pci_dev);
2620 		if (rc) {
2621 			EFX_ERR(efx, "failed to restore PCI config for the "
2622 				"primary function\n");
2623 			goto fail4;
2624 		}
2625 		EFX_LOG(efx, "successfully restored PCI config\n");
2626 	}
2627 
2628 	/* Assert that reset complete */
2629 	falcon_read(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
2630 	if (EFX_OWORD_FIELD(glb_ctl_reg_ker, SWRST) != 0) {
2631 		rc = -ETIMEDOUT;
2632 		EFX_ERR(efx, "timed out waiting for hardware reset\n");
2633 		goto fail5;
2634 	}
2635 	EFX_LOG(efx, "hardware reset complete\n");
2636 
2637 	return 0;
2638 
2639 	/* pci_save_state() and pci_restore_state() MUST be called in pairs */
2640 fail2:
2641 fail3:
2642 	pci_restore_state(efx->pci_dev);
2643 fail1:
2644 fail4:
2645 fail5:
2646 	return rc;
2647 }
2648 
2649 /* Zeroes out the SRAM contents.  This routine must be called in
2650  * process context and is allowed to sleep.
2651  */
falcon_reset_sram(struct efx_nic * efx)2652 static int falcon_reset_sram(struct efx_nic *efx)
2653 {
2654 	efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2655 	int count;
2656 
2657 	/* Set the SRAM wake/sleep GPIO appropriately. */
2658 	falcon_read(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
2659 	EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OEN, 1);
2660 	EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OUT, 1);
2661 	falcon_write(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
2662 
2663 	/* Initiate SRAM reset */
2664 	EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2665 			     SRAM_OOB_BT_INIT_EN, 1,
2666 			     SRM_NUM_BANKS_AND_BANK_SIZE, 0);
2667 	falcon_write(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
2668 
2669 	/* Wait for SRAM reset to complete */
2670 	count = 0;
2671 	do {
2672 		EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
2673 
2674 		/* SRAM reset is slow; expect around 16ms */
2675 		schedule_timeout_uninterruptible(HZ / 50);
2676 
2677 		/* Check for reset complete */
2678 		falcon_read(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
2679 		if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, SRAM_OOB_BT_INIT_EN)) {
2680 			EFX_LOG(efx, "SRAM reset complete\n");
2681 
2682 			return 0;
2683 		}
2684 	} while (++count < 20);	/* wait upto 0.4 sec */
2685 
2686 	EFX_ERR(efx, "timed out waiting for SRAM reset\n");
2687 	return -ETIMEDOUT;
2688 }
2689 
falcon_spi_device_init(struct efx_nic * efx,struct efx_spi_device ** spi_device_ret,unsigned int device_id,u32 device_type)2690 static int falcon_spi_device_init(struct efx_nic *efx,
2691 				  struct efx_spi_device **spi_device_ret,
2692 				  unsigned int device_id, u32 device_type)
2693 {
2694 	struct efx_spi_device *spi_device;
2695 
2696 	if (device_type != 0) {
2697 		spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL);
2698 		if (!spi_device)
2699 			return -ENOMEM;
2700 		spi_device->device_id = device_id;
2701 		spi_device->size =
2702 			1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2703 		spi_device->addr_len =
2704 			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2705 		spi_device->munge_address = (spi_device->size == 1 << 9 &&
2706 					     spi_device->addr_len == 1);
2707 		spi_device->erase_command =
2708 			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2709 		spi_device->erase_size =
2710 			1 << SPI_DEV_TYPE_FIELD(device_type,
2711 						SPI_DEV_TYPE_ERASE_SIZE);
2712 		spi_device->block_size =
2713 			1 << SPI_DEV_TYPE_FIELD(device_type,
2714 						SPI_DEV_TYPE_BLOCK_SIZE);
2715 
2716 		spi_device->efx = efx;
2717 	} else {
2718 		spi_device = NULL;
2719 	}
2720 
2721 	kfree(*spi_device_ret);
2722 	*spi_device_ret = spi_device;
2723 	return 0;
2724 }
2725 
2726 
falcon_remove_spi_devices(struct efx_nic * efx)2727 static void falcon_remove_spi_devices(struct efx_nic *efx)
2728 {
2729 	kfree(efx->spi_eeprom);
2730 	efx->spi_eeprom = NULL;
2731 	kfree(efx->spi_flash);
2732 	efx->spi_flash = NULL;
2733 }
2734 
2735 /* Extract non-volatile configuration */
falcon_probe_nvconfig(struct efx_nic * efx)2736 static int falcon_probe_nvconfig(struct efx_nic *efx)
2737 {
2738 	struct falcon_nvconfig *nvconfig;
2739 	int board_rev;
2740 	int rc;
2741 
2742 	nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2743 	if (!nvconfig)
2744 		return -ENOMEM;
2745 
2746 	rc = falcon_read_nvram(efx, nvconfig);
2747 	if (rc == -EINVAL) {
2748 		EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
2749 		efx->phy_type = PHY_TYPE_NONE;
2750 		efx->mii.phy_id = PHY_ADDR_INVALID;
2751 		board_rev = 0;
2752 		rc = 0;
2753 	} else if (rc) {
2754 		goto fail1;
2755 	} else {
2756 		struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
2757 		struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
2758 
2759 		efx->phy_type = v2->port0_phy_type;
2760 		efx->mii.phy_id = v2->port0_phy_addr;
2761 		board_rev = le16_to_cpu(v2->board_revision);
2762 
2763 		if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2764 			__le32 fl = v3->spi_device_type[EE_SPI_FLASH];
2765 			__le32 ee = v3->spi_device_type[EE_SPI_EEPROM];
2766 			rc = falcon_spi_device_init(efx, &efx->spi_flash,
2767 						    EE_SPI_FLASH,
2768 						    le32_to_cpu(fl));
2769 			if (rc)
2770 				goto fail2;
2771 			rc = falcon_spi_device_init(efx, &efx->spi_eeprom,
2772 						    EE_SPI_EEPROM,
2773 						    le32_to_cpu(ee));
2774 			if (rc)
2775 				goto fail2;
2776 		}
2777 	}
2778 
2779 	/* Read the MAC addresses */
2780 	memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
2781 
2782 	EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mii.phy_id);
2783 
2784 	efx_set_board_info(efx, board_rev);
2785 
2786 	kfree(nvconfig);
2787 	return 0;
2788 
2789  fail2:
2790 	falcon_remove_spi_devices(efx);
2791  fail1:
2792 	kfree(nvconfig);
2793 	return rc;
2794 }
2795 
2796 /* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
2797  * count, port speed).  Set workaround and feature flags accordingly.
2798  */
falcon_probe_nic_variant(struct efx_nic * efx)2799 static int falcon_probe_nic_variant(struct efx_nic *efx)
2800 {
2801 	efx_oword_t altera_build;
2802 	efx_oword_t nic_stat;
2803 
2804 	falcon_read(efx, &altera_build, ALTERA_BUILD_REG_KER);
2805 	if (EFX_OWORD_FIELD(altera_build, VER_ALL)) {
2806 		EFX_ERR(efx, "Falcon FPGA not supported\n");
2807 		return -ENODEV;
2808 	}
2809 
2810 	falcon_read(efx, &nic_stat, NIC_STAT_REG);
2811 
2812 	switch (falcon_rev(efx)) {
2813 	case FALCON_REV_A0:
2814 	case 0xff:
2815 		EFX_ERR(efx, "Falcon rev A0 not supported\n");
2816 		return -ENODEV;
2817 
2818 	case FALCON_REV_A1:
2819 		if (EFX_OWORD_FIELD(nic_stat, STRAP_PCIE) == 0) {
2820 			EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
2821 			return -ENODEV;
2822 		}
2823 		break;
2824 
2825 	case FALCON_REV_B0:
2826 		break;
2827 
2828 	default:
2829 		EFX_ERR(efx, "Unknown Falcon rev %d\n", falcon_rev(efx));
2830 		return -ENODEV;
2831 	}
2832 
2833 	/* Initial assumed speed */
2834 	efx->link_speed = EFX_OWORD_FIELD(nic_stat, STRAP_10G) ? 10000 : 1000;
2835 
2836 	return 0;
2837 }
2838 
2839 /* Probe all SPI devices on the NIC */
falcon_probe_spi_devices(struct efx_nic * efx)2840 static void falcon_probe_spi_devices(struct efx_nic *efx)
2841 {
2842 	efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2843 	int boot_dev;
2844 
2845 	falcon_read(efx, &gpio_ctl, GPIO_CTL_REG_KER);
2846 	falcon_read(efx, &nic_stat, NIC_STAT_REG);
2847 	falcon_read(efx, &ee_vpd_cfg, EE_VPD_CFG_REG_KER);
2848 
2849 	if (EFX_OWORD_FIELD(gpio_ctl, BOOTED_USING_NVDEVICE)) {
2850 		boot_dev = (EFX_OWORD_FIELD(nic_stat, SF_PRST) ?
2851 			    EE_SPI_FLASH : EE_SPI_EEPROM);
2852 		EFX_LOG(efx, "Booted from %s\n",
2853 			boot_dev == EE_SPI_FLASH ? "flash" : "EEPROM");
2854 	} else {
2855 		/* Disable VPD and set clock dividers to safe
2856 		 * values for initial programming. */
2857 		boot_dev = -1;
2858 		EFX_LOG(efx, "Booted from internal ASIC settings;"
2859 			" setting SPI config\n");
2860 		EFX_POPULATE_OWORD_3(ee_vpd_cfg, EE_VPD_EN, 0,
2861 				     /* 125 MHz / 7 ~= 20 MHz */
2862 				     EE_SF_CLOCK_DIV, 7,
2863 				     /* 125 MHz / 63 ~= 2 MHz */
2864 				     EE_EE_CLOCK_DIV, 63);
2865 		falcon_write(efx, &ee_vpd_cfg, EE_VPD_CFG_REG_KER);
2866 	}
2867 
2868 	if (boot_dev == EE_SPI_FLASH)
2869 		falcon_spi_device_init(efx, &efx->spi_flash, EE_SPI_FLASH,
2870 				       default_flash_type);
2871 	if (boot_dev == EE_SPI_EEPROM)
2872 		falcon_spi_device_init(efx, &efx->spi_eeprom, EE_SPI_EEPROM,
2873 				       large_eeprom_type);
2874 }
2875 
falcon_probe_nic(struct efx_nic * efx)2876 int falcon_probe_nic(struct efx_nic *efx)
2877 {
2878 	struct falcon_nic_data *nic_data;
2879 	int rc;
2880 
2881 	/* Allocate storage for hardware specific data */
2882 	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2883 	if (!nic_data)
2884 		return -ENOMEM;
2885 	efx->nic_data = nic_data;
2886 
2887 	/* Determine number of ports etc. */
2888 	rc = falcon_probe_nic_variant(efx);
2889 	if (rc)
2890 		goto fail1;
2891 
2892 	/* Probe secondary function if expected */
2893 	if (FALCON_IS_DUAL_FUNC(efx)) {
2894 		struct pci_dev *dev = pci_dev_get(efx->pci_dev);
2895 
2896 		while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
2897 					     dev))) {
2898 			if (dev->bus == efx->pci_dev->bus &&
2899 			    dev->devfn == efx->pci_dev->devfn + 1) {
2900 				nic_data->pci_dev2 = dev;
2901 				break;
2902 			}
2903 		}
2904 		if (!nic_data->pci_dev2) {
2905 			EFX_ERR(efx, "failed to find secondary function\n");
2906 			rc = -ENODEV;
2907 			goto fail2;
2908 		}
2909 	}
2910 
2911 	/* Now we can reset the NIC */
2912 	rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
2913 	if (rc) {
2914 		EFX_ERR(efx, "failed to reset NIC\n");
2915 		goto fail3;
2916 	}
2917 
2918 	/* Allocate memory for INT_KER */
2919 	rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
2920 	if (rc)
2921 		goto fail4;
2922 	BUG_ON(efx->irq_status.dma_addr & 0x0f);
2923 
2924 	EFX_LOG(efx, "INT_KER at %llx (virt %p phys %lx)\n",
2925 		(unsigned long long)efx->irq_status.dma_addr,
2926 		efx->irq_status.addr, virt_to_phys(efx->irq_status.addr));
2927 
2928 	falcon_probe_spi_devices(efx);
2929 
2930 	/* Read in the non-volatile configuration */
2931 	rc = falcon_probe_nvconfig(efx);
2932 	if (rc)
2933 		goto fail5;
2934 
2935 	/* Initialise I2C adapter */
2936 	efx->i2c_adap.owner = THIS_MODULE;
2937 	nic_data->i2c_data = falcon_i2c_bit_operations;
2938 	nic_data->i2c_data.data = efx;
2939 	efx->i2c_adap.algo_data = &nic_data->i2c_data;
2940 	efx->i2c_adap.dev.parent = &efx->pci_dev->dev;
2941 	strlcpy(efx->i2c_adap.name, "SFC4000 GPIO", sizeof(efx->i2c_adap.name));
2942 	rc = i2c_bit_add_bus(&efx->i2c_adap);
2943 	if (rc)
2944 		goto fail5;
2945 
2946 	return 0;
2947 
2948  fail5:
2949 	falcon_remove_spi_devices(efx);
2950 	falcon_free_buffer(efx, &efx->irq_status);
2951  fail4:
2952  fail3:
2953 	if (nic_data->pci_dev2) {
2954 		pci_dev_put(nic_data->pci_dev2);
2955 		nic_data->pci_dev2 = NULL;
2956 	}
2957  fail2:
2958  fail1:
2959 	kfree(efx->nic_data);
2960 	return rc;
2961 }
2962 
2963 /* This call performs hardware-specific global initialisation, such as
2964  * defining the descriptor cache sizes and number of RSS channels.
2965  * It does not set up any buffers, descriptor rings or event queues.
2966  */
falcon_init_nic(struct efx_nic * efx)2967 int falcon_init_nic(struct efx_nic *efx)
2968 {
2969 	efx_oword_t temp;
2970 	unsigned thresh;
2971 	int rc;
2972 
2973 	/* Use on-chip SRAM */
2974 	falcon_read(efx, &temp, NIC_STAT_REG);
2975 	EFX_SET_OWORD_FIELD(temp, ONCHIP_SRAM, 1);
2976 	falcon_write(efx, &temp, NIC_STAT_REG);
2977 
2978 	/* Set the source of the GMAC clock */
2979 	if (falcon_rev(efx) == FALCON_REV_B0) {
2980 		falcon_read(efx, &temp, GPIO_CTL_REG_KER);
2981 		EFX_SET_OWORD_FIELD(temp, GPIO_USE_NIC_CLK, true);
2982 		falcon_write(efx, &temp, GPIO_CTL_REG_KER);
2983 	}
2984 
2985 	/* Set buffer table mode */
2986 	EFX_POPULATE_OWORD_1(temp, BUF_TBL_MODE, BUF_TBL_MODE_FULL);
2987 	falcon_write(efx, &temp, BUF_TBL_CFG_REG_KER);
2988 
2989 	rc = falcon_reset_sram(efx);
2990 	if (rc)
2991 		return rc;
2992 
2993 	/* Set positions of descriptor caches in SRAM. */
2994 	EFX_POPULATE_OWORD_1(temp, SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8);
2995 	falcon_write(efx, &temp, SRM_TX_DC_CFG_REG_KER);
2996 	EFX_POPULATE_OWORD_1(temp, SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8);
2997 	falcon_write(efx, &temp, SRM_RX_DC_CFG_REG_KER);
2998 
2999 	/* Set TX descriptor cache size. */
3000 	BUILD_BUG_ON(TX_DC_ENTRIES != (16 << TX_DC_ENTRIES_ORDER));
3001 	EFX_POPULATE_OWORD_1(temp, TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
3002 	falcon_write(efx, &temp, TX_DC_CFG_REG_KER);
3003 
3004 	/* Set RX descriptor cache size.  Set low watermark to size-8, as
3005 	 * this allows most efficient prefetching.
3006 	 */
3007 	BUILD_BUG_ON(RX_DC_ENTRIES != (16 << RX_DC_ENTRIES_ORDER));
3008 	EFX_POPULATE_OWORD_1(temp, RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
3009 	falcon_write(efx, &temp, RX_DC_CFG_REG_KER);
3010 	EFX_POPULATE_OWORD_1(temp, RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
3011 	falcon_write(efx, &temp, RX_DC_PF_WM_REG_KER);
3012 
3013 	/* Clear the parity enables on the TX data fifos as
3014 	 * they produce false parity errors because of timing issues
3015 	 */
3016 	if (EFX_WORKAROUND_5129(efx)) {
3017 		falcon_read(efx, &temp, SPARE_REG_KER);
3018 		EFX_SET_OWORD_FIELD(temp, MEM_PERR_EN_TX_DATA, 0);
3019 		falcon_write(efx, &temp, SPARE_REG_KER);
3020 	}
3021 
3022 	/* Enable all the genuinely fatal interrupts.  (They are still
3023 	 * masked by the overall interrupt mask, controlled by
3024 	 * falcon_interrupts()).
3025 	 *
3026 	 * Note: All other fatal interrupts are enabled
3027 	 */
3028 	EFX_POPULATE_OWORD_3(temp,
3029 			     ILL_ADR_INT_KER_EN, 1,
3030 			     RBUF_OWN_INT_KER_EN, 1,
3031 			     TBUF_OWN_INT_KER_EN, 1);
3032 	EFX_INVERT_OWORD(temp);
3033 	falcon_write(efx, &temp, FATAL_INTR_REG_KER);
3034 
3035 	if (EFX_WORKAROUND_7244(efx)) {
3036 		falcon_read(efx, &temp, RX_FILTER_CTL_REG);
3037 		EFX_SET_OWORD_FIELD(temp, UDP_FULL_SRCH_LIMIT, 8);
3038 		EFX_SET_OWORD_FIELD(temp, UDP_WILD_SRCH_LIMIT, 8);
3039 		EFX_SET_OWORD_FIELD(temp, TCP_FULL_SRCH_LIMIT, 8);
3040 		EFX_SET_OWORD_FIELD(temp, TCP_WILD_SRCH_LIMIT, 8);
3041 		falcon_write(efx, &temp, RX_FILTER_CTL_REG);
3042 	}
3043 
3044 	falcon_setup_rss_indir_table(efx);
3045 
3046 	/* Setup RX.  Wait for descriptor is broken and must
3047 	 * be disabled.  RXDP recovery shouldn't be needed, but is.
3048 	 */
3049 	falcon_read(efx, &temp, RX_SELF_RST_REG_KER);
3050 	EFX_SET_OWORD_FIELD(temp, RX_NODESC_WAIT_DIS, 1);
3051 	EFX_SET_OWORD_FIELD(temp, RX_RECOVERY_EN, 1);
3052 	if (EFX_WORKAROUND_5583(efx))
3053 		EFX_SET_OWORD_FIELD(temp, RX_ISCSI_DIS, 1);
3054 	falcon_write(efx, &temp, RX_SELF_RST_REG_KER);
3055 
3056 	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
3057 	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
3058 	 */
3059 	falcon_read(efx, &temp, TX_CFG2_REG_KER);
3060 	EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER, 0xfe);
3061 	EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER_EN, 1);
3062 	EFX_SET_OWORD_FIELD(temp, TX_ONE_PKT_PER_Q, 1);
3063 	EFX_SET_OWORD_FIELD(temp, TX_CSR_PUSH_EN, 0);
3064 	EFX_SET_OWORD_FIELD(temp, TX_DIS_NON_IP_EV, 1);
3065 	/* Enable SW_EV to inherit in char driver - assume harmless here */
3066 	EFX_SET_OWORD_FIELD(temp, TX_SW_EV_EN, 1);
3067 	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
3068 	EFX_SET_OWORD_FIELD(temp, TX_PREF_THRESHOLD, 2);
3069 	/* Squash TX of packets of 16 bytes or less */
3070 	if (falcon_rev(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx))
3071 		EFX_SET_OWORD_FIELD(temp, TX_FLUSH_MIN_LEN_EN_B0, 1);
3072 	falcon_write(efx, &temp, TX_CFG2_REG_KER);
3073 
3074 	/* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
3075 	 * descriptors (which is bad).
3076 	 */
3077 	falcon_read(efx, &temp, TX_CFG_REG_KER);
3078 	EFX_SET_OWORD_FIELD(temp, TX_NO_EOP_DISC_EN, 0);
3079 	falcon_write(efx, &temp, TX_CFG_REG_KER);
3080 
3081 	/* RX config */
3082 	falcon_read(efx, &temp, RX_CFG_REG_KER);
3083 	EFX_SET_OWORD_FIELD_VER(efx, temp, RX_DESC_PUSH_EN, 0);
3084 	if (EFX_WORKAROUND_7575(efx))
3085 		EFX_SET_OWORD_FIELD_VER(efx, temp, RX_USR_BUF_SIZE,
3086 					(3 * 4096) / 32);
3087 	if (falcon_rev(efx) >= FALCON_REV_B0)
3088 		EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 1);
3089 
3090 	/* RX FIFO flow control thresholds */
3091 	thresh = ((rx_xon_thresh_bytes >= 0) ?
3092 		  rx_xon_thresh_bytes : efx->type->rx_xon_thresh);
3093 	EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_MAC_TH, thresh / 256);
3094 	thresh = ((rx_xoff_thresh_bytes >= 0) ?
3095 		  rx_xoff_thresh_bytes : efx->type->rx_xoff_thresh);
3096 	EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_MAC_TH, thresh / 256);
3097 	/* RX control FIFO thresholds [32 entries] */
3098 	EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_TX_TH, 20);
3099 	EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_TX_TH, 25);
3100 	falcon_write(efx, &temp, RX_CFG_REG_KER);
3101 
3102 	/* Set destination of both TX and RX Flush events */
3103 	if (falcon_rev(efx) >= FALCON_REV_B0) {
3104 		EFX_POPULATE_OWORD_1(temp, FLS_EVQ_ID, 0);
3105 		falcon_write(efx, &temp, DP_CTRL_REG);
3106 	}
3107 
3108 	return 0;
3109 }
3110 
falcon_remove_nic(struct efx_nic * efx)3111 void falcon_remove_nic(struct efx_nic *efx)
3112 {
3113 	struct falcon_nic_data *nic_data = efx->nic_data;
3114 	int rc;
3115 
3116 	rc = i2c_del_adapter(&efx->i2c_adap);
3117 	BUG_ON(rc);
3118 
3119 	falcon_remove_spi_devices(efx);
3120 	falcon_free_buffer(efx, &efx->irq_status);
3121 
3122 	falcon_reset_hw(efx, RESET_TYPE_ALL);
3123 
3124 	/* Release the second function after the reset */
3125 	if (nic_data->pci_dev2) {
3126 		pci_dev_put(nic_data->pci_dev2);
3127 		nic_data->pci_dev2 = NULL;
3128 	}
3129 
3130 	/* Tear down the private nic state */
3131 	kfree(efx->nic_data);
3132 	efx->nic_data = NULL;
3133 }
3134 
falcon_update_nic_stats(struct efx_nic * efx)3135 void falcon_update_nic_stats(struct efx_nic *efx)
3136 {
3137 	efx_oword_t cnt;
3138 
3139 	falcon_read(efx, &cnt, RX_NODESC_DROP_REG_KER);
3140 	efx->n_rx_nodesc_drop_cnt += EFX_OWORD_FIELD(cnt, RX_NODESC_DROP_CNT);
3141 }
3142 
3143 /**************************************************************************
3144  *
3145  * Revision-dependent attributes used by efx.c
3146  *
3147  **************************************************************************
3148  */
3149 
3150 struct efx_nic_type falcon_a_nic_type = {
3151 	.mem_bar = 2,
3152 	.mem_map_size = 0x20000,
3153 	.txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_A1,
3154 	.rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_A1,
3155 	.buf_tbl_base = BUF_TBL_KER_A1,
3156 	.evq_ptr_tbl_base = EVQ_PTR_TBL_KER_A1,
3157 	.evq_rptr_tbl_base = EVQ_RPTR_REG_KER_A1,
3158 	.txd_ring_mask = FALCON_TXD_RING_MASK,
3159 	.rxd_ring_mask = FALCON_RXD_RING_MASK,
3160 	.evq_size = FALCON_EVQ_SIZE,
3161 	.max_dma_mask = FALCON_DMA_MASK,
3162 	.tx_dma_mask = FALCON_TX_DMA_MASK,
3163 	.bug5391_mask = 0xf,
3164 	.rx_xoff_thresh = 2048,
3165 	.rx_xon_thresh = 512,
3166 	.rx_buffer_padding = 0x24,
3167 	.max_interrupt_mode = EFX_INT_MODE_MSI,
3168 	.phys_addr_channels = 4,
3169 };
3170 
3171 struct efx_nic_type falcon_b_nic_type = {
3172 	.mem_bar = 2,
3173 	/* Map everything up to and including the RSS indirection
3174 	 * table.  Don't map MSI-X table, MSI-X PBA since Linux
3175 	 * requires that they not be mapped.  */
3176 	.mem_map_size = RX_RSS_INDIR_TBL_B0 + 0x800,
3177 	.txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_B0,
3178 	.rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_B0,
3179 	.buf_tbl_base = BUF_TBL_KER_B0,
3180 	.evq_ptr_tbl_base = EVQ_PTR_TBL_KER_B0,
3181 	.evq_rptr_tbl_base = EVQ_RPTR_REG_KER_B0,
3182 	.txd_ring_mask = FALCON_TXD_RING_MASK,
3183 	.rxd_ring_mask = FALCON_RXD_RING_MASK,
3184 	.evq_size = FALCON_EVQ_SIZE,
3185 	.max_dma_mask = FALCON_DMA_MASK,
3186 	.tx_dma_mask = FALCON_TX_DMA_MASK,
3187 	.bug5391_mask = 0,
3188 	.rx_xoff_thresh = 54272, /* ~80Kb - 3*max MTU */
3189 	.rx_xon_thresh = 27648,  /* ~3*max MTU */
3190 	.rx_buffer_padding = 0,
3191 	.max_interrupt_mode = EFX_INT_MODE_MSIX,
3192 	.phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
3193 				   * interrupt handler only supports 32
3194 				   * channels */
3195 };
3196 
3197