1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1995 Linus Torvalds
7 * Copyright (C) 1995 Waldorf Electronics
8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
9 * Copyright (C) 1996 Stoned Elipot
10 * Copyright (C) 1999 Silicon Graphics, Inc.
11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki
12 */
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/module.h>
16 #include <linux/screen_info.h>
17 #include <linux/bootmem.h>
18 #include <linux/initrd.h>
19 #include <linux/root_dev.h>
20 #include <linux/highmem.h>
21 #include <linux/console.h>
22 #include <linux/pfn.h>
23 #include <linux/debugfs.h>
24
25 #include <asm/addrspace.h>
26 #include <asm/bootinfo.h>
27 #include <asm/bugs.h>
28 #include <asm/cache.h>
29 #include <asm/cpu.h>
30 #include <asm/sections.h>
31 #include <asm/setup.h>
32 #include <asm/smp-ops.h>
33 #include <asm/system.h>
34
35 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
36
37 EXPORT_SYMBOL(cpu_data);
38
39 #ifdef CONFIG_VT
40 struct screen_info screen_info;
41 #endif
42
43 /*
44 * Despite it's name this variable is even if we don't have PCI
45 */
46 unsigned int PCI_DMA_BUS_IS_PHYS;
47
48 EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
49
50 /*
51 * Setup information
52 *
53 * These are initialized so they are in the .data section
54 */
55 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
56
57 EXPORT_SYMBOL(mips_machtype);
58
59 struct boot_mem_map boot_mem_map;
60
61 static char command_line[CL_SIZE];
62 char arcs_cmdline[CL_SIZE]=CONFIG_CMDLINE;
63
64 /*
65 * mips_io_port_base is the begin of the address space to which x86 style
66 * I/O ports are mapped.
67 */
68 const unsigned long mips_io_port_base __read_mostly = -1;
69 EXPORT_SYMBOL(mips_io_port_base);
70
71 static struct resource code_resource = { .name = "Kernel code", };
72 static struct resource data_resource = { .name = "Kernel data", };
73
add_memory_region(phys_t start,phys_t size,long type)74 void __init add_memory_region(phys_t start, phys_t size, long type)
75 {
76 int x = boot_mem_map.nr_map;
77 struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1;
78
79 /* Sanity check */
80 if (start + size < start) {
81 pr_warning("Trying to add an invalid memory region, skipped\n");
82 return;
83 }
84
85 /*
86 * Try to merge with previous entry if any. This is far less than
87 * perfect but is sufficient for most real world cases.
88 */
89 if (x && prev->addr + prev->size == start && prev->type == type) {
90 prev->size += size;
91 return;
92 }
93
94 if (x == BOOT_MEM_MAP_MAX) {
95 pr_err("Ooops! Too many entries in the memory map!\n");
96 return;
97 }
98
99 boot_mem_map.map[x].addr = start;
100 boot_mem_map.map[x].size = size;
101 boot_mem_map.map[x].type = type;
102 boot_mem_map.nr_map++;
103 }
104
print_memory_map(void)105 static void __init print_memory_map(void)
106 {
107 int i;
108 const int field = 2 * sizeof(unsigned long);
109
110 for (i = 0; i < boot_mem_map.nr_map; i++) {
111 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
112 field, (unsigned long long) boot_mem_map.map[i].size,
113 field, (unsigned long long) boot_mem_map.map[i].addr);
114
115 switch (boot_mem_map.map[i].type) {
116 case BOOT_MEM_RAM:
117 printk(KERN_CONT "(usable)\n");
118 break;
119 case BOOT_MEM_ROM_DATA:
120 printk(KERN_CONT "(ROM data)\n");
121 break;
122 case BOOT_MEM_RESERVED:
123 printk(KERN_CONT "(reserved)\n");
124 break;
125 default:
126 printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
127 break;
128 }
129 }
130 }
131
132 /*
133 * Manage initrd
134 */
135 #ifdef CONFIG_BLK_DEV_INITRD
136
rd_start_early(char * p)137 static int __init rd_start_early(char *p)
138 {
139 unsigned long start = memparse(p, &p);
140
141 #ifdef CONFIG_64BIT
142 /* Guess if the sign extension was forgotten by bootloader */
143 if (start < XKPHYS)
144 start = (int)start;
145 #endif
146 initrd_start = start;
147 initrd_end += start;
148 return 0;
149 }
150 early_param("rd_start", rd_start_early);
151
rd_size_early(char * p)152 static int __init rd_size_early(char *p)
153 {
154 initrd_end += memparse(p, &p);
155 return 0;
156 }
157 early_param("rd_size", rd_size_early);
158
159 /* it returns the next free pfn after initrd */
init_initrd(void)160 static unsigned long __init init_initrd(void)
161 {
162 unsigned long end;
163
164 /*
165 * Board specific code or command line parser should have
166 * already set up initrd_start and initrd_end. In these cases
167 * perfom sanity checks and use them if all looks good.
168 */
169 if (!initrd_start || initrd_end <= initrd_start) {
170 #ifdef CONFIG_PROBE_INITRD_HEADER
171 u32 *initrd_header;
172
173 /*
174 * See if initrd has been added to the kernel image by
175 * arch/mips/boot/addinitrd.c. In that case a header is
176 * prepended to initrd and is made up by 8 bytes. The first
177 * word is a magic number and the second one is the size of
178 * initrd. Initrd start must be page aligned in any cases.
179 */
180 initrd_header = __va(PAGE_ALIGN(__pa_symbol(&_end) + 8)) - 8;
181 if (initrd_header[0] != 0x494E5244)
182 goto disable;
183 initrd_start = (unsigned long)(initrd_header + 2);
184 initrd_end = initrd_start + initrd_header[1];
185 #else
186 goto disable;
187 #endif
188 }
189
190 if (initrd_start & ~PAGE_MASK) {
191 pr_err("initrd start must be page aligned\n");
192 goto disable;
193 }
194 if (initrd_start < PAGE_OFFSET) {
195 pr_err("initrd start < PAGE_OFFSET\n");
196 goto disable;
197 }
198
199 /*
200 * Sanitize initrd addresses. For example firmware
201 * can't guess if they need to pass them through
202 * 64-bits values if the kernel has been built in pure
203 * 32-bit. We need also to switch from KSEG0 to XKPHYS
204 * addresses now, so the code can now safely use __pa().
205 */
206 end = __pa(initrd_end);
207 initrd_end = (unsigned long)__va(end);
208 initrd_start = (unsigned long)__va(__pa(initrd_start));
209
210 ROOT_DEV = Root_RAM0;
211 return PFN_UP(end);
212 disable:
213 initrd_start = 0;
214 initrd_end = 0;
215 return 0;
216 }
217
finalize_initrd(void)218 static void __init finalize_initrd(void)
219 {
220 unsigned long size = initrd_end - initrd_start;
221
222 if (size == 0) {
223 printk(KERN_INFO "Initrd not found or empty");
224 goto disable;
225 }
226 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
227 printk(KERN_ERR "Initrd extends beyond end of memory");
228 goto disable;
229 }
230
231 reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
232 initrd_below_start_ok = 1;
233
234 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
235 initrd_start, size);
236 return;
237 disable:
238 printk(KERN_CONT " - disabling initrd\n");
239 initrd_start = 0;
240 initrd_end = 0;
241 }
242
243 #else /* !CONFIG_BLK_DEV_INITRD */
244
init_initrd(void)245 static unsigned long __init init_initrd(void)
246 {
247 return 0;
248 }
249
250 #define finalize_initrd() do {} while (0)
251
252 #endif
253
254 /*
255 * Initialize the bootmem allocator. It also setup initrd related data
256 * if needed.
257 */
258 #ifdef CONFIG_SGI_IP27
259
bootmem_init(void)260 static void __init bootmem_init(void)
261 {
262 init_initrd();
263 finalize_initrd();
264 }
265
266 #else /* !CONFIG_SGI_IP27 */
267
bootmem_init(void)268 static void __init bootmem_init(void)
269 {
270 unsigned long reserved_end;
271 unsigned long mapstart = ~0UL;
272 unsigned long bootmap_size;
273 int i;
274
275 /*
276 * Init any data related to initrd. It's a nop if INITRD is
277 * not selected. Once that done we can determine the low bound
278 * of usable memory.
279 */
280 reserved_end = max(init_initrd(), PFN_UP(__pa_symbol(&_end)));
281
282 /*
283 * max_low_pfn is not a number of pages. The number of pages
284 * of the system is given by 'max_low_pfn - min_low_pfn'.
285 */
286 min_low_pfn = ~0UL;
287 max_low_pfn = 0;
288
289 /*
290 * Find the highest page frame number we have available.
291 */
292 for (i = 0; i < boot_mem_map.nr_map; i++) {
293 unsigned long start, end;
294
295 if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
296 continue;
297
298 start = PFN_UP(boot_mem_map.map[i].addr);
299 end = PFN_DOWN(boot_mem_map.map[i].addr
300 + boot_mem_map.map[i].size);
301
302 if (end > max_low_pfn)
303 max_low_pfn = end;
304 if (start < min_low_pfn)
305 min_low_pfn = start;
306 if (end <= reserved_end)
307 continue;
308 if (start >= mapstart)
309 continue;
310 mapstart = max(reserved_end, start);
311 }
312
313 if (min_low_pfn >= max_low_pfn)
314 panic("Incorrect memory mapping !!!");
315 if (min_low_pfn > ARCH_PFN_OFFSET) {
316 pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
317 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
318 min_low_pfn - ARCH_PFN_OFFSET);
319 } else if (min_low_pfn < ARCH_PFN_OFFSET) {
320 pr_info("%lu free pages won't be used\n",
321 ARCH_PFN_OFFSET - min_low_pfn);
322 }
323 min_low_pfn = ARCH_PFN_OFFSET;
324
325 /*
326 * Determine low and high memory ranges
327 */
328 max_pfn = max_low_pfn;
329 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
330 #ifdef CONFIG_HIGHMEM
331 highstart_pfn = PFN_DOWN(HIGHMEM_START);
332 highend_pfn = max_low_pfn;
333 #endif
334 max_low_pfn = PFN_DOWN(HIGHMEM_START);
335 }
336
337 /*
338 * Initialize the boot-time allocator with low memory only.
339 */
340 bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
341 min_low_pfn, max_low_pfn);
342
343
344 for (i = 0; i < boot_mem_map.nr_map; i++) {
345 unsigned long start, end;
346
347 start = PFN_UP(boot_mem_map.map[i].addr);
348 end = PFN_DOWN(boot_mem_map.map[i].addr
349 + boot_mem_map.map[i].size);
350
351 if (start <= min_low_pfn)
352 start = min_low_pfn;
353 if (start >= end)
354 continue;
355
356 #ifndef CONFIG_HIGHMEM
357 if (end > max_low_pfn)
358 end = max_low_pfn;
359
360 /*
361 * ... finally, is the area going away?
362 */
363 if (end <= start)
364 continue;
365 #endif
366
367 add_active_range(0, start, end);
368 }
369
370 /*
371 * Register fully available low RAM pages with the bootmem allocator.
372 */
373 for (i = 0; i < boot_mem_map.nr_map; i++) {
374 unsigned long start, end, size;
375
376 /*
377 * Reserve usable memory.
378 */
379 if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
380 continue;
381
382 start = PFN_UP(boot_mem_map.map[i].addr);
383 end = PFN_DOWN(boot_mem_map.map[i].addr
384 + boot_mem_map.map[i].size);
385 /*
386 * We are rounding up the start address of usable memory
387 * and at the end of the usable range downwards.
388 */
389 if (start >= max_low_pfn)
390 continue;
391 if (start < reserved_end)
392 start = reserved_end;
393 if (end > max_low_pfn)
394 end = max_low_pfn;
395
396 /*
397 * ... finally, is the area going away?
398 */
399 if (end <= start)
400 continue;
401 size = end - start;
402
403 /* Register lowmem ranges */
404 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
405 memory_present(0, start, end);
406 }
407
408 /*
409 * Reserve the bootmap memory.
410 */
411 reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
412
413 /*
414 * Reserve initrd memory if needed.
415 */
416 finalize_initrd();
417 }
418
419 #endif /* CONFIG_SGI_IP27 */
420
421 /*
422 * arch_mem_init - initialize memory management subsystem
423 *
424 * o plat_mem_setup() detects the memory configuration and will record detected
425 * memory areas using add_memory_region.
426 *
427 * At this stage the memory configuration of the system is known to the
428 * kernel but generic memory management system is still entirely uninitialized.
429 *
430 * o bootmem_init()
431 * o sparse_init()
432 * o paging_init()
433 *
434 * At this stage the bootmem allocator is ready to use.
435 *
436 * NOTE: historically plat_mem_setup did the entire platform initialization.
437 * This was rather impractical because it meant plat_mem_setup had to
438 * get away without any kind of memory allocator. To keep old code from
439 * breaking plat_setup was just renamed to plat_setup and a second platform
440 * initialization hook for anything else was introduced.
441 */
442
443 static int usermem __initdata = 0;
444
early_parse_mem(char * p)445 static int __init early_parse_mem(char *p)
446 {
447 unsigned long start, size;
448
449 /*
450 * If a user specifies memory size, we
451 * blow away any automatically generated
452 * size.
453 */
454 if (usermem == 0) {
455 boot_mem_map.nr_map = 0;
456 usermem = 1;
457 }
458 start = 0;
459 size = memparse(p, &p);
460 if (*p == '@')
461 start = memparse(p + 1, &p);
462
463 add_memory_region(start, size, BOOT_MEM_RAM);
464 return 0;
465 }
466 early_param("mem", early_parse_mem);
467
arch_mem_init(char ** cmdline_p)468 static void __init arch_mem_init(char **cmdline_p)
469 {
470 extern void plat_mem_setup(void);
471
472 /* call board setup routine */
473 plat_mem_setup();
474
475 pr_info("Determined physical RAM map:\n");
476 print_memory_map();
477
478 strlcpy(command_line, arcs_cmdline, sizeof(command_line));
479 strlcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
480
481 *cmdline_p = command_line;
482
483 parse_early_param();
484
485 if (usermem) {
486 pr_info("User-defined physical RAM map:\n");
487 print_memory_map();
488 }
489
490 bootmem_init();
491 sparse_init();
492 paging_init();
493 }
494
resource_init(void)495 static void __init resource_init(void)
496 {
497 int i;
498
499 if (UNCAC_BASE != IO_BASE)
500 return;
501
502 code_resource.start = __pa_symbol(&_text);
503 code_resource.end = __pa_symbol(&_etext) - 1;
504 data_resource.start = __pa_symbol(&_etext);
505 data_resource.end = __pa_symbol(&_edata) - 1;
506
507 /*
508 * Request address space for all standard RAM.
509 */
510 for (i = 0; i < boot_mem_map.nr_map; i++) {
511 struct resource *res;
512 unsigned long start, end;
513
514 start = boot_mem_map.map[i].addr;
515 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
516 if (start >= HIGHMEM_START)
517 continue;
518 if (end >= HIGHMEM_START)
519 end = HIGHMEM_START - 1;
520
521 res = alloc_bootmem(sizeof(struct resource));
522 switch (boot_mem_map.map[i].type) {
523 case BOOT_MEM_RAM:
524 case BOOT_MEM_ROM_DATA:
525 res->name = "System RAM";
526 break;
527 case BOOT_MEM_RESERVED:
528 default:
529 res->name = "reserved";
530 }
531
532 res->start = start;
533 res->end = end;
534
535 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
536 request_resource(&iomem_resource, res);
537
538 /*
539 * We don't know which RAM region contains kernel data,
540 * so we try it repeatedly and let the resource manager
541 * test it.
542 */
543 request_resource(res, &code_resource);
544 request_resource(res, &data_resource);
545 }
546 }
547
setup_arch(char ** cmdline_p)548 void __init setup_arch(char **cmdline_p)
549 {
550 cpu_probe();
551 prom_init();
552
553 #ifdef CONFIG_EARLY_PRINTK
554 setup_early_printk();
555 #endif
556 cpu_report();
557 check_bugs_early();
558
559 #if defined(CONFIG_VT)
560 #if defined(CONFIG_VGA_CONSOLE)
561 conswitchp = &vga_con;
562 #elif defined(CONFIG_DUMMY_CONSOLE)
563 conswitchp = &dummy_con;
564 #endif
565 #endif
566
567 arch_mem_init(cmdline_p);
568
569 resource_init();
570 plat_smp_setup();
571 }
572
fpu_disable(char * s)573 static int __init fpu_disable(char *s)
574 {
575 int i;
576
577 for (i = 0; i < NR_CPUS; i++)
578 cpu_data[i].options &= ~MIPS_CPU_FPU;
579
580 return 1;
581 }
582
583 __setup("nofpu", fpu_disable);
584
dsp_disable(char * s)585 static int __init dsp_disable(char *s)
586 {
587 cpu_data[0].ases &= ~MIPS_ASE_DSP;
588
589 return 1;
590 }
591
592 __setup("nodsp", dsp_disable);
593
594 unsigned long kernelsp[NR_CPUS];
595 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
596
597 #ifdef CONFIG_DEBUG_FS
598 struct dentry *mips_debugfs_dir;
debugfs_mips(void)599 static int __init debugfs_mips(void)
600 {
601 struct dentry *d;
602
603 d = debugfs_create_dir("mips", NULL);
604 if (!d)
605 return -ENOMEM;
606 mips_debugfs_dir = d;
607 return 0;
608 }
609 arch_initcall(debugfs_mips);
610 #endif
611