• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * arch/sh/kernel/setup.c
3  *
4  * This file handles the architecture-dependent parts of initialization
5  *
6  *  Copyright (C) 1999  Niibe Yutaka
7  *  Copyright (C) 2002 - 2007 Paul Mundt
8  */
9 #include <linux/screen_info.h>
10 #include <linux/ioport.h>
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/bootmem.h>
14 #include <linux/console.h>
15 #include <linux/seq_file.h>
16 #include <linux/root_dev.h>
17 #include <linux/utsname.h>
18 #include <linux/nodemask.h>
19 #include <linux/cpu.h>
20 #include <linux/pfn.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kexec.h>
24 #include <linux/module.h>
25 #include <linux/smp.h>
26 #include <linux/err.h>
27 #include <linux/debugfs.h>
28 #include <linux/crash_dump.h>
29 #include <linux/mmzone.h>
30 #include <linux/clk.h>
31 #include <linux/delay.h>
32 #include <asm/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/page.h>
35 #include <asm/elf.h>
36 #include <asm/sections.h>
37 #include <asm/irq.h>
38 #include <asm/setup.h>
39 #include <asm/clock.h>
40 #include <asm/mmu_context.h>
41 
42 /*
43  * Initialize loops_per_jiffy as 10000000 (1000MIPS).
44  * This value will be used at the very early stage of serial setup.
45  * The bigger value means no problem.
46  */
47 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
48 	[0] = {
49 		.type			= CPU_SH_NONE,
50 		.loops_per_jiffy	= 10000000,
51 	},
52 };
53 EXPORT_SYMBOL(cpu_data);
54 
55 /*
56  * The machine vector. First entry in .machvec.init, or clobbered by
57  * sh_mv= on the command line, prior to .machvec.init teardown.
58  */
59 struct sh_machine_vector sh_mv = { .mv_name = "generic", };
60 EXPORT_SYMBOL(sh_mv);
61 
62 #ifdef CONFIG_VT
63 struct screen_info screen_info;
64 #endif
65 
66 extern int root_mountflags;
67 
68 #define RAMDISK_IMAGE_START_MASK	0x07FF
69 #define RAMDISK_PROMPT_FLAG		0x8000
70 #define RAMDISK_LOAD_FLAG		0x4000
71 
72 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
73 
74 static struct resource code_resource = {
75 	.name = "Kernel code",
76 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
77 };
78 
79 static struct resource data_resource = {
80 	.name = "Kernel data",
81 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
82 };
83 
84 static struct resource bss_resource = {
85 	.name	= "Kernel bss",
86 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
87 };
88 
89 unsigned long memory_start;
90 EXPORT_SYMBOL(memory_start);
91 unsigned long memory_end = 0;
92 EXPORT_SYMBOL(memory_end);
93 
94 static struct resource mem_resources[MAX_NUMNODES];
95 
96 int l1i_cache_shape, l1d_cache_shape, l2_cache_shape;
97 
early_parse_mem(char * p)98 static int __init early_parse_mem(char *p)
99 {
100 	unsigned long size;
101 
102 	memory_start = (unsigned long)__va(__MEMORY_START);
103 	size = memparse(p, &p);
104 
105 	if (size > __MEMORY_SIZE) {
106 		static char msg[] __initdata = KERN_ERR
107 			"Using mem= to increase the size of kernel memory "
108 			"is not allowed.\n"
109 			"  Recompile the kernel with the correct value for "
110 			"CONFIG_MEMORY_SIZE.\n";
111 		printk(msg);
112 		return 0;
113 	}
114 
115 	memory_end = memory_start + size;
116 
117 	return 0;
118 }
119 early_param("mem", early_parse_mem);
120 
121 /*
122  * Register fully available low RAM pages with the bootmem allocator.
123  */
register_bootmem_low_pages(void)124 static void __init register_bootmem_low_pages(void)
125 {
126 	unsigned long curr_pfn, last_pfn, pages;
127 
128 	/*
129 	 * We are rounding up the start address of usable memory:
130 	 */
131 	curr_pfn = PFN_UP(__MEMORY_START);
132 
133 	/*
134 	 * ... and at the end of the usable range downwards:
135 	 */
136 	last_pfn = PFN_DOWN(__pa(memory_end));
137 
138 	if (last_pfn > max_low_pfn)
139 		last_pfn = max_low_pfn;
140 
141 	pages = last_pfn - curr_pfn;
142 	free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
143 }
144 
145 #ifdef CONFIG_KEXEC
reserve_crashkernel(void)146 static void __init reserve_crashkernel(void)
147 {
148 	unsigned long long free_mem;
149 	unsigned long long crash_size, crash_base;
150 	void *vp;
151 	int ret;
152 
153 	free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
154 
155 	ret = parse_crashkernel(boot_command_line, free_mem,
156 			&crash_size, &crash_base);
157 	if (ret == 0 && crash_size) {
158 		if (crash_base <= 0) {
159 			vp = alloc_bootmem_nopanic(crash_size);
160 			if (!vp) {
161 				printk(KERN_INFO "crashkernel allocation "
162 				       "failed\n");
163 				return;
164 			}
165 			crash_base = __pa(vp);
166 		} else if (reserve_bootmem(crash_base, crash_size,
167 					BOOTMEM_EXCLUSIVE) < 0) {
168 			printk(KERN_INFO "crashkernel reservation failed - "
169 					"memory is in use\n");
170 			return;
171 		}
172 
173 		printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
174 				"for crashkernel (System RAM: %ldMB)\n",
175 				(unsigned long)(crash_size >> 20),
176 				(unsigned long)(crash_base >> 20),
177 				(unsigned long)(free_mem >> 20));
178 		crashk_res.start = crash_base;
179 		crashk_res.end   = crash_base + crash_size - 1;
180 		insert_resource(&iomem_resource, &crashk_res);
181 	}
182 }
183 #else
reserve_crashkernel(void)184 static inline void __init reserve_crashkernel(void)
185 {}
186 #endif
187 
188 #ifndef CONFIG_GENERIC_CALIBRATE_DELAY
calibrate_delay(void)189 void __cpuinit calibrate_delay(void)
190 {
191 	struct clk *clk = clk_get(NULL, "cpu_clk");
192 
193 	if (IS_ERR(clk))
194 		panic("Need a sane CPU clock definition!");
195 
196 	loops_per_jiffy = (clk_get_rate(clk) >> 1) / HZ;
197 
198 	printk(KERN_INFO "Calibrating delay loop (skipped)... "
199 			 "%lu.%02lu BogoMIPS PRESET (lpj=%lu)\n",
200 			 loops_per_jiffy/(500000/HZ),
201 			 (loops_per_jiffy/(5000/HZ)) % 100,
202 			 loops_per_jiffy);
203 }
204 #endif
205 
__add_active_range(unsigned int nid,unsigned long start_pfn,unsigned long end_pfn)206 void __init __add_active_range(unsigned int nid, unsigned long start_pfn,
207 						unsigned long end_pfn)
208 {
209 	struct resource *res = &mem_resources[nid];
210 
211 	WARN_ON(res->name); /* max one active range per node for now */
212 
213 	res->name = "System RAM";
214 	res->start = start_pfn << PAGE_SHIFT;
215 	res->end = (end_pfn << PAGE_SHIFT) - 1;
216 	res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
217 	if (request_resource(&iomem_resource, res)) {
218 		pr_err("unable to request memory_resource 0x%lx 0x%lx\n",
219 		       start_pfn, end_pfn);
220 		return;
221 	}
222 
223 	/*
224 	 *  We don't know which RAM region contains kernel data,
225 	 *  so we try it repeatedly and let the resource manager
226 	 *  test it.
227 	 */
228 	request_resource(res, &code_resource);
229 	request_resource(res, &data_resource);
230 	request_resource(res, &bss_resource);
231 
232 	add_active_range(nid, start_pfn, end_pfn);
233 }
234 
setup_bootmem_allocator(unsigned long free_pfn)235 void __init setup_bootmem_allocator(unsigned long free_pfn)
236 {
237 	unsigned long bootmap_size;
238 
239 	/*
240 	 * Find a proper area for the bootmem bitmap. After this
241 	 * bootstrap step all allocations (until the page allocator
242 	 * is intact) must be done via bootmem_alloc().
243 	 */
244 	bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn,
245 					 min_low_pfn, max_low_pfn);
246 
247 	__add_active_range(0, min_low_pfn, max_low_pfn);
248 	register_bootmem_low_pages();
249 
250 	node_set_online(0);
251 
252 	/*
253 	 * Reserve the kernel text and
254 	 * Reserve the bootmem bitmap. We do this in two steps (first step
255 	 * was init_bootmem()), because this catches the (definitely buggy)
256 	 * case of us accidentally initializing the bootmem allocator with
257 	 * an invalid RAM area.
258 	 */
259 	reserve_bootmem(__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET,
260 			(PFN_PHYS(free_pfn) + bootmap_size + PAGE_SIZE - 1) -
261 			(__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET),
262 			BOOTMEM_DEFAULT);
263 
264 	/*
265 	 * Reserve physical pages below CONFIG_ZERO_PAGE_OFFSET.
266 	 */
267 	if (CONFIG_ZERO_PAGE_OFFSET != 0)
268 		reserve_bootmem(__MEMORY_START, CONFIG_ZERO_PAGE_OFFSET,
269 				BOOTMEM_DEFAULT);
270 
271 	sparse_memory_present_with_active_regions(0);
272 
273 #ifdef CONFIG_BLK_DEV_INITRD
274 	ROOT_DEV = Root_RAM0;
275 
276 	if (LOADER_TYPE && INITRD_START) {
277 		unsigned long initrd_start_phys = INITRD_START + __MEMORY_START;
278 
279 		if (initrd_start_phys + INITRD_SIZE <= PFN_PHYS(max_low_pfn)) {
280 			reserve_bootmem(initrd_start_phys, INITRD_SIZE,
281 					BOOTMEM_DEFAULT);
282 			initrd_start = (unsigned long)__va(initrd_start_phys);
283 			initrd_end = initrd_start + INITRD_SIZE;
284 		} else {
285 			printk("initrd extends beyond end of memory "
286 			       "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
287 			       initrd_start_phys + INITRD_SIZE,
288 			       (unsigned long)PFN_PHYS(max_low_pfn));
289 			initrd_start = 0;
290 		}
291 	}
292 #endif
293 
294 	reserve_crashkernel();
295 }
296 
297 #ifndef CONFIG_NEED_MULTIPLE_NODES
setup_memory(void)298 static void __init setup_memory(void)
299 {
300 	unsigned long start_pfn;
301 
302 	/*
303 	 * Partially used pages are not usable - thus
304 	 * we are rounding upwards:
305 	 */
306 	start_pfn = PFN_UP(__pa(_end));
307 	setup_bootmem_allocator(start_pfn);
308 }
309 #else
310 extern void __init setup_memory(void);
311 #endif
312 
313 /*
314  * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
315  * is_kdump_kernel() to determine if we are booting after a panic. Hence
316  * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
317  */
318 #ifdef CONFIG_CRASH_DUMP
319 /* elfcorehdr= specifies the location of elf core header
320  * stored by the crashed kernel.
321  */
parse_elfcorehdr(char * arg)322 static int __init parse_elfcorehdr(char *arg)
323 {
324 	if (!arg)
325 		return -EINVAL;
326 	elfcorehdr_addr = memparse(arg, &arg);
327 	return 0;
328 }
329 early_param("elfcorehdr", parse_elfcorehdr);
330 #endif
331 
setup_arch(char ** cmdline_p)332 void __init setup_arch(char **cmdline_p)
333 {
334 	enable_mmu();
335 
336 	ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
337 
338 	printk(KERN_NOTICE "Boot params:\n"
339 			   "... MOUNT_ROOT_RDONLY - %08lx\n"
340 			   "... RAMDISK_FLAGS     - %08lx\n"
341 			   "... ORIG_ROOT_DEV     - %08lx\n"
342 			   "... LOADER_TYPE       - %08lx\n"
343 			   "... INITRD_START      - %08lx\n"
344 			   "... INITRD_SIZE       - %08lx\n",
345 			   MOUNT_ROOT_RDONLY, RAMDISK_FLAGS,
346 			   ORIG_ROOT_DEV, LOADER_TYPE,
347 			   INITRD_START, INITRD_SIZE);
348 
349 #ifdef CONFIG_BLK_DEV_RAM
350 	rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
351 	rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
352 	rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
353 #endif
354 
355 	if (!MOUNT_ROOT_RDONLY)
356 		root_mountflags &= ~MS_RDONLY;
357 	init_mm.start_code = (unsigned long) _text;
358 	init_mm.end_code = (unsigned long) _etext;
359 	init_mm.end_data = (unsigned long) _edata;
360 	init_mm.brk = (unsigned long) _end;
361 
362 	code_resource.start = virt_to_phys(_text);
363 	code_resource.end = virt_to_phys(_etext)-1;
364 	data_resource.start = virt_to_phys(_etext);
365 	data_resource.end = virt_to_phys(_edata)-1;
366 	bss_resource.start = virt_to_phys(__bss_start);
367 	bss_resource.end = virt_to_phys(_ebss)-1;
368 
369 	memory_start = (unsigned long)__va(__MEMORY_START);
370 	if (!memory_end)
371 		memory_end = memory_start + __MEMORY_SIZE;
372 
373 #ifdef CONFIG_CMDLINE_BOOL
374 	strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
375 #else
376 	strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
377 #endif
378 
379 	/* Save unparsed command line copy for /proc/cmdline */
380 	memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
381 	*cmdline_p = command_line;
382 
383 	parse_early_param();
384 
385 	sh_mv_setup();
386 
387 	/*
388 	 * Find the highest page frame number we have available
389 	 */
390 	max_pfn = PFN_DOWN(__pa(memory_end));
391 
392 	/*
393 	 * Determine low and high memory ranges:
394 	 */
395 	max_low_pfn = max_pfn;
396 	min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
397 
398 	nodes_clear(node_online_map);
399 
400 	/* Setup bootmem with available RAM */
401 	setup_memory();
402 	sparse_init();
403 
404 #ifdef CONFIG_DUMMY_CONSOLE
405 	conswitchp = &dummy_con;
406 #endif
407 
408 	/* Perform the machine specific initialisation */
409 	if (likely(sh_mv.mv_setup))
410 		sh_mv.mv_setup(cmdline_p);
411 
412 	paging_init();
413 
414 #ifdef CONFIG_SMP
415 	plat_smp_setup();
416 #endif
417 }
418 
419 static const char *cpu_name[] = {
420 	[CPU_SH7201]	= "SH7201",
421 	[CPU_SH7203]	= "SH7203",	[CPU_SH7263]	= "SH7263",
422 	[CPU_SH7206]	= "SH7206",	[CPU_SH7619]	= "SH7619",
423 	[CPU_SH7705]	= "SH7705",	[CPU_SH7706]	= "SH7706",
424 	[CPU_SH7707]	= "SH7707",	[CPU_SH7708]	= "SH7708",
425 	[CPU_SH7709]	= "SH7709",	[CPU_SH7710]	= "SH7710",
426 	[CPU_SH7712]	= "SH7712",	[CPU_SH7720]	= "SH7720",
427 	[CPU_SH7721]	= "SH7721",	[CPU_SH7729]	= "SH7729",
428 	[CPU_SH7750]	= "SH7750",	[CPU_SH7750S]	= "SH7750S",
429 	[CPU_SH7750R]	= "SH7750R",	[CPU_SH7751]	= "SH7751",
430 	[CPU_SH7751R]	= "SH7751R",	[CPU_SH7760]	= "SH7760",
431 	[CPU_SH4_202]	= "SH4-202",	[CPU_SH4_501]	= "SH4-501",
432 	[CPU_SH7763]	= "SH7763",	[CPU_SH7770]	= "SH7770",
433 	[CPU_SH7780]	= "SH7780",	[CPU_SH7781]	= "SH7781",
434 	[CPU_SH7343]	= "SH7343",	[CPU_SH7785]	= "SH7785",
435 	[CPU_SH7722]	= "SH7722",	[CPU_SHX3]	= "SH-X3",
436 	[CPU_SH5_101]	= "SH5-101",	[CPU_SH5_103]	= "SH5-103",
437 	[CPU_MXG]	= "MX-G",	[CPU_SH7723]	= "SH7723",
438 	[CPU_SH7366]	= "SH7366",	[CPU_SH_NONE]	= "Unknown"
439 };
440 
get_cpu_subtype(struct sh_cpuinfo * c)441 const char *get_cpu_subtype(struct sh_cpuinfo *c)
442 {
443 	return cpu_name[c->type];
444 }
445 EXPORT_SYMBOL(get_cpu_subtype);
446 
447 #ifdef CONFIG_PROC_FS
448 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
449 static const char *cpu_flags[] = {
450 	"none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
451 	"ptea", "llsc", "l2", "op32", NULL
452 };
453 
show_cpuflags(struct seq_file * m,struct sh_cpuinfo * c)454 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
455 {
456 	unsigned long i;
457 
458 	seq_printf(m, "cpu flags\t:");
459 
460 	if (!c->flags) {
461 		seq_printf(m, " %s\n", cpu_flags[0]);
462 		return;
463 	}
464 
465 	for (i = 0; cpu_flags[i]; i++)
466 		if ((c->flags & (1 << i)))
467 			seq_printf(m, " %s", cpu_flags[i+1]);
468 
469 	seq_printf(m, "\n");
470 }
471 
show_cacheinfo(struct seq_file * m,const char * type,struct cache_info info)472 static void show_cacheinfo(struct seq_file *m, const char *type,
473 			   struct cache_info info)
474 {
475 	unsigned int cache_size;
476 
477 	cache_size = info.ways * info.sets * info.linesz;
478 
479 	seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
480 		   type, cache_size >> 10, info.ways);
481 }
482 
483 /*
484  *	Get CPU information for use by the procfs.
485  */
show_cpuinfo(struct seq_file * m,void * v)486 static int show_cpuinfo(struct seq_file *m, void *v)
487 {
488 	struct sh_cpuinfo *c = v;
489 	unsigned int cpu = c - cpu_data;
490 
491 	if (!cpu_online(cpu))
492 		return 0;
493 
494 	if (cpu == 0)
495 		seq_printf(m, "machine\t\t: %s\n", get_system_type());
496 
497 	seq_printf(m, "processor\t: %d\n", cpu);
498 	seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
499 	seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
500 	if (c->cut_major == -1)
501 		seq_printf(m, "cut\t\t: unknown\n");
502 	else if (c->cut_minor == -1)
503 		seq_printf(m, "cut\t\t: %d.x\n", c->cut_major);
504 	else
505 		seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor);
506 
507 	show_cpuflags(m, c);
508 
509 	seq_printf(m, "cache type\t: ");
510 
511 	/*
512 	 * Check for what type of cache we have, we support both the
513 	 * unified cache on the SH-2 and SH-3, as well as the harvard
514 	 * style cache on the SH-4.
515 	 */
516 	if (c->icache.flags & SH_CACHE_COMBINED) {
517 		seq_printf(m, "unified\n");
518 		show_cacheinfo(m, "cache", c->icache);
519 	} else {
520 		seq_printf(m, "split (harvard)\n");
521 		show_cacheinfo(m, "icache", c->icache);
522 		show_cacheinfo(m, "dcache", c->dcache);
523 	}
524 
525 	/* Optional secondary cache */
526 	if (c->flags & CPU_HAS_L2_CACHE)
527 		show_cacheinfo(m, "scache", c->scache);
528 
529 	seq_printf(m, "bogomips\t: %lu.%02lu\n",
530 		     c->loops_per_jiffy/(500000/HZ),
531 		     (c->loops_per_jiffy/(5000/HZ)) % 100);
532 
533 	return 0;
534 }
535 
c_start(struct seq_file * m,loff_t * pos)536 static void *c_start(struct seq_file *m, loff_t *pos)
537 {
538 	return *pos < NR_CPUS ? cpu_data + *pos : NULL;
539 }
c_next(struct seq_file * m,void * v,loff_t * pos)540 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
541 {
542 	++*pos;
543 	return c_start(m, pos);
544 }
c_stop(struct seq_file * m,void * v)545 static void c_stop(struct seq_file *m, void *v)
546 {
547 }
548 const struct seq_operations cpuinfo_op = {
549 	.start	= c_start,
550 	.next	= c_next,
551 	.stop	= c_stop,
552 	.show	= show_cpuinfo,
553 };
554 #endif /* CONFIG_PROC_FS */
555 
556 struct dentry *sh_debugfs_root;
557 
sh_debugfs_init(void)558 static int __init sh_debugfs_init(void)
559 {
560 	sh_debugfs_root = debugfs_create_dir("sh", NULL);
561 	if (!sh_debugfs_root)
562 		return -ENOMEM;
563 	if (IS_ERR(sh_debugfs_root))
564 		return PTR_ERR(sh_debugfs_root);
565 
566 	return 0;
567 }
568 arch_initcall(sh_debugfs_init);
569