1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129
130 #include "net-sysfs.h"
131
132 /* Instead of increasing this, you should create a hash table. */
133 #define MAX_GRO_SKBS 8
134
135 /* This should be increased if a protocol with a bigger head is added. */
136 #define GRO_MAX_HEAD (MAX_HEADER + 128)
137
138 /*
139 * The list of packet types we will receive (as opposed to discard)
140 * and the routines to invoke.
141 *
142 * Why 16. Because with 16 the only overlap we get on a hash of the
143 * low nibble of the protocol value is RARP/SNAP/X.25.
144 *
145 * NOTE: That is no longer true with the addition of VLAN tags. Not
146 * sure which should go first, but I bet it won't make much
147 * difference if we are running VLANs. The good news is that
148 * this protocol won't be in the list unless compiled in, so
149 * the average user (w/out VLANs) will not be adversely affected.
150 * --BLG
151 *
152 * 0800 IP
153 * 8100 802.1Q VLAN
154 * 0001 802.3
155 * 0002 AX.25
156 * 0004 802.2
157 * 8035 RARP
158 * 0005 SNAP
159 * 0805 X.25
160 * 0806 ARP
161 * 8137 IPX
162 * 0009 Localtalk
163 * 86DD IPv6
164 */
165
166 #define PTYPE_HASH_SIZE (16)
167 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
168
169 static DEFINE_SPINLOCK(ptype_lock);
170 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
171 static struct list_head ptype_all __read_mostly; /* Taps */
172
173 /*
174 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
175 * semaphore.
176 *
177 * Pure readers hold dev_base_lock for reading.
178 *
179 * Writers must hold the rtnl semaphore while they loop through the
180 * dev_base_head list, and hold dev_base_lock for writing when they do the
181 * actual updates. This allows pure readers to access the list even
182 * while a writer is preparing to update it.
183 *
184 * To put it another way, dev_base_lock is held for writing only to
185 * protect against pure readers; the rtnl semaphore provides the
186 * protection against other writers.
187 *
188 * See, for example usages, register_netdevice() and
189 * unregister_netdevice(), which must be called with the rtnl
190 * semaphore held.
191 */
192 DEFINE_RWLOCK(dev_base_lock);
193
194 EXPORT_SYMBOL(dev_base_lock);
195
196 #define NETDEV_HASHBITS 8
197 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
198
dev_name_hash(struct net * net,const char * name)199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
202 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
203 }
204
dev_index_hash(struct net * net,int ifindex)205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
208 }
209
210 /* Device list insertion */
list_netdevice(struct net_device * dev)211 static int list_netdevice(struct net_device *dev)
212 {
213 struct net *net = dev_net(dev);
214
215 ASSERT_RTNL();
216
217 write_lock_bh(&dev_base_lock);
218 list_add_tail(&dev->dev_list, &net->dev_base_head);
219 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
220 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
221 write_unlock_bh(&dev_base_lock);
222 return 0;
223 }
224
225 /* Device list removal */
unlist_netdevice(struct net_device * dev)226 static void unlist_netdevice(struct net_device *dev)
227 {
228 ASSERT_RTNL();
229
230 /* Unlink dev from the device chain */
231 write_lock_bh(&dev_base_lock);
232 list_del(&dev->dev_list);
233 hlist_del(&dev->name_hlist);
234 hlist_del(&dev->index_hlist);
235 write_unlock_bh(&dev_base_lock);
236 }
237
238 /*
239 * Our notifier list
240 */
241
242 static RAW_NOTIFIER_HEAD(netdev_chain);
243
244 /*
245 * Device drivers call our routines to queue packets here. We empty the
246 * queue in the local softnet handler.
247 */
248
249 DEFINE_PER_CPU(struct softnet_data, softnet_data);
250
251 #ifdef CONFIG_LOCKDEP
252 /*
253 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
254 * according to dev->type
255 */
256 static const unsigned short netdev_lock_type[] =
257 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
258 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
259 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
260 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
261 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
262 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
263 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
264 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
265 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
266 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
267 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
268 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
269 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
270 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
271 ARPHRD_PHONET_PIPE, ARPHRD_VOID, ARPHRD_NONE};
272
273 static const char *netdev_lock_name[] =
274 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
275 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
276 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
277 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
278 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
279 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
280 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
281 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
282 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
283 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
284 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
285 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
286 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
287 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
288 "_xmit_PHONET_PIPE", "_xmit_VOID", "_xmit_NONE"};
289
290 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
291 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
292
netdev_lock_pos(unsigned short dev_type)293 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
294 {
295 int i;
296
297 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
298 if (netdev_lock_type[i] == dev_type)
299 return i;
300 /* the last key is used by default */
301 return ARRAY_SIZE(netdev_lock_type) - 1;
302 }
303
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)304 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
305 unsigned short dev_type)
306 {
307 int i;
308
309 i = netdev_lock_pos(dev_type);
310 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
311 netdev_lock_name[i]);
312 }
313
netdev_set_addr_lockdep_class(struct net_device * dev)314 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
315 {
316 int i;
317
318 i = netdev_lock_pos(dev->type);
319 lockdep_set_class_and_name(&dev->addr_list_lock,
320 &netdev_addr_lock_key[i],
321 netdev_lock_name[i]);
322 }
323 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
326 {
327 }
netdev_set_addr_lockdep_class(struct net_device * dev)328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329 {
330 }
331 #endif
332
333 /*******************************************************************************
334
335 Protocol management and registration routines
336
337 *******************************************************************************/
338
339 /*
340 * Add a protocol ID to the list. Now that the input handler is
341 * smarter we can dispense with all the messy stuff that used to be
342 * here.
343 *
344 * BEWARE!!! Protocol handlers, mangling input packets,
345 * MUST BE last in hash buckets and checking protocol handlers
346 * MUST start from promiscuous ptype_all chain in net_bh.
347 * It is true now, do not change it.
348 * Explanation follows: if protocol handler, mangling packet, will
349 * be the first on list, it is not able to sense, that packet
350 * is cloned and should be copied-on-write, so that it will
351 * change it and subsequent readers will get broken packet.
352 * --ANK (980803)
353 */
354
355 /**
356 * dev_add_pack - add packet handler
357 * @pt: packet type declaration
358 *
359 * Add a protocol handler to the networking stack. The passed &packet_type
360 * is linked into kernel lists and may not be freed until it has been
361 * removed from the kernel lists.
362 *
363 * This call does not sleep therefore it can not
364 * guarantee all CPU's that are in middle of receiving packets
365 * will see the new packet type (until the next received packet).
366 */
367
dev_add_pack(struct packet_type * pt)368 void dev_add_pack(struct packet_type *pt)
369 {
370 int hash;
371
372 spin_lock_bh(&ptype_lock);
373 if (pt->type == htons(ETH_P_ALL))
374 list_add_rcu(&pt->list, &ptype_all);
375 else {
376 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
377 list_add_rcu(&pt->list, &ptype_base[hash]);
378 }
379 spin_unlock_bh(&ptype_lock);
380 }
381
382 /**
383 * __dev_remove_pack - remove packet handler
384 * @pt: packet type declaration
385 *
386 * Remove a protocol handler that was previously added to the kernel
387 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
388 * from the kernel lists and can be freed or reused once this function
389 * returns.
390 *
391 * The packet type might still be in use by receivers
392 * and must not be freed until after all the CPU's have gone
393 * through a quiescent state.
394 */
__dev_remove_pack(struct packet_type * pt)395 void __dev_remove_pack(struct packet_type *pt)
396 {
397 struct list_head *head;
398 struct packet_type *pt1;
399
400 spin_lock_bh(&ptype_lock);
401
402 if (pt->type == htons(ETH_P_ALL))
403 head = &ptype_all;
404 else
405 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
406
407 list_for_each_entry(pt1, head, list) {
408 if (pt == pt1) {
409 list_del_rcu(&pt->list);
410 goto out;
411 }
412 }
413
414 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
415 out:
416 spin_unlock_bh(&ptype_lock);
417 }
418 /**
419 * dev_remove_pack - remove packet handler
420 * @pt: packet type declaration
421 *
422 * Remove a protocol handler that was previously added to the kernel
423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
424 * from the kernel lists and can be freed or reused once this function
425 * returns.
426 *
427 * This call sleeps to guarantee that no CPU is looking at the packet
428 * type after return.
429 */
dev_remove_pack(struct packet_type * pt)430 void dev_remove_pack(struct packet_type *pt)
431 {
432 __dev_remove_pack(pt);
433
434 synchronize_net();
435 }
436
437 /******************************************************************************
438
439 Device Boot-time Settings Routines
440
441 *******************************************************************************/
442
443 /* Boot time configuration table */
444 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
445
446 /**
447 * netdev_boot_setup_add - add new setup entry
448 * @name: name of the device
449 * @map: configured settings for the device
450 *
451 * Adds new setup entry to the dev_boot_setup list. The function
452 * returns 0 on error and 1 on success. This is a generic routine to
453 * all netdevices.
454 */
netdev_boot_setup_add(char * name,struct ifmap * map)455 static int netdev_boot_setup_add(char *name, struct ifmap *map)
456 {
457 struct netdev_boot_setup *s;
458 int i;
459
460 s = dev_boot_setup;
461 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
462 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
463 memset(s[i].name, 0, sizeof(s[i].name));
464 strlcpy(s[i].name, name, IFNAMSIZ);
465 memcpy(&s[i].map, map, sizeof(s[i].map));
466 break;
467 }
468 }
469
470 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
471 }
472
473 /**
474 * netdev_boot_setup_check - check boot time settings
475 * @dev: the netdevice
476 *
477 * Check boot time settings for the device.
478 * The found settings are set for the device to be used
479 * later in the device probing.
480 * Returns 0 if no settings found, 1 if they are.
481 */
netdev_boot_setup_check(struct net_device * dev)482 int netdev_boot_setup_check(struct net_device *dev)
483 {
484 struct netdev_boot_setup *s = dev_boot_setup;
485 int i;
486
487 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
488 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
489 !strcmp(dev->name, s[i].name)) {
490 dev->irq = s[i].map.irq;
491 dev->base_addr = s[i].map.base_addr;
492 dev->mem_start = s[i].map.mem_start;
493 dev->mem_end = s[i].map.mem_end;
494 return 1;
495 }
496 }
497 return 0;
498 }
499
500
501 /**
502 * netdev_boot_base - get address from boot time settings
503 * @prefix: prefix for network device
504 * @unit: id for network device
505 *
506 * Check boot time settings for the base address of device.
507 * The found settings are set for the device to be used
508 * later in the device probing.
509 * Returns 0 if no settings found.
510 */
netdev_boot_base(const char * prefix,int unit)511 unsigned long netdev_boot_base(const char *prefix, int unit)
512 {
513 const struct netdev_boot_setup *s = dev_boot_setup;
514 char name[IFNAMSIZ];
515 int i;
516
517 sprintf(name, "%s%d", prefix, unit);
518
519 /*
520 * If device already registered then return base of 1
521 * to indicate not to probe for this interface
522 */
523 if (__dev_get_by_name(&init_net, name))
524 return 1;
525
526 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
527 if (!strcmp(name, s[i].name))
528 return s[i].map.base_addr;
529 return 0;
530 }
531
532 /*
533 * Saves at boot time configured settings for any netdevice.
534 */
netdev_boot_setup(char * str)535 int __init netdev_boot_setup(char *str)
536 {
537 int ints[5];
538 struct ifmap map;
539
540 str = get_options(str, ARRAY_SIZE(ints), ints);
541 if (!str || !*str)
542 return 0;
543
544 /* Save settings */
545 memset(&map, 0, sizeof(map));
546 if (ints[0] > 0)
547 map.irq = ints[1];
548 if (ints[0] > 1)
549 map.base_addr = ints[2];
550 if (ints[0] > 2)
551 map.mem_start = ints[3];
552 if (ints[0] > 3)
553 map.mem_end = ints[4];
554
555 /* Add new entry to the list */
556 return netdev_boot_setup_add(str, &map);
557 }
558
559 __setup("netdev=", netdev_boot_setup);
560
561 /*******************************************************************************
562
563 Device Interface Subroutines
564
565 *******************************************************************************/
566
567 /**
568 * __dev_get_by_name - find a device by its name
569 * @net: the applicable net namespace
570 * @name: name to find
571 *
572 * Find an interface by name. Must be called under RTNL semaphore
573 * or @dev_base_lock. If the name is found a pointer to the device
574 * is returned. If the name is not found then %NULL is returned. The
575 * reference counters are not incremented so the caller must be
576 * careful with locks.
577 */
578
__dev_get_by_name(struct net * net,const char * name)579 struct net_device *__dev_get_by_name(struct net *net, const char *name)
580 {
581 struct hlist_node *p;
582
583 hlist_for_each(p, dev_name_hash(net, name)) {
584 struct net_device *dev
585 = hlist_entry(p, struct net_device, name_hlist);
586 if (!strncmp(dev->name, name, IFNAMSIZ))
587 return dev;
588 }
589 return NULL;
590 }
591
592 /**
593 * dev_get_by_name - find a device by its name
594 * @net: the applicable net namespace
595 * @name: name to find
596 *
597 * Find an interface by name. This can be called from any
598 * context and does its own locking. The returned handle has
599 * the usage count incremented and the caller must use dev_put() to
600 * release it when it is no longer needed. %NULL is returned if no
601 * matching device is found.
602 */
603
dev_get_by_name(struct net * net,const char * name)604 struct net_device *dev_get_by_name(struct net *net, const char *name)
605 {
606 struct net_device *dev;
607
608 read_lock(&dev_base_lock);
609 dev = __dev_get_by_name(net, name);
610 if (dev)
611 dev_hold(dev);
612 read_unlock(&dev_base_lock);
613 return dev;
614 }
615
616 /**
617 * __dev_get_by_index - find a device by its ifindex
618 * @net: the applicable net namespace
619 * @ifindex: index of device
620 *
621 * Search for an interface by index. Returns %NULL if the device
622 * is not found or a pointer to the device. The device has not
623 * had its reference counter increased so the caller must be careful
624 * about locking. The caller must hold either the RTNL semaphore
625 * or @dev_base_lock.
626 */
627
__dev_get_by_index(struct net * net,int ifindex)628 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
629 {
630 struct hlist_node *p;
631
632 hlist_for_each(p, dev_index_hash(net, ifindex)) {
633 struct net_device *dev
634 = hlist_entry(p, struct net_device, index_hlist);
635 if (dev->ifindex == ifindex)
636 return dev;
637 }
638 return NULL;
639 }
640
641
642 /**
643 * dev_get_by_index - find a device by its ifindex
644 * @net: the applicable net namespace
645 * @ifindex: index of device
646 *
647 * Search for an interface by index. Returns NULL if the device
648 * is not found or a pointer to the device. The device returned has
649 * had a reference added and the pointer is safe until the user calls
650 * dev_put to indicate they have finished with it.
651 */
652
dev_get_by_index(struct net * net,int ifindex)653 struct net_device *dev_get_by_index(struct net *net, int ifindex)
654 {
655 struct net_device *dev;
656
657 read_lock(&dev_base_lock);
658 dev = __dev_get_by_index(net, ifindex);
659 if (dev)
660 dev_hold(dev);
661 read_unlock(&dev_base_lock);
662 return dev;
663 }
664
665 /**
666 * dev_getbyhwaddr - find a device by its hardware address
667 * @net: the applicable net namespace
668 * @type: media type of device
669 * @ha: hardware address
670 *
671 * Search for an interface by MAC address. Returns NULL if the device
672 * is not found or a pointer to the device. The caller must hold the
673 * rtnl semaphore. The returned device has not had its ref count increased
674 * and the caller must therefore be careful about locking
675 *
676 * BUGS:
677 * If the API was consistent this would be __dev_get_by_hwaddr
678 */
679
dev_getbyhwaddr(struct net * net,unsigned short type,char * ha)680 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
681 {
682 struct net_device *dev;
683
684 ASSERT_RTNL();
685
686 for_each_netdev(net, dev)
687 if (dev->type == type &&
688 !memcmp(dev->dev_addr, ha, dev->addr_len))
689 return dev;
690
691 return NULL;
692 }
693
694 EXPORT_SYMBOL(dev_getbyhwaddr);
695
__dev_getfirstbyhwtype(struct net * net,unsigned short type)696 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
697 {
698 struct net_device *dev;
699
700 ASSERT_RTNL();
701 for_each_netdev(net, dev)
702 if (dev->type == type)
703 return dev;
704
705 return NULL;
706 }
707
708 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
709
dev_getfirstbyhwtype(struct net * net,unsigned short type)710 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
711 {
712 struct net_device *dev;
713
714 rtnl_lock();
715 dev = __dev_getfirstbyhwtype(net, type);
716 if (dev)
717 dev_hold(dev);
718 rtnl_unlock();
719 return dev;
720 }
721
722 EXPORT_SYMBOL(dev_getfirstbyhwtype);
723
724 /**
725 * dev_get_by_flags - find any device with given flags
726 * @net: the applicable net namespace
727 * @if_flags: IFF_* values
728 * @mask: bitmask of bits in if_flags to check
729 *
730 * Search for any interface with the given flags. Returns NULL if a device
731 * is not found or a pointer to the device. The device returned has
732 * had a reference added and the pointer is safe until the user calls
733 * dev_put to indicate they have finished with it.
734 */
735
dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)736 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
737 {
738 struct net_device *dev, *ret;
739
740 ret = NULL;
741 read_lock(&dev_base_lock);
742 for_each_netdev(net, dev) {
743 if (((dev->flags ^ if_flags) & mask) == 0) {
744 dev_hold(dev);
745 ret = dev;
746 break;
747 }
748 }
749 read_unlock(&dev_base_lock);
750 return ret;
751 }
752
753 /**
754 * dev_valid_name - check if name is okay for network device
755 * @name: name string
756 *
757 * Network device names need to be valid file names to
758 * to allow sysfs to work. We also disallow any kind of
759 * whitespace.
760 */
dev_valid_name(const char * name)761 int dev_valid_name(const char *name)
762 {
763 if (*name == '\0')
764 return 0;
765 if (strlen(name) >= IFNAMSIZ)
766 return 0;
767 if (!strcmp(name, ".") || !strcmp(name, ".."))
768 return 0;
769
770 while (*name) {
771 if (*name == '/' || isspace(*name))
772 return 0;
773 name++;
774 }
775 return 1;
776 }
777
778 /**
779 * __dev_alloc_name - allocate a name for a device
780 * @net: network namespace to allocate the device name in
781 * @name: name format string
782 * @buf: scratch buffer and result name string
783 *
784 * Passed a format string - eg "lt%d" it will try and find a suitable
785 * id. It scans list of devices to build up a free map, then chooses
786 * the first empty slot. The caller must hold the dev_base or rtnl lock
787 * while allocating the name and adding the device in order to avoid
788 * duplicates.
789 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
790 * Returns the number of the unit assigned or a negative errno code.
791 */
792
__dev_alloc_name(struct net * net,const char * name,char * buf)793 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
794 {
795 int i = 0;
796 const char *p;
797 const int max_netdevices = 8*PAGE_SIZE;
798 unsigned long *inuse;
799 struct net_device *d;
800
801 p = strnchr(name, IFNAMSIZ-1, '%');
802 if (p) {
803 /*
804 * Verify the string as this thing may have come from
805 * the user. There must be either one "%d" and no other "%"
806 * characters.
807 */
808 if (p[1] != 'd' || strchr(p + 2, '%'))
809 return -EINVAL;
810
811 /* Use one page as a bit array of possible slots */
812 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
813 if (!inuse)
814 return -ENOMEM;
815
816 for_each_netdev(net, d) {
817 if (!sscanf(d->name, name, &i))
818 continue;
819 if (i < 0 || i >= max_netdevices)
820 continue;
821
822 /* avoid cases where sscanf is not exact inverse of printf */
823 snprintf(buf, IFNAMSIZ, name, i);
824 if (!strncmp(buf, d->name, IFNAMSIZ))
825 set_bit(i, inuse);
826 }
827
828 i = find_first_zero_bit(inuse, max_netdevices);
829 free_page((unsigned long) inuse);
830 }
831
832 snprintf(buf, IFNAMSIZ, name, i);
833 if (!__dev_get_by_name(net, buf))
834 return i;
835
836 /* It is possible to run out of possible slots
837 * when the name is long and there isn't enough space left
838 * for the digits, or if all bits are used.
839 */
840 return -ENFILE;
841 }
842
843 /**
844 * dev_alloc_name - allocate a name for a device
845 * @dev: device
846 * @name: name format string
847 *
848 * Passed a format string - eg "lt%d" it will try and find a suitable
849 * id. It scans list of devices to build up a free map, then chooses
850 * the first empty slot. The caller must hold the dev_base or rtnl lock
851 * while allocating the name and adding the device in order to avoid
852 * duplicates.
853 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
854 * Returns the number of the unit assigned or a negative errno code.
855 */
856
dev_alloc_name(struct net_device * dev,const char * name)857 int dev_alloc_name(struct net_device *dev, const char *name)
858 {
859 char buf[IFNAMSIZ];
860 struct net *net;
861 int ret;
862
863 BUG_ON(!dev_net(dev));
864 net = dev_net(dev);
865 ret = __dev_alloc_name(net, name, buf);
866 if (ret >= 0)
867 strlcpy(dev->name, buf, IFNAMSIZ);
868 return ret;
869 }
870
871
872 /**
873 * dev_change_name - change name of a device
874 * @dev: device
875 * @newname: name (or format string) must be at least IFNAMSIZ
876 *
877 * Change name of a device, can pass format strings "eth%d".
878 * for wildcarding.
879 */
dev_change_name(struct net_device * dev,const char * newname)880 int dev_change_name(struct net_device *dev, const char *newname)
881 {
882 char oldname[IFNAMSIZ];
883 int err = 0;
884 int ret;
885 struct net *net;
886
887 ASSERT_RTNL();
888 BUG_ON(!dev_net(dev));
889
890 net = dev_net(dev);
891 if (dev->flags & IFF_UP)
892 return -EBUSY;
893
894 if (!dev_valid_name(newname))
895 return -EINVAL;
896
897 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
898 return 0;
899
900 memcpy(oldname, dev->name, IFNAMSIZ);
901
902 if (strchr(newname, '%')) {
903 err = dev_alloc_name(dev, newname);
904 if (err < 0)
905 return err;
906 }
907 else if (__dev_get_by_name(net, newname))
908 return -EEXIST;
909 else
910 strlcpy(dev->name, newname, IFNAMSIZ);
911
912 rollback:
913 /* For now only devices in the initial network namespace
914 * are in sysfs.
915 */
916 if (net == &init_net) {
917 ret = device_rename(&dev->dev, dev->name);
918 if (ret) {
919 memcpy(dev->name, oldname, IFNAMSIZ);
920 return ret;
921 }
922 }
923
924 write_lock_bh(&dev_base_lock);
925 hlist_del(&dev->name_hlist);
926 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
927 write_unlock_bh(&dev_base_lock);
928
929 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
930 ret = notifier_to_errno(ret);
931
932 if (ret) {
933 if (err) {
934 printk(KERN_ERR
935 "%s: name change rollback failed: %d.\n",
936 dev->name, ret);
937 } else {
938 err = ret;
939 memcpy(dev->name, oldname, IFNAMSIZ);
940 goto rollback;
941 }
942 }
943
944 return err;
945 }
946
947 /**
948 * dev_set_alias - change ifalias of a device
949 * @dev: device
950 * @alias: name up to IFALIASZ
951 * @len: limit of bytes to copy from info
952 *
953 * Set ifalias for a device,
954 */
dev_set_alias(struct net_device * dev,const char * alias,size_t len)955 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
956 {
957 ASSERT_RTNL();
958
959 if (len >= IFALIASZ)
960 return -EINVAL;
961
962 if (!len) {
963 if (dev->ifalias) {
964 kfree(dev->ifalias);
965 dev->ifalias = NULL;
966 }
967 return 0;
968 }
969
970 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL);
971 if (!dev->ifalias)
972 return -ENOMEM;
973
974 strlcpy(dev->ifalias, alias, len+1);
975 return len;
976 }
977
978
979 /**
980 * netdev_features_change - device changes features
981 * @dev: device to cause notification
982 *
983 * Called to indicate a device has changed features.
984 */
netdev_features_change(struct net_device * dev)985 void netdev_features_change(struct net_device *dev)
986 {
987 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
988 }
989 EXPORT_SYMBOL(netdev_features_change);
990
991 /**
992 * netdev_state_change - device changes state
993 * @dev: device to cause notification
994 *
995 * Called to indicate a device has changed state. This function calls
996 * the notifier chains for netdev_chain and sends a NEWLINK message
997 * to the routing socket.
998 */
netdev_state_change(struct net_device * dev)999 void netdev_state_change(struct net_device *dev)
1000 {
1001 if (dev->flags & IFF_UP) {
1002 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1003 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1004 }
1005 }
1006
netdev_bonding_change(struct net_device * dev)1007 void netdev_bonding_change(struct net_device *dev)
1008 {
1009 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
1010 }
1011 EXPORT_SYMBOL(netdev_bonding_change);
1012
1013 /**
1014 * dev_load - load a network module
1015 * @net: the applicable net namespace
1016 * @name: name of interface
1017 *
1018 * If a network interface is not present and the process has suitable
1019 * privileges this function loads the module. If module loading is not
1020 * available in this kernel then it becomes a nop.
1021 */
1022
dev_load(struct net * net,const char * name)1023 void dev_load(struct net *net, const char *name)
1024 {
1025 struct net_device *dev;
1026
1027 read_lock(&dev_base_lock);
1028 dev = __dev_get_by_name(net, name);
1029 read_unlock(&dev_base_lock);
1030
1031 if (!dev && capable(CAP_SYS_MODULE))
1032 request_module("%s", name);
1033 }
1034
1035 /**
1036 * dev_open - prepare an interface for use.
1037 * @dev: device to open
1038 *
1039 * Takes a device from down to up state. The device's private open
1040 * function is invoked and then the multicast lists are loaded. Finally
1041 * the device is moved into the up state and a %NETDEV_UP message is
1042 * sent to the netdev notifier chain.
1043 *
1044 * Calling this function on an active interface is a nop. On a failure
1045 * a negative errno code is returned.
1046 */
dev_open(struct net_device * dev)1047 int dev_open(struct net_device *dev)
1048 {
1049 const struct net_device_ops *ops = dev->netdev_ops;
1050 int ret = 0;
1051
1052 ASSERT_RTNL();
1053
1054 /*
1055 * Is it already up?
1056 */
1057
1058 if (dev->flags & IFF_UP)
1059 return 0;
1060
1061 /*
1062 * Is it even present?
1063 */
1064 if (!netif_device_present(dev))
1065 return -ENODEV;
1066
1067 /*
1068 * Call device private open method
1069 */
1070 set_bit(__LINK_STATE_START, &dev->state);
1071
1072 if (ops->ndo_validate_addr)
1073 ret = ops->ndo_validate_addr(dev);
1074
1075 if (!ret && ops->ndo_open)
1076 ret = ops->ndo_open(dev);
1077
1078 /*
1079 * If it went open OK then:
1080 */
1081
1082 if (ret)
1083 clear_bit(__LINK_STATE_START, &dev->state);
1084 else {
1085 /*
1086 * Set the flags.
1087 */
1088 dev->flags |= IFF_UP;
1089
1090 /*
1091 * Enable NET_DMA
1092 */
1093 net_dmaengine_get();
1094
1095 /*
1096 * Initialize multicasting status
1097 */
1098 dev_set_rx_mode(dev);
1099
1100 /*
1101 * Wakeup transmit queue engine
1102 */
1103 dev_activate(dev);
1104
1105 /*
1106 * ... and announce new interface.
1107 */
1108 call_netdevice_notifiers(NETDEV_UP, dev);
1109 }
1110
1111 return ret;
1112 }
1113
1114 /**
1115 * dev_close - shutdown an interface.
1116 * @dev: device to shutdown
1117 *
1118 * This function moves an active device into down state. A
1119 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1120 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1121 * chain.
1122 */
dev_close(struct net_device * dev)1123 int dev_close(struct net_device *dev)
1124 {
1125 const struct net_device_ops *ops = dev->netdev_ops;
1126 ASSERT_RTNL();
1127
1128 might_sleep();
1129
1130 if (!(dev->flags & IFF_UP))
1131 return 0;
1132
1133 /*
1134 * Tell people we are going down, so that they can
1135 * prepare to death, when device is still operating.
1136 */
1137 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1138
1139 clear_bit(__LINK_STATE_START, &dev->state);
1140
1141 /* Synchronize to scheduled poll. We cannot touch poll list,
1142 * it can be even on different cpu. So just clear netif_running().
1143 *
1144 * dev->stop() will invoke napi_disable() on all of it's
1145 * napi_struct instances on this device.
1146 */
1147 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1148
1149 dev_deactivate(dev);
1150
1151 /*
1152 * Call the device specific close. This cannot fail.
1153 * Only if device is UP
1154 *
1155 * We allow it to be called even after a DETACH hot-plug
1156 * event.
1157 */
1158 if (ops->ndo_stop)
1159 ops->ndo_stop(dev);
1160
1161 /*
1162 * Device is now down.
1163 */
1164
1165 dev->flags &= ~IFF_UP;
1166
1167 /*
1168 * Tell people we are down
1169 */
1170 call_netdevice_notifiers(NETDEV_DOWN, dev);
1171
1172 /*
1173 * Shutdown NET_DMA
1174 */
1175 net_dmaengine_put();
1176
1177 return 0;
1178 }
1179
1180
1181 /**
1182 * dev_disable_lro - disable Large Receive Offload on a device
1183 * @dev: device
1184 *
1185 * Disable Large Receive Offload (LRO) on a net device. Must be
1186 * called under RTNL. This is needed if received packets may be
1187 * forwarded to another interface.
1188 */
dev_disable_lro(struct net_device * dev)1189 void dev_disable_lro(struct net_device *dev)
1190 {
1191 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1192 dev->ethtool_ops->set_flags) {
1193 u32 flags = dev->ethtool_ops->get_flags(dev);
1194 if (flags & ETH_FLAG_LRO) {
1195 flags &= ~ETH_FLAG_LRO;
1196 dev->ethtool_ops->set_flags(dev, flags);
1197 }
1198 }
1199 WARN_ON(dev->features & NETIF_F_LRO);
1200 }
1201 EXPORT_SYMBOL(dev_disable_lro);
1202
1203
1204 static int dev_boot_phase = 1;
1205
1206 /*
1207 * Device change register/unregister. These are not inline or static
1208 * as we export them to the world.
1209 */
1210
1211 /**
1212 * register_netdevice_notifier - register a network notifier block
1213 * @nb: notifier
1214 *
1215 * Register a notifier to be called when network device events occur.
1216 * The notifier passed is linked into the kernel structures and must
1217 * not be reused until it has been unregistered. A negative errno code
1218 * is returned on a failure.
1219 *
1220 * When registered all registration and up events are replayed
1221 * to the new notifier to allow device to have a race free
1222 * view of the network device list.
1223 */
1224
register_netdevice_notifier(struct notifier_block * nb)1225 int register_netdevice_notifier(struct notifier_block *nb)
1226 {
1227 struct net_device *dev;
1228 struct net_device *last;
1229 struct net *net;
1230 int err;
1231
1232 rtnl_lock();
1233 err = raw_notifier_chain_register(&netdev_chain, nb);
1234 if (err)
1235 goto unlock;
1236 if (dev_boot_phase)
1237 goto unlock;
1238 for_each_net(net) {
1239 for_each_netdev(net, dev) {
1240 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1241 err = notifier_to_errno(err);
1242 if (err)
1243 goto rollback;
1244
1245 if (!(dev->flags & IFF_UP))
1246 continue;
1247
1248 nb->notifier_call(nb, NETDEV_UP, dev);
1249 }
1250 }
1251
1252 unlock:
1253 rtnl_unlock();
1254 return err;
1255
1256 rollback:
1257 last = dev;
1258 for_each_net(net) {
1259 for_each_netdev(net, dev) {
1260 if (dev == last)
1261 break;
1262
1263 if (dev->flags & IFF_UP) {
1264 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1265 nb->notifier_call(nb, NETDEV_DOWN, dev);
1266 }
1267 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1268 }
1269 }
1270
1271 raw_notifier_chain_unregister(&netdev_chain, nb);
1272 goto unlock;
1273 }
1274
1275 /**
1276 * unregister_netdevice_notifier - unregister a network notifier block
1277 * @nb: notifier
1278 *
1279 * Unregister a notifier previously registered by
1280 * register_netdevice_notifier(). The notifier is unlinked into the
1281 * kernel structures and may then be reused. A negative errno code
1282 * is returned on a failure.
1283 */
1284
unregister_netdevice_notifier(struct notifier_block * nb)1285 int unregister_netdevice_notifier(struct notifier_block *nb)
1286 {
1287 int err;
1288
1289 rtnl_lock();
1290 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1291 rtnl_unlock();
1292 return err;
1293 }
1294
1295 /**
1296 * call_netdevice_notifiers - call all network notifier blocks
1297 * @val: value passed unmodified to notifier function
1298 * @dev: net_device pointer passed unmodified to notifier function
1299 *
1300 * Call all network notifier blocks. Parameters and return value
1301 * are as for raw_notifier_call_chain().
1302 */
1303
call_netdevice_notifiers(unsigned long val,struct net_device * dev)1304 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1305 {
1306 return raw_notifier_call_chain(&netdev_chain, val, dev);
1307 }
1308
1309 /* When > 0 there are consumers of rx skb time stamps */
1310 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1311
net_enable_timestamp(void)1312 void net_enable_timestamp(void)
1313 {
1314 atomic_inc(&netstamp_needed);
1315 }
1316
net_disable_timestamp(void)1317 void net_disable_timestamp(void)
1318 {
1319 atomic_dec(&netstamp_needed);
1320 }
1321
net_timestamp(struct sk_buff * skb)1322 static inline void net_timestamp(struct sk_buff *skb)
1323 {
1324 if (atomic_read(&netstamp_needed))
1325 __net_timestamp(skb);
1326 else
1327 skb->tstamp.tv64 = 0;
1328 }
1329
1330 /*
1331 * Support routine. Sends outgoing frames to any network
1332 * taps currently in use.
1333 */
1334
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)1335 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1336 {
1337 struct packet_type *ptype;
1338
1339 net_timestamp(skb);
1340
1341 rcu_read_lock();
1342 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1343 /* Never send packets back to the socket
1344 * they originated from - MvS (miquels@drinkel.ow.org)
1345 */
1346 if ((ptype->dev == dev || !ptype->dev) &&
1347 (ptype->af_packet_priv == NULL ||
1348 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1349 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1350 if (!skb2)
1351 break;
1352
1353 /* skb->nh should be correctly
1354 set by sender, so that the second statement is
1355 just protection against buggy protocols.
1356 */
1357 skb_reset_mac_header(skb2);
1358
1359 if (skb_network_header(skb2) < skb2->data ||
1360 skb2->network_header > skb2->tail) {
1361 if (net_ratelimit())
1362 printk(KERN_CRIT "protocol %04x is "
1363 "buggy, dev %s\n",
1364 skb2->protocol, dev->name);
1365 skb_reset_network_header(skb2);
1366 }
1367
1368 skb2->transport_header = skb2->network_header;
1369 skb2->pkt_type = PACKET_OUTGOING;
1370 ptype->func(skb2, skb->dev, ptype, skb->dev);
1371 }
1372 }
1373 rcu_read_unlock();
1374 }
1375
1376
__netif_reschedule(struct Qdisc * q)1377 static inline void __netif_reschedule(struct Qdisc *q)
1378 {
1379 struct softnet_data *sd;
1380 unsigned long flags;
1381
1382 local_irq_save(flags);
1383 sd = &__get_cpu_var(softnet_data);
1384 q->next_sched = sd->output_queue;
1385 sd->output_queue = q;
1386 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1387 local_irq_restore(flags);
1388 }
1389
__netif_schedule(struct Qdisc * q)1390 void __netif_schedule(struct Qdisc *q)
1391 {
1392 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1393 __netif_reschedule(q);
1394 }
1395 EXPORT_SYMBOL(__netif_schedule);
1396
dev_kfree_skb_irq(struct sk_buff * skb)1397 void dev_kfree_skb_irq(struct sk_buff *skb)
1398 {
1399 if (atomic_dec_and_test(&skb->users)) {
1400 struct softnet_data *sd;
1401 unsigned long flags;
1402
1403 local_irq_save(flags);
1404 sd = &__get_cpu_var(softnet_data);
1405 skb->next = sd->completion_queue;
1406 sd->completion_queue = skb;
1407 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1408 local_irq_restore(flags);
1409 }
1410 }
1411 EXPORT_SYMBOL(dev_kfree_skb_irq);
1412
dev_kfree_skb_any(struct sk_buff * skb)1413 void dev_kfree_skb_any(struct sk_buff *skb)
1414 {
1415 if (in_irq() || irqs_disabled())
1416 dev_kfree_skb_irq(skb);
1417 else
1418 dev_kfree_skb(skb);
1419 }
1420 EXPORT_SYMBOL(dev_kfree_skb_any);
1421
1422
1423 /**
1424 * netif_device_detach - mark device as removed
1425 * @dev: network device
1426 *
1427 * Mark device as removed from system and therefore no longer available.
1428 */
netif_device_detach(struct net_device * dev)1429 void netif_device_detach(struct net_device *dev)
1430 {
1431 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1432 netif_running(dev)) {
1433 netif_stop_queue(dev);
1434 }
1435 }
1436 EXPORT_SYMBOL(netif_device_detach);
1437
1438 /**
1439 * netif_device_attach - mark device as attached
1440 * @dev: network device
1441 *
1442 * Mark device as attached from system and restart if needed.
1443 */
netif_device_attach(struct net_device * dev)1444 void netif_device_attach(struct net_device *dev)
1445 {
1446 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1447 netif_running(dev)) {
1448 netif_wake_queue(dev);
1449 __netdev_watchdog_up(dev);
1450 }
1451 }
1452 EXPORT_SYMBOL(netif_device_attach);
1453
can_checksum_protocol(unsigned long features,__be16 protocol)1454 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1455 {
1456 return ((features & NETIF_F_GEN_CSUM) ||
1457 ((features & NETIF_F_IP_CSUM) &&
1458 protocol == htons(ETH_P_IP)) ||
1459 ((features & NETIF_F_IPV6_CSUM) &&
1460 protocol == htons(ETH_P_IPV6)));
1461 }
1462
dev_can_checksum(struct net_device * dev,struct sk_buff * skb)1463 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1464 {
1465 if (can_checksum_protocol(dev->features, skb->protocol))
1466 return true;
1467
1468 if (skb->protocol == htons(ETH_P_8021Q)) {
1469 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1470 if (can_checksum_protocol(dev->features & dev->vlan_features,
1471 veh->h_vlan_encapsulated_proto))
1472 return true;
1473 }
1474
1475 return false;
1476 }
1477
1478 /*
1479 * Invalidate hardware checksum when packet is to be mangled, and
1480 * complete checksum manually on outgoing path.
1481 */
skb_checksum_help(struct sk_buff * skb)1482 int skb_checksum_help(struct sk_buff *skb)
1483 {
1484 __wsum csum;
1485 int ret = 0, offset;
1486
1487 if (skb->ip_summed == CHECKSUM_COMPLETE)
1488 goto out_set_summed;
1489
1490 if (unlikely(skb_shinfo(skb)->gso_size)) {
1491 /* Let GSO fix up the checksum. */
1492 goto out_set_summed;
1493 }
1494
1495 offset = skb->csum_start - skb_headroom(skb);
1496 BUG_ON(offset >= skb_headlen(skb));
1497 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1498
1499 offset += skb->csum_offset;
1500 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1501
1502 if (skb_cloned(skb) &&
1503 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1504 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1505 if (ret)
1506 goto out;
1507 }
1508
1509 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1510 out_set_summed:
1511 skb->ip_summed = CHECKSUM_NONE;
1512 out:
1513 return ret;
1514 }
1515
1516 /**
1517 * skb_gso_segment - Perform segmentation on skb.
1518 * @skb: buffer to segment
1519 * @features: features for the output path (see dev->features)
1520 *
1521 * This function segments the given skb and returns a list of segments.
1522 *
1523 * It may return NULL if the skb requires no segmentation. This is
1524 * only possible when GSO is used for verifying header integrity.
1525 */
skb_gso_segment(struct sk_buff * skb,int features)1526 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1527 {
1528 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1529 struct packet_type *ptype;
1530 __be16 type = skb->protocol;
1531 int err;
1532
1533 skb_reset_mac_header(skb);
1534 skb->mac_len = skb->network_header - skb->mac_header;
1535 __skb_pull(skb, skb->mac_len);
1536
1537 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1538 struct net_device *dev = skb->dev;
1539 struct ethtool_drvinfo info = {};
1540
1541 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1542 dev->ethtool_ops->get_drvinfo(dev, &info);
1543
1544 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1545 "ip_summed=%d",
1546 info.driver, dev ? dev->features : 0L,
1547 skb->sk ? skb->sk->sk_route_caps : 0L,
1548 skb->len, skb->data_len, skb->ip_summed);
1549
1550 if (skb_header_cloned(skb) &&
1551 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1552 return ERR_PTR(err);
1553 }
1554
1555 rcu_read_lock();
1556 list_for_each_entry_rcu(ptype,
1557 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1558 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1559 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1560 err = ptype->gso_send_check(skb);
1561 segs = ERR_PTR(err);
1562 if (err || skb_gso_ok(skb, features))
1563 break;
1564 __skb_push(skb, (skb->data -
1565 skb_network_header(skb)));
1566 }
1567 segs = ptype->gso_segment(skb, features);
1568 break;
1569 }
1570 }
1571 rcu_read_unlock();
1572
1573 __skb_push(skb, skb->data - skb_mac_header(skb));
1574
1575 return segs;
1576 }
1577
1578 EXPORT_SYMBOL(skb_gso_segment);
1579
1580 /* Take action when hardware reception checksum errors are detected. */
1581 #ifdef CONFIG_BUG
netdev_rx_csum_fault(struct net_device * dev)1582 void netdev_rx_csum_fault(struct net_device *dev)
1583 {
1584 if (net_ratelimit()) {
1585 printk(KERN_ERR "%s: hw csum failure.\n",
1586 dev ? dev->name : "<unknown>");
1587 dump_stack();
1588 }
1589 }
1590 EXPORT_SYMBOL(netdev_rx_csum_fault);
1591 #endif
1592
1593 /* Actually, we should eliminate this check as soon as we know, that:
1594 * 1. IOMMU is present and allows to map all the memory.
1595 * 2. No high memory really exists on this machine.
1596 */
1597
illegal_highdma(struct net_device * dev,struct sk_buff * skb)1598 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1599 {
1600 #ifdef CONFIG_HIGHMEM
1601 int i;
1602
1603 if (dev->features & NETIF_F_HIGHDMA)
1604 return 0;
1605
1606 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1607 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1608 return 1;
1609
1610 #endif
1611 return 0;
1612 }
1613
1614 struct dev_gso_cb {
1615 void (*destructor)(struct sk_buff *skb);
1616 };
1617
1618 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1619
dev_gso_skb_destructor(struct sk_buff * skb)1620 static void dev_gso_skb_destructor(struct sk_buff *skb)
1621 {
1622 struct dev_gso_cb *cb;
1623
1624 do {
1625 struct sk_buff *nskb = skb->next;
1626
1627 skb->next = nskb->next;
1628 nskb->next = NULL;
1629 kfree_skb(nskb);
1630 } while (skb->next);
1631
1632 cb = DEV_GSO_CB(skb);
1633 if (cb->destructor)
1634 cb->destructor(skb);
1635 }
1636
1637 /**
1638 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1639 * @skb: buffer to segment
1640 *
1641 * This function segments the given skb and stores the list of segments
1642 * in skb->next.
1643 */
dev_gso_segment(struct sk_buff * skb)1644 static int dev_gso_segment(struct sk_buff *skb)
1645 {
1646 struct net_device *dev = skb->dev;
1647 struct sk_buff *segs;
1648 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1649 NETIF_F_SG : 0);
1650
1651 segs = skb_gso_segment(skb, features);
1652
1653 /* Verifying header integrity only. */
1654 if (!segs)
1655 return 0;
1656
1657 if (IS_ERR(segs))
1658 return PTR_ERR(segs);
1659
1660 skb->next = segs;
1661 DEV_GSO_CB(skb)->destructor = skb->destructor;
1662 skb->destructor = dev_gso_skb_destructor;
1663
1664 return 0;
1665 }
1666
dev_hard_start_xmit(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq)1667 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1668 struct netdev_queue *txq)
1669 {
1670 const struct net_device_ops *ops = dev->netdev_ops;
1671
1672 prefetch(&dev->netdev_ops->ndo_start_xmit);
1673 if (likely(!skb->next)) {
1674 if (!list_empty(&ptype_all))
1675 dev_queue_xmit_nit(skb, dev);
1676
1677 if (netif_needs_gso(dev, skb)) {
1678 if (unlikely(dev_gso_segment(skb)))
1679 goto out_kfree_skb;
1680 if (skb->next)
1681 goto gso;
1682 }
1683
1684 return ops->ndo_start_xmit(skb, dev);
1685 }
1686
1687 gso:
1688 do {
1689 struct sk_buff *nskb = skb->next;
1690 int rc;
1691
1692 skb->next = nskb->next;
1693 nskb->next = NULL;
1694 rc = ops->ndo_start_xmit(nskb, dev);
1695 if (unlikely(rc)) {
1696 nskb->next = skb->next;
1697 skb->next = nskb;
1698 return rc;
1699 }
1700 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1701 return NETDEV_TX_BUSY;
1702 } while (skb->next);
1703
1704 skb->destructor = DEV_GSO_CB(skb)->destructor;
1705
1706 out_kfree_skb:
1707 kfree_skb(skb);
1708 return 0;
1709 }
1710
1711 static u32 simple_tx_hashrnd;
1712 static int simple_tx_hashrnd_initialized = 0;
1713
simple_tx_hash(struct net_device * dev,struct sk_buff * skb)1714 static u16 simple_tx_hash(struct net_device *dev, struct sk_buff *skb)
1715 {
1716 u32 addr1, addr2, ports;
1717 u32 hash, ihl;
1718 u8 ip_proto = 0;
1719
1720 if (unlikely(!simple_tx_hashrnd_initialized)) {
1721 get_random_bytes(&simple_tx_hashrnd, 4);
1722 simple_tx_hashrnd_initialized = 1;
1723 }
1724
1725 switch (skb->protocol) {
1726 case htons(ETH_P_IP):
1727 if (!(ip_hdr(skb)->frag_off & htons(IP_MF | IP_OFFSET)))
1728 ip_proto = ip_hdr(skb)->protocol;
1729 addr1 = ip_hdr(skb)->saddr;
1730 addr2 = ip_hdr(skb)->daddr;
1731 ihl = ip_hdr(skb)->ihl;
1732 break;
1733 case htons(ETH_P_IPV6):
1734 ip_proto = ipv6_hdr(skb)->nexthdr;
1735 addr1 = ipv6_hdr(skb)->saddr.s6_addr32[3];
1736 addr2 = ipv6_hdr(skb)->daddr.s6_addr32[3];
1737 ihl = (40 >> 2);
1738 break;
1739 default:
1740 return 0;
1741 }
1742
1743
1744 switch (ip_proto) {
1745 case IPPROTO_TCP:
1746 case IPPROTO_UDP:
1747 case IPPROTO_DCCP:
1748 case IPPROTO_ESP:
1749 case IPPROTO_AH:
1750 case IPPROTO_SCTP:
1751 case IPPROTO_UDPLITE:
1752 ports = *((u32 *) (skb_network_header(skb) + (ihl * 4)));
1753 break;
1754
1755 default:
1756 ports = 0;
1757 break;
1758 }
1759
1760 hash = jhash_3words(addr1, addr2, ports, simple_tx_hashrnd);
1761
1762 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1763 }
1764
dev_pick_tx(struct net_device * dev,struct sk_buff * skb)1765 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1766 struct sk_buff *skb)
1767 {
1768 const struct net_device_ops *ops = dev->netdev_ops;
1769 u16 queue_index = 0;
1770
1771 if (ops->ndo_select_queue)
1772 queue_index = ops->ndo_select_queue(dev, skb);
1773 else if (dev->real_num_tx_queues > 1)
1774 queue_index = simple_tx_hash(dev, skb);
1775
1776 skb_set_queue_mapping(skb, queue_index);
1777 return netdev_get_tx_queue(dev, queue_index);
1778 }
1779
1780 /**
1781 * dev_queue_xmit - transmit a buffer
1782 * @skb: buffer to transmit
1783 *
1784 * Queue a buffer for transmission to a network device. The caller must
1785 * have set the device and priority and built the buffer before calling
1786 * this function. The function can be called from an interrupt.
1787 *
1788 * A negative errno code is returned on a failure. A success does not
1789 * guarantee the frame will be transmitted as it may be dropped due
1790 * to congestion or traffic shaping.
1791 *
1792 * -----------------------------------------------------------------------------------
1793 * I notice this method can also return errors from the queue disciplines,
1794 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1795 * be positive.
1796 *
1797 * Regardless of the return value, the skb is consumed, so it is currently
1798 * difficult to retry a send to this method. (You can bump the ref count
1799 * before sending to hold a reference for retry if you are careful.)
1800 *
1801 * When calling this method, interrupts MUST be enabled. This is because
1802 * the BH enable code must have IRQs enabled so that it will not deadlock.
1803 * --BLG
1804 */
dev_queue_xmit(struct sk_buff * skb)1805 int dev_queue_xmit(struct sk_buff *skb)
1806 {
1807 struct net_device *dev = skb->dev;
1808 struct netdev_queue *txq;
1809 struct Qdisc *q;
1810 int rc = -ENOMEM;
1811
1812 /* GSO will handle the following emulations directly. */
1813 if (netif_needs_gso(dev, skb))
1814 goto gso;
1815
1816 if (skb_shinfo(skb)->frag_list &&
1817 !(dev->features & NETIF_F_FRAGLIST) &&
1818 __skb_linearize(skb))
1819 goto out_kfree_skb;
1820
1821 /* Fragmented skb is linearized if device does not support SG,
1822 * or if at least one of fragments is in highmem and device
1823 * does not support DMA from it.
1824 */
1825 if (skb_shinfo(skb)->nr_frags &&
1826 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1827 __skb_linearize(skb))
1828 goto out_kfree_skb;
1829
1830 /* If packet is not checksummed and device does not support
1831 * checksumming for this protocol, complete checksumming here.
1832 */
1833 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1834 skb_set_transport_header(skb, skb->csum_start -
1835 skb_headroom(skb));
1836 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1837 goto out_kfree_skb;
1838 }
1839
1840 gso:
1841 /* Disable soft irqs for various locks below. Also
1842 * stops preemption for RCU.
1843 */
1844 rcu_read_lock_bh();
1845
1846 txq = dev_pick_tx(dev, skb);
1847 q = rcu_dereference(txq->qdisc);
1848
1849 #ifdef CONFIG_NET_CLS_ACT
1850 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1851 #endif
1852 if (q->enqueue) {
1853 spinlock_t *root_lock = qdisc_lock(q);
1854
1855 spin_lock(root_lock);
1856
1857 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1858 kfree_skb(skb);
1859 rc = NET_XMIT_DROP;
1860 } else {
1861 rc = qdisc_enqueue_root(skb, q);
1862 qdisc_run(q);
1863 }
1864 spin_unlock(root_lock);
1865
1866 goto out;
1867 }
1868
1869 /* The device has no queue. Common case for software devices:
1870 loopback, all the sorts of tunnels...
1871
1872 Really, it is unlikely that netif_tx_lock protection is necessary
1873 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1874 counters.)
1875 However, it is possible, that they rely on protection
1876 made by us here.
1877
1878 Check this and shot the lock. It is not prone from deadlocks.
1879 Either shot noqueue qdisc, it is even simpler 8)
1880 */
1881 if (dev->flags & IFF_UP) {
1882 int cpu = smp_processor_id(); /* ok because BHs are off */
1883
1884 if (txq->xmit_lock_owner != cpu) {
1885
1886 HARD_TX_LOCK(dev, txq, cpu);
1887
1888 if (!netif_tx_queue_stopped(txq)) {
1889 rc = 0;
1890 if (!dev_hard_start_xmit(skb, dev, txq)) {
1891 HARD_TX_UNLOCK(dev, txq);
1892 goto out;
1893 }
1894 }
1895 HARD_TX_UNLOCK(dev, txq);
1896 if (net_ratelimit())
1897 printk(KERN_CRIT "Virtual device %s asks to "
1898 "queue packet!\n", dev->name);
1899 } else {
1900 /* Recursion is detected! It is possible,
1901 * unfortunately */
1902 if (net_ratelimit())
1903 printk(KERN_CRIT "Dead loop on virtual device "
1904 "%s, fix it urgently!\n", dev->name);
1905 }
1906 }
1907
1908 rc = -ENETDOWN;
1909 rcu_read_unlock_bh();
1910
1911 out_kfree_skb:
1912 kfree_skb(skb);
1913 return rc;
1914 out:
1915 rcu_read_unlock_bh();
1916 return rc;
1917 }
1918
1919
1920 /*=======================================================================
1921 Receiver routines
1922 =======================================================================*/
1923
1924 int netdev_max_backlog __read_mostly = 1000;
1925 int netdev_budget __read_mostly = 300;
1926 int weight_p __read_mostly = 64; /* old backlog weight */
1927
1928 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1929
1930
1931 /**
1932 * netif_rx - post buffer to the network code
1933 * @skb: buffer to post
1934 *
1935 * This function receives a packet from a device driver and queues it for
1936 * the upper (protocol) levels to process. It always succeeds. The buffer
1937 * may be dropped during processing for congestion control or by the
1938 * protocol layers.
1939 *
1940 * return values:
1941 * NET_RX_SUCCESS (no congestion)
1942 * NET_RX_DROP (packet was dropped)
1943 *
1944 */
1945
netif_rx(struct sk_buff * skb)1946 int netif_rx(struct sk_buff *skb)
1947 {
1948 struct softnet_data *queue;
1949 unsigned long flags;
1950
1951 /* if netpoll wants it, pretend we never saw it */
1952 if (netpoll_rx(skb))
1953 return NET_RX_DROP;
1954
1955 if (!skb->tstamp.tv64)
1956 net_timestamp(skb);
1957
1958 /*
1959 * The code is rearranged so that the path is the most
1960 * short when CPU is congested, but is still operating.
1961 */
1962 local_irq_save(flags);
1963 queue = &__get_cpu_var(softnet_data);
1964
1965 __get_cpu_var(netdev_rx_stat).total++;
1966 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1967 if (queue->input_pkt_queue.qlen) {
1968 enqueue:
1969 __skb_queue_tail(&queue->input_pkt_queue, skb);
1970 local_irq_restore(flags);
1971 return NET_RX_SUCCESS;
1972 }
1973
1974 napi_schedule(&queue->backlog);
1975 goto enqueue;
1976 }
1977
1978 __get_cpu_var(netdev_rx_stat).dropped++;
1979 local_irq_restore(flags);
1980
1981 kfree_skb(skb);
1982 return NET_RX_DROP;
1983 }
1984
netif_rx_ni(struct sk_buff * skb)1985 int netif_rx_ni(struct sk_buff *skb)
1986 {
1987 int err;
1988
1989 preempt_disable();
1990 err = netif_rx(skb);
1991 if (local_softirq_pending())
1992 do_softirq();
1993 preempt_enable();
1994
1995 return err;
1996 }
1997
1998 EXPORT_SYMBOL(netif_rx_ni);
1999
net_tx_action(struct softirq_action * h)2000 static void net_tx_action(struct softirq_action *h)
2001 {
2002 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2003
2004 if (sd->completion_queue) {
2005 struct sk_buff *clist;
2006
2007 local_irq_disable();
2008 clist = sd->completion_queue;
2009 sd->completion_queue = NULL;
2010 local_irq_enable();
2011
2012 while (clist) {
2013 struct sk_buff *skb = clist;
2014 clist = clist->next;
2015
2016 WARN_ON(atomic_read(&skb->users));
2017 __kfree_skb(skb);
2018 }
2019 }
2020
2021 if (sd->output_queue) {
2022 struct Qdisc *head;
2023
2024 local_irq_disable();
2025 head = sd->output_queue;
2026 sd->output_queue = NULL;
2027 local_irq_enable();
2028
2029 while (head) {
2030 struct Qdisc *q = head;
2031 spinlock_t *root_lock;
2032
2033 head = head->next_sched;
2034
2035 root_lock = qdisc_lock(q);
2036 if (spin_trylock(root_lock)) {
2037 smp_mb__before_clear_bit();
2038 clear_bit(__QDISC_STATE_SCHED,
2039 &q->state);
2040 qdisc_run(q);
2041 spin_unlock(root_lock);
2042 } else {
2043 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2044 &q->state)) {
2045 __netif_reschedule(q);
2046 } else {
2047 smp_mb__before_clear_bit();
2048 clear_bit(__QDISC_STATE_SCHED,
2049 &q->state);
2050 }
2051 }
2052 }
2053 }
2054 }
2055
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2056 static inline int deliver_skb(struct sk_buff *skb,
2057 struct packet_type *pt_prev,
2058 struct net_device *orig_dev)
2059 {
2060 atomic_inc(&skb->users);
2061 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2062 }
2063
2064 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2065 /* These hooks defined here for ATM */
2066 struct net_bridge;
2067 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2068 unsigned char *addr);
2069 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2070
2071 /*
2072 * If bridge module is loaded call bridging hook.
2073 * returns NULL if packet was consumed.
2074 */
2075 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2076 struct sk_buff *skb) __read_mostly;
handle_bridge(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)2077 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2078 struct packet_type **pt_prev, int *ret,
2079 struct net_device *orig_dev)
2080 {
2081 struct net_bridge_port *port;
2082
2083 if (skb->pkt_type == PACKET_LOOPBACK ||
2084 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2085 return skb;
2086
2087 if (*pt_prev) {
2088 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2089 *pt_prev = NULL;
2090 }
2091
2092 return br_handle_frame_hook(port, skb);
2093 }
2094 #else
2095 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2096 #endif
2097
2098 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2099 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2100 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2101
handle_macvlan(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)2102 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2103 struct packet_type **pt_prev,
2104 int *ret,
2105 struct net_device *orig_dev)
2106 {
2107 if (skb->dev->macvlan_port == NULL)
2108 return skb;
2109
2110 if (*pt_prev) {
2111 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2112 *pt_prev = NULL;
2113 }
2114 return macvlan_handle_frame_hook(skb);
2115 }
2116 #else
2117 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2118 #endif
2119
2120 #ifdef CONFIG_NET_CLS_ACT
2121 /* TODO: Maybe we should just force sch_ingress to be compiled in
2122 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2123 * a compare and 2 stores extra right now if we dont have it on
2124 * but have CONFIG_NET_CLS_ACT
2125 * NOTE: This doesnt stop any functionality; if you dont have
2126 * the ingress scheduler, you just cant add policies on ingress.
2127 *
2128 */
ing_filter(struct sk_buff * skb)2129 static int ing_filter(struct sk_buff *skb)
2130 {
2131 struct net_device *dev = skb->dev;
2132 u32 ttl = G_TC_RTTL(skb->tc_verd);
2133 struct netdev_queue *rxq;
2134 int result = TC_ACT_OK;
2135 struct Qdisc *q;
2136
2137 if (MAX_RED_LOOP < ttl++) {
2138 printk(KERN_WARNING
2139 "Redir loop detected Dropping packet (%d->%d)\n",
2140 skb->iif, dev->ifindex);
2141 return TC_ACT_SHOT;
2142 }
2143
2144 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2145 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2146
2147 rxq = &dev->rx_queue;
2148
2149 q = rxq->qdisc;
2150 if (q != &noop_qdisc) {
2151 spin_lock(qdisc_lock(q));
2152 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2153 result = qdisc_enqueue_root(skb, q);
2154 spin_unlock(qdisc_lock(q));
2155 }
2156
2157 return result;
2158 }
2159
handle_ing(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)2160 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2161 struct packet_type **pt_prev,
2162 int *ret, struct net_device *orig_dev)
2163 {
2164 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2165 goto out;
2166
2167 if (*pt_prev) {
2168 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2169 *pt_prev = NULL;
2170 } else {
2171 /* Huh? Why does turning on AF_PACKET affect this? */
2172 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2173 }
2174
2175 switch (ing_filter(skb)) {
2176 case TC_ACT_SHOT:
2177 case TC_ACT_STOLEN:
2178 kfree_skb(skb);
2179 return NULL;
2180 }
2181
2182 out:
2183 skb->tc_verd = 0;
2184 return skb;
2185 }
2186 #endif
2187
2188 /*
2189 * netif_nit_deliver - deliver received packets to network taps
2190 * @skb: buffer
2191 *
2192 * This function is used to deliver incoming packets to network
2193 * taps. It should be used when the normal netif_receive_skb path
2194 * is bypassed, for example because of VLAN acceleration.
2195 */
netif_nit_deliver(struct sk_buff * skb)2196 void netif_nit_deliver(struct sk_buff *skb)
2197 {
2198 struct packet_type *ptype;
2199
2200 if (list_empty(&ptype_all))
2201 return;
2202
2203 skb_reset_network_header(skb);
2204 skb_reset_transport_header(skb);
2205 skb->mac_len = skb->network_header - skb->mac_header;
2206
2207 rcu_read_lock();
2208 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2209 if (!ptype->dev || ptype->dev == skb->dev)
2210 deliver_skb(skb, ptype, skb->dev);
2211 }
2212 rcu_read_unlock();
2213 }
2214
2215 /**
2216 * netif_receive_skb - process receive buffer from network
2217 * @skb: buffer to process
2218 *
2219 * netif_receive_skb() is the main receive data processing function.
2220 * It always succeeds. The buffer may be dropped during processing
2221 * for congestion control or by the protocol layers.
2222 *
2223 * This function may only be called from softirq context and interrupts
2224 * should be enabled.
2225 *
2226 * Return values (usually ignored):
2227 * NET_RX_SUCCESS: no congestion
2228 * NET_RX_DROP: packet was dropped
2229 */
netif_receive_skb(struct sk_buff * skb)2230 int netif_receive_skb(struct sk_buff *skb)
2231 {
2232 struct packet_type *ptype, *pt_prev;
2233 struct net_device *orig_dev;
2234 struct net_device *null_or_orig;
2235 int ret = NET_RX_DROP;
2236 __be16 type;
2237
2238 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb))
2239 return NET_RX_SUCCESS;
2240
2241 /* if we've gotten here through NAPI, check netpoll */
2242 if (netpoll_receive_skb(skb))
2243 return NET_RX_DROP;
2244
2245 if (!skb->tstamp.tv64)
2246 net_timestamp(skb);
2247
2248 if (!skb->iif)
2249 skb->iif = skb->dev->ifindex;
2250
2251 null_or_orig = NULL;
2252 orig_dev = skb->dev;
2253 if (orig_dev->master) {
2254 if (skb_bond_should_drop(skb))
2255 null_or_orig = orig_dev; /* deliver only exact match */
2256 else
2257 skb->dev = orig_dev->master;
2258 }
2259
2260 __get_cpu_var(netdev_rx_stat).total++;
2261
2262 skb_reset_network_header(skb);
2263 skb_reset_transport_header(skb);
2264 skb->mac_len = skb->network_header - skb->mac_header;
2265
2266 pt_prev = NULL;
2267
2268 rcu_read_lock();
2269
2270 #ifdef CONFIG_NET_CLS_ACT
2271 if (skb->tc_verd & TC_NCLS) {
2272 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2273 goto ncls;
2274 }
2275 #endif
2276
2277 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2278 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2279 ptype->dev == orig_dev) {
2280 if (pt_prev)
2281 ret = deliver_skb(skb, pt_prev, orig_dev);
2282 pt_prev = ptype;
2283 }
2284 }
2285
2286 #ifdef CONFIG_NET_CLS_ACT
2287 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2288 if (!skb)
2289 goto out;
2290 ncls:
2291 #endif
2292
2293 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2294 if (!skb)
2295 goto out;
2296 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2297 if (!skb)
2298 goto out;
2299
2300 type = skb->protocol;
2301 list_for_each_entry_rcu(ptype,
2302 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2303 if (ptype->type == type &&
2304 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2305 ptype->dev == orig_dev)) {
2306 if (pt_prev)
2307 ret = deliver_skb(skb, pt_prev, orig_dev);
2308 pt_prev = ptype;
2309 }
2310 }
2311
2312 if (pt_prev) {
2313 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2314 } else {
2315 kfree_skb(skb);
2316 /* Jamal, now you will not able to escape explaining
2317 * me how you were going to use this. :-)
2318 */
2319 ret = NET_RX_DROP;
2320 }
2321
2322 out:
2323 rcu_read_unlock();
2324 return ret;
2325 }
2326
2327 /* Network device is going away, flush any packets still pending */
flush_backlog(void * arg)2328 static void flush_backlog(void *arg)
2329 {
2330 struct net_device *dev = arg;
2331 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2332 struct sk_buff *skb, *tmp;
2333
2334 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2335 if (skb->dev == dev) {
2336 __skb_unlink(skb, &queue->input_pkt_queue);
2337 kfree_skb(skb);
2338 }
2339 }
2340
napi_gro_complete(struct sk_buff * skb)2341 static int napi_gro_complete(struct sk_buff *skb)
2342 {
2343 struct packet_type *ptype;
2344 __be16 type = skb->protocol;
2345 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2346 int err = -ENOENT;
2347
2348 if (NAPI_GRO_CB(skb)->count == 1)
2349 goto out;
2350
2351 rcu_read_lock();
2352 list_for_each_entry_rcu(ptype, head, list) {
2353 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2354 continue;
2355
2356 err = ptype->gro_complete(skb);
2357 break;
2358 }
2359 rcu_read_unlock();
2360
2361 if (err) {
2362 WARN_ON(&ptype->list == head);
2363 kfree_skb(skb);
2364 return NET_RX_SUCCESS;
2365 }
2366
2367 out:
2368 skb_shinfo(skb)->gso_size = 0;
2369 __skb_push(skb, -skb_network_offset(skb));
2370 return netif_receive_skb(skb);
2371 }
2372
napi_gro_flush(struct napi_struct * napi)2373 void napi_gro_flush(struct napi_struct *napi)
2374 {
2375 struct sk_buff *skb, *next;
2376
2377 for (skb = napi->gro_list; skb; skb = next) {
2378 next = skb->next;
2379 skb->next = NULL;
2380 napi_gro_complete(skb);
2381 }
2382
2383 napi->gro_list = NULL;
2384 }
2385 EXPORT_SYMBOL(napi_gro_flush);
2386
dev_gro_receive(struct napi_struct * napi,struct sk_buff * skb)2387 int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2388 {
2389 struct sk_buff **pp = NULL;
2390 struct packet_type *ptype;
2391 __be16 type = skb->protocol;
2392 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2393 int count = 0;
2394 int same_flow;
2395 int mac_len;
2396 int free;
2397
2398 if (!(skb->dev->features & NETIF_F_GRO))
2399 goto normal;
2400
2401 if (skb_is_gso(skb) || skb_shinfo(skb)->frag_list)
2402 goto normal;
2403
2404 rcu_read_lock();
2405 list_for_each_entry_rcu(ptype, head, list) {
2406 struct sk_buff *p;
2407
2408 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2409 continue;
2410
2411 skb_reset_network_header(skb);
2412 mac_len = skb->network_header - skb->mac_header;
2413 skb->mac_len = mac_len;
2414 NAPI_GRO_CB(skb)->same_flow = 0;
2415 NAPI_GRO_CB(skb)->flush = 0;
2416 NAPI_GRO_CB(skb)->free = 0;
2417
2418 for (p = napi->gro_list; p; p = p->next) {
2419 count++;
2420
2421 if (!NAPI_GRO_CB(p)->same_flow)
2422 continue;
2423
2424 if (p->mac_len != mac_len ||
2425 memcmp(skb_mac_header(p), skb_mac_header(skb),
2426 mac_len))
2427 NAPI_GRO_CB(p)->same_flow = 0;
2428 }
2429
2430 pp = ptype->gro_receive(&napi->gro_list, skb);
2431 break;
2432 }
2433 rcu_read_unlock();
2434
2435 if (&ptype->list == head)
2436 goto normal;
2437
2438 same_flow = NAPI_GRO_CB(skb)->same_flow;
2439 free = NAPI_GRO_CB(skb)->free;
2440
2441 if (pp) {
2442 struct sk_buff *nskb = *pp;
2443
2444 *pp = nskb->next;
2445 nskb->next = NULL;
2446 napi_gro_complete(nskb);
2447 count--;
2448 }
2449
2450 if (same_flow)
2451 goto ok;
2452
2453 if (NAPI_GRO_CB(skb)->flush || count >= MAX_GRO_SKBS) {
2454 __skb_push(skb, -skb_network_offset(skb));
2455 goto normal;
2456 }
2457
2458 NAPI_GRO_CB(skb)->count = 1;
2459 skb_shinfo(skb)->gso_size = skb->len;
2460 skb->next = napi->gro_list;
2461 napi->gro_list = skb;
2462
2463 ok:
2464 return free;
2465
2466 normal:
2467 return -1;
2468 }
2469 EXPORT_SYMBOL(dev_gro_receive);
2470
__napi_gro_receive(struct napi_struct * napi,struct sk_buff * skb)2471 static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2472 {
2473 struct sk_buff *p;
2474
2475 for (p = napi->gro_list; p; p = p->next) {
2476 NAPI_GRO_CB(p)->same_flow = 1;
2477 NAPI_GRO_CB(p)->flush = 0;
2478 }
2479
2480 return dev_gro_receive(napi, skb);
2481 }
2482
napi_gro_receive(struct napi_struct * napi,struct sk_buff * skb)2483 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2484 {
2485 if (netpoll_receive_skb(skb))
2486 return NET_RX_DROP;
2487
2488 switch (__napi_gro_receive(napi, skb)) {
2489 case -1:
2490 return netif_receive_skb(skb);
2491
2492 case 1:
2493 kfree_skb(skb);
2494 break;
2495 }
2496
2497 return NET_RX_SUCCESS;
2498 }
2499 EXPORT_SYMBOL(napi_gro_receive);
2500
napi_reuse_skb(struct napi_struct * napi,struct sk_buff * skb)2501 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2502 {
2503 __skb_pull(skb, skb_headlen(skb));
2504 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2505
2506 napi->skb = skb;
2507 }
2508 EXPORT_SYMBOL(napi_reuse_skb);
2509
napi_fraginfo_skb(struct napi_struct * napi,struct napi_gro_fraginfo * info)2510 struct sk_buff *napi_fraginfo_skb(struct napi_struct *napi,
2511 struct napi_gro_fraginfo *info)
2512 {
2513 struct net_device *dev = napi->dev;
2514 struct sk_buff *skb = napi->skb;
2515
2516 napi->skb = NULL;
2517
2518 if (!skb) {
2519 skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN);
2520 if (!skb)
2521 goto out;
2522
2523 skb_reserve(skb, NET_IP_ALIGN);
2524 }
2525
2526 BUG_ON(info->nr_frags > MAX_SKB_FRAGS);
2527 skb_shinfo(skb)->nr_frags = info->nr_frags;
2528 memcpy(skb_shinfo(skb)->frags, info->frags, sizeof(info->frags));
2529
2530 skb->data_len = info->len;
2531 skb->len += info->len;
2532 skb->truesize += info->len;
2533
2534 if (!pskb_may_pull(skb, ETH_HLEN)) {
2535 napi_reuse_skb(napi, skb);
2536 skb = NULL;
2537 goto out;
2538 }
2539
2540 skb->protocol = eth_type_trans(skb, dev);
2541
2542 skb->ip_summed = info->ip_summed;
2543 skb->csum = info->csum;
2544
2545 out:
2546 return skb;
2547 }
2548 EXPORT_SYMBOL(napi_fraginfo_skb);
2549
napi_gro_frags(struct napi_struct * napi,struct napi_gro_fraginfo * info)2550 int napi_gro_frags(struct napi_struct *napi, struct napi_gro_fraginfo *info)
2551 {
2552 struct sk_buff *skb = napi_fraginfo_skb(napi, info);
2553 int err = NET_RX_DROP;
2554
2555 if (!skb)
2556 goto out;
2557
2558 if (netpoll_receive_skb(skb))
2559 goto out;
2560
2561 err = NET_RX_SUCCESS;
2562
2563 switch (__napi_gro_receive(napi, skb)) {
2564 case -1:
2565 return netif_receive_skb(skb);
2566
2567 case 0:
2568 goto out;
2569 }
2570
2571 napi_reuse_skb(napi, skb);
2572
2573 out:
2574 return err;
2575 }
2576 EXPORT_SYMBOL(napi_gro_frags);
2577
process_backlog(struct napi_struct * napi,int quota)2578 static int process_backlog(struct napi_struct *napi, int quota)
2579 {
2580 int work = 0;
2581 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2582 unsigned long start_time = jiffies;
2583
2584 napi->weight = weight_p;
2585 do {
2586 struct sk_buff *skb;
2587
2588 local_irq_disable();
2589 skb = __skb_dequeue(&queue->input_pkt_queue);
2590 if (!skb) {
2591 __napi_complete(napi);
2592 local_irq_enable();
2593 break;
2594 }
2595 local_irq_enable();
2596
2597 netif_receive_skb(skb);
2598 } while (++work < quota && jiffies == start_time);
2599
2600 return work;
2601 }
2602
2603 /**
2604 * __napi_schedule - schedule for receive
2605 * @n: entry to schedule
2606 *
2607 * The entry's receive function will be scheduled to run
2608 */
__napi_schedule(struct napi_struct * n)2609 void __napi_schedule(struct napi_struct *n)
2610 {
2611 unsigned long flags;
2612
2613 local_irq_save(flags);
2614 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2615 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2616 local_irq_restore(flags);
2617 }
2618 EXPORT_SYMBOL(__napi_schedule);
2619
__napi_complete(struct napi_struct * n)2620 void __napi_complete(struct napi_struct *n)
2621 {
2622 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2623 BUG_ON(n->gro_list);
2624
2625 list_del(&n->poll_list);
2626 smp_mb__before_clear_bit();
2627 clear_bit(NAPI_STATE_SCHED, &n->state);
2628 }
2629 EXPORT_SYMBOL(__napi_complete);
2630
napi_complete(struct napi_struct * n)2631 void napi_complete(struct napi_struct *n)
2632 {
2633 unsigned long flags;
2634
2635 /*
2636 * don't let napi dequeue from the cpu poll list
2637 * just in case its running on a different cpu
2638 */
2639 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2640 return;
2641
2642 napi_gro_flush(n);
2643 local_irq_save(flags);
2644 __napi_complete(n);
2645 local_irq_restore(flags);
2646 }
2647 EXPORT_SYMBOL(napi_complete);
2648
netif_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)2649 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2650 int (*poll)(struct napi_struct *, int), int weight)
2651 {
2652 INIT_LIST_HEAD(&napi->poll_list);
2653 napi->gro_list = NULL;
2654 napi->skb = NULL;
2655 napi->poll = poll;
2656 napi->weight = weight;
2657 list_add(&napi->dev_list, &dev->napi_list);
2658 napi->dev = dev;
2659 #ifdef CONFIG_NETPOLL
2660 spin_lock_init(&napi->poll_lock);
2661 napi->poll_owner = -1;
2662 #endif
2663 set_bit(NAPI_STATE_SCHED, &napi->state);
2664 }
2665 EXPORT_SYMBOL(netif_napi_add);
2666
netif_napi_del(struct napi_struct * napi)2667 void netif_napi_del(struct napi_struct *napi)
2668 {
2669 struct sk_buff *skb, *next;
2670
2671 list_del_init(&napi->dev_list);
2672 kfree_skb(napi->skb);
2673
2674 for (skb = napi->gro_list; skb; skb = next) {
2675 next = skb->next;
2676 skb->next = NULL;
2677 kfree_skb(skb);
2678 }
2679
2680 napi->gro_list = NULL;
2681 }
2682 EXPORT_SYMBOL(netif_napi_del);
2683
2684
net_rx_action(struct softirq_action * h)2685 static void net_rx_action(struct softirq_action *h)
2686 {
2687 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2688 unsigned long time_limit = jiffies + 2;
2689 int budget = netdev_budget;
2690 void *have;
2691
2692 local_irq_disable();
2693
2694 while (!list_empty(list)) {
2695 struct napi_struct *n;
2696 int work, weight;
2697
2698 /* If softirq window is exhuasted then punt.
2699 * Allow this to run for 2 jiffies since which will allow
2700 * an average latency of 1.5/HZ.
2701 */
2702 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2703 goto softnet_break;
2704
2705 local_irq_enable();
2706
2707 /* Even though interrupts have been re-enabled, this
2708 * access is safe because interrupts can only add new
2709 * entries to the tail of this list, and only ->poll()
2710 * calls can remove this head entry from the list.
2711 */
2712 n = list_entry(list->next, struct napi_struct, poll_list);
2713
2714 have = netpoll_poll_lock(n);
2715
2716 weight = n->weight;
2717
2718 /* This NAPI_STATE_SCHED test is for avoiding a race
2719 * with netpoll's poll_napi(). Only the entity which
2720 * obtains the lock and sees NAPI_STATE_SCHED set will
2721 * actually make the ->poll() call. Therefore we avoid
2722 * accidently calling ->poll() when NAPI is not scheduled.
2723 */
2724 work = 0;
2725 if (test_bit(NAPI_STATE_SCHED, &n->state))
2726 work = n->poll(n, weight);
2727
2728 WARN_ON_ONCE(work > weight);
2729
2730 budget -= work;
2731
2732 local_irq_disable();
2733
2734 /* Drivers must not modify the NAPI state if they
2735 * consume the entire weight. In such cases this code
2736 * still "owns" the NAPI instance and therefore can
2737 * move the instance around on the list at-will.
2738 */
2739 if (unlikely(work == weight)) {
2740 if (unlikely(napi_disable_pending(n)))
2741 __napi_complete(n);
2742 else
2743 list_move_tail(&n->poll_list, list);
2744 }
2745
2746 netpoll_poll_unlock(have);
2747 }
2748 out:
2749 local_irq_enable();
2750
2751 #ifdef CONFIG_NET_DMA
2752 /*
2753 * There may not be any more sk_buffs coming right now, so push
2754 * any pending DMA copies to hardware
2755 */
2756 dma_issue_pending_all();
2757 #endif
2758
2759 return;
2760
2761 softnet_break:
2762 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2763 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2764 goto out;
2765 }
2766
2767 static gifconf_func_t * gifconf_list [NPROTO];
2768
2769 /**
2770 * register_gifconf - register a SIOCGIF handler
2771 * @family: Address family
2772 * @gifconf: Function handler
2773 *
2774 * Register protocol dependent address dumping routines. The handler
2775 * that is passed must not be freed or reused until it has been replaced
2776 * by another handler.
2777 */
register_gifconf(unsigned int family,gifconf_func_t * gifconf)2778 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2779 {
2780 if (family >= NPROTO)
2781 return -EINVAL;
2782 gifconf_list[family] = gifconf;
2783 return 0;
2784 }
2785
2786
2787 /*
2788 * Map an interface index to its name (SIOCGIFNAME)
2789 */
2790
2791 /*
2792 * We need this ioctl for efficient implementation of the
2793 * if_indextoname() function required by the IPv6 API. Without
2794 * it, we would have to search all the interfaces to find a
2795 * match. --pb
2796 */
2797
dev_ifname(struct net * net,struct ifreq __user * arg)2798 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2799 {
2800 struct net_device *dev;
2801 struct ifreq ifr;
2802
2803 /*
2804 * Fetch the caller's info block.
2805 */
2806
2807 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2808 return -EFAULT;
2809
2810 read_lock(&dev_base_lock);
2811 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2812 if (!dev) {
2813 read_unlock(&dev_base_lock);
2814 return -ENODEV;
2815 }
2816
2817 strcpy(ifr.ifr_name, dev->name);
2818 read_unlock(&dev_base_lock);
2819
2820 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2821 return -EFAULT;
2822 return 0;
2823 }
2824
2825 /*
2826 * Perform a SIOCGIFCONF call. This structure will change
2827 * size eventually, and there is nothing I can do about it.
2828 * Thus we will need a 'compatibility mode'.
2829 */
2830
dev_ifconf(struct net * net,char __user * arg)2831 static int dev_ifconf(struct net *net, char __user *arg)
2832 {
2833 struct ifconf ifc;
2834 struct net_device *dev;
2835 char __user *pos;
2836 int len;
2837 int total;
2838 int i;
2839
2840 /*
2841 * Fetch the caller's info block.
2842 */
2843
2844 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2845 return -EFAULT;
2846
2847 pos = ifc.ifc_buf;
2848 len = ifc.ifc_len;
2849
2850 /*
2851 * Loop over the interfaces, and write an info block for each.
2852 */
2853
2854 total = 0;
2855 for_each_netdev(net, dev) {
2856 for (i = 0; i < NPROTO; i++) {
2857 if (gifconf_list[i]) {
2858 int done;
2859 if (!pos)
2860 done = gifconf_list[i](dev, NULL, 0);
2861 else
2862 done = gifconf_list[i](dev, pos + total,
2863 len - total);
2864 if (done < 0)
2865 return -EFAULT;
2866 total += done;
2867 }
2868 }
2869 }
2870
2871 /*
2872 * All done. Write the updated control block back to the caller.
2873 */
2874 ifc.ifc_len = total;
2875
2876 /*
2877 * Both BSD and Solaris return 0 here, so we do too.
2878 */
2879 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2880 }
2881
2882 #ifdef CONFIG_PROC_FS
2883 /*
2884 * This is invoked by the /proc filesystem handler to display a device
2885 * in detail.
2886 */
dev_seq_start(struct seq_file * seq,loff_t * pos)2887 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2888 __acquires(dev_base_lock)
2889 {
2890 struct net *net = seq_file_net(seq);
2891 loff_t off;
2892 struct net_device *dev;
2893
2894 read_lock(&dev_base_lock);
2895 if (!*pos)
2896 return SEQ_START_TOKEN;
2897
2898 off = 1;
2899 for_each_netdev(net, dev)
2900 if (off++ == *pos)
2901 return dev;
2902
2903 return NULL;
2904 }
2905
dev_seq_next(struct seq_file * seq,void * v,loff_t * pos)2906 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2907 {
2908 struct net *net = seq_file_net(seq);
2909 ++*pos;
2910 return v == SEQ_START_TOKEN ?
2911 first_net_device(net) : next_net_device((struct net_device *)v);
2912 }
2913
dev_seq_stop(struct seq_file * seq,void * v)2914 void dev_seq_stop(struct seq_file *seq, void *v)
2915 __releases(dev_base_lock)
2916 {
2917 read_unlock(&dev_base_lock);
2918 }
2919
dev_seq_printf_stats(struct seq_file * seq,struct net_device * dev)2920 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2921 {
2922 const struct net_device_stats *stats = dev_get_stats(dev);
2923
2924 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2925 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2926 dev->name, stats->rx_bytes, stats->rx_packets,
2927 stats->rx_errors,
2928 stats->rx_dropped + stats->rx_missed_errors,
2929 stats->rx_fifo_errors,
2930 stats->rx_length_errors + stats->rx_over_errors +
2931 stats->rx_crc_errors + stats->rx_frame_errors,
2932 stats->rx_compressed, stats->multicast,
2933 stats->tx_bytes, stats->tx_packets,
2934 stats->tx_errors, stats->tx_dropped,
2935 stats->tx_fifo_errors, stats->collisions,
2936 stats->tx_carrier_errors +
2937 stats->tx_aborted_errors +
2938 stats->tx_window_errors +
2939 stats->tx_heartbeat_errors,
2940 stats->tx_compressed);
2941 }
2942
2943 /*
2944 * Called from the PROCfs module. This now uses the new arbitrary sized
2945 * /proc/net interface to create /proc/net/dev
2946 */
dev_seq_show(struct seq_file * seq,void * v)2947 static int dev_seq_show(struct seq_file *seq, void *v)
2948 {
2949 if (v == SEQ_START_TOKEN)
2950 seq_puts(seq, "Inter-| Receive "
2951 " | Transmit\n"
2952 " face |bytes packets errs drop fifo frame "
2953 "compressed multicast|bytes packets errs "
2954 "drop fifo colls carrier compressed\n");
2955 else
2956 dev_seq_printf_stats(seq, v);
2957 return 0;
2958 }
2959
softnet_get_online(loff_t * pos)2960 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2961 {
2962 struct netif_rx_stats *rc = NULL;
2963
2964 while (*pos < nr_cpu_ids)
2965 if (cpu_online(*pos)) {
2966 rc = &per_cpu(netdev_rx_stat, *pos);
2967 break;
2968 } else
2969 ++*pos;
2970 return rc;
2971 }
2972
softnet_seq_start(struct seq_file * seq,loff_t * pos)2973 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2974 {
2975 return softnet_get_online(pos);
2976 }
2977
softnet_seq_next(struct seq_file * seq,void * v,loff_t * pos)2978 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2979 {
2980 ++*pos;
2981 return softnet_get_online(pos);
2982 }
2983
softnet_seq_stop(struct seq_file * seq,void * v)2984 static void softnet_seq_stop(struct seq_file *seq, void *v)
2985 {
2986 }
2987
softnet_seq_show(struct seq_file * seq,void * v)2988 static int softnet_seq_show(struct seq_file *seq, void *v)
2989 {
2990 struct netif_rx_stats *s = v;
2991
2992 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2993 s->total, s->dropped, s->time_squeeze, 0,
2994 0, 0, 0, 0, /* was fastroute */
2995 s->cpu_collision );
2996 return 0;
2997 }
2998
2999 static const struct seq_operations dev_seq_ops = {
3000 .start = dev_seq_start,
3001 .next = dev_seq_next,
3002 .stop = dev_seq_stop,
3003 .show = dev_seq_show,
3004 };
3005
dev_seq_open(struct inode * inode,struct file * file)3006 static int dev_seq_open(struct inode *inode, struct file *file)
3007 {
3008 return seq_open_net(inode, file, &dev_seq_ops,
3009 sizeof(struct seq_net_private));
3010 }
3011
3012 static const struct file_operations dev_seq_fops = {
3013 .owner = THIS_MODULE,
3014 .open = dev_seq_open,
3015 .read = seq_read,
3016 .llseek = seq_lseek,
3017 .release = seq_release_net,
3018 };
3019
3020 static const struct seq_operations softnet_seq_ops = {
3021 .start = softnet_seq_start,
3022 .next = softnet_seq_next,
3023 .stop = softnet_seq_stop,
3024 .show = softnet_seq_show,
3025 };
3026
softnet_seq_open(struct inode * inode,struct file * file)3027 static int softnet_seq_open(struct inode *inode, struct file *file)
3028 {
3029 return seq_open(file, &softnet_seq_ops);
3030 }
3031
3032 static const struct file_operations softnet_seq_fops = {
3033 .owner = THIS_MODULE,
3034 .open = softnet_seq_open,
3035 .read = seq_read,
3036 .llseek = seq_lseek,
3037 .release = seq_release,
3038 };
3039
ptype_get_idx(loff_t pos)3040 static void *ptype_get_idx(loff_t pos)
3041 {
3042 struct packet_type *pt = NULL;
3043 loff_t i = 0;
3044 int t;
3045
3046 list_for_each_entry_rcu(pt, &ptype_all, list) {
3047 if (i == pos)
3048 return pt;
3049 ++i;
3050 }
3051
3052 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3053 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3054 if (i == pos)
3055 return pt;
3056 ++i;
3057 }
3058 }
3059 return NULL;
3060 }
3061
ptype_seq_start(struct seq_file * seq,loff_t * pos)3062 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3063 __acquires(RCU)
3064 {
3065 rcu_read_lock();
3066 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3067 }
3068
ptype_seq_next(struct seq_file * seq,void * v,loff_t * pos)3069 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3070 {
3071 struct packet_type *pt;
3072 struct list_head *nxt;
3073 int hash;
3074
3075 ++*pos;
3076 if (v == SEQ_START_TOKEN)
3077 return ptype_get_idx(0);
3078
3079 pt = v;
3080 nxt = pt->list.next;
3081 if (pt->type == htons(ETH_P_ALL)) {
3082 if (nxt != &ptype_all)
3083 goto found;
3084 hash = 0;
3085 nxt = ptype_base[0].next;
3086 } else
3087 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3088
3089 while (nxt == &ptype_base[hash]) {
3090 if (++hash >= PTYPE_HASH_SIZE)
3091 return NULL;
3092 nxt = ptype_base[hash].next;
3093 }
3094 found:
3095 return list_entry(nxt, struct packet_type, list);
3096 }
3097
ptype_seq_stop(struct seq_file * seq,void * v)3098 static void ptype_seq_stop(struct seq_file *seq, void *v)
3099 __releases(RCU)
3100 {
3101 rcu_read_unlock();
3102 }
3103
ptype_seq_show(struct seq_file * seq,void * v)3104 static int ptype_seq_show(struct seq_file *seq, void *v)
3105 {
3106 struct packet_type *pt = v;
3107
3108 if (v == SEQ_START_TOKEN)
3109 seq_puts(seq, "Type Device Function\n");
3110 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3111 if (pt->type == htons(ETH_P_ALL))
3112 seq_puts(seq, "ALL ");
3113 else
3114 seq_printf(seq, "%04x", ntohs(pt->type));
3115
3116 seq_printf(seq, " %-8s %pF\n",
3117 pt->dev ? pt->dev->name : "", pt->func);
3118 }
3119
3120 return 0;
3121 }
3122
3123 static const struct seq_operations ptype_seq_ops = {
3124 .start = ptype_seq_start,
3125 .next = ptype_seq_next,
3126 .stop = ptype_seq_stop,
3127 .show = ptype_seq_show,
3128 };
3129
ptype_seq_open(struct inode * inode,struct file * file)3130 static int ptype_seq_open(struct inode *inode, struct file *file)
3131 {
3132 return seq_open_net(inode, file, &ptype_seq_ops,
3133 sizeof(struct seq_net_private));
3134 }
3135
3136 static const struct file_operations ptype_seq_fops = {
3137 .owner = THIS_MODULE,
3138 .open = ptype_seq_open,
3139 .read = seq_read,
3140 .llseek = seq_lseek,
3141 .release = seq_release_net,
3142 };
3143
3144
dev_proc_net_init(struct net * net)3145 static int __net_init dev_proc_net_init(struct net *net)
3146 {
3147 int rc = -ENOMEM;
3148
3149 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3150 goto out;
3151 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3152 goto out_dev;
3153 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3154 goto out_softnet;
3155
3156 if (wext_proc_init(net))
3157 goto out_ptype;
3158 rc = 0;
3159 out:
3160 return rc;
3161 out_ptype:
3162 proc_net_remove(net, "ptype");
3163 out_softnet:
3164 proc_net_remove(net, "softnet_stat");
3165 out_dev:
3166 proc_net_remove(net, "dev");
3167 goto out;
3168 }
3169
dev_proc_net_exit(struct net * net)3170 static void __net_exit dev_proc_net_exit(struct net *net)
3171 {
3172 wext_proc_exit(net);
3173
3174 proc_net_remove(net, "ptype");
3175 proc_net_remove(net, "softnet_stat");
3176 proc_net_remove(net, "dev");
3177 }
3178
3179 static struct pernet_operations __net_initdata dev_proc_ops = {
3180 .init = dev_proc_net_init,
3181 .exit = dev_proc_net_exit,
3182 };
3183
dev_proc_init(void)3184 static int __init dev_proc_init(void)
3185 {
3186 return register_pernet_subsys(&dev_proc_ops);
3187 }
3188 #else
3189 #define dev_proc_init() 0
3190 #endif /* CONFIG_PROC_FS */
3191
3192
3193 /**
3194 * netdev_set_master - set up master/slave pair
3195 * @slave: slave device
3196 * @master: new master device
3197 *
3198 * Changes the master device of the slave. Pass %NULL to break the
3199 * bonding. The caller must hold the RTNL semaphore. On a failure
3200 * a negative errno code is returned. On success the reference counts
3201 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3202 * function returns zero.
3203 */
netdev_set_master(struct net_device * slave,struct net_device * master)3204 int netdev_set_master(struct net_device *slave, struct net_device *master)
3205 {
3206 struct net_device *old = slave->master;
3207
3208 ASSERT_RTNL();
3209
3210 if (master) {
3211 if (old)
3212 return -EBUSY;
3213 dev_hold(master);
3214 }
3215
3216 slave->master = master;
3217
3218 synchronize_net();
3219
3220 if (old)
3221 dev_put(old);
3222
3223 if (master)
3224 slave->flags |= IFF_SLAVE;
3225 else
3226 slave->flags &= ~IFF_SLAVE;
3227
3228 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3229 return 0;
3230 }
3231
dev_change_rx_flags(struct net_device * dev,int flags)3232 static void dev_change_rx_flags(struct net_device *dev, int flags)
3233 {
3234 const struct net_device_ops *ops = dev->netdev_ops;
3235
3236 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3237 ops->ndo_change_rx_flags(dev, flags);
3238 }
3239
__dev_set_promiscuity(struct net_device * dev,int inc)3240 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3241 {
3242 unsigned short old_flags = dev->flags;
3243 uid_t uid;
3244 gid_t gid;
3245
3246 ASSERT_RTNL();
3247
3248 dev->flags |= IFF_PROMISC;
3249 dev->promiscuity += inc;
3250 if (dev->promiscuity == 0) {
3251 /*
3252 * Avoid overflow.
3253 * If inc causes overflow, untouch promisc and return error.
3254 */
3255 if (inc < 0)
3256 dev->flags &= ~IFF_PROMISC;
3257 else {
3258 dev->promiscuity -= inc;
3259 printk(KERN_WARNING "%s: promiscuity touches roof, "
3260 "set promiscuity failed, promiscuity feature "
3261 "of device might be broken.\n", dev->name);
3262 return -EOVERFLOW;
3263 }
3264 }
3265 if (dev->flags != old_flags) {
3266 printk(KERN_INFO "device %s %s promiscuous mode\n",
3267 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3268 "left");
3269 if (audit_enabled) {
3270 current_uid_gid(&uid, &gid);
3271 audit_log(current->audit_context, GFP_ATOMIC,
3272 AUDIT_ANOM_PROMISCUOUS,
3273 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3274 dev->name, (dev->flags & IFF_PROMISC),
3275 (old_flags & IFF_PROMISC),
3276 audit_get_loginuid(current),
3277 uid, gid,
3278 audit_get_sessionid(current));
3279 }
3280
3281 dev_change_rx_flags(dev, IFF_PROMISC);
3282 }
3283 return 0;
3284 }
3285
3286 /**
3287 * dev_set_promiscuity - update promiscuity count on a device
3288 * @dev: device
3289 * @inc: modifier
3290 *
3291 * Add or remove promiscuity from a device. While the count in the device
3292 * remains above zero the interface remains promiscuous. Once it hits zero
3293 * the device reverts back to normal filtering operation. A negative inc
3294 * value is used to drop promiscuity on the device.
3295 * Return 0 if successful or a negative errno code on error.
3296 */
dev_set_promiscuity(struct net_device * dev,int inc)3297 int dev_set_promiscuity(struct net_device *dev, int inc)
3298 {
3299 unsigned short old_flags = dev->flags;
3300 int err;
3301
3302 err = __dev_set_promiscuity(dev, inc);
3303 if (err < 0)
3304 return err;
3305 if (dev->flags != old_flags)
3306 dev_set_rx_mode(dev);
3307 return err;
3308 }
3309
3310 /**
3311 * dev_set_allmulti - update allmulti count on a device
3312 * @dev: device
3313 * @inc: modifier
3314 *
3315 * Add or remove reception of all multicast frames to a device. While the
3316 * count in the device remains above zero the interface remains listening
3317 * to all interfaces. Once it hits zero the device reverts back to normal
3318 * filtering operation. A negative @inc value is used to drop the counter
3319 * when releasing a resource needing all multicasts.
3320 * Return 0 if successful or a negative errno code on error.
3321 */
3322
dev_set_allmulti(struct net_device * dev,int inc)3323 int dev_set_allmulti(struct net_device *dev, int inc)
3324 {
3325 unsigned short old_flags = dev->flags;
3326
3327 ASSERT_RTNL();
3328
3329 dev->flags |= IFF_ALLMULTI;
3330 dev->allmulti += inc;
3331 if (dev->allmulti == 0) {
3332 /*
3333 * Avoid overflow.
3334 * If inc causes overflow, untouch allmulti and return error.
3335 */
3336 if (inc < 0)
3337 dev->flags &= ~IFF_ALLMULTI;
3338 else {
3339 dev->allmulti -= inc;
3340 printk(KERN_WARNING "%s: allmulti touches roof, "
3341 "set allmulti failed, allmulti feature of "
3342 "device might be broken.\n", dev->name);
3343 return -EOVERFLOW;
3344 }
3345 }
3346 if (dev->flags ^ old_flags) {
3347 dev_change_rx_flags(dev, IFF_ALLMULTI);
3348 dev_set_rx_mode(dev);
3349 }
3350 return 0;
3351 }
3352
3353 /*
3354 * Upload unicast and multicast address lists to device and
3355 * configure RX filtering. When the device doesn't support unicast
3356 * filtering it is put in promiscuous mode while unicast addresses
3357 * are present.
3358 */
__dev_set_rx_mode(struct net_device * dev)3359 void __dev_set_rx_mode(struct net_device *dev)
3360 {
3361 const struct net_device_ops *ops = dev->netdev_ops;
3362
3363 /* dev_open will call this function so the list will stay sane. */
3364 if (!(dev->flags&IFF_UP))
3365 return;
3366
3367 if (!netif_device_present(dev))
3368 return;
3369
3370 if (ops->ndo_set_rx_mode)
3371 ops->ndo_set_rx_mode(dev);
3372 else {
3373 /* Unicast addresses changes may only happen under the rtnl,
3374 * therefore calling __dev_set_promiscuity here is safe.
3375 */
3376 if (dev->uc_count > 0 && !dev->uc_promisc) {
3377 __dev_set_promiscuity(dev, 1);
3378 dev->uc_promisc = 1;
3379 } else if (dev->uc_count == 0 && dev->uc_promisc) {
3380 __dev_set_promiscuity(dev, -1);
3381 dev->uc_promisc = 0;
3382 }
3383
3384 if (ops->ndo_set_multicast_list)
3385 ops->ndo_set_multicast_list(dev);
3386 }
3387 }
3388
dev_set_rx_mode(struct net_device * dev)3389 void dev_set_rx_mode(struct net_device *dev)
3390 {
3391 netif_addr_lock_bh(dev);
3392 __dev_set_rx_mode(dev);
3393 netif_addr_unlock_bh(dev);
3394 }
3395
__dev_addr_delete(struct dev_addr_list ** list,int * count,void * addr,int alen,int glbl)3396 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3397 void *addr, int alen, int glbl)
3398 {
3399 struct dev_addr_list *da;
3400
3401 for (; (da = *list) != NULL; list = &da->next) {
3402 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3403 alen == da->da_addrlen) {
3404 if (glbl) {
3405 int old_glbl = da->da_gusers;
3406 da->da_gusers = 0;
3407 if (old_glbl == 0)
3408 break;
3409 }
3410 if (--da->da_users)
3411 return 0;
3412
3413 *list = da->next;
3414 kfree(da);
3415 (*count)--;
3416 return 0;
3417 }
3418 }
3419 return -ENOENT;
3420 }
3421
__dev_addr_add(struct dev_addr_list ** list,int * count,void * addr,int alen,int glbl)3422 int __dev_addr_add(struct dev_addr_list **list, int *count,
3423 void *addr, int alen, int glbl)
3424 {
3425 struct dev_addr_list *da;
3426
3427 for (da = *list; da != NULL; da = da->next) {
3428 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3429 da->da_addrlen == alen) {
3430 if (glbl) {
3431 int old_glbl = da->da_gusers;
3432 da->da_gusers = 1;
3433 if (old_glbl)
3434 return 0;
3435 }
3436 da->da_users++;
3437 return 0;
3438 }
3439 }
3440
3441 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3442 if (da == NULL)
3443 return -ENOMEM;
3444 memcpy(da->da_addr, addr, alen);
3445 da->da_addrlen = alen;
3446 da->da_users = 1;
3447 da->da_gusers = glbl ? 1 : 0;
3448 da->next = *list;
3449 *list = da;
3450 (*count)++;
3451 return 0;
3452 }
3453
3454 /**
3455 * dev_unicast_delete - Release secondary unicast address.
3456 * @dev: device
3457 * @addr: address to delete
3458 * @alen: length of @addr
3459 *
3460 * Release reference to a secondary unicast address and remove it
3461 * from the device if the reference count drops to zero.
3462 *
3463 * The caller must hold the rtnl_mutex.
3464 */
dev_unicast_delete(struct net_device * dev,void * addr,int alen)3465 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3466 {
3467 int err;
3468
3469 ASSERT_RTNL();
3470
3471 netif_addr_lock_bh(dev);
3472 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3473 if (!err)
3474 __dev_set_rx_mode(dev);
3475 netif_addr_unlock_bh(dev);
3476 return err;
3477 }
3478 EXPORT_SYMBOL(dev_unicast_delete);
3479
3480 /**
3481 * dev_unicast_add - add a secondary unicast address
3482 * @dev: device
3483 * @addr: address to add
3484 * @alen: length of @addr
3485 *
3486 * Add a secondary unicast address to the device or increase
3487 * the reference count if it already exists.
3488 *
3489 * The caller must hold the rtnl_mutex.
3490 */
dev_unicast_add(struct net_device * dev,void * addr,int alen)3491 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3492 {
3493 int err;
3494
3495 ASSERT_RTNL();
3496
3497 netif_addr_lock_bh(dev);
3498 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3499 if (!err)
3500 __dev_set_rx_mode(dev);
3501 netif_addr_unlock_bh(dev);
3502 return err;
3503 }
3504 EXPORT_SYMBOL(dev_unicast_add);
3505
__dev_addr_sync(struct dev_addr_list ** to,int * to_count,struct dev_addr_list ** from,int * from_count)3506 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3507 struct dev_addr_list **from, int *from_count)
3508 {
3509 struct dev_addr_list *da, *next;
3510 int err = 0;
3511
3512 da = *from;
3513 while (da != NULL) {
3514 next = da->next;
3515 if (!da->da_synced) {
3516 err = __dev_addr_add(to, to_count,
3517 da->da_addr, da->da_addrlen, 0);
3518 if (err < 0)
3519 break;
3520 da->da_synced = 1;
3521 da->da_users++;
3522 } else if (da->da_users == 1) {
3523 __dev_addr_delete(to, to_count,
3524 da->da_addr, da->da_addrlen, 0);
3525 __dev_addr_delete(from, from_count,
3526 da->da_addr, da->da_addrlen, 0);
3527 }
3528 da = next;
3529 }
3530 return err;
3531 }
3532
__dev_addr_unsync(struct dev_addr_list ** to,int * to_count,struct dev_addr_list ** from,int * from_count)3533 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3534 struct dev_addr_list **from, int *from_count)
3535 {
3536 struct dev_addr_list *da, *next;
3537
3538 da = *from;
3539 while (da != NULL) {
3540 next = da->next;
3541 if (da->da_synced) {
3542 __dev_addr_delete(to, to_count,
3543 da->da_addr, da->da_addrlen, 0);
3544 da->da_synced = 0;
3545 __dev_addr_delete(from, from_count,
3546 da->da_addr, da->da_addrlen, 0);
3547 }
3548 da = next;
3549 }
3550 }
3551
3552 /**
3553 * dev_unicast_sync - Synchronize device's unicast list to another device
3554 * @to: destination device
3555 * @from: source device
3556 *
3557 * Add newly added addresses to the destination device and release
3558 * addresses that have no users left. The source device must be
3559 * locked by netif_tx_lock_bh.
3560 *
3561 * This function is intended to be called from the dev->set_rx_mode
3562 * function of layered software devices.
3563 */
dev_unicast_sync(struct net_device * to,struct net_device * from)3564 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3565 {
3566 int err = 0;
3567
3568 netif_addr_lock_bh(to);
3569 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3570 &from->uc_list, &from->uc_count);
3571 if (!err)
3572 __dev_set_rx_mode(to);
3573 netif_addr_unlock_bh(to);
3574 return err;
3575 }
3576 EXPORT_SYMBOL(dev_unicast_sync);
3577
3578 /**
3579 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3580 * @to: destination device
3581 * @from: source device
3582 *
3583 * Remove all addresses that were added to the destination device by
3584 * dev_unicast_sync(). This function is intended to be called from the
3585 * dev->stop function of layered software devices.
3586 */
dev_unicast_unsync(struct net_device * to,struct net_device * from)3587 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3588 {
3589 netif_addr_lock_bh(from);
3590 netif_addr_lock(to);
3591
3592 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3593 &from->uc_list, &from->uc_count);
3594 __dev_set_rx_mode(to);
3595
3596 netif_addr_unlock(to);
3597 netif_addr_unlock_bh(from);
3598 }
3599 EXPORT_SYMBOL(dev_unicast_unsync);
3600
__dev_addr_discard(struct dev_addr_list ** list)3601 static void __dev_addr_discard(struct dev_addr_list **list)
3602 {
3603 struct dev_addr_list *tmp;
3604
3605 while (*list != NULL) {
3606 tmp = *list;
3607 *list = tmp->next;
3608 if (tmp->da_users > tmp->da_gusers)
3609 printk("__dev_addr_discard: address leakage! "
3610 "da_users=%d\n", tmp->da_users);
3611 kfree(tmp);
3612 }
3613 }
3614
dev_addr_discard(struct net_device * dev)3615 static void dev_addr_discard(struct net_device *dev)
3616 {
3617 netif_addr_lock_bh(dev);
3618
3619 __dev_addr_discard(&dev->uc_list);
3620 dev->uc_count = 0;
3621
3622 __dev_addr_discard(&dev->mc_list);
3623 dev->mc_count = 0;
3624
3625 netif_addr_unlock_bh(dev);
3626 }
3627
3628 /**
3629 * dev_get_flags - get flags reported to userspace
3630 * @dev: device
3631 *
3632 * Get the combination of flag bits exported through APIs to userspace.
3633 */
dev_get_flags(const struct net_device * dev)3634 unsigned dev_get_flags(const struct net_device *dev)
3635 {
3636 unsigned flags;
3637
3638 flags = (dev->flags & ~(IFF_PROMISC |
3639 IFF_ALLMULTI |
3640 IFF_RUNNING |
3641 IFF_LOWER_UP |
3642 IFF_DORMANT)) |
3643 (dev->gflags & (IFF_PROMISC |
3644 IFF_ALLMULTI));
3645
3646 if (netif_running(dev)) {
3647 if (netif_oper_up(dev))
3648 flags |= IFF_RUNNING;
3649 if (netif_carrier_ok(dev))
3650 flags |= IFF_LOWER_UP;
3651 if (netif_dormant(dev))
3652 flags |= IFF_DORMANT;
3653 }
3654
3655 return flags;
3656 }
3657
3658 /**
3659 * dev_change_flags - change device settings
3660 * @dev: device
3661 * @flags: device state flags
3662 *
3663 * Change settings on device based state flags. The flags are
3664 * in the userspace exported format.
3665 */
dev_change_flags(struct net_device * dev,unsigned flags)3666 int dev_change_flags(struct net_device *dev, unsigned flags)
3667 {
3668 int ret, changes;
3669 int old_flags = dev->flags;
3670
3671 ASSERT_RTNL();
3672
3673 /*
3674 * Set the flags on our device.
3675 */
3676
3677 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3678 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3679 IFF_AUTOMEDIA)) |
3680 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3681 IFF_ALLMULTI));
3682
3683 /*
3684 * Load in the correct multicast list now the flags have changed.
3685 */
3686
3687 if ((old_flags ^ flags) & IFF_MULTICAST)
3688 dev_change_rx_flags(dev, IFF_MULTICAST);
3689
3690 dev_set_rx_mode(dev);
3691
3692 /*
3693 * Have we downed the interface. We handle IFF_UP ourselves
3694 * according to user attempts to set it, rather than blindly
3695 * setting it.
3696 */
3697
3698 ret = 0;
3699 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3700 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3701
3702 if (!ret)
3703 dev_set_rx_mode(dev);
3704 }
3705
3706 if (dev->flags & IFF_UP &&
3707 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3708 IFF_VOLATILE)))
3709 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3710
3711 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3712 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3713 dev->gflags ^= IFF_PROMISC;
3714 dev_set_promiscuity(dev, inc);
3715 }
3716
3717 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3718 is important. Some (broken) drivers set IFF_PROMISC, when
3719 IFF_ALLMULTI is requested not asking us and not reporting.
3720 */
3721 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3722 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3723 dev->gflags ^= IFF_ALLMULTI;
3724 dev_set_allmulti(dev, inc);
3725 }
3726
3727 /* Exclude state transition flags, already notified */
3728 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3729 if (changes)
3730 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3731
3732 return ret;
3733 }
3734
3735 /**
3736 * dev_set_mtu - Change maximum transfer unit
3737 * @dev: device
3738 * @new_mtu: new transfer unit
3739 *
3740 * Change the maximum transfer size of the network device.
3741 */
dev_set_mtu(struct net_device * dev,int new_mtu)3742 int dev_set_mtu(struct net_device *dev, int new_mtu)
3743 {
3744 const struct net_device_ops *ops = dev->netdev_ops;
3745 int err;
3746
3747 if (new_mtu == dev->mtu)
3748 return 0;
3749
3750 /* MTU must be positive. */
3751 if (new_mtu < 0)
3752 return -EINVAL;
3753
3754 if (!netif_device_present(dev))
3755 return -ENODEV;
3756
3757 err = 0;
3758 if (ops->ndo_change_mtu)
3759 err = ops->ndo_change_mtu(dev, new_mtu);
3760 else
3761 dev->mtu = new_mtu;
3762
3763 if (!err && dev->flags & IFF_UP)
3764 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3765 return err;
3766 }
3767
3768 /**
3769 * dev_set_mac_address - Change Media Access Control Address
3770 * @dev: device
3771 * @sa: new address
3772 *
3773 * Change the hardware (MAC) address of the device
3774 */
dev_set_mac_address(struct net_device * dev,struct sockaddr * sa)3775 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3776 {
3777 const struct net_device_ops *ops = dev->netdev_ops;
3778 int err;
3779
3780 if (!ops->ndo_set_mac_address)
3781 return -EOPNOTSUPP;
3782 if (sa->sa_family != dev->type)
3783 return -EINVAL;
3784 if (!netif_device_present(dev))
3785 return -ENODEV;
3786 err = ops->ndo_set_mac_address(dev, sa);
3787 if (!err)
3788 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3789 return err;
3790 }
3791
3792 /*
3793 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3794 */
dev_ifsioc_locked(struct net * net,struct ifreq * ifr,unsigned int cmd)3795 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3796 {
3797 int err;
3798 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3799
3800 if (!dev)
3801 return -ENODEV;
3802
3803 switch (cmd) {
3804 case SIOCGIFFLAGS: /* Get interface flags */
3805 ifr->ifr_flags = dev_get_flags(dev);
3806 return 0;
3807
3808 case SIOCGIFMETRIC: /* Get the metric on the interface
3809 (currently unused) */
3810 ifr->ifr_metric = 0;
3811 return 0;
3812
3813 case SIOCGIFMTU: /* Get the MTU of a device */
3814 ifr->ifr_mtu = dev->mtu;
3815 return 0;
3816
3817 case SIOCGIFHWADDR:
3818 if (!dev->addr_len)
3819 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3820 else
3821 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3822 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3823 ifr->ifr_hwaddr.sa_family = dev->type;
3824 return 0;
3825
3826 case SIOCGIFSLAVE:
3827 err = -EINVAL;
3828 break;
3829
3830 case SIOCGIFMAP:
3831 ifr->ifr_map.mem_start = dev->mem_start;
3832 ifr->ifr_map.mem_end = dev->mem_end;
3833 ifr->ifr_map.base_addr = dev->base_addr;
3834 ifr->ifr_map.irq = dev->irq;
3835 ifr->ifr_map.dma = dev->dma;
3836 ifr->ifr_map.port = dev->if_port;
3837 return 0;
3838
3839 case SIOCGIFINDEX:
3840 ifr->ifr_ifindex = dev->ifindex;
3841 return 0;
3842
3843 case SIOCGIFTXQLEN:
3844 ifr->ifr_qlen = dev->tx_queue_len;
3845 return 0;
3846
3847 default:
3848 /* dev_ioctl() should ensure this case
3849 * is never reached
3850 */
3851 WARN_ON(1);
3852 err = -EINVAL;
3853 break;
3854
3855 }
3856 return err;
3857 }
3858
3859 /*
3860 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3861 */
dev_ifsioc(struct net * net,struct ifreq * ifr,unsigned int cmd)3862 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3863 {
3864 int err;
3865 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3866 const struct net_device_ops *ops;
3867
3868 if (!dev)
3869 return -ENODEV;
3870
3871 ops = dev->netdev_ops;
3872
3873 switch (cmd) {
3874 case SIOCSIFFLAGS: /* Set interface flags */
3875 return dev_change_flags(dev, ifr->ifr_flags);
3876
3877 case SIOCSIFMETRIC: /* Set the metric on the interface
3878 (currently unused) */
3879 return -EOPNOTSUPP;
3880
3881 case SIOCSIFMTU: /* Set the MTU of a device */
3882 return dev_set_mtu(dev, ifr->ifr_mtu);
3883
3884 case SIOCSIFHWADDR:
3885 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3886
3887 case SIOCSIFHWBROADCAST:
3888 if (ifr->ifr_hwaddr.sa_family != dev->type)
3889 return -EINVAL;
3890 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3891 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3892 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3893 return 0;
3894
3895 case SIOCSIFMAP:
3896 if (ops->ndo_set_config) {
3897 if (!netif_device_present(dev))
3898 return -ENODEV;
3899 return ops->ndo_set_config(dev, &ifr->ifr_map);
3900 }
3901 return -EOPNOTSUPP;
3902
3903 case SIOCADDMULTI:
3904 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3905 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3906 return -EINVAL;
3907 if (!netif_device_present(dev))
3908 return -ENODEV;
3909 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3910 dev->addr_len, 1);
3911
3912 case SIOCDELMULTI:
3913 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3914 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3915 return -EINVAL;
3916 if (!netif_device_present(dev))
3917 return -ENODEV;
3918 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3919 dev->addr_len, 1);
3920
3921 case SIOCSIFTXQLEN:
3922 if (ifr->ifr_qlen < 0)
3923 return -EINVAL;
3924 dev->tx_queue_len = ifr->ifr_qlen;
3925 return 0;
3926
3927 case SIOCSIFNAME:
3928 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3929 return dev_change_name(dev, ifr->ifr_newname);
3930
3931 /*
3932 * Unknown or private ioctl
3933 */
3934
3935 default:
3936 if ((cmd >= SIOCDEVPRIVATE &&
3937 cmd <= SIOCDEVPRIVATE + 15) ||
3938 cmd == SIOCBONDENSLAVE ||
3939 cmd == SIOCBONDRELEASE ||
3940 cmd == SIOCBONDSETHWADDR ||
3941 cmd == SIOCBONDSLAVEINFOQUERY ||
3942 cmd == SIOCBONDINFOQUERY ||
3943 cmd == SIOCBONDCHANGEACTIVE ||
3944 cmd == SIOCGMIIPHY ||
3945 cmd == SIOCGMIIREG ||
3946 cmd == SIOCSMIIREG ||
3947 cmd == SIOCBRADDIF ||
3948 cmd == SIOCBRDELIF ||
3949 cmd == SIOCWANDEV) {
3950 err = -EOPNOTSUPP;
3951 if (ops->ndo_do_ioctl) {
3952 if (netif_device_present(dev))
3953 err = ops->ndo_do_ioctl(dev, ifr, cmd);
3954 else
3955 err = -ENODEV;
3956 }
3957 } else
3958 err = -EINVAL;
3959
3960 }
3961 return err;
3962 }
3963
3964 /*
3965 * This function handles all "interface"-type I/O control requests. The actual
3966 * 'doing' part of this is dev_ifsioc above.
3967 */
3968
3969 /**
3970 * dev_ioctl - network device ioctl
3971 * @net: the applicable net namespace
3972 * @cmd: command to issue
3973 * @arg: pointer to a struct ifreq in user space
3974 *
3975 * Issue ioctl functions to devices. This is normally called by the
3976 * user space syscall interfaces but can sometimes be useful for
3977 * other purposes. The return value is the return from the syscall if
3978 * positive or a negative errno code on error.
3979 */
3980
dev_ioctl(struct net * net,unsigned int cmd,void __user * arg)3981 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3982 {
3983 struct ifreq ifr;
3984 int ret;
3985 char *colon;
3986
3987 /* One special case: SIOCGIFCONF takes ifconf argument
3988 and requires shared lock, because it sleeps writing
3989 to user space.
3990 */
3991
3992 if (cmd == SIOCGIFCONF) {
3993 rtnl_lock();
3994 ret = dev_ifconf(net, (char __user *) arg);
3995 rtnl_unlock();
3996 return ret;
3997 }
3998 if (cmd == SIOCGIFNAME)
3999 return dev_ifname(net, (struct ifreq __user *)arg);
4000
4001 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4002 return -EFAULT;
4003
4004 ifr.ifr_name[IFNAMSIZ-1] = 0;
4005
4006 colon = strchr(ifr.ifr_name, ':');
4007 if (colon)
4008 *colon = 0;
4009
4010 /*
4011 * See which interface the caller is talking about.
4012 */
4013
4014 switch (cmd) {
4015 /*
4016 * These ioctl calls:
4017 * - can be done by all.
4018 * - atomic and do not require locking.
4019 * - return a value
4020 */
4021 case SIOCGIFFLAGS:
4022 case SIOCGIFMETRIC:
4023 case SIOCGIFMTU:
4024 case SIOCGIFHWADDR:
4025 case SIOCGIFSLAVE:
4026 case SIOCGIFMAP:
4027 case SIOCGIFINDEX:
4028 case SIOCGIFTXQLEN:
4029 dev_load(net, ifr.ifr_name);
4030 read_lock(&dev_base_lock);
4031 ret = dev_ifsioc_locked(net, &ifr, cmd);
4032 read_unlock(&dev_base_lock);
4033 if (!ret) {
4034 if (colon)
4035 *colon = ':';
4036 if (copy_to_user(arg, &ifr,
4037 sizeof(struct ifreq)))
4038 ret = -EFAULT;
4039 }
4040 return ret;
4041
4042 case SIOCETHTOOL:
4043 dev_load(net, ifr.ifr_name);
4044 rtnl_lock();
4045 ret = dev_ethtool(net, &ifr);
4046 rtnl_unlock();
4047 if (!ret) {
4048 if (colon)
4049 *colon = ':';
4050 if (copy_to_user(arg, &ifr,
4051 sizeof(struct ifreq)))
4052 ret = -EFAULT;
4053 }
4054 return ret;
4055
4056 /*
4057 * These ioctl calls:
4058 * - require superuser power.
4059 * - require strict serialization.
4060 * - return a value
4061 */
4062 case SIOCGMIIPHY:
4063 case SIOCGMIIREG:
4064 case SIOCSIFNAME:
4065 if (!capable(CAP_NET_ADMIN))
4066 return -EPERM;
4067 dev_load(net, ifr.ifr_name);
4068 rtnl_lock();
4069 ret = dev_ifsioc(net, &ifr, cmd);
4070 rtnl_unlock();
4071 if (!ret) {
4072 if (colon)
4073 *colon = ':';
4074 if (copy_to_user(arg, &ifr,
4075 sizeof(struct ifreq)))
4076 ret = -EFAULT;
4077 }
4078 return ret;
4079
4080 /*
4081 * These ioctl calls:
4082 * - require superuser power.
4083 * - require strict serialization.
4084 * - do not return a value
4085 */
4086 case SIOCSIFFLAGS:
4087 case SIOCSIFMETRIC:
4088 case SIOCSIFMTU:
4089 case SIOCSIFMAP:
4090 case SIOCSIFHWADDR:
4091 case SIOCSIFSLAVE:
4092 case SIOCADDMULTI:
4093 case SIOCDELMULTI:
4094 case SIOCSIFHWBROADCAST:
4095 case SIOCSIFTXQLEN:
4096 case SIOCSMIIREG:
4097 case SIOCBONDENSLAVE:
4098 case SIOCBONDRELEASE:
4099 case SIOCBONDSETHWADDR:
4100 case SIOCBONDCHANGEACTIVE:
4101 case SIOCBRADDIF:
4102 case SIOCBRDELIF:
4103 if (!capable(CAP_NET_ADMIN))
4104 return -EPERM;
4105 /* fall through */
4106 case SIOCBONDSLAVEINFOQUERY:
4107 case SIOCBONDINFOQUERY:
4108 dev_load(net, ifr.ifr_name);
4109 rtnl_lock();
4110 ret = dev_ifsioc(net, &ifr, cmd);
4111 rtnl_unlock();
4112 return ret;
4113
4114 case SIOCGIFMEM:
4115 /* Get the per device memory space. We can add this but
4116 * currently do not support it */
4117 case SIOCSIFMEM:
4118 /* Set the per device memory buffer space.
4119 * Not applicable in our case */
4120 case SIOCSIFLINK:
4121 return -EINVAL;
4122
4123 /*
4124 * Unknown or private ioctl.
4125 */
4126 default:
4127 if (cmd == SIOCWANDEV ||
4128 (cmd >= SIOCDEVPRIVATE &&
4129 cmd <= SIOCDEVPRIVATE + 15)) {
4130 dev_load(net, ifr.ifr_name);
4131 rtnl_lock();
4132 ret = dev_ifsioc(net, &ifr, cmd);
4133 rtnl_unlock();
4134 if (!ret && copy_to_user(arg, &ifr,
4135 sizeof(struct ifreq)))
4136 ret = -EFAULT;
4137 return ret;
4138 }
4139 /* Take care of Wireless Extensions */
4140 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4141 return wext_handle_ioctl(net, &ifr, cmd, arg);
4142 return -EINVAL;
4143 }
4144 }
4145
4146
4147 /**
4148 * dev_new_index - allocate an ifindex
4149 * @net: the applicable net namespace
4150 *
4151 * Returns a suitable unique value for a new device interface
4152 * number. The caller must hold the rtnl semaphore or the
4153 * dev_base_lock to be sure it remains unique.
4154 */
dev_new_index(struct net * net)4155 static int dev_new_index(struct net *net)
4156 {
4157 static int ifindex;
4158 for (;;) {
4159 if (++ifindex <= 0)
4160 ifindex = 1;
4161 if (!__dev_get_by_index(net, ifindex))
4162 return ifindex;
4163 }
4164 }
4165
4166 /* Delayed registration/unregisteration */
4167 static LIST_HEAD(net_todo_list);
4168
net_set_todo(struct net_device * dev)4169 static void net_set_todo(struct net_device *dev)
4170 {
4171 list_add_tail(&dev->todo_list, &net_todo_list);
4172 }
4173
rollback_registered(struct net_device * dev)4174 static void rollback_registered(struct net_device *dev)
4175 {
4176 BUG_ON(dev_boot_phase);
4177 ASSERT_RTNL();
4178
4179 /* Some devices call without registering for initialization unwind. */
4180 if (dev->reg_state == NETREG_UNINITIALIZED) {
4181 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
4182 "was registered\n", dev->name, dev);
4183
4184 WARN_ON(1);
4185 return;
4186 }
4187
4188 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4189
4190 /* If device is running, close it first. */
4191 dev_close(dev);
4192
4193 /* And unlink it from device chain. */
4194 unlist_netdevice(dev);
4195
4196 dev->reg_state = NETREG_UNREGISTERING;
4197
4198 synchronize_net();
4199
4200 /* Shutdown queueing discipline. */
4201 dev_shutdown(dev);
4202
4203
4204 /* Notify protocols, that we are about to destroy
4205 this device. They should clean all the things.
4206 */
4207 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4208
4209 /*
4210 * Flush the unicast and multicast chains
4211 */
4212 dev_addr_discard(dev);
4213
4214 if (dev->netdev_ops->ndo_uninit)
4215 dev->netdev_ops->ndo_uninit(dev);
4216
4217 /* Notifier chain MUST detach us from master device. */
4218 WARN_ON(dev->master);
4219
4220 /* Remove entries from kobject tree */
4221 netdev_unregister_kobject(dev);
4222
4223 synchronize_net();
4224
4225 dev_put(dev);
4226 }
4227
__netdev_init_queue_locks_one(struct net_device * dev,struct netdev_queue * dev_queue,void * _unused)4228 static void __netdev_init_queue_locks_one(struct net_device *dev,
4229 struct netdev_queue *dev_queue,
4230 void *_unused)
4231 {
4232 spin_lock_init(&dev_queue->_xmit_lock);
4233 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4234 dev_queue->xmit_lock_owner = -1;
4235 }
4236
netdev_init_queue_locks(struct net_device * dev)4237 static void netdev_init_queue_locks(struct net_device *dev)
4238 {
4239 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4240 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4241 }
4242
netdev_fix_features(unsigned long features,const char * name)4243 unsigned long netdev_fix_features(unsigned long features, const char *name)
4244 {
4245 /* Fix illegal SG+CSUM combinations. */
4246 if ((features & NETIF_F_SG) &&
4247 !(features & NETIF_F_ALL_CSUM)) {
4248 if (name)
4249 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4250 "checksum feature.\n", name);
4251 features &= ~NETIF_F_SG;
4252 }
4253
4254 /* TSO requires that SG is present as well. */
4255 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4256 if (name)
4257 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4258 "SG feature.\n", name);
4259 features &= ~NETIF_F_TSO;
4260 }
4261
4262 if (features & NETIF_F_UFO) {
4263 if (!(features & NETIF_F_GEN_CSUM)) {
4264 if (name)
4265 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4266 "since no NETIF_F_HW_CSUM feature.\n",
4267 name);
4268 features &= ~NETIF_F_UFO;
4269 }
4270
4271 if (!(features & NETIF_F_SG)) {
4272 if (name)
4273 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4274 "since no NETIF_F_SG feature.\n", name);
4275 features &= ~NETIF_F_UFO;
4276 }
4277 }
4278
4279 return features;
4280 }
4281 EXPORT_SYMBOL(netdev_fix_features);
4282
4283 /* Some devices need to (re-)set their netdev_ops inside
4284 * ->init() or similar. If that happens, we have to setup
4285 * the compat pointers again.
4286 */
netdev_resync_ops(struct net_device * dev)4287 void netdev_resync_ops(struct net_device *dev)
4288 {
4289 #ifdef CONFIG_COMPAT_NET_DEV_OPS
4290 const struct net_device_ops *ops = dev->netdev_ops;
4291
4292 dev->init = ops->ndo_init;
4293 dev->uninit = ops->ndo_uninit;
4294 dev->open = ops->ndo_open;
4295 dev->change_rx_flags = ops->ndo_change_rx_flags;
4296 dev->set_rx_mode = ops->ndo_set_rx_mode;
4297 dev->set_multicast_list = ops->ndo_set_multicast_list;
4298 dev->set_mac_address = ops->ndo_set_mac_address;
4299 dev->validate_addr = ops->ndo_validate_addr;
4300 dev->do_ioctl = ops->ndo_do_ioctl;
4301 dev->set_config = ops->ndo_set_config;
4302 dev->change_mtu = ops->ndo_change_mtu;
4303 dev->neigh_setup = ops->ndo_neigh_setup;
4304 dev->tx_timeout = ops->ndo_tx_timeout;
4305 dev->get_stats = ops->ndo_get_stats;
4306 dev->vlan_rx_register = ops->ndo_vlan_rx_register;
4307 dev->vlan_rx_add_vid = ops->ndo_vlan_rx_add_vid;
4308 dev->vlan_rx_kill_vid = ops->ndo_vlan_rx_kill_vid;
4309 #ifdef CONFIG_NET_POLL_CONTROLLER
4310 dev->poll_controller = ops->ndo_poll_controller;
4311 #endif
4312 #endif
4313 }
4314 EXPORT_SYMBOL(netdev_resync_ops);
4315
4316 /**
4317 * register_netdevice - register a network device
4318 * @dev: device to register
4319 *
4320 * Take a completed network device structure and add it to the kernel
4321 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4322 * chain. 0 is returned on success. A negative errno code is returned
4323 * on a failure to set up the device, or if the name is a duplicate.
4324 *
4325 * Callers must hold the rtnl semaphore. You may want
4326 * register_netdev() instead of this.
4327 *
4328 * BUGS:
4329 * The locking appears insufficient to guarantee two parallel registers
4330 * will not get the same name.
4331 */
4332
register_netdevice(struct net_device * dev)4333 int register_netdevice(struct net_device *dev)
4334 {
4335 struct hlist_head *head;
4336 struct hlist_node *p;
4337 int ret;
4338 struct net *net = dev_net(dev);
4339
4340 BUG_ON(dev_boot_phase);
4341 ASSERT_RTNL();
4342
4343 might_sleep();
4344
4345 /* When net_device's are persistent, this will be fatal. */
4346 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4347 BUG_ON(!net);
4348
4349 spin_lock_init(&dev->addr_list_lock);
4350 netdev_set_addr_lockdep_class(dev);
4351 netdev_init_queue_locks(dev);
4352
4353 dev->iflink = -1;
4354
4355 #ifdef CONFIG_COMPAT_NET_DEV_OPS
4356 /* Netdevice_ops API compatiability support.
4357 * This is temporary until all network devices are converted.
4358 */
4359 if (dev->netdev_ops) {
4360 netdev_resync_ops(dev);
4361 } else {
4362 char drivername[64];
4363 pr_info("%s (%s): not using net_device_ops yet\n",
4364 dev->name, netdev_drivername(dev, drivername, 64));
4365
4366 /* This works only because net_device_ops and the
4367 compatiablity structure are the same. */
4368 dev->netdev_ops = (void *) &(dev->init);
4369 }
4370 #endif
4371
4372 /* Init, if this function is available */
4373 if (dev->netdev_ops->ndo_init) {
4374 ret = dev->netdev_ops->ndo_init(dev);
4375 if (ret) {
4376 if (ret > 0)
4377 ret = -EIO;
4378 goto out;
4379 }
4380 }
4381
4382 if (!dev_valid_name(dev->name)) {
4383 ret = -EINVAL;
4384 goto err_uninit;
4385 }
4386
4387 dev->ifindex = dev_new_index(net);
4388 if (dev->iflink == -1)
4389 dev->iflink = dev->ifindex;
4390
4391 /* Check for existence of name */
4392 head = dev_name_hash(net, dev->name);
4393 hlist_for_each(p, head) {
4394 struct net_device *d
4395 = hlist_entry(p, struct net_device, name_hlist);
4396 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4397 ret = -EEXIST;
4398 goto err_uninit;
4399 }
4400 }
4401
4402 /* Fix illegal checksum combinations */
4403 if ((dev->features & NETIF_F_HW_CSUM) &&
4404 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4405 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4406 dev->name);
4407 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4408 }
4409
4410 if ((dev->features & NETIF_F_NO_CSUM) &&
4411 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4412 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4413 dev->name);
4414 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4415 }
4416
4417 dev->features = netdev_fix_features(dev->features, dev->name);
4418
4419 /* Enable software GSO if SG is supported. */
4420 if (dev->features & NETIF_F_SG)
4421 dev->features |= NETIF_F_GSO;
4422
4423 netdev_initialize_kobject(dev);
4424 ret = netdev_register_kobject(dev);
4425 if (ret)
4426 goto err_uninit;
4427 dev->reg_state = NETREG_REGISTERED;
4428
4429 /*
4430 * Default initial state at registry is that the
4431 * device is present.
4432 */
4433
4434 set_bit(__LINK_STATE_PRESENT, &dev->state);
4435
4436 dev_init_scheduler(dev);
4437 dev_hold(dev);
4438 list_netdevice(dev);
4439
4440 /* Notify protocols, that a new device appeared. */
4441 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4442 ret = notifier_to_errno(ret);
4443 if (ret) {
4444 rollback_registered(dev);
4445 dev->reg_state = NETREG_UNREGISTERED;
4446 }
4447
4448 out:
4449 return ret;
4450
4451 err_uninit:
4452 if (dev->netdev_ops->ndo_uninit)
4453 dev->netdev_ops->ndo_uninit(dev);
4454 goto out;
4455 }
4456
4457 /**
4458 * init_dummy_netdev - init a dummy network device for NAPI
4459 * @dev: device to init
4460 *
4461 * This takes a network device structure and initialize the minimum
4462 * amount of fields so it can be used to schedule NAPI polls without
4463 * registering a full blown interface. This is to be used by drivers
4464 * that need to tie several hardware interfaces to a single NAPI
4465 * poll scheduler due to HW limitations.
4466 */
init_dummy_netdev(struct net_device * dev)4467 int init_dummy_netdev(struct net_device *dev)
4468 {
4469 /* Clear everything. Note we don't initialize spinlocks
4470 * are they aren't supposed to be taken by any of the
4471 * NAPI code and this dummy netdev is supposed to be
4472 * only ever used for NAPI polls
4473 */
4474 memset(dev, 0, sizeof(struct net_device));
4475
4476 /* make sure we BUG if trying to hit standard
4477 * register/unregister code path
4478 */
4479 dev->reg_state = NETREG_DUMMY;
4480
4481 /* initialize the ref count */
4482 atomic_set(&dev->refcnt, 1);
4483
4484 /* NAPI wants this */
4485 INIT_LIST_HEAD(&dev->napi_list);
4486
4487 /* a dummy interface is started by default */
4488 set_bit(__LINK_STATE_PRESENT, &dev->state);
4489 set_bit(__LINK_STATE_START, &dev->state);
4490
4491 return 0;
4492 }
4493 EXPORT_SYMBOL_GPL(init_dummy_netdev);
4494
4495
4496 /**
4497 * register_netdev - register a network device
4498 * @dev: device to register
4499 *
4500 * Take a completed network device structure and add it to the kernel
4501 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4502 * chain. 0 is returned on success. A negative errno code is returned
4503 * on a failure to set up the device, or if the name is a duplicate.
4504 *
4505 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4506 * and expands the device name if you passed a format string to
4507 * alloc_netdev.
4508 */
register_netdev(struct net_device * dev)4509 int register_netdev(struct net_device *dev)
4510 {
4511 int err;
4512
4513 rtnl_lock();
4514
4515 /*
4516 * If the name is a format string the caller wants us to do a
4517 * name allocation.
4518 */
4519 if (strchr(dev->name, '%')) {
4520 err = dev_alloc_name(dev, dev->name);
4521 if (err < 0)
4522 goto out;
4523 }
4524
4525 err = register_netdevice(dev);
4526 out:
4527 rtnl_unlock();
4528 return err;
4529 }
4530 EXPORT_SYMBOL(register_netdev);
4531
4532 /*
4533 * netdev_wait_allrefs - wait until all references are gone.
4534 *
4535 * This is called when unregistering network devices.
4536 *
4537 * Any protocol or device that holds a reference should register
4538 * for netdevice notification, and cleanup and put back the
4539 * reference if they receive an UNREGISTER event.
4540 * We can get stuck here if buggy protocols don't correctly
4541 * call dev_put.
4542 */
netdev_wait_allrefs(struct net_device * dev)4543 static void netdev_wait_allrefs(struct net_device *dev)
4544 {
4545 unsigned long rebroadcast_time, warning_time;
4546
4547 rebroadcast_time = warning_time = jiffies;
4548 while (atomic_read(&dev->refcnt) != 0) {
4549 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4550 rtnl_lock();
4551
4552 /* Rebroadcast unregister notification */
4553 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4554
4555 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4556 &dev->state)) {
4557 /* We must not have linkwatch events
4558 * pending on unregister. If this
4559 * happens, we simply run the queue
4560 * unscheduled, resulting in a noop
4561 * for this device.
4562 */
4563 linkwatch_run_queue();
4564 }
4565
4566 __rtnl_unlock();
4567
4568 rebroadcast_time = jiffies;
4569 }
4570
4571 msleep(250);
4572
4573 if (time_after(jiffies, warning_time + 10 * HZ)) {
4574 printk(KERN_EMERG "unregister_netdevice: "
4575 "waiting for %s to become free. Usage "
4576 "count = %d\n",
4577 dev->name, atomic_read(&dev->refcnt));
4578 warning_time = jiffies;
4579 }
4580 }
4581 }
4582
4583 /* The sequence is:
4584 *
4585 * rtnl_lock();
4586 * ...
4587 * register_netdevice(x1);
4588 * register_netdevice(x2);
4589 * ...
4590 * unregister_netdevice(y1);
4591 * unregister_netdevice(y2);
4592 * ...
4593 * rtnl_unlock();
4594 * free_netdev(y1);
4595 * free_netdev(y2);
4596 *
4597 * We are invoked by rtnl_unlock().
4598 * This allows us to deal with problems:
4599 * 1) We can delete sysfs objects which invoke hotplug
4600 * without deadlocking with linkwatch via keventd.
4601 * 2) Since we run with the RTNL semaphore not held, we can sleep
4602 * safely in order to wait for the netdev refcnt to drop to zero.
4603 *
4604 * We must not return until all unregister events added during
4605 * the interval the lock was held have been completed.
4606 */
netdev_run_todo(void)4607 void netdev_run_todo(void)
4608 {
4609 struct list_head list;
4610
4611 /* Snapshot list, allow later requests */
4612 list_replace_init(&net_todo_list, &list);
4613
4614 __rtnl_unlock();
4615
4616 while (!list_empty(&list)) {
4617 struct net_device *dev
4618 = list_entry(list.next, struct net_device, todo_list);
4619 list_del(&dev->todo_list);
4620
4621 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4622 printk(KERN_ERR "network todo '%s' but state %d\n",
4623 dev->name, dev->reg_state);
4624 dump_stack();
4625 continue;
4626 }
4627
4628 dev->reg_state = NETREG_UNREGISTERED;
4629
4630 on_each_cpu(flush_backlog, dev, 1);
4631
4632 netdev_wait_allrefs(dev);
4633
4634 /* paranoia */
4635 BUG_ON(atomic_read(&dev->refcnt));
4636 WARN_ON(dev->ip_ptr);
4637 WARN_ON(dev->ip6_ptr);
4638 WARN_ON(dev->dn_ptr);
4639
4640 if (dev->destructor)
4641 dev->destructor(dev);
4642
4643 /* Free network device */
4644 kobject_put(&dev->dev.kobj);
4645 }
4646 }
4647
4648 /**
4649 * dev_get_stats - get network device statistics
4650 * @dev: device to get statistics from
4651 *
4652 * Get network statistics from device. The device driver may provide
4653 * its own method by setting dev->netdev_ops->get_stats; otherwise
4654 * the internal statistics structure is used.
4655 */
dev_get_stats(struct net_device * dev)4656 const struct net_device_stats *dev_get_stats(struct net_device *dev)
4657 {
4658 const struct net_device_ops *ops = dev->netdev_ops;
4659
4660 if (ops->ndo_get_stats)
4661 return ops->ndo_get_stats(dev);
4662 else
4663 return &dev->stats;
4664 }
4665 EXPORT_SYMBOL(dev_get_stats);
4666
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)4667 static void netdev_init_one_queue(struct net_device *dev,
4668 struct netdev_queue *queue,
4669 void *_unused)
4670 {
4671 queue->dev = dev;
4672 }
4673
netdev_init_queues(struct net_device * dev)4674 static void netdev_init_queues(struct net_device *dev)
4675 {
4676 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4677 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4678 spin_lock_init(&dev->tx_global_lock);
4679 }
4680
4681 /**
4682 * alloc_netdev_mq - allocate network device
4683 * @sizeof_priv: size of private data to allocate space for
4684 * @name: device name format string
4685 * @setup: callback to initialize device
4686 * @queue_count: the number of subqueues to allocate
4687 *
4688 * Allocates a struct net_device with private data area for driver use
4689 * and performs basic initialization. Also allocates subquue structs
4690 * for each queue on the device at the end of the netdevice.
4691 */
alloc_netdev_mq(int sizeof_priv,const char * name,void (* setup)(struct net_device *),unsigned int queue_count)4692 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4693 void (*setup)(struct net_device *), unsigned int queue_count)
4694 {
4695 struct netdev_queue *tx;
4696 struct net_device *dev;
4697 size_t alloc_size;
4698 void *p;
4699
4700 BUG_ON(strlen(name) >= sizeof(dev->name));
4701
4702 alloc_size = sizeof(struct net_device);
4703 if (sizeof_priv) {
4704 /* ensure 32-byte alignment of private area */
4705 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4706 alloc_size += sizeof_priv;
4707 }
4708 /* ensure 32-byte alignment of whole construct */
4709 alloc_size += NETDEV_ALIGN_CONST;
4710
4711 p = kzalloc(alloc_size, GFP_KERNEL);
4712 if (!p) {
4713 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4714 return NULL;
4715 }
4716
4717 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
4718 if (!tx) {
4719 printk(KERN_ERR "alloc_netdev: Unable to allocate "
4720 "tx qdiscs.\n");
4721 kfree(p);
4722 return NULL;
4723 }
4724
4725 dev = (struct net_device *)
4726 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4727 dev->padded = (char *)dev - (char *)p;
4728 dev_net_set(dev, &init_net);
4729
4730 dev->_tx = tx;
4731 dev->num_tx_queues = queue_count;
4732 dev->real_num_tx_queues = queue_count;
4733
4734 dev->gso_max_size = GSO_MAX_SIZE;
4735
4736 netdev_init_queues(dev);
4737
4738 INIT_LIST_HEAD(&dev->napi_list);
4739 setup(dev);
4740 strcpy(dev->name, name);
4741 return dev;
4742 }
4743 EXPORT_SYMBOL(alloc_netdev_mq);
4744
4745 /**
4746 * free_netdev - free network device
4747 * @dev: device
4748 *
4749 * This function does the last stage of destroying an allocated device
4750 * interface. The reference to the device object is released.
4751 * If this is the last reference then it will be freed.
4752 */
free_netdev(struct net_device * dev)4753 void free_netdev(struct net_device *dev)
4754 {
4755 struct napi_struct *p, *n;
4756
4757 release_net(dev_net(dev));
4758
4759 kfree(dev->_tx);
4760
4761 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
4762 netif_napi_del(p);
4763
4764 /* Compatibility with error handling in drivers */
4765 if (dev->reg_state == NETREG_UNINITIALIZED) {
4766 kfree((char *)dev - dev->padded);
4767 return;
4768 }
4769
4770 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4771 dev->reg_state = NETREG_RELEASED;
4772
4773 /* will free via device release */
4774 put_device(&dev->dev);
4775 }
4776
4777 /**
4778 * synchronize_net - Synchronize with packet receive processing
4779 *
4780 * Wait for packets currently being received to be done.
4781 * Does not block later packets from starting.
4782 */
synchronize_net(void)4783 void synchronize_net(void)
4784 {
4785 might_sleep();
4786 synchronize_rcu();
4787 }
4788
4789 /**
4790 * unregister_netdevice - remove device from the kernel
4791 * @dev: device
4792 *
4793 * This function shuts down a device interface and removes it
4794 * from the kernel tables.
4795 *
4796 * Callers must hold the rtnl semaphore. You may want
4797 * unregister_netdev() instead of this.
4798 */
4799
unregister_netdevice(struct net_device * dev)4800 void unregister_netdevice(struct net_device *dev)
4801 {
4802 ASSERT_RTNL();
4803
4804 rollback_registered(dev);
4805 /* Finish processing unregister after unlock */
4806 net_set_todo(dev);
4807 }
4808
4809 /**
4810 * unregister_netdev - remove device from the kernel
4811 * @dev: device
4812 *
4813 * This function shuts down a device interface and removes it
4814 * from the kernel tables.
4815 *
4816 * This is just a wrapper for unregister_netdevice that takes
4817 * the rtnl semaphore. In general you want to use this and not
4818 * unregister_netdevice.
4819 */
unregister_netdev(struct net_device * dev)4820 void unregister_netdev(struct net_device *dev)
4821 {
4822 rtnl_lock();
4823 unregister_netdevice(dev);
4824 rtnl_unlock();
4825 }
4826
4827 EXPORT_SYMBOL(unregister_netdev);
4828
4829 /**
4830 * dev_change_net_namespace - move device to different nethost namespace
4831 * @dev: device
4832 * @net: network namespace
4833 * @pat: If not NULL name pattern to try if the current device name
4834 * is already taken in the destination network namespace.
4835 *
4836 * This function shuts down a device interface and moves it
4837 * to a new network namespace. On success 0 is returned, on
4838 * a failure a netagive errno code is returned.
4839 *
4840 * Callers must hold the rtnl semaphore.
4841 */
4842
dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat)4843 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4844 {
4845 char buf[IFNAMSIZ];
4846 const char *destname;
4847 int err;
4848
4849 ASSERT_RTNL();
4850
4851 /* Don't allow namespace local devices to be moved. */
4852 err = -EINVAL;
4853 if (dev->features & NETIF_F_NETNS_LOCAL)
4854 goto out;
4855
4856 #ifdef CONFIG_SYSFS
4857 /* Don't allow real devices to be moved when sysfs
4858 * is enabled.
4859 */
4860 err = -EINVAL;
4861 if (dev->dev.parent)
4862 goto out;
4863 #endif
4864
4865 /* Ensure the device has been registrered */
4866 err = -EINVAL;
4867 if (dev->reg_state != NETREG_REGISTERED)
4868 goto out;
4869
4870 /* Get out if there is nothing todo */
4871 err = 0;
4872 if (net_eq(dev_net(dev), net))
4873 goto out;
4874
4875 /* Pick the destination device name, and ensure
4876 * we can use it in the destination network namespace.
4877 */
4878 err = -EEXIST;
4879 destname = dev->name;
4880 if (__dev_get_by_name(net, destname)) {
4881 /* We get here if we can't use the current device name */
4882 if (!pat)
4883 goto out;
4884 if (!dev_valid_name(pat))
4885 goto out;
4886 if (strchr(pat, '%')) {
4887 if (__dev_alloc_name(net, pat, buf) < 0)
4888 goto out;
4889 destname = buf;
4890 } else
4891 destname = pat;
4892 if (__dev_get_by_name(net, destname))
4893 goto out;
4894 }
4895
4896 /*
4897 * And now a mini version of register_netdevice unregister_netdevice.
4898 */
4899
4900 /* If device is running close it first. */
4901 dev_close(dev);
4902
4903 /* And unlink it from device chain */
4904 err = -ENODEV;
4905 unlist_netdevice(dev);
4906
4907 synchronize_net();
4908
4909 /* Shutdown queueing discipline. */
4910 dev_shutdown(dev);
4911
4912 /* Notify protocols, that we are about to destroy
4913 this device. They should clean all the things.
4914 */
4915 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4916
4917 /*
4918 * Flush the unicast and multicast chains
4919 */
4920 dev_addr_discard(dev);
4921
4922 netdev_unregister_kobject(dev);
4923
4924 /* Actually switch the network namespace */
4925 dev_net_set(dev, net);
4926
4927 /* Assign the new device name */
4928 if (destname != dev->name)
4929 strcpy(dev->name, destname);
4930
4931 /* If there is an ifindex conflict assign a new one */
4932 if (__dev_get_by_index(net, dev->ifindex)) {
4933 int iflink = (dev->iflink == dev->ifindex);
4934 dev->ifindex = dev_new_index(net);
4935 if (iflink)
4936 dev->iflink = dev->ifindex;
4937 }
4938
4939 /* Fixup kobjects */
4940 err = netdev_register_kobject(dev);
4941 WARN_ON(err);
4942
4943 /* Add the device back in the hashes */
4944 list_netdevice(dev);
4945
4946 /* Notify protocols, that a new device appeared. */
4947 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4948
4949 synchronize_net();
4950 err = 0;
4951 out:
4952 return err;
4953 }
4954
dev_cpu_callback(struct notifier_block * nfb,unsigned long action,void * ocpu)4955 static int dev_cpu_callback(struct notifier_block *nfb,
4956 unsigned long action,
4957 void *ocpu)
4958 {
4959 struct sk_buff **list_skb;
4960 struct Qdisc **list_net;
4961 struct sk_buff *skb;
4962 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4963 struct softnet_data *sd, *oldsd;
4964
4965 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4966 return NOTIFY_OK;
4967
4968 local_irq_disable();
4969 cpu = smp_processor_id();
4970 sd = &per_cpu(softnet_data, cpu);
4971 oldsd = &per_cpu(softnet_data, oldcpu);
4972
4973 /* Find end of our completion_queue. */
4974 list_skb = &sd->completion_queue;
4975 while (*list_skb)
4976 list_skb = &(*list_skb)->next;
4977 /* Append completion queue from offline CPU. */
4978 *list_skb = oldsd->completion_queue;
4979 oldsd->completion_queue = NULL;
4980
4981 /* Find end of our output_queue. */
4982 list_net = &sd->output_queue;
4983 while (*list_net)
4984 list_net = &(*list_net)->next_sched;
4985 /* Append output queue from offline CPU. */
4986 *list_net = oldsd->output_queue;
4987 oldsd->output_queue = NULL;
4988
4989 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4990 local_irq_enable();
4991
4992 /* Process offline CPU's input_pkt_queue */
4993 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4994 netif_rx(skb);
4995
4996 return NOTIFY_OK;
4997 }
4998
4999
5000 /**
5001 * netdev_increment_features - increment feature set by one
5002 * @all: current feature set
5003 * @one: new feature set
5004 * @mask: mask feature set
5005 *
5006 * Computes a new feature set after adding a device with feature set
5007 * @one to the master device with current feature set @all. Will not
5008 * enable anything that is off in @mask. Returns the new feature set.
5009 */
netdev_increment_features(unsigned long all,unsigned long one,unsigned long mask)5010 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5011 unsigned long mask)
5012 {
5013 /* If device needs checksumming, downgrade to it. */
5014 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5015 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5016 else if (mask & NETIF_F_ALL_CSUM) {
5017 /* If one device supports v4/v6 checksumming, set for all. */
5018 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5019 !(all & NETIF_F_GEN_CSUM)) {
5020 all &= ~NETIF_F_ALL_CSUM;
5021 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5022 }
5023
5024 /* If one device supports hw checksumming, set for all. */
5025 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5026 all &= ~NETIF_F_ALL_CSUM;
5027 all |= NETIF_F_HW_CSUM;
5028 }
5029 }
5030
5031 one |= NETIF_F_ALL_CSUM;
5032
5033 one |= all & NETIF_F_ONE_FOR_ALL;
5034 all &= one | NETIF_F_LLTX | NETIF_F_GSO;
5035 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5036
5037 return all;
5038 }
5039 EXPORT_SYMBOL(netdev_increment_features);
5040
netdev_create_hash(void)5041 static struct hlist_head *netdev_create_hash(void)
5042 {
5043 int i;
5044 struct hlist_head *hash;
5045
5046 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5047 if (hash != NULL)
5048 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5049 INIT_HLIST_HEAD(&hash[i]);
5050
5051 return hash;
5052 }
5053
5054 /* Initialize per network namespace state */
netdev_init(struct net * net)5055 static int __net_init netdev_init(struct net *net)
5056 {
5057 INIT_LIST_HEAD(&net->dev_base_head);
5058
5059 net->dev_name_head = netdev_create_hash();
5060 if (net->dev_name_head == NULL)
5061 goto err_name;
5062
5063 net->dev_index_head = netdev_create_hash();
5064 if (net->dev_index_head == NULL)
5065 goto err_idx;
5066
5067 return 0;
5068
5069 err_idx:
5070 kfree(net->dev_name_head);
5071 err_name:
5072 return -ENOMEM;
5073 }
5074
5075 /**
5076 * netdev_drivername - network driver for the device
5077 * @dev: network device
5078 * @buffer: buffer for resulting name
5079 * @len: size of buffer
5080 *
5081 * Determine network driver for device.
5082 */
netdev_drivername(const struct net_device * dev,char * buffer,int len)5083 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5084 {
5085 const struct device_driver *driver;
5086 const struct device *parent;
5087
5088 if (len <= 0 || !buffer)
5089 return buffer;
5090 buffer[0] = 0;
5091
5092 parent = dev->dev.parent;
5093
5094 if (!parent)
5095 return buffer;
5096
5097 driver = parent->driver;
5098 if (driver && driver->name)
5099 strlcpy(buffer, driver->name, len);
5100 return buffer;
5101 }
5102
netdev_exit(struct net * net)5103 static void __net_exit netdev_exit(struct net *net)
5104 {
5105 kfree(net->dev_name_head);
5106 kfree(net->dev_index_head);
5107 }
5108
5109 static struct pernet_operations __net_initdata netdev_net_ops = {
5110 .init = netdev_init,
5111 .exit = netdev_exit,
5112 };
5113
default_device_exit(struct net * net)5114 static void __net_exit default_device_exit(struct net *net)
5115 {
5116 struct net_device *dev;
5117 /*
5118 * Push all migratable of the network devices back to the
5119 * initial network namespace
5120 */
5121 rtnl_lock();
5122 restart:
5123 for_each_netdev(net, dev) {
5124 int err;
5125 char fb_name[IFNAMSIZ];
5126
5127 /* Ignore unmoveable devices (i.e. loopback) */
5128 if (dev->features & NETIF_F_NETNS_LOCAL)
5129 continue;
5130
5131 /* Delete virtual devices */
5132 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
5133 dev->rtnl_link_ops->dellink(dev);
5134 goto restart;
5135 }
5136
5137 /* Push remaing network devices to init_net */
5138 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5139 err = dev_change_net_namespace(dev, &init_net, fb_name);
5140 if (err) {
5141 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5142 __func__, dev->name, err);
5143 BUG();
5144 }
5145 goto restart;
5146 }
5147 rtnl_unlock();
5148 }
5149
5150 static struct pernet_operations __net_initdata default_device_ops = {
5151 .exit = default_device_exit,
5152 };
5153
5154 /*
5155 * Initialize the DEV module. At boot time this walks the device list and
5156 * unhooks any devices that fail to initialise (normally hardware not
5157 * present) and leaves us with a valid list of present and active devices.
5158 *
5159 */
5160
5161 /*
5162 * This is called single threaded during boot, so no need
5163 * to take the rtnl semaphore.
5164 */
net_dev_init(void)5165 static int __init net_dev_init(void)
5166 {
5167 int i, rc = -ENOMEM;
5168
5169 BUG_ON(!dev_boot_phase);
5170
5171 if (dev_proc_init())
5172 goto out;
5173
5174 if (netdev_kobject_init())
5175 goto out;
5176
5177 INIT_LIST_HEAD(&ptype_all);
5178 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5179 INIT_LIST_HEAD(&ptype_base[i]);
5180
5181 if (register_pernet_subsys(&netdev_net_ops))
5182 goto out;
5183
5184 /*
5185 * Initialise the packet receive queues.
5186 */
5187
5188 for_each_possible_cpu(i) {
5189 struct softnet_data *queue;
5190
5191 queue = &per_cpu(softnet_data, i);
5192 skb_queue_head_init(&queue->input_pkt_queue);
5193 queue->completion_queue = NULL;
5194 INIT_LIST_HEAD(&queue->poll_list);
5195
5196 queue->backlog.poll = process_backlog;
5197 queue->backlog.weight = weight_p;
5198 queue->backlog.gro_list = NULL;
5199 }
5200
5201 dev_boot_phase = 0;
5202
5203 /* The loopback device is special if any other network devices
5204 * is present in a network namespace the loopback device must
5205 * be present. Since we now dynamically allocate and free the
5206 * loopback device ensure this invariant is maintained by
5207 * keeping the loopback device as the first device on the
5208 * list of network devices. Ensuring the loopback devices
5209 * is the first device that appears and the last network device
5210 * that disappears.
5211 */
5212 if (register_pernet_device(&loopback_net_ops))
5213 goto out;
5214
5215 if (register_pernet_device(&default_device_ops))
5216 goto out;
5217
5218 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5219 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5220
5221 hotcpu_notifier(dev_cpu_callback, 0);
5222 dst_init();
5223 dev_mcast_init();
5224 rc = 0;
5225 out:
5226 return rc;
5227 }
5228
5229 subsys_initcall(net_dev_init);
5230
5231 EXPORT_SYMBOL(__dev_get_by_index);
5232 EXPORT_SYMBOL(__dev_get_by_name);
5233 EXPORT_SYMBOL(__dev_remove_pack);
5234 EXPORT_SYMBOL(dev_valid_name);
5235 EXPORT_SYMBOL(dev_add_pack);
5236 EXPORT_SYMBOL(dev_alloc_name);
5237 EXPORT_SYMBOL(dev_close);
5238 EXPORT_SYMBOL(dev_get_by_flags);
5239 EXPORT_SYMBOL(dev_get_by_index);
5240 EXPORT_SYMBOL(dev_get_by_name);
5241 EXPORT_SYMBOL(dev_open);
5242 EXPORT_SYMBOL(dev_queue_xmit);
5243 EXPORT_SYMBOL(dev_remove_pack);
5244 EXPORT_SYMBOL(dev_set_allmulti);
5245 EXPORT_SYMBOL(dev_set_promiscuity);
5246 EXPORT_SYMBOL(dev_change_flags);
5247 EXPORT_SYMBOL(dev_set_mtu);
5248 EXPORT_SYMBOL(dev_set_mac_address);
5249 EXPORT_SYMBOL(free_netdev);
5250 EXPORT_SYMBOL(netdev_boot_setup_check);
5251 EXPORT_SYMBOL(netdev_set_master);
5252 EXPORT_SYMBOL(netdev_state_change);
5253 EXPORT_SYMBOL(netif_receive_skb);
5254 EXPORT_SYMBOL(netif_rx);
5255 EXPORT_SYMBOL(register_gifconf);
5256 EXPORT_SYMBOL(register_netdevice);
5257 EXPORT_SYMBOL(register_netdevice_notifier);
5258 EXPORT_SYMBOL(skb_checksum_help);
5259 EXPORT_SYMBOL(synchronize_net);
5260 EXPORT_SYMBOL(unregister_netdevice);
5261 EXPORT_SYMBOL(unregister_netdevice_notifier);
5262 EXPORT_SYMBOL(net_enable_timestamp);
5263 EXPORT_SYMBOL(net_disable_timestamp);
5264 EXPORT_SYMBOL(dev_get_flags);
5265
5266 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
5267 EXPORT_SYMBOL(br_handle_frame_hook);
5268 EXPORT_SYMBOL(br_fdb_get_hook);
5269 EXPORT_SYMBOL(br_fdb_put_hook);
5270 #endif
5271
5272 EXPORT_SYMBOL(dev_load);
5273
5274 EXPORT_PER_CPU_SYMBOL(softnet_data);
5275