• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * drivers/net/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  *
12  * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13  * Copyright (c) 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63 
64 #include <linux/kernel.h>
65 #include <linux/string.h>
66 #include <linux/errno.h>
67 #include <linux/unistd.h>
68 #include <linux/slab.h>
69 #include <linux/interrupt.h>
70 #include <linux/init.h>
71 #include <linux/delay.h>
72 #include <linux/netdevice.h>
73 #include <linux/etherdevice.h>
74 #include <linux/skbuff.h>
75 #include <linux/if_vlan.h>
76 #include <linux/spinlock.h>
77 #include <linux/mm.h>
78 #include <linux/of_platform.h>
79 #include <linux/ip.h>
80 #include <linux/tcp.h>
81 #include <linux/udp.h>
82 #include <linux/in.h>
83 
84 #include <asm/io.h>
85 #include <asm/irq.h>
86 #include <asm/uaccess.h>
87 #include <linux/module.h>
88 #include <linux/dma-mapping.h>
89 #include <linux/crc32.h>
90 #include <linux/mii.h>
91 #include <linux/phy.h>
92 #include <linux/phy_fixed.h>
93 #include <linux/of.h>
94 
95 #include "gianfar.h"
96 #include "gianfar_mii.h"
97 
98 #define TX_TIMEOUT      (1*HZ)
99 #undef BRIEF_GFAR_ERRORS
100 #undef VERBOSE_GFAR_ERRORS
101 
102 const char gfar_driver_name[] = "Gianfar Ethernet";
103 const char gfar_driver_version[] = "1.3";
104 
105 static int gfar_enet_open(struct net_device *dev);
106 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
107 static void gfar_reset_task(struct work_struct *work);
108 static void gfar_timeout(struct net_device *dev);
109 static int gfar_close(struct net_device *dev);
110 struct sk_buff *gfar_new_skb(struct net_device *dev);
111 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
112 		struct sk_buff *skb);
113 static int gfar_set_mac_address(struct net_device *dev);
114 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
115 static irqreturn_t gfar_error(int irq, void *dev_id);
116 static irqreturn_t gfar_transmit(int irq, void *dev_id);
117 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
118 static void adjust_link(struct net_device *dev);
119 static void init_registers(struct net_device *dev);
120 static int init_phy(struct net_device *dev);
121 static int gfar_probe(struct of_device *ofdev,
122 		const struct of_device_id *match);
123 static int gfar_remove(struct of_device *ofdev);
124 static void free_skb_resources(struct gfar_private *priv);
125 static void gfar_set_multi(struct net_device *dev);
126 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
127 static void gfar_configure_serdes(struct net_device *dev);
128 static int gfar_poll(struct napi_struct *napi, int budget);
129 #ifdef CONFIG_NET_POLL_CONTROLLER
130 static void gfar_netpoll(struct net_device *dev);
131 #endif
132 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
133 static int gfar_clean_tx_ring(struct net_device *dev);
134 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
135 			      int amount_pull);
136 static void gfar_vlan_rx_register(struct net_device *netdev,
137 		                struct vlan_group *grp);
138 void gfar_halt(struct net_device *dev);
139 static void gfar_halt_nodisable(struct net_device *dev);
140 void gfar_start(struct net_device *dev);
141 static void gfar_clear_exact_match(struct net_device *dev);
142 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
143 
144 extern const struct ethtool_ops gfar_ethtool_ops;
145 
146 MODULE_AUTHOR("Freescale Semiconductor, Inc");
147 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
148 MODULE_LICENSE("GPL");
149 
150 /* Returns 1 if incoming frames use an FCB */
gfar_uses_fcb(struct gfar_private * priv)151 static inline int gfar_uses_fcb(struct gfar_private *priv)
152 {
153 	return priv->vlgrp || priv->rx_csum_enable;
154 }
155 
gfar_of_init(struct net_device * dev)156 static int gfar_of_init(struct net_device *dev)
157 {
158 	struct device_node *phy, *mdio;
159 	const unsigned int *id;
160 	const char *model;
161 	const char *ctype;
162 	const void *mac_addr;
163 	const phandle *ph;
164 	u64 addr, size;
165 	int err = 0;
166 	struct gfar_private *priv = netdev_priv(dev);
167 	struct device_node *np = priv->node;
168 	char bus_name[MII_BUS_ID_SIZE];
169 
170 	if (!np || !of_device_is_available(np))
171 		return -ENODEV;
172 
173 	/* get a pointer to the register memory */
174 	addr = of_translate_address(np, of_get_address(np, 0, &size, NULL));
175 	priv->regs = ioremap(addr, size);
176 
177 	if (priv->regs == NULL)
178 		return -ENOMEM;
179 
180 	priv->interruptTransmit = irq_of_parse_and_map(np, 0);
181 
182 	model = of_get_property(np, "model", NULL);
183 
184 	/* If we aren't the FEC we have multiple interrupts */
185 	if (model && strcasecmp(model, "FEC")) {
186 		priv->interruptReceive = irq_of_parse_and_map(np, 1);
187 
188 		priv->interruptError = irq_of_parse_and_map(np, 2);
189 
190 		if (priv->interruptTransmit < 0 ||
191 				priv->interruptReceive < 0 ||
192 				priv->interruptError < 0) {
193 			err = -EINVAL;
194 			goto err_out;
195 		}
196 	}
197 
198 	mac_addr = of_get_mac_address(np);
199 	if (mac_addr)
200 		memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
201 
202 	if (model && !strcasecmp(model, "TSEC"))
203 		priv->device_flags =
204 			FSL_GIANFAR_DEV_HAS_GIGABIT |
205 			FSL_GIANFAR_DEV_HAS_COALESCE |
206 			FSL_GIANFAR_DEV_HAS_RMON |
207 			FSL_GIANFAR_DEV_HAS_MULTI_INTR;
208 	if (model && !strcasecmp(model, "eTSEC"))
209 		priv->device_flags =
210 			FSL_GIANFAR_DEV_HAS_GIGABIT |
211 			FSL_GIANFAR_DEV_HAS_COALESCE |
212 			FSL_GIANFAR_DEV_HAS_RMON |
213 			FSL_GIANFAR_DEV_HAS_MULTI_INTR |
214 			FSL_GIANFAR_DEV_HAS_PADDING |
215 			FSL_GIANFAR_DEV_HAS_CSUM |
216 			FSL_GIANFAR_DEV_HAS_VLAN |
217 			FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
218 			FSL_GIANFAR_DEV_HAS_EXTENDED_HASH;
219 
220 	ctype = of_get_property(np, "phy-connection-type", NULL);
221 
222 	/* We only care about rgmii-id.  The rest are autodetected */
223 	if (ctype && !strcmp(ctype, "rgmii-id"))
224 		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
225 	else
226 		priv->interface = PHY_INTERFACE_MODE_MII;
227 
228 	if (of_get_property(np, "fsl,magic-packet", NULL))
229 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
230 
231 	ph = of_get_property(np, "phy-handle", NULL);
232 	if (ph == NULL) {
233 		u32 *fixed_link;
234 
235 		fixed_link = (u32 *)of_get_property(np, "fixed-link", NULL);
236 		if (!fixed_link) {
237 			err = -ENODEV;
238 			goto err_out;
239 		}
240 
241 		snprintf(priv->phy_bus_id, sizeof(priv->phy_bus_id),
242 				PHY_ID_FMT, "0", fixed_link[0]);
243 	} else {
244 		phy = of_find_node_by_phandle(*ph);
245 
246 		if (phy == NULL) {
247 			err = -ENODEV;
248 			goto err_out;
249 		}
250 
251 		mdio = of_get_parent(phy);
252 
253 		id = of_get_property(phy, "reg", NULL);
254 
255 		of_node_put(phy);
256 		of_node_put(mdio);
257 
258 		gfar_mdio_bus_name(bus_name, mdio);
259 		snprintf(priv->phy_bus_id, sizeof(priv->phy_bus_id), "%s:%02x",
260 				bus_name, *id);
261 	}
262 
263 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
264 	ph = of_get_property(np, "tbi-handle", NULL);
265 	if (ph) {
266 		struct device_node *tbi = of_find_node_by_phandle(*ph);
267 		struct of_device *ofdev;
268 		struct mii_bus *bus;
269 
270 		if (!tbi)
271 			return 0;
272 
273 		mdio = of_get_parent(tbi);
274 		if (!mdio)
275 			return 0;
276 
277 		ofdev = of_find_device_by_node(mdio);
278 
279 		of_node_put(mdio);
280 
281 		id = of_get_property(tbi, "reg", NULL);
282 		if (!id)
283 			return 0;
284 
285 		of_node_put(tbi);
286 
287 		bus = dev_get_drvdata(&ofdev->dev);
288 
289 		priv->tbiphy = bus->phy_map[*id];
290 	}
291 
292 	return 0;
293 
294 err_out:
295 	iounmap(priv->regs);
296 	return err;
297 }
298 
299 /* Ioctl MII Interface */
gfar_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)300 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
301 {
302 	struct gfar_private *priv = netdev_priv(dev);
303 
304 	if (!netif_running(dev))
305 		return -EINVAL;
306 
307 	if (!priv->phydev)
308 		return -ENODEV;
309 
310 	return phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
311 }
312 
313 /* Set up the ethernet device structure, private data,
314  * and anything else we need before we start */
gfar_probe(struct of_device * ofdev,const struct of_device_id * match)315 static int gfar_probe(struct of_device *ofdev,
316 		const struct of_device_id *match)
317 {
318 	u32 tempval;
319 	struct net_device *dev = NULL;
320 	struct gfar_private *priv = NULL;
321 	DECLARE_MAC_BUF(mac);
322 	int err = 0;
323 	int len_devname;
324 
325 	/* Create an ethernet device instance */
326 	dev = alloc_etherdev(sizeof (*priv));
327 
328 	if (NULL == dev)
329 		return -ENOMEM;
330 
331 	priv = netdev_priv(dev);
332 	priv->dev = dev;
333 	priv->node = ofdev->node;
334 
335 	err = gfar_of_init(dev);
336 
337 	if (err)
338 		goto regs_fail;
339 
340 	spin_lock_init(&priv->txlock);
341 	spin_lock_init(&priv->rxlock);
342 	spin_lock_init(&priv->bflock);
343 	INIT_WORK(&priv->reset_task, gfar_reset_task);
344 
345 	dev_set_drvdata(&ofdev->dev, priv);
346 
347 	/* Stop the DMA engine now, in case it was running before */
348 	/* (The firmware could have used it, and left it running). */
349 	gfar_halt(dev);
350 
351 	/* Reset MAC layer */
352 	gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
353 
354 	/* We need to delay at least 3 TX clocks */
355 	udelay(2);
356 
357 	tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
358 	gfar_write(&priv->regs->maccfg1, tempval);
359 
360 	/* Initialize MACCFG2. */
361 	gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
362 
363 	/* Initialize ECNTRL */
364 	gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
365 
366 	/* Set the dev->base_addr to the gfar reg region */
367 	dev->base_addr = (unsigned long) (priv->regs);
368 
369 	SET_NETDEV_DEV(dev, &ofdev->dev);
370 
371 	/* Fill in the dev structure */
372 	dev->open = gfar_enet_open;
373 	dev->hard_start_xmit = gfar_start_xmit;
374 	dev->tx_timeout = gfar_timeout;
375 	dev->watchdog_timeo = TX_TIMEOUT;
376 	netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT);
377 #ifdef CONFIG_NET_POLL_CONTROLLER
378 	dev->poll_controller = gfar_netpoll;
379 #endif
380 	dev->stop = gfar_close;
381 	dev->change_mtu = gfar_change_mtu;
382 	dev->mtu = 1500;
383 	dev->set_multicast_list = gfar_set_multi;
384 
385 	dev->ethtool_ops = &gfar_ethtool_ops;
386 	dev->do_ioctl = gfar_ioctl;
387 
388 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
389 		priv->rx_csum_enable = 1;
390 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
391 	} else
392 		priv->rx_csum_enable = 0;
393 
394 	priv->vlgrp = NULL;
395 
396 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
397 		dev->vlan_rx_register = gfar_vlan_rx_register;
398 
399 		dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
400 	}
401 
402 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
403 		priv->extended_hash = 1;
404 		priv->hash_width = 9;
405 
406 		priv->hash_regs[0] = &priv->regs->igaddr0;
407 		priv->hash_regs[1] = &priv->regs->igaddr1;
408 		priv->hash_regs[2] = &priv->regs->igaddr2;
409 		priv->hash_regs[3] = &priv->regs->igaddr3;
410 		priv->hash_regs[4] = &priv->regs->igaddr4;
411 		priv->hash_regs[5] = &priv->regs->igaddr5;
412 		priv->hash_regs[6] = &priv->regs->igaddr6;
413 		priv->hash_regs[7] = &priv->regs->igaddr7;
414 		priv->hash_regs[8] = &priv->regs->gaddr0;
415 		priv->hash_regs[9] = &priv->regs->gaddr1;
416 		priv->hash_regs[10] = &priv->regs->gaddr2;
417 		priv->hash_regs[11] = &priv->regs->gaddr3;
418 		priv->hash_regs[12] = &priv->regs->gaddr4;
419 		priv->hash_regs[13] = &priv->regs->gaddr5;
420 		priv->hash_regs[14] = &priv->regs->gaddr6;
421 		priv->hash_regs[15] = &priv->regs->gaddr7;
422 
423 	} else {
424 		priv->extended_hash = 0;
425 		priv->hash_width = 8;
426 
427 		priv->hash_regs[0] = &priv->regs->gaddr0;
428                 priv->hash_regs[1] = &priv->regs->gaddr1;
429 		priv->hash_regs[2] = &priv->regs->gaddr2;
430 		priv->hash_regs[3] = &priv->regs->gaddr3;
431 		priv->hash_regs[4] = &priv->regs->gaddr4;
432 		priv->hash_regs[5] = &priv->regs->gaddr5;
433 		priv->hash_regs[6] = &priv->regs->gaddr6;
434 		priv->hash_regs[7] = &priv->regs->gaddr7;
435 	}
436 
437 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
438 		priv->padding = DEFAULT_PADDING;
439 	else
440 		priv->padding = 0;
441 
442 	if (dev->features & NETIF_F_IP_CSUM)
443 		dev->hard_header_len += GMAC_FCB_LEN;
444 
445 	priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
446 	priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
447 	priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
448 	priv->num_txbdfree = DEFAULT_TX_RING_SIZE;
449 
450 	priv->txcoalescing = DEFAULT_TX_COALESCE;
451 	priv->txic = DEFAULT_TXIC;
452 	priv->rxcoalescing = DEFAULT_RX_COALESCE;
453 	priv->rxic = DEFAULT_RXIC;
454 
455 	/* Enable most messages by default */
456 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
457 
458 	/* Carrier starts down, phylib will bring it up */
459 	netif_carrier_off(dev);
460 
461 	err = register_netdev(dev);
462 
463 	if (err) {
464 		printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
465 				dev->name);
466 		goto register_fail;
467 	}
468 
469 	/* fill out IRQ number and name fields */
470 	len_devname = strlen(dev->name);
471 	strncpy(&priv->int_name_tx[0], dev->name, len_devname);
472 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
473 		strncpy(&priv->int_name_tx[len_devname],
474 			"_tx", sizeof("_tx") + 1);
475 
476 		strncpy(&priv->int_name_rx[0], dev->name, len_devname);
477 		strncpy(&priv->int_name_rx[len_devname],
478 			"_rx", sizeof("_rx") + 1);
479 
480 		strncpy(&priv->int_name_er[0], dev->name, len_devname);
481 		strncpy(&priv->int_name_er[len_devname],
482 			"_er", sizeof("_er") + 1);
483 	} else
484 		priv->int_name_tx[len_devname] = '\0';
485 
486 	/* Create all the sysfs files */
487 	gfar_init_sysfs(dev);
488 
489 	/* Print out the device info */
490 	printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
491 
492 	/* Even more device info helps when determining which kernel */
493 	/* provided which set of benchmarks. */
494 	printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
495 	printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
496 	       dev->name, priv->rx_ring_size, priv->tx_ring_size);
497 
498 	return 0;
499 
500 register_fail:
501 	iounmap(priv->regs);
502 regs_fail:
503 	free_netdev(dev);
504 	return err;
505 }
506 
gfar_remove(struct of_device * ofdev)507 static int gfar_remove(struct of_device *ofdev)
508 {
509 	struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
510 
511 	dev_set_drvdata(&ofdev->dev, NULL);
512 
513 	iounmap(priv->regs);
514 	free_netdev(priv->dev);
515 
516 	return 0;
517 }
518 
519 #ifdef CONFIG_PM
gfar_suspend(struct of_device * ofdev,pm_message_t state)520 static int gfar_suspend(struct of_device *ofdev, pm_message_t state)
521 {
522 	struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
523 	struct net_device *dev = priv->dev;
524 	unsigned long flags;
525 	u32 tempval;
526 
527 	int magic_packet = priv->wol_en &&
528 		(priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
529 
530 	netif_device_detach(dev);
531 
532 	if (netif_running(dev)) {
533 		spin_lock_irqsave(&priv->txlock, flags);
534 		spin_lock(&priv->rxlock);
535 
536 		gfar_halt_nodisable(dev);
537 
538 		/* Disable Tx, and Rx if wake-on-LAN is disabled. */
539 		tempval = gfar_read(&priv->regs->maccfg1);
540 
541 		tempval &= ~MACCFG1_TX_EN;
542 
543 		if (!magic_packet)
544 			tempval &= ~MACCFG1_RX_EN;
545 
546 		gfar_write(&priv->regs->maccfg1, tempval);
547 
548 		spin_unlock(&priv->rxlock);
549 		spin_unlock_irqrestore(&priv->txlock, flags);
550 
551 		napi_disable(&priv->napi);
552 
553 		if (magic_packet) {
554 			/* Enable interrupt on Magic Packet */
555 			gfar_write(&priv->regs->imask, IMASK_MAG);
556 
557 			/* Enable Magic Packet mode */
558 			tempval = gfar_read(&priv->regs->maccfg2);
559 			tempval |= MACCFG2_MPEN;
560 			gfar_write(&priv->regs->maccfg2, tempval);
561 		} else {
562 			phy_stop(priv->phydev);
563 		}
564 	}
565 
566 	return 0;
567 }
568 
gfar_resume(struct of_device * ofdev)569 static int gfar_resume(struct of_device *ofdev)
570 {
571 	struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
572 	struct net_device *dev = priv->dev;
573 	unsigned long flags;
574 	u32 tempval;
575 	int magic_packet = priv->wol_en &&
576 		(priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
577 
578 	if (!netif_running(dev)) {
579 		netif_device_attach(dev);
580 		return 0;
581 	}
582 
583 	if (!magic_packet && priv->phydev)
584 		phy_start(priv->phydev);
585 
586 	/* Disable Magic Packet mode, in case something
587 	 * else woke us up.
588 	 */
589 
590 	spin_lock_irqsave(&priv->txlock, flags);
591 	spin_lock(&priv->rxlock);
592 
593 	tempval = gfar_read(&priv->regs->maccfg2);
594 	tempval &= ~MACCFG2_MPEN;
595 	gfar_write(&priv->regs->maccfg2, tempval);
596 
597 	gfar_start(dev);
598 
599 	spin_unlock(&priv->rxlock);
600 	spin_unlock_irqrestore(&priv->txlock, flags);
601 
602 	netif_device_attach(dev);
603 
604 	napi_enable(&priv->napi);
605 
606 	return 0;
607 }
608 #else
609 #define gfar_suspend NULL
610 #define gfar_resume NULL
611 #endif
612 
613 /* Reads the controller's registers to determine what interface
614  * connects it to the PHY.
615  */
gfar_get_interface(struct net_device * dev)616 static phy_interface_t gfar_get_interface(struct net_device *dev)
617 {
618 	struct gfar_private *priv = netdev_priv(dev);
619 	u32 ecntrl = gfar_read(&priv->regs->ecntrl);
620 
621 	if (ecntrl & ECNTRL_SGMII_MODE)
622 		return PHY_INTERFACE_MODE_SGMII;
623 
624 	if (ecntrl & ECNTRL_TBI_MODE) {
625 		if (ecntrl & ECNTRL_REDUCED_MODE)
626 			return PHY_INTERFACE_MODE_RTBI;
627 		else
628 			return PHY_INTERFACE_MODE_TBI;
629 	}
630 
631 	if (ecntrl & ECNTRL_REDUCED_MODE) {
632 		if (ecntrl & ECNTRL_REDUCED_MII_MODE)
633 			return PHY_INTERFACE_MODE_RMII;
634 		else {
635 			phy_interface_t interface = priv->interface;
636 
637 			/*
638 			 * This isn't autodetected right now, so it must
639 			 * be set by the device tree or platform code.
640 			 */
641 			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
642 				return PHY_INTERFACE_MODE_RGMII_ID;
643 
644 			return PHY_INTERFACE_MODE_RGMII;
645 		}
646 	}
647 
648 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
649 		return PHY_INTERFACE_MODE_GMII;
650 
651 	return PHY_INTERFACE_MODE_MII;
652 }
653 
654 
655 /* Initializes driver's PHY state, and attaches to the PHY.
656  * Returns 0 on success.
657  */
init_phy(struct net_device * dev)658 static int init_phy(struct net_device *dev)
659 {
660 	struct gfar_private *priv = netdev_priv(dev);
661 	uint gigabit_support =
662 		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
663 		SUPPORTED_1000baseT_Full : 0;
664 	struct phy_device *phydev;
665 	phy_interface_t interface;
666 
667 	priv->oldlink = 0;
668 	priv->oldspeed = 0;
669 	priv->oldduplex = -1;
670 
671 	interface = gfar_get_interface(dev);
672 
673 	phydev = phy_connect(dev, priv->phy_bus_id, &adjust_link, 0, interface);
674 
675 	if (interface == PHY_INTERFACE_MODE_SGMII)
676 		gfar_configure_serdes(dev);
677 
678 	if (IS_ERR(phydev)) {
679 		printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
680 		return PTR_ERR(phydev);
681 	}
682 
683 	/* Remove any features not supported by the controller */
684 	phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
685 	phydev->advertising = phydev->supported;
686 
687 	priv->phydev = phydev;
688 
689 	return 0;
690 }
691 
692 /*
693  * Initialize TBI PHY interface for communicating with the
694  * SERDES lynx PHY on the chip.  We communicate with this PHY
695  * through the MDIO bus on each controller, treating it as a
696  * "normal" PHY at the address found in the TBIPA register.  We assume
697  * that the TBIPA register is valid.  Either the MDIO bus code will set
698  * it to a value that doesn't conflict with other PHYs on the bus, or the
699  * value doesn't matter, as there are no other PHYs on the bus.
700  */
gfar_configure_serdes(struct net_device * dev)701 static void gfar_configure_serdes(struct net_device *dev)
702 {
703 	struct gfar_private *priv = netdev_priv(dev);
704 
705 	if (!priv->tbiphy) {
706 		printk(KERN_WARNING "SGMII mode requires that the device "
707 				"tree specify a tbi-handle\n");
708 		return;
709 	}
710 
711 	/*
712 	 * If the link is already up, we must already be ok, and don't need to
713 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
714 	 * everything for us?  Resetting it takes the link down and requires
715 	 * several seconds for it to come back.
716 	 */
717 	if (phy_read(priv->tbiphy, MII_BMSR) & BMSR_LSTATUS)
718 		return;
719 
720 	/* Single clk mode, mii mode off(for serdes communication) */
721 	phy_write(priv->tbiphy, MII_TBICON, TBICON_CLK_SELECT);
722 
723 	phy_write(priv->tbiphy, MII_ADVERTISE,
724 			ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
725 			ADVERTISE_1000XPSE_ASYM);
726 
727 	phy_write(priv->tbiphy, MII_BMCR, BMCR_ANENABLE |
728 			BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
729 }
730 
init_registers(struct net_device * dev)731 static void init_registers(struct net_device *dev)
732 {
733 	struct gfar_private *priv = netdev_priv(dev);
734 
735 	/* Clear IEVENT */
736 	gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
737 
738 	/* Initialize IMASK */
739 	gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
740 
741 	/* Init hash registers to zero */
742 	gfar_write(&priv->regs->igaddr0, 0);
743 	gfar_write(&priv->regs->igaddr1, 0);
744 	gfar_write(&priv->regs->igaddr2, 0);
745 	gfar_write(&priv->regs->igaddr3, 0);
746 	gfar_write(&priv->regs->igaddr4, 0);
747 	gfar_write(&priv->regs->igaddr5, 0);
748 	gfar_write(&priv->regs->igaddr6, 0);
749 	gfar_write(&priv->regs->igaddr7, 0);
750 
751 	gfar_write(&priv->regs->gaddr0, 0);
752 	gfar_write(&priv->regs->gaddr1, 0);
753 	gfar_write(&priv->regs->gaddr2, 0);
754 	gfar_write(&priv->regs->gaddr3, 0);
755 	gfar_write(&priv->regs->gaddr4, 0);
756 	gfar_write(&priv->regs->gaddr5, 0);
757 	gfar_write(&priv->regs->gaddr6, 0);
758 	gfar_write(&priv->regs->gaddr7, 0);
759 
760 	/* Zero out the rmon mib registers if it has them */
761 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
762 		memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
763 
764 		/* Mask off the CAM interrupts */
765 		gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
766 		gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
767 	}
768 
769 	/* Initialize the max receive buffer length */
770 	gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
771 
772 	/* Initialize the Minimum Frame Length Register */
773 	gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
774 }
775 
776 
777 /* Halt the receive and transmit queues */
gfar_halt_nodisable(struct net_device * dev)778 static void gfar_halt_nodisable(struct net_device *dev)
779 {
780 	struct gfar_private *priv = netdev_priv(dev);
781 	struct gfar __iomem *regs = priv->regs;
782 	u32 tempval;
783 
784 	/* Mask all interrupts */
785 	gfar_write(&regs->imask, IMASK_INIT_CLEAR);
786 
787 	/* Clear all interrupts */
788 	gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
789 
790 	/* Stop the DMA, and wait for it to stop */
791 	tempval = gfar_read(&priv->regs->dmactrl);
792 	if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
793 	    != (DMACTRL_GRS | DMACTRL_GTS)) {
794 		tempval |= (DMACTRL_GRS | DMACTRL_GTS);
795 		gfar_write(&priv->regs->dmactrl, tempval);
796 
797 		while (!(gfar_read(&priv->regs->ievent) &
798 			 (IEVENT_GRSC | IEVENT_GTSC)))
799 			cpu_relax();
800 	}
801 }
802 
803 /* Halt the receive and transmit queues */
gfar_halt(struct net_device * dev)804 void gfar_halt(struct net_device *dev)
805 {
806 	struct gfar_private *priv = netdev_priv(dev);
807 	struct gfar __iomem *regs = priv->regs;
808 	u32 tempval;
809 
810 	gfar_halt_nodisable(dev);
811 
812 	/* Disable Rx and Tx */
813 	tempval = gfar_read(&regs->maccfg1);
814 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
815 	gfar_write(&regs->maccfg1, tempval);
816 }
817 
stop_gfar(struct net_device * dev)818 void stop_gfar(struct net_device *dev)
819 {
820 	struct gfar_private *priv = netdev_priv(dev);
821 	struct gfar __iomem *regs = priv->regs;
822 	unsigned long flags;
823 
824 	phy_stop(priv->phydev);
825 
826 	/* Lock it down */
827 	spin_lock_irqsave(&priv->txlock, flags);
828 	spin_lock(&priv->rxlock);
829 
830 	gfar_halt(dev);
831 
832 	spin_unlock(&priv->rxlock);
833 	spin_unlock_irqrestore(&priv->txlock, flags);
834 
835 	/* Free the IRQs */
836 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
837 		free_irq(priv->interruptError, dev);
838 		free_irq(priv->interruptTransmit, dev);
839 		free_irq(priv->interruptReceive, dev);
840 	} else {
841  		free_irq(priv->interruptTransmit, dev);
842 	}
843 
844 	free_skb_resources(priv);
845 
846 	dma_free_coherent(&dev->dev,
847 			sizeof(struct txbd8)*priv->tx_ring_size
848 			+ sizeof(struct rxbd8)*priv->rx_ring_size,
849 			priv->tx_bd_base,
850 			gfar_read(&regs->tbase0));
851 }
852 
853 /* If there are any tx skbs or rx skbs still around, free them.
854  * Then free tx_skbuff and rx_skbuff */
free_skb_resources(struct gfar_private * priv)855 static void free_skb_resources(struct gfar_private *priv)
856 {
857 	struct rxbd8 *rxbdp;
858 	struct txbd8 *txbdp;
859 	int i, j;
860 
861 	/* Go through all the buffer descriptors and free their data buffers */
862 	txbdp = priv->tx_bd_base;
863 
864 	for (i = 0; i < priv->tx_ring_size; i++) {
865 		if (!priv->tx_skbuff[i])
866 			continue;
867 
868 		dma_unmap_single(&priv->dev->dev, txbdp->bufPtr,
869 				txbdp->length, DMA_TO_DEVICE);
870 		txbdp->lstatus = 0;
871 		for (j = 0; j < skb_shinfo(priv->tx_skbuff[i])->nr_frags; j++) {
872 			txbdp++;
873 			dma_unmap_page(&priv->dev->dev, txbdp->bufPtr,
874 					txbdp->length, DMA_TO_DEVICE);
875 		}
876 		txbdp++;
877 		dev_kfree_skb_any(priv->tx_skbuff[i]);
878 		priv->tx_skbuff[i] = NULL;
879 	}
880 
881 	kfree(priv->tx_skbuff);
882 
883 	rxbdp = priv->rx_bd_base;
884 
885 	/* rx_skbuff is not guaranteed to be allocated, so only
886 	 * free it and its contents if it is allocated */
887 	if(priv->rx_skbuff != NULL) {
888 		for (i = 0; i < priv->rx_ring_size; i++) {
889 			if (priv->rx_skbuff[i]) {
890 				dma_unmap_single(&priv->dev->dev, rxbdp->bufPtr,
891 						priv->rx_buffer_size,
892 						DMA_FROM_DEVICE);
893 
894 				dev_kfree_skb_any(priv->rx_skbuff[i]);
895 				priv->rx_skbuff[i] = NULL;
896 			}
897 
898 			rxbdp->lstatus = 0;
899 			rxbdp->bufPtr = 0;
900 
901 			rxbdp++;
902 		}
903 
904 		kfree(priv->rx_skbuff);
905 	}
906 }
907 
gfar_start(struct net_device * dev)908 void gfar_start(struct net_device *dev)
909 {
910 	struct gfar_private *priv = netdev_priv(dev);
911 	struct gfar __iomem *regs = priv->regs;
912 	u32 tempval;
913 
914 	/* Enable Rx and Tx in MACCFG1 */
915 	tempval = gfar_read(&regs->maccfg1);
916 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
917 	gfar_write(&regs->maccfg1, tempval);
918 
919 	/* Initialize DMACTRL to have WWR and WOP */
920 	tempval = gfar_read(&priv->regs->dmactrl);
921 	tempval |= DMACTRL_INIT_SETTINGS;
922 	gfar_write(&priv->regs->dmactrl, tempval);
923 
924 	/* Make sure we aren't stopped */
925 	tempval = gfar_read(&priv->regs->dmactrl);
926 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
927 	gfar_write(&priv->regs->dmactrl, tempval);
928 
929 	/* Clear THLT/RHLT, so that the DMA starts polling now */
930 	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
931 	gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT);
932 
933 	/* Unmask the interrupts we look for */
934 	gfar_write(&regs->imask, IMASK_DEFAULT);
935 
936 	dev->trans_start = jiffies;
937 }
938 
939 /* Bring the controller up and running */
startup_gfar(struct net_device * dev)940 int startup_gfar(struct net_device *dev)
941 {
942 	struct txbd8 *txbdp;
943 	struct rxbd8 *rxbdp;
944 	dma_addr_t addr = 0;
945 	unsigned long vaddr;
946 	int i;
947 	struct gfar_private *priv = netdev_priv(dev);
948 	struct gfar __iomem *regs = priv->regs;
949 	int err = 0;
950 	u32 rctrl = 0;
951 	u32 attrs = 0;
952 
953 	gfar_write(&regs->imask, IMASK_INIT_CLEAR);
954 
955 	/* Allocate memory for the buffer descriptors */
956 	vaddr = (unsigned long) dma_alloc_coherent(&dev->dev,
957 			sizeof (struct txbd8) * priv->tx_ring_size +
958 			sizeof (struct rxbd8) * priv->rx_ring_size,
959 			&addr, GFP_KERNEL);
960 
961 	if (vaddr == 0) {
962 		if (netif_msg_ifup(priv))
963 			printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
964 					dev->name);
965 		return -ENOMEM;
966 	}
967 
968 	priv->tx_bd_base = (struct txbd8 *) vaddr;
969 
970 	/* enet DMA only understands physical addresses */
971 	gfar_write(&regs->tbase0, addr);
972 
973 	/* Start the rx descriptor ring where the tx ring leaves off */
974 	addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
975 	vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
976 	priv->rx_bd_base = (struct rxbd8 *) vaddr;
977 	gfar_write(&regs->rbase0, addr);
978 
979 	/* Setup the skbuff rings */
980 	priv->tx_skbuff =
981 	    (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
982 					priv->tx_ring_size, GFP_KERNEL);
983 
984 	if (NULL == priv->tx_skbuff) {
985 		if (netif_msg_ifup(priv))
986 			printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
987 					dev->name);
988 		err = -ENOMEM;
989 		goto tx_skb_fail;
990 	}
991 
992 	for (i = 0; i < priv->tx_ring_size; i++)
993 		priv->tx_skbuff[i] = NULL;
994 
995 	priv->rx_skbuff =
996 	    (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
997 					priv->rx_ring_size, GFP_KERNEL);
998 
999 	if (NULL == priv->rx_skbuff) {
1000 		if (netif_msg_ifup(priv))
1001 			printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
1002 					dev->name);
1003 		err = -ENOMEM;
1004 		goto rx_skb_fail;
1005 	}
1006 
1007 	for (i = 0; i < priv->rx_ring_size; i++)
1008 		priv->rx_skbuff[i] = NULL;
1009 
1010 	/* Initialize some variables in our dev structure */
1011 	priv->num_txbdfree = priv->tx_ring_size;
1012 	priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
1013 	priv->cur_rx = priv->rx_bd_base;
1014 	priv->skb_curtx = priv->skb_dirtytx = 0;
1015 	priv->skb_currx = 0;
1016 
1017 	/* Initialize Transmit Descriptor Ring */
1018 	txbdp = priv->tx_bd_base;
1019 	for (i = 0; i < priv->tx_ring_size; i++) {
1020 		txbdp->lstatus = 0;
1021 		txbdp->bufPtr = 0;
1022 		txbdp++;
1023 	}
1024 
1025 	/* Set the last descriptor in the ring to indicate wrap */
1026 	txbdp--;
1027 	txbdp->status |= TXBD_WRAP;
1028 
1029 	rxbdp = priv->rx_bd_base;
1030 	for (i = 0; i < priv->rx_ring_size; i++) {
1031 		struct sk_buff *skb;
1032 
1033 		skb = gfar_new_skb(dev);
1034 
1035 		if (!skb) {
1036 			printk(KERN_ERR "%s: Can't allocate RX buffers\n",
1037 					dev->name);
1038 
1039 			goto err_rxalloc_fail;
1040 		}
1041 
1042 		priv->rx_skbuff[i] = skb;
1043 
1044 		gfar_new_rxbdp(dev, rxbdp, skb);
1045 
1046 		rxbdp++;
1047 	}
1048 
1049 	/* Set the last descriptor in the ring to wrap */
1050 	rxbdp--;
1051 	rxbdp->status |= RXBD_WRAP;
1052 
1053 	/* If the device has multiple interrupts, register for
1054 	 * them.  Otherwise, only register for the one */
1055 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1056 		/* Install our interrupt handlers for Error,
1057 		 * Transmit, and Receive */
1058 		if (request_irq(priv->interruptError, gfar_error,
1059 				0, priv->int_name_er, dev) < 0) {
1060 			if (netif_msg_intr(priv))
1061 				printk(KERN_ERR "%s: Can't get IRQ %d\n",
1062 					dev->name, priv->interruptError);
1063 
1064 			err = -1;
1065 			goto err_irq_fail;
1066 		}
1067 
1068 		if (request_irq(priv->interruptTransmit, gfar_transmit,
1069 				0, priv->int_name_tx, dev) < 0) {
1070 			if (netif_msg_intr(priv))
1071 				printk(KERN_ERR "%s: Can't get IRQ %d\n",
1072 					dev->name, priv->interruptTransmit);
1073 
1074 			err = -1;
1075 
1076 			goto tx_irq_fail;
1077 		}
1078 
1079 		if (request_irq(priv->interruptReceive, gfar_receive,
1080 				0, priv->int_name_rx, dev) < 0) {
1081 			if (netif_msg_intr(priv))
1082 				printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
1083 						dev->name, priv->interruptReceive);
1084 
1085 			err = -1;
1086 			goto rx_irq_fail;
1087 		}
1088 	} else {
1089 		if (request_irq(priv->interruptTransmit, gfar_interrupt,
1090 				0, priv->int_name_tx, dev) < 0) {
1091 			if (netif_msg_intr(priv))
1092 				printk(KERN_ERR "%s: Can't get IRQ %d\n",
1093 					dev->name, priv->interruptTransmit);
1094 
1095 			err = -1;
1096 			goto err_irq_fail;
1097 		}
1098 	}
1099 
1100 	phy_start(priv->phydev);
1101 
1102 	/* Configure the coalescing support */
1103 	gfar_write(&regs->txic, 0);
1104 	if (priv->txcoalescing)
1105 		gfar_write(&regs->txic, priv->txic);
1106 
1107 	gfar_write(&regs->rxic, 0);
1108 	if (priv->rxcoalescing)
1109 		gfar_write(&regs->rxic, priv->rxic);
1110 
1111 	if (priv->rx_csum_enable)
1112 		rctrl |= RCTRL_CHECKSUMMING;
1113 
1114 	if (priv->extended_hash) {
1115 		rctrl |= RCTRL_EXTHASH;
1116 
1117 		gfar_clear_exact_match(dev);
1118 		rctrl |= RCTRL_EMEN;
1119 	}
1120 
1121 	if (priv->padding) {
1122 		rctrl &= ~RCTRL_PAL_MASK;
1123 		rctrl |= RCTRL_PADDING(priv->padding);
1124 	}
1125 
1126 	/* Init rctrl based on our settings */
1127 	gfar_write(&priv->regs->rctrl, rctrl);
1128 
1129 	if (dev->features & NETIF_F_IP_CSUM)
1130 		gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
1131 
1132 	/* Set the extraction length and index */
1133 	attrs = ATTRELI_EL(priv->rx_stash_size) |
1134 		ATTRELI_EI(priv->rx_stash_index);
1135 
1136 	gfar_write(&priv->regs->attreli, attrs);
1137 
1138 	/* Start with defaults, and add stashing or locking
1139 	 * depending on the approprate variables */
1140 	attrs = ATTR_INIT_SETTINGS;
1141 
1142 	if (priv->bd_stash_en)
1143 		attrs |= ATTR_BDSTASH;
1144 
1145 	if (priv->rx_stash_size != 0)
1146 		attrs |= ATTR_BUFSTASH;
1147 
1148 	gfar_write(&priv->regs->attr, attrs);
1149 
1150 	gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
1151 	gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
1152 	gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
1153 
1154 	/* Start the controller */
1155 	gfar_start(dev);
1156 
1157 	return 0;
1158 
1159 rx_irq_fail:
1160 	free_irq(priv->interruptTransmit, dev);
1161 tx_irq_fail:
1162 	free_irq(priv->interruptError, dev);
1163 err_irq_fail:
1164 err_rxalloc_fail:
1165 rx_skb_fail:
1166 	free_skb_resources(priv);
1167 tx_skb_fail:
1168 	dma_free_coherent(&dev->dev,
1169 			sizeof(struct txbd8)*priv->tx_ring_size
1170 			+ sizeof(struct rxbd8)*priv->rx_ring_size,
1171 			priv->tx_bd_base,
1172 			gfar_read(&regs->tbase0));
1173 
1174 	return err;
1175 }
1176 
1177 /* Called when something needs to use the ethernet device */
1178 /* Returns 0 for success. */
gfar_enet_open(struct net_device * dev)1179 static int gfar_enet_open(struct net_device *dev)
1180 {
1181 	struct gfar_private *priv = netdev_priv(dev);
1182 	int err;
1183 
1184 	napi_enable(&priv->napi);
1185 
1186 	/* Initialize a bunch of registers */
1187 	init_registers(dev);
1188 
1189 	gfar_set_mac_address(dev);
1190 
1191 	err = init_phy(dev);
1192 
1193 	if(err) {
1194 		napi_disable(&priv->napi);
1195 		return err;
1196 	}
1197 
1198 	err = startup_gfar(dev);
1199 	if (err) {
1200 		napi_disable(&priv->napi);
1201 		return err;
1202 	}
1203 
1204 	netif_start_queue(dev);
1205 
1206 	return err;
1207 }
1208 
gfar_add_fcb(struct sk_buff * skb)1209 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1210 {
1211 	struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
1212 
1213 	cacheable_memzero(fcb, GMAC_FCB_LEN);
1214 
1215 	return fcb;
1216 }
1217 
gfar_tx_checksum(struct sk_buff * skb,struct txfcb * fcb)1218 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1219 {
1220 	u8 flags = 0;
1221 
1222 	/* If we're here, it's a IP packet with a TCP or UDP
1223 	 * payload.  We set it to checksum, using a pseudo-header
1224 	 * we provide
1225 	 */
1226 	flags = TXFCB_DEFAULT;
1227 
1228 	/* Tell the controller what the protocol is */
1229 	/* And provide the already calculated phcs */
1230 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1231 		flags |= TXFCB_UDP;
1232 		fcb->phcs = udp_hdr(skb)->check;
1233 	} else
1234 		fcb->phcs = tcp_hdr(skb)->check;
1235 
1236 	/* l3os is the distance between the start of the
1237 	 * frame (skb->data) and the start of the IP hdr.
1238 	 * l4os is the distance between the start of the
1239 	 * l3 hdr and the l4 hdr */
1240 	fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1241 	fcb->l4os = skb_network_header_len(skb);
1242 
1243 	fcb->flags = flags;
1244 }
1245 
gfar_tx_vlan(struct sk_buff * skb,struct txfcb * fcb)1246 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1247 {
1248 	fcb->flags |= TXFCB_VLN;
1249 	fcb->vlctl = vlan_tx_tag_get(skb);
1250 }
1251 
skip_txbd(struct txbd8 * bdp,int stride,struct txbd8 * base,int ring_size)1252 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1253 			       struct txbd8 *base, int ring_size)
1254 {
1255 	struct txbd8 *new_bd = bdp + stride;
1256 
1257 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1258 }
1259 
next_txbd(struct txbd8 * bdp,struct txbd8 * base,int ring_size)1260 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1261 		int ring_size)
1262 {
1263 	return skip_txbd(bdp, 1, base, ring_size);
1264 }
1265 
1266 /* This is called by the kernel when a frame is ready for transmission. */
1267 /* It is pointed to by the dev->hard_start_xmit function pointer */
gfar_start_xmit(struct sk_buff * skb,struct net_device * dev)1268 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1269 {
1270 	struct gfar_private *priv = netdev_priv(dev);
1271 	struct txfcb *fcb = NULL;
1272 	struct txbd8 *txbdp, *txbdp_start, *base;
1273 	u32 lstatus;
1274 	int i;
1275 	u32 bufaddr;
1276 	unsigned long flags;
1277 	unsigned int nr_frags, length;
1278 
1279 	base = priv->tx_bd_base;
1280 
1281 	/* total number of fragments in the SKB */
1282 	nr_frags = skb_shinfo(skb)->nr_frags;
1283 
1284 	spin_lock_irqsave(&priv->txlock, flags);
1285 
1286 	/* check if there is space to queue this packet */
1287 	if ((nr_frags+1) > priv->num_txbdfree) {
1288 		/* no space, stop the queue */
1289 		netif_stop_queue(dev);
1290 		dev->stats.tx_fifo_errors++;
1291 		spin_unlock_irqrestore(&priv->txlock, flags);
1292 		return NETDEV_TX_BUSY;
1293 	}
1294 
1295 	/* Update transmit stats */
1296 	dev->stats.tx_bytes += skb->len;
1297 
1298 	txbdp = txbdp_start = priv->cur_tx;
1299 
1300 	if (nr_frags == 0) {
1301 		lstatus = txbdp->lstatus | BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1302 	} else {
1303 		/* Place the fragment addresses and lengths into the TxBDs */
1304 		for (i = 0; i < nr_frags; i++) {
1305 			/* Point at the next BD, wrapping as needed */
1306 			txbdp = next_txbd(txbdp, base, priv->tx_ring_size);
1307 
1308 			length = skb_shinfo(skb)->frags[i].size;
1309 
1310 			lstatus = txbdp->lstatus | length |
1311 				BD_LFLAG(TXBD_READY);
1312 
1313 			/* Handle the last BD specially */
1314 			if (i == nr_frags - 1)
1315 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1316 
1317 			bufaddr = dma_map_page(&dev->dev,
1318 					skb_shinfo(skb)->frags[i].page,
1319 					skb_shinfo(skb)->frags[i].page_offset,
1320 					length,
1321 					DMA_TO_DEVICE);
1322 
1323 			/* set the TxBD length and buffer pointer */
1324 			txbdp->bufPtr = bufaddr;
1325 			txbdp->lstatus = lstatus;
1326 		}
1327 
1328 		lstatus = txbdp_start->lstatus;
1329 	}
1330 
1331 	/* Set up checksumming */
1332 	if (CHECKSUM_PARTIAL == skb->ip_summed) {
1333 		fcb = gfar_add_fcb(skb);
1334 		lstatus |= BD_LFLAG(TXBD_TOE);
1335 		gfar_tx_checksum(skb, fcb);
1336 	}
1337 
1338 	if (priv->vlgrp && vlan_tx_tag_present(skb)) {
1339 		if (unlikely(NULL == fcb)) {
1340 			fcb = gfar_add_fcb(skb);
1341 			lstatus |= BD_LFLAG(TXBD_TOE);
1342 		}
1343 
1344 		gfar_tx_vlan(skb, fcb);
1345 	}
1346 
1347 	/* setup the TxBD length and buffer pointer for the first BD */
1348 	priv->tx_skbuff[priv->skb_curtx] = skb;
1349 	txbdp_start->bufPtr = dma_map_single(&dev->dev, skb->data,
1350 			skb_headlen(skb), DMA_TO_DEVICE);
1351 
1352 	lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1353 
1354 	/*
1355 	 * The powerpc-specific eieio() is used, as wmb() has too strong
1356 	 * semantics (it requires synchronization between cacheable and
1357 	 * uncacheable mappings, which eieio doesn't provide and which we
1358 	 * don't need), thus requiring a more expensive sync instruction.  At
1359 	 * some point, the set of architecture-independent barrier functions
1360 	 * should be expanded to include weaker barriers.
1361 	 */
1362 	eieio();
1363 
1364 	txbdp_start->lstatus = lstatus;
1365 
1366 	/* Update the current skb pointer to the next entry we will use
1367 	 * (wrapping if necessary) */
1368 	priv->skb_curtx = (priv->skb_curtx + 1) &
1369 		TX_RING_MOD_MASK(priv->tx_ring_size);
1370 
1371 	priv->cur_tx = next_txbd(txbdp, base, priv->tx_ring_size);
1372 
1373 	/* reduce TxBD free count */
1374 	priv->num_txbdfree -= (nr_frags + 1);
1375 
1376 	dev->trans_start = jiffies;
1377 
1378 	/* If the next BD still needs to be cleaned up, then the bds
1379 	   are full.  We need to tell the kernel to stop sending us stuff. */
1380 	if (!priv->num_txbdfree) {
1381 		netif_stop_queue(dev);
1382 
1383 		dev->stats.tx_fifo_errors++;
1384 	}
1385 
1386 	/* Tell the DMA to go go go */
1387 	gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1388 
1389 	/* Unlock priv */
1390 	spin_unlock_irqrestore(&priv->txlock, flags);
1391 
1392 	return 0;
1393 }
1394 
1395 /* Stops the kernel queue, and halts the controller */
gfar_close(struct net_device * dev)1396 static int gfar_close(struct net_device *dev)
1397 {
1398 	struct gfar_private *priv = netdev_priv(dev);
1399 
1400 	napi_disable(&priv->napi);
1401 
1402 	cancel_work_sync(&priv->reset_task);
1403 	stop_gfar(dev);
1404 
1405 	/* Disconnect from the PHY */
1406 	phy_disconnect(priv->phydev);
1407 	priv->phydev = NULL;
1408 
1409 	netif_stop_queue(dev);
1410 
1411 	return 0;
1412 }
1413 
1414 /* Changes the mac address if the controller is not running. */
gfar_set_mac_address(struct net_device * dev)1415 static int gfar_set_mac_address(struct net_device *dev)
1416 {
1417 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1418 
1419 	return 0;
1420 }
1421 
1422 
1423 /* Enables and disables VLAN insertion/extraction */
gfar_vlan_rx_register(struct net_device * dev,struct vlan_group * grp)1424 static void gfar_vlan_rx_register(struct net_device *dev,
1425 		struct vlan_group *grp)
1426 {
1427 	struct gfar_private *priv = netdev_priv(dev);
1428 	unsigned long flags;
1429 	u32 tempval;
1430 
1431 	spin_lock_irqsave(&priv->rxlock, flags);
1432 
1433 	priv->vlgrp = grp;
1434 
1435 	if (grp) {
1436 		/* Enable VLAN tag insertion */
1437 		tempval = gfar_read(&priv->regs->tctrl);
1438 		tempval |= TCTRL_VLINS;
1439 
1440 		gfar_write(&priv->regs->tctrl, tempval);
1441 
1442 		/* Enable VLAN tag extraction */
1443 		tempval = gfar_read(&priv->regs->rctrl);
1444 		tempval |= RCTRL_VLEX;
1445 		tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
1446 		gfar_write(&priv->regs->rctrl, tempval);
1447 	} else {
1448 		/* Disable VLAN tag insertion */
1449 		tempval = gfar_read(&priv->regs->tctrl);
1450 		tempval &= ~TCTRL_VLINS;
1451 		gfar_write(&priv->regs->tctrl, tempval);
1452 
1453 		/* Disable VLAN tag extraction */
1454 		tempval = gfar_read(&priv->regs->rctrl);
1455 		tempval &= ~RCTRL_VLEX;
1456 		/* If parse is no longer required, then disable parser */
1457 		if (tempval & RCTRL_REQ_PARSER)
1458 			tempval |= RCTRL_PRSDEP_INIT;
1459 		else
1460 			tempval &= ~RCTRL_PRSDEP_INIT;
1461 		gfar_write(&priv->regs->rctrl, tempval);
1462 	}
1463 
1464 	gfar_change_mtu(dev, dev->mtu);
1465 
1466 	spin_unlock_irqrestore(&priv->rxlock, flags);
1467 }
1468 
gfar_change_mtu(struct net_device * dev,int new_mtu)1469 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1470 {
1471 	int tempsize, tempval;
1472 	struct gfar_private *priv = netdev_priv(dev);
1473 	int oldsize = priv->rx_buffer_size;
1474 	int frame_size = new_mtu + ETH_HLEN;
1475 
1476 	if (priv->vlgrp)
1477 		frame_size += VLAN_HLEN;
1478 
1479 	if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1480 		if (netif_msg_drv(priv))
1481 			printk(KERN_ERR "%s: Invalid MTU setting\n",
1482 					dev->name);
1483 		return -EINVAL;
1484 	}
1485 
1486 	if (gfar_uses_fcb(priv))
1487 		frame_size += GMAC_FCB_LEN;
1488 
1489 	frame_size += priv->padding;
1490 
1491 	tempsize =
1492 	    (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1493 	    INCREMENTAL_BUFFER_SIZE;
1494 
1495 	/* Only stop and start the controller if it isn't already
1496 	 * stopped, and we changed something */
1497 	if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1498 		stop_gfar(dev);
1499 
1500 	priv->rx_buffer_size = tempsize;
1501 
1502 	dev->mtu = new_mtu;
1503 
1504 	gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1505 	gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1506 
1507 	/* If the mtu is larger than the max size for standard
1508 	 * ethernet frames (ie, a jumbo frame), then set maccfg2
1509 	 * to allow huge frames, and to check the length */
1510 	tempval = gfar_read(&priv->regs->maccfg2);
1511 
1512 	if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1513 		tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1514 	else
1515 		tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1516 
1517 	gfar_write(&priv->regs->maccfg2, tempval);
1518 
1519 	if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1520 		startup_gfar(dev);
1521 
1522 	return 0;
1523 }
1524 
1525 /* gfar_reset_task gets scheduled when a packet has not been
1526  * transmitted after a set amount of time.
1527  * For now, assume that clearing out all the structures, and
1528  * starting over will fix the problem.
1529  */
gfar_reset_task(struct work_struct * work)1530 static void gfar_reset_task(struct work_struct *work)
1531 {
1532 	struct gfar_private *priv = container_of(work, struct gfar_private,
1533 			reset_task);
1534 	struct net_device *dev = priv->dev;
1535 
1536 	if (dev->flags & IFF_UP) {
1537 		stop_gfar(dev);
1538 		startup_gfar(dev);
1539 	}
1540 
1541 	netif_tx_schedule_all(dev);
1542 }
1543 
gfar_timeout(struct net_device * dev)1544 static void gfar_timeout(struct net_device *dev)
1545 {
1546 	struct gfar_private *priv = netdev_priv(dev);
1547 
1548 	dev->stats.tx_errors++;
1549 	schedule_work(&priv->reset_task);
1550 }
1551 
1552 /* Interrupt Handler for Transmit complete */
gfar_clean_tx_ring(struct net_device * dev)1553 static int gfar_clean_tx_ring(struct net_device *dev)
1554 {
1555 	struct gfar_private *priv = netdev_priv(dev);
1556 	struct txbd8 *bdp;
1557 	struct txbd8 *lbdp = NULL;
1558 	struct txbd8 *base = priv->tx_bd_base;
1559 	struct sk_buff *skb;
1560 	int skb_dirtytx;
1561 	int tx_ring_size = priv->tx_ring_size;
1562 	int frags = 0;
1563 	int i;
1564 	int howmany = 0;
1565 	u32 lstatus;
1566 
1567 	bdp = priv->dirty_tx;
1568 	skb_dirtytx = priv->skb_dirtytx;
1569 
1570 	while ((skb = priv->tx_skbuff[skb_dirtytx])) {
1571 		frags = skb_shinfo(skb)->nr_frags;
1572 		lbdp = skip_txbd(bdp, frags, base, tx_ring_size);
1573 
1574 		lstatus = lbdp->lstatus;
1575 
1576 		/* Only clean completed frames */
1577 		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
1578 				(lstatus & BD_LENGTH_MASK))
1579 			break;
1580 
1581 		dma_unmap_single(&dev->dev,
1582 				bdp->bufPtr,
1583 				bdp->length,
1584 				DMA_TO_DEVICE);
1585 
1586 		bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
1587 		bdp = next_txbd(bdp, base, tx_ring_size);
1588 
1589 		for (i = 0; i < frags; i++) {
1590 			dma_unmap_page(&dev->dev,
1591 					bdp->bufPtr,
1592 					bdp->length,
1593 					DMA_TO_DEVICE);
1594 			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
1595 			bdp = next_txbd(bdp, base, tx_ring_size);
1596 		}
1597 
1598 		dev_kfree_skb_any(skb);
1599 		priv->tx_skbuff[skb_dirtytx] = NULL;
1600 
1601 		skb_dirtytx = (skb_dirtytx + 1) &
1602 			TX_RING_MOD_MASK(tx_ring_size);
1603 
1604 		howmany++;
1605 		priv->num_txbdfree += frags + 1;
1606 	}
1607 
1608 	/* If we freed a buffer, we can restart transmission, if necessary */
1609 	if (netif_queue_stopped(dev) && priv->num_txbdfree)
1610 		netif_wake_queue(dev);
1611 
1612 	/* Update dirty indicators */
1613 	priv->skb_dirtytx = skb_dirtytx;
1614 	priv->dirty_tx = bdp;
1615 
1616 	dev->stats.tx_packets += howmany;
1617 
1618 	return howmany;
1619 }
1620 
gfar_schedule_cleanup(struct net_device * dev)1621 static void gfar_schedule_cleanup(struct net_device *dev)
1622 {
1623 	struct gfar_private *priv = netdev_priv(dev);
1624 	unsigned long flags;
1625 
1626 	spin_lock_irqsave(&priv->txlock, flags);
1627 	spin_lock(&priv->rxlock);
1628 
1629 	if (netif_rx_schedule_prep(&priv->napi)) {
1630 		gfar_write(&priv->regs->imask, IMASK_RTX_DISABLED);
1631 		__netif_rx_schedule(&priv->napi);
1632 	} else {
1633 		/*
1634 		 * Clear IEVENT, so interrupts aren't called again
1635 		 * because of the packets that have already arrived.
1636 		 */
1637 		gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1638 	}
1639 
1640 	spin_unlock(&priv->rxlock);
1641 	spin_unlock_irqrestore(&priv->txlock, flags);
1642 }
1643 
1644 /* Interrupt Handler for Transmit complete */
gfar_transmit(int irq,void * dev_id)1645 static irqreturn_t gfar_transmit(int irq, void *dev_id)
1646 {
1647 	gfar_schedule_cleanup((struct net_device *)dev_id);
1648 	return IRQ_HANDLED;
1649 }
1650 
gfar_new_rxbdp(struct net_device * dev,struct rxbd8 * bdp,struct sk_buff * skb)1651 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
1652 		struct sk_buff *skb)
1653 {
1654 	struct gfar_private *priv = netdev_priv(dev);
1655 	u32 lstatus;
1656 
1657 	bdp->bufPtr = dma_map_single(&dev->dev, skb->data,
1658 			priv->rx_buffer_size, DMA_FROM_DEVICE);
1659 
1660 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
1661 
1662 	if (bdp == priv->rx_bd_base + priv->rx_ring_size - 1)
1663 		lstatus |= BD_LFLAG(RXBD_WRAP);
1664 
1665 	eieio();
1666 
1667 	bdp->lstatus = lstatus;
1668 }
1669 
1670 
gfar_new_skb(struct net_device * dev)1671 struct sk_buff * gfar_new_skb(struct net_device *dev)
1672 {
1673 	unsigned int alignamount;
1674 	struct gfar_private *priv = netdev_priv(dev);
1675 	struct sk_buff *skb = NULL;
1676 
1677 	/* We have to allocate the skb, so keep trying till we succeed */
1678 	skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
1679 
1680 	if (!skb)
1681 		return NULL;
1682 
1683 	alignamount = RXBUF_ALIGNMENT -
1684 		(((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
1685 
1686 	/* We need the data buffer to be aligned properly.  We will reserve
1687 	 * as many bytes as needed to align the data properly
1688 	 */
1689 	skb_reserve(skb, alignamount);
1690 
1691 	return skb;
1692 }
1693 
count_errors(unsigned short status,struct net_device * dev)1694 static inline void count_errors(unsigned short status, struct net_device *dev)
1695 {
1696 	struct gfar_private *priv = netdev_priv(dev);
1697 	struct net_device_stats *stats = &dev->stats;
1698 	struct gfar_extra_stats *estats = &priv->extra_stats;
1699 
1700 	/* If the packet was truncated, none of the other errors
1701 	 * matter */
1702 	if (status & RXBD_TRUNCATED) {
1703 		stats->rx_length_errors++;
1704 
1705 		estats->rx_trunc++;
1706 
1707 		return;
1708 	}
1709 	/* Count the errors, if there were any */
1710 	if (status & (RXBD_LARGE | RXBD_SHORT)) {
1711 		stats->rx_length_errors++;
1712 
1713 		if (status & RXBD_LARGE)
1714 			estats->rx_large++;
1715 		else
1716 			estats->rx_short++;
1717 	}
1718 	if (status & RXBD_NONOCTET) {
1719 		stats->rx_frame_errors++;
1720 		estats->rx_nonoctet++;
1721 	}
1722 	if (status & RXBD_CRCERR) {
1723 		estats->rx_crcerr++;
1724 		stats->rx_crc_errors++;
1725 	}
1726 	if (status & RXBD_OVERRUN) {
1727 		estats->rx_overrun++;
1728 		stats->rx_crc_errors++;
1729 	}
1730 }
1731 
gfar_receive(int irq,void * dev_id)1732 irqreturn_t gfar_receive(int irq, void *dev_id)
1733 {
1734 	gfar_schedule_cleanup((struct net_device *)dev_id);
1735 	return IRQ_HANDLED;
1736 }
1737 
gfar_rx_checksum(struct sk_buff * skb,struct rxfcb * fcb)1738 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1739 {
1740 	/* If valid headers were found, and valid sums
1741 	 * were verified, then we tell the kernel that no
1742 	 * checksumming is necessary.  Otherwise, it is */
1743 	if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1744 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1745 	else
1746 		skb->ip_summed = CHECKSUM_NONE;
1747 }
1748 
1749 
1750 /* gfar_process_frame() -- handle one incoming packet if skb
1751  * isn't NULL.  */
gfar_process_frame(struct net_device * dev,struct sk_buff * skb,int amount_pull)1752 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1753 			      int amount_pull)
1754 {
1755 	struct gfar_private *priv = netdev_priv(dev);
1756 	struct rxfcb *fcb = NULL;
1757 
1758 	int ret;
1759 
1760 	/* fcb is at the beginning if exists */
1761 	fcb = (struct rxfcb *)skb->data;
1762 
1763 	/* Remove the FCB from the skb */
1764 	/* Remove the padded bytes, if there are any */
1765 	if (amount_pull)
1766 		skb_pull(skb, amount_pull);
1767 
1768 	if (priv->rx_csum_enable)
1769 		gfar_rx_checksum(skb, fcb);
1770 
1771 	/* Tell the skb what kind of packet this is */
1772 	skb->protocol = eth_type_trans(skb, dev);
1773 
1774 	/* Send the packet up the stack */
1775 	if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
1776 		ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
1777 	else
1778 		ret = netif_receive_skb(skb);
1779 
1780 	if (NET_RX_DROP == ret)
1781 		priv->extra_stats.kernel_dropped++;
1782 
1783 	return 0;
1784 }
1785 
1786 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1787  *   until the budget/quota has been reached. Returns the number
1788  *   of frames handled
1789  */
gfar_clean_rx_ring(struct net_device * dev,int rx_work_limit)1790 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1791 {
1792 	struct rxbd8 *bdp, *base;
1793 	struct sk_buff *skb;
1794 	int pkt_len;
1795 	int amount_pull;
1796 	int howmany = 0;
1797 	struct gfar_private *priv = netdev_priv(dev);
1798 
1799 	/* Get the first full descriptor */
1800 	bdp = priv->cur_rx;
1801 	base = priv->rx_bd_base;
1802 
1803 	amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0) +
1804 		priv->padding;
1805 
1806 	while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1807 		struct sk_buff *newskb;
1808 		rmb();
1809 
1810 		/* Add another skb for the future */
1811 		newskb = gfar_new_skb(dev);
1812 
1813 		skb = priv->rx_skbuff[priv->skb_currx];
1814 
1815 		dma_unmap_single(&priv->dev->dev, bdp->bufPtr,
1816 				priv->rx_buffer_size, DMA_FROM_DEVICE);
1817 
1818 		/* We drop the frame if we failed to allocate a new buffer */
1819 		if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
1820 				 bdp->status & RXBD_ERR)) {
1821 			count_errors(bdp->status, dev);
1822 
1823 			if (unlikely(!newskb))
1824 				newskb = skb;
1825 			else if (skb)
1826 				dev_kfree_skb_any(skb);
1827 		} else {
1828 			/* Increment the number of packets */
1829 			dev->stats.rx_packets++;
1830 			howmany++;
1831 
1832 			if (likely(skb)) {
1833 				pkt_len = bdp->length - ETH_FCS_LEN;
1834 				/* Remove the FCS from the packet length */
1835 				skb_put(skb, pkt_len);
1836 				dev->stats.rx_bytes += pkt_len;
1837 
1838 				gfar_process_frame(dev, skb, amount_pull);
1839 
1840 			} else {
1841 				if (netif_msg_rx_err(priv))
1842 					printk(KERN_WARNING
1843 					       "%s: Missing skb!\n", dev->name);
1844 				dev->stats.rx_dropped++;
1845 				priv->extra_stats.rx_skbmissing++;
1846 			}
1847 
1848 		}
1849 
1850 		priv->rx_skbuff[priv->skb_currx] = newskb;
1851 
1852 		/* Setup the new bdp */
1853 		gfar_new_rxbdp(dev, bdp, newskb);
1854 
1855 		/* Update to the next pointer */
1856 		bdp = next_bd(bdp, base, priv->rx_ring_size);
1857 
1858 		/* update to point at the next skb */
1859 		priv->skb_currx =
1860 		    (priv->skb_currx + 1) &
1861 		    RX_RING_MOD_MASK(priv->rx_ring_size);
1862 	}
1863 
1864 	/* Update the current rxbd pointer to be the next one */
1865 	priv->cur_rx = bdp;
1866 
1867 	return howmany;
1868 }
1869 
gfar_poll(struct napi_struct * napi,int budget)1870 static int gfar_poll(struct napi_struct *napi, int budget)
1871 {
1872 	struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
1873 	struct net_device *dev = priv->dev;
1874 	int tx_cleaned = 0;
1875 	int rx_cleaned = 0;
1876 	unsigned long flags;
1877 
1878 	/* Clear IEVENT, so interrupts aren't called again
1879 	 * because of the packets that have already arrived */
1880 	gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1881 
1882 	/* If we fail to get the lock, don't bother with the TX BDs */
1883 	if (spin_trylock_irqsave(&priv->txlock, flags)) {
1884 		tx_cleaned = gfar_clean_tx_ring(dev);
1885 		spin_unlock_irqrestore(&priv->txlock, flags);
1886 	}
1887 
1888 	rx_cleaned = gfar_clean_rx_ring(dev, budget);
1889 
1890 	if (tx_cleaned)
1891 		return budget;
1892 
1893 	if (rx_cleaned < budget) {
1894 		netif_rx_complete(napi);
1895 
1896 		/* Clear the halt bit in RSTAT */
1897 		gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1898 
1899 		gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1900 
1901 		/* If we are coalescing interrupts, update the timer */
1902 		/* Otherwise, clear it */
1903 		if (likely(priv->rxcoalescing)) {
1904 			gfar_write(&priv->regs->rxic, 0);
1905 			gfar_write(&priv->regs->rxic, priv->rxic);
1906 		}
1907 		if (likely(priv->txcoalescing)) {
1908 			gfar_write(&priv->regs->txic, 0);
1909 			gfar_write(&priv->regs->txic, priv->txic);
1910 		}
1911 	}
1912 
1913 	return rx_cleaned;
1914 }
1915 
1916 #ifdef CONFIG_NET_POLL_CONTROLLER
1917 /*
1918  * Polling 'interrupt' - used by things like netconsole to send skbs
1919  * without having to re-enable interrupts. It's not called while
1920  * the interrupt routine is executing.
1921  */
gfar_netpoll(struct net_device * dev)1922 static void gfar_netpoll(struct net_device *dev)
1923 {
1924 	struct gfar_private *priv = netdev_priv(dev);
1925 
1926 	/* If the device has multiple interrupts, run tx/rx */
1927 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1928 		disable_irq(priv->interruptTransmit);
1929 		disable_irq(priv->interruptReceive);
1930 		disable_irq(priv->interruptError);
1931 		gfar_interrupt(priv->interruptTransmit, dev);
1932 		enable_irq(priv->interruptError);
1933 		enable_irq(priv->interruptReceive);
1934 		enable_irq(priv->interruptTransmit);
1935 	} else {
1936 		disable_irq(priv->interruptTransmit);
1937 		gfar_interrupt(priv->interruptTransmit, dev);
1938 		enable_irq(priv->interruptTransmit);
1939 	}
1940 }
1941 #endif
1942 
1943 /* The interrupt handler for devices with one interrupt */
gfar_interrupt(int irq,void * dev_id)1944 static irqreturn_t gfar_interrupt(int irq, void *dev_id)
1945 {
1946 	struct net_device *dev = dev_id;
1947 	struct gfar_private *priv = netdev_priv(dev);
1948 
1949 	/* Save ievent for future reference */
1950 	u32 events = gfar_read(&priv->regs->ievent);
1951 
1952 	/* Check for reception */
1953 	if (events & IEVENT_RX_MASK)
1954 		gfar_receive(irq, dev_id);
1955 
1956 	/* Check for transmit completion */
1957 	if (events & IEVENT_TX_MASK)
1958 		gfar_transmit(irq, dev_id);
1959 
1960 	/* Check for errors */
1961 	if (events & IEVENT_ERR_MASK)
1962 		gfar_error(irq, dev_id);
1963 
1964 	return IRQ_HANDLED;
1965 }
1966 
1967 /* Called every time the controller might need to be made
1968  * aware of new link state.  The PHY code conveys this
1969  * information through variables in the phydev structure, and this
1970  * function converts those variables into the appropriate
1971  * register values, and can bring down the device if needed.
1972  */
adjust_link(struct net_device * dev)1973 static void adjust_link(struct net_device *dev)
1974 {
1975 	struct gfar_private *priv = netdev_priv(dev);
1976 	struct gfar __iomem *regs = priv->regs;
1977 	unsigned long flags;
1978 	struct phy_device *phydev = priv->phydev;
1979 	int new_state = 0;
1980 
1981 	spin_lock_irqsave(&priv->txlock, flags);
1982 	if (phydev->link) {
1983 		u32 tempval = gfar_read(&regs->maccfg2);
1984 		u32 ecntrl = gfar_read(&regs->ecntrl);
1985 
1986 		/* Now we make sure that we can be in full duplex mode.
1987 		 * If not, we operate in half-duplex mode. */
1988 		if (phydev->duplex != priv->oldduplex) {
1989 			new_state = 1;
1990 			if (!(phydev->duplex))
1991 				tempval &= ~(MACCFG2_FULL_DUPLEX);
1992 			else
1993 				tempval |= MACCFG2_FULL_DUPLEX;
1994 
1995 			priv->oldduplex = phydev->duplex;
1996 		}
1997 
1998 		if (phydev->speed != priv->oldspeed) {
1999 			new_state = 1;
2000 			switch (phydev->speed) {
2001 			case 1000:
2002 				tempval =
2003 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2004 
2005 				ecntrl &= ~(ECNTRL_R100);
2006 				break;
2007 			case 100:
2008 			case 10:
2009 				tempval =
2010 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2011 
2012 				/* Reduced mode distinguishes
2013 				 * between 10 and 100 */
2014 				if (phydev->speed == SPEED_100)
2015 					ecntrl |= ECNTRL_R100;
2016 				else
2017 					ecntrl &= ~(ECNTRL_R100);
2018 				break;
2019 			default:
2020 				if (netif_msg_link(priv))
2021 					printk(KERN_WARNING
2022 						"%s: Ack!  Speed (%d) is not 10/100/1000!\n",
2023 						dev->name, phydev->speed);
2024 				break;
2025 			}
2026 
2027 			priv->oldspeed = phydev->speed;
2028 		}
2029 
2030 		gfar_write(&regs->maccfg2, tempval);
2031 		gfar_write(&regs->ecntrl, ecntrl);
2032 
2033 		if (!priv->oldlink) {
2034 			new_state = 1;
2035 			priv->oldlink = 1;
2036 		}
2037 	} else if (priv->oldlink) {
2038 		new_state = 1;
2039 		priv->oldlink = 0;
2040 		priv->oldspeed = 0;
2041 		priv->oldduplex = -1;
2042 	}
2043 
2044 	if (new_state && netif_msg_link(priv))
2045 		phy_print_status(phydev);
2046 
2047 	spin_unlock_irqrestore(&priv->txlock, flags);
2048 }
2049 
2050 /* Update the hash table based on the current list of multicast
2051  * addresses we subscribe to.  Also, change the promiscuity of
2052  * the device based on the flags (this function is called
2053  * whenever dev->flags is changed */
gfar_set_multi(struct net_device * dev)2054 static void gfar_set_multi(struct net_device *dev)
2055 {
2056 	struct dev_mc_list *mc_ptr;
2057 	struct gfar_private *priv = netdev_priv(dev);
2058 	struct gfar __iomem *regs = priv->regs;
2059 	u32 tempval;
2060 
2061 	if(dev->flags & IFF_PROMISC) {
2062 		/* Set RCTRL to PROM */
2063 		tempval = gfar_read(&regs->rctrl);
2064 		tempval |= RCTRL_PROM;
2065 		gfar_write(&regs->rctrl, tempval);
2066 	} else {
2067 		/* Set RCTRL to not PROM */
2068 		tempval = gfar_read(&regs->rctrl);
2069 		tempval &= ~(RCTRL_PROM);
2070 		gfar_write(&regs->rctrl, tempval);
2071 	}
2072 
2073 	if(dev->flags & IFF_ALLMULTI) {
2074 		/* Set the hash to rx all multicast frames */
2075 		gfar_write(&regs->igaddr0, 0xffffffff);
2076 		gfar_write(&regs->igaddr1, 0xffffffff);
2077 		gfar_write(&regs->igaddr2, 0xffffffff);
2078 		gfar_write(&regs->igaddr3, 0xffffffff);
2079 		gfar_write(&regs->igaddr4, 0xffffffff);
2080 		gfar_write(&regs->igaddr5, 0xffffffff);
2081 		gfar_write(&regs->igaddr6, 0xffffffff);
2082 		gfar_write(&regs->igaddr7, 0xffffffff);
2083 		gfar_write(&regs->gaddr0, 0xffffffff);
2084 		gfar_write(&regs->gaddr1, 0xffffffff);
2085 		gfar_write(&regs->gaddr2, 0xffffffff);
2086 		gfar_write(&regs->gaddr3, 0xffffffff);
2087 		gfar_write(&regs->gaddr4, 0xffffffff);
2088 		gfar_write(&regs->gaddr5, 0xffffffff);
2089 		gfar_write(&regs->gaddr6, 0xffffffff);
2090 		gfar_write(&regs->gaddr7, 0xffffffff);
2091 	} else {
2092 		int em_num;
2093 		int idx;
2094 
2095 		/* zero out the hash */
2096 		gfar_write(&regs->igaddr0, 0x0);
2097 		gfar_write(&regs->igaddr1, 0x0);
2098 		gfar_write(&regs->igaddr2, 0x0);
2099 		gfar_write(&regs->igaddr3, 0x0);
2100 		gfar_write(&regs->igaddr4, 0x0);
2101 		gfar_write(&regs->igaddr5, 0x0);
2102 		gfar_write(&regs->igaddr6, 0x0);
2103 		gfar_write(&regs->igaddr7, 0x0);
2104 		gfar_write(&regs->gaddr0, 0x0);
2105 		gfar_write(&regs->gaddr1, 0x0);
2106 		gfar_write(&regs->gaddr2, 0x0);
2107 		gfar_write(&regs->gaddr3, 0x0);
2108 		gfar_write(&regs->gaddr4, 0x0);
2109 		gfar_write(&regs->gaddr5, 0x0);
2110 		gfar_write(&regs->gaddr6, 0x0);
2111 		gfar_write(&regs->gaddr7, 0x0);
2112 
2113 		/* If we have extended hash tables, we need to
2114 		 * clear the exact match registers to prepare for
2115 		 * setting them */
2116 		if (priv->extended_hash) {
2117 			em_num = GFAR_EM_NUM + 1;
2118 			gfar_clear_exact_match(dev);
2119 			idx = 1;
2120 		} else {
2121 			idx = 0;
2122 			em_num = 0;
2123 		}
2124 
2125 		if(dev->mc_count == 0)
2126 			return;
2127 
2128 		/* Parse the list, and set the appropriate bits */
2129 		for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
2130 			if (idx < em_num) {
2131 				gfar_set_mac_for_addr(dev, idx,
2132 						mc_ptr->dmi_addr);
2133 				idx++;
2134 			} else
2135 				gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
2136 		}
2137 	}
2138 
2139 	return;
2140 }
2141 
2142 
2143 /* Clears each of the exact match registers to zero, so they
2144  * don't interfere with normal reception */
gfar_clear_exact_match(struct net_device * dev)2145 static void gfar_clear_exact_match(struct net_device *dev)
2146 {
2147 	int idx;
2148 	u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
2149 
2150 	for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
2151 		gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
2152 }
2153 
2154 /* Set the appropriate hash bit for the given addr */
2155 /* The algorithm works like so:
2156  * 1) Take the Destination Address (ie the multicast address), and
2157  * do a CRC on it (little endian), and reverse the bits of the
2158  * result.
2159  * 2) Use the 8 most significant bits as a hash into a 256-entry
2160  * table.  The table is controlled through 8 32-bit registers:
2161  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
2162  * gaddr7.  This means that the 3 most significant bits in the
2163  * hash index which gaddr register to use, and the 5 other bits
2164  * indicate which bit (assuming an IBM numbering scheme, which
2165  * for PowerPC (tm) is usually the case) in the register holds
2166  * the entry. */
gfar_set_hash_for_addr(struct net_device * dev,u8 * addr)2167 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
2168 {
2169 	u32 tempval;
2170 	struct gfar_private *priv = netdev_priv(dev);
2171 	u32 result = ether_crc(MAC_ADDR_LEN, addr);
2172 	int width = priv->hash_width;
2173 	u8 whichbit = (result >> (32 - width)) & 0x1f;
2174 	u8 whichreg = result >> (32 - width + 5);
2175 	u32 value = (1 << (31-whichbit));
2176 
2177 	tempval = gfar_read(priv->hash_regs[whichreg]);
2178 	tempval |= value;
2179 	gfar_write(priv->hash_regs[whichreg], tempval);
2180 
2181 	return;
2182 }
2183 
2184 
2185 /* There are multiple MAC Address register pairs on some controllers
2186  * This function sets the numth pair to a given address
2187  */
gfar_set_mac_for_addr(struct net_device * dev,int num,u8 * addr)2188 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
2189 {
2190 	struct gfar_private *priv = netdev_priv(dev);
2191 	int idx;
2192 	char tmpbuf[MAC_ADDR_LEN];
2193 	u32 tempval;
2194 	u32 __iomem *macptr = &priv->regs->macstnaddr1;
2195 
2196 	macptr += num*2;
2197 
2198 	/* Now copy it into the mac registers backwards, cuz */
2199 	/* little endian is silly */
2200 	for (idx = 0; idx < MAC_ADDR_LEN; idx++)
2201 		tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
2202 
2203 	gfar_write(macptr, *((u32 *) (tmpbuf)));
2204 
2205 	tempval = *((u32 *) (tmpbuf + 4));
2206 
2207 	gfar_write(macptr+1, tempval);
2208 }
2209 
2210 /* GFAR error interrupt handler */
gfar_error(int irq,void * dev_id)2211 static irqreturn_t gfar_error(int irq, void *dev_id)
2212 {
2213 	struct net_device *dev = dev_id;
2214 	struct gfar_private *priv = netdev_priv(dev);
2215 
2216 	/* Save ievent for future reference */
2217 	u32 events = gfar_read(&priv->regs->ievent);
2218 
2219 	/* Clear IEVENT */
2220 	gfar_write(&priv->regs->ievent, events & IEVENT_ERR_MASK);
2221 
2222 	/* Magic Packet is not an error. */
2223 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2224 	    (events & IEVENT_MAG))
2225 		events &= ~IEVENT_MAG;
2226 
2227 	/* Hmm... */
2228 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2229 		printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2230 		       dev->name, events, gfar_read(&priv->regs->imask));
2231 
2232 	/* Update the error counters */
2233 	if (events & IEVENT_TXE) {
2234 		dev->stats.tx_errors++;
2235 
2236 		if (events & IEVENT_LC)
2237 			dev->stats.tx_window_errors++;
2238 		if (events & IEVENT_CRL)
2239 			dev->stats.tx_aborted_errors++;
2240 		if (events & IEVENT_XFUN) {
2241 			if (netif_msg_tx_err(priv))
2242 				printk(KERN_DEBUG "%s: TX FIFO underrun, "
2243 				       "packet dropped.\n", dev->name);
2244 			dev->stats.tx_dropped++;
2245 			priv->extra_stats.tx_underrun++;
2246 
2247 			/* Reactivate the Tx Queues */
2248 			gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
2249 		}
2250 		if (netif_msg_tx_err(priv))
2251 			printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
2252 	}
2253 	if (events & IEVENT_BSY) {
2254 		dev->stats.rx_errors++;
2255 		priv->extra_stats.rx_bsy++;
2256 
2257 		gfar_receive(irq, dev_id);
2258 
2259 		if (netif_msg_rx_err(priv))
2260 			printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
2261 			       dev->name, gfar_read(&priv->regs->rstat));
2262 	}
2263 	if (events & IEVENT_BABR) {
2264 		dev->stats.rx_errors++;
2265 		priv->extra_stats.rx_babr++;
2266 
2267 		if (netif_msg_rx_err(priv))
2268 			printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
2269 	}
2270 	if (events & IEVENT_EBERR) {
2271 		priv->extra_stats.eberr++;
2272 		if (netif_msg_rx_err(priv))
2273 			printk(KERN_DEBUG "%s: bus error\n", dev->name);
2274 	}
2275 	if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
2276 		printk(KERN_DEBUG "%s: control frame\n", dev->name);
2277 
2278 	if (events & IEVENT_BABT) {
2279 		priv->extra_stats.tx_babt++;
2280 		if (netif_msg_tx_err(priv))
2281 			printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
2282 	}
2283 	return IRQ_HANDLED;
2284 }
2285 
2286 /* work with hotplug and coldplug */
2287 MODULE_ALIAS("platform:fsl-gianfar");
2288 
2289 static struct of_device_id gfar_match[] =
2290 {
2291 	{
2292 		.type = "network",
2293 		.compatible = "gianfar",
2294 	},
2295 	{},
2296 };
2297 
2298 /* Structure for a device driver */
2299 static struct of_platform_driver gfar_driver = {
2300 	.name = "fsl-gianfar",
2301 	.match_table = gfar_match,
2302 
2303 	.probe = gfar_probe,
2304 	.remove = gfar_remove,
2305 	.suspend = gfar_suspend,
2306 	.resume = gfar_resume,
2307 };
2308 
gfar_init(void)2309 static int __init gfar_init(void)
2310 {
2311 	int err = gfar_mdio_init();
2312 
2313 	if (err)
2314 		return err;
2315 
2316 	err = of_register_platform_driver(&gfar_driver);
2317 
2318 	if (err)
2319 		gfar_mdio_exit();
2320 
2321 	return err;
2322 }
2323 
gfar_exit(void)2324 static void __exit gfar_exit(void)
2325 {
2326 	of_unregister_platform_driver(&gfar_driver);
2327 	gfar_mdio_exit();
2328 }
2329 
2330 module_init(gfar_init);
2331 module_exit(gfar_exit);
2332 
2333