• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*P:800 Interrupts (traps) are complicated enough to earn their own file.
2  * There are three classes of interrupts:
3  *
4  * 1) Real hardware interrupts which occur while we're running the Guest,
5  * 2) Interrupts for virtual devices attached to the Guest, and
6  * 3) Traps and faults from the Guest.
7  *
8  * Real hardware interrupts must be delivered to the Host, not the Guest.
9  * Virtual interrupts must be delivered to the Guest, but we make them look
10  * just like real hardware would deliver them.  Traps from the Guest can be set
11  * up to go directly back into the Guest, but sometimes the Host wants to see
12  * them first, so we also have a way of "reflecting" them into the Guest as if
13  * they had been delivered to it directly. :*/
14 #include <linux/uaccess.h>
15 #include <linux/interrupt.h>
16 #include <linux/module.h>
17 #include "lg.h"
18 
19 /* Allow Guests to use a non-128 (ie. non-Linux) syscall trap. */
20 static unsigned int syscall_vector = SYSCALL_VECTOR;
21 module_param(syscall_vector, uint, 0444);
22 
23 /* The address of the interrupt handler is split into two bits: */
idt_address(u32 lo,u32 hi)24 static unsigned long idt_address(u32 lo, u32 hi)
25 {
26 	return (lo & 0x0000FFFF) | (hi & 0xFFFF0000);
27 }
28 
29 /* The "type" of the interrupt handler is a 4 bit field: we only support a
30  * couple of types. */
idt_type(u32 lo,u32 hi)31 static int idt_type(u32 lo, u32 hi)
32 {
33 	return (hi >> 8) & 0xF;
34 }
35 
36 /* An IDT entry can't be used unless the "present" bit is set. */
idt_present(u32 lo,u32 hi)37 static int idt_present(u32 lo, u32 hi)
38 {
39 	return (hi & 0x8000);
40 }
41 
42 /* We need a helper to "push" a value onto the Guest's stack, since that's a
43  * big part of what delivering an interrupt does. */
push_guest_stack(struct lg_cpu * cpu,unsigned long * gstack,u32 val)44 static void push_guest_stack(struct lg_cpu *cpu, unsigned long *gstack, u32 val)
45 {
46 	/* Stack grows upwards: move stack then write value. */
47 	*gstack -= 4;
48 	lgwrite(cpu, *gstack, u32, val);
49 }
50 
51 /*H:210 The set_guest_interrupt() routine actually delivers the interrupt or
52  * trap.  The mechanics of delivering traps and interrupts to the Guest are the
53  * same, except some traps have an "error code" which gets pushed onto the
54  * stack as well: the caller tells us if this is one.
55  *
56  * "lo" and "hi" are the two parts of the Interrupt Descriptor Table for this
57  * interrupt or trap.  It's split into two parts for traditional reasons: gcc
58  * on i386 used to be frightened by 64 bit numbers.
59  *
60  * We set up the stack just like the CPU does for a real interrupt, so it's
61  * identical for the Guest (and the standard "iret" instruction will undo
62  * it). */
set_guest_interrupt(struct lg_cpu * cpu,u32 lo,u32 hi,int has_err)63 static void set_guest_interrupt(struct lg_cpu *cpu, u32 lo, u32 hi, int has_err)
64 {
65 	unsigned long gstack, origstack;
66 	u32 eflags, ss, irq_enable;
67 	unsigned long virtstack;
68 
69 	/* There are two cases for interrupts: one where the Guest is already
70 	 * in the kernel, and a more complex one where the Guest is in
71 	 * userspace.  We check the privilege level to find out. */
72 	if ((cpu->regs->ss&0x3) != GUEST_PL) {
73 		/* The Guest told us their kernel stack with the SET_STACK
74 		 * hypercall: both the virtual address and the segment */
75 		virtstack = cpu->esp1;
76 		ss = cpu->ss1;
77 
78 		origstack = gstack = guest_pa(cpu, virtstack);
79 		/* We push the old stack segment and pointer onto the new
80 		 * stack: when the Guest does an "iret" back from the interrupt
81 		 * handler the CPU will notice they're dropping privilege
82 		 * levels and expect these here. */
83 		push_guest_stack(cpu, &gstack, cpu->regs->ss);
84 		push_guest_stack(cpu, &gstack, cpu->regs->esp);
85 	} else {
86 		/* We're staying on the same Guest (kernel) stack. */
87 		virtstack = cpu->regs->esp;
88 		ss = cpu->regs->ss;
89 
90 		origstack = gstack = guest_pa(cpu, virtstack);
91 	}
92 
93 	/* Remember that we never let the Guest actually disable interrupts, so
94 	 * the "Interrupt Flag" bit is always set.  We copy that bit from the
95 	 * Guest's "irq_enabled" field into the eflags word: we saw the Guest
96 	 * copy it back in "lguest_iret". */
97 	eflags = cpu->regs->eflags;
98 	if (get_user(irq_enable, &cpu->lg->lguest_data->irq_enabled) == 0
99 	    && !(irq_enable & X86_EFLAGS_IF))
100 		eflags &= ~X86_EFLAGS_IF;
101 
102 	/* An interrupt is expected to push three things on the stack: the old
103 	 * "eflags" word, the old code segment, and the old instruction
104 	 * pointer. */
105 	push_guest_stack(cpu, &gstack, eflags);
106 	push_guest_stack(cpu, &gstack, cpu->regs->cs);
107 	push_guest_stack(cpu, &gstack, cpu->regs->eip);
108 
109 	/* For the six traps which supply an error code, we push that, too. */
110 	if (has_err)
111 		push_guest_stack(cpu, &gstack, cpu->regs->errcode);
112 
113 	/* Now we've pushed all the old state, we change the stack, the code
114 	 * segment and the address to execute. */
115 	cpu->regs->ss = ss;
116 	cpu->regs->esp = virtstack + (gstack - origstack);
117 	cpu->regs->cs = (__KERNEL_CS|GUEST_PL);
118 	cpu->regs->eip = idt_address(lo, hi);
119 
120 	/* There are two kinds of interrupt handlers: 0xE is an "interrupt
121 	 * gate" which expects interrupts to be disabled on entry. */
122 	if (idt_type(lo, hi) == 0xE)
123 		if (put_user(0, &cpu->lg->lguest_data->irq_enabled))
124 			kill_guest(cpu, "Disabling interrupts");
125 }
126 
127 /*H:205
128  * Virtual Interrupts.
129  *
130  * maybe_do_interrupt() gets called before every entry to the Guest, to see if
131  * we should divert the Guest to running an interrupt handler. */
maybe_do_interrupt(struct lg_cpu * cpu)132 void maybe_do_interrupt(struct lg_cpu *cpu)
133 {
134 	unsigned int irq;
135 	DECLARE_BITMAP(blk, LGUEST_IRQS);
136 	struct desc_struct *idt;
137 
138 	/* If the Guest hasn't even initialized yet, we can do nothing. */
139 	if (!cpu->lg->lguest_data)
140 		return;
141 
142 	/* Take our "irqs_pending" array and remove any interrupts the Guest
143 	 * wants blocked: the result ends up in "blk". */
144 	if (copy_from_user(&blk, cpu->lg->lguest_data->blocked_interrupts,
145 			   sizeof(blk)))
146 		return;
147 	bitmap_andnot(blk, cpu->irqs_pending, blk, LGUEST_IRQS);
148 
149 	/* Find the first interrupt. */
150 	irq = find_first_bit(blk, LGUEST_IRQS);
151 	/* None?  Nothing to do */
152 	if (irq >= LGUEST_IRQS)
153 		return;
154 
155 	/* They may be in the middle of an iret, where they asked us never to
156 	 * deliver interrupts. */
157 	if (cpu->regs->eip >= cpu->lg->noirq_start &&
158 	   (cpu->regs->eip < cpu->lg->noirq_end))
159 		return;
160 
161 	/* If they're halted, interrupts restart them. */
162 	if (cpu->halted) {
163 		/* Re-enable interrupts. */
164 		if (put_user(X86_EFLAGS_IF, &cpu->lg->lguest_data->irq_enabled))
165 			kill_guest(cpu, "Re-enabling interrupts");
166 		cpu->halted = 0;
167 	} else {
168 		/* Otherwise we check if they have interrupts disabled. */
169 		u32 irq_enabled;
170 		if (get_user(irq_enabled, &cpu->lg->lguest_data->irq_enabled))
171 			irq_enabled = 0;
172 		if (!irq_enabled)
173 			return;
174 	}
175 
176 	/* Look at the IDT entry the Guest gave us for this interrupt.  The
177 	 * first 32 (FIRST_EXTERNAL_VECTOR) entries are for traps, so we skip
178 	 * over them. */
179 	idt = &cpu->arch.idt[FIRST_EXTERNAL_VECTOR+irq];
180 	/* If they don't have a handler (yet?), we just ignore it */
181 	if (idt_present(idt->a, idt->b)) {
182 		/* OK, mark it no longer pending and deliver it. */
183 		clear_bit(irq, cpu->irqs_pending);
184 		/* set_guest_interrupt() takes the interrupt descriptor and a
185 		 * flag to say whether this interrupt pushes an error code onto
186 		 * the stack as well: virtual interrupts never do. */
187 		set_guest_interrupt(cpu, idt->a, idt->b, 0);
188 	}
189 
190 	/* Every time we deliver an interrupt, we update the timestamp in the
191 	 * Guest's lguest_data struct.  It would be better for the Guest if we
192 	 * did this more often, but it can actually be quite slow: doing it
193 	 * here is a compromise which means at least it gets updated every
194 	 * timer interrupt. */
195 	write_timestamp(cpu);
196 }
197 /*:*/
198 
199 /* Linux uses trap 128 for system calls.  Plan9 uses 64, and Ron Minnich sent
200  * me a patch, so we support that too.  It'd be a big step for lguest if half
201  * the Plan 9 user base were to start using it.
202  *
203  * Actually now I think of it, it's possible that Ron *is* half the Plan 9
204  * userbase.  Oh well. */
could_be_syscall(unsigned int num)205 static bool could_be_syscall(unsigned int num)
206 {
207 	/* Normal Linux SYSCALL_VECTOR or reserved vector? */
208 	return num == SYSCALL_VECTOR || num == syscall_vector;
209 }
210 
211 /* The syscall vector it wants must be unused by Host. */
check_syscall_vector(struct lguest * lg)212 bool check_syscall_vector(struct lguest *lg)
213 {
214 	u32 vector;
215 
216 	if (get_user(vector, &lg->lguest_data->syscall_vec))
217 		return false;
218 
219 	return could_be_syscall(vector);
220 }
221 
init_interrupts(void)222 int init_interrupts(void)
223 {
224 	/* If they want some strange system call vector, reserve it now */
225 	if (syscall_vector != SYSCALL_VECTOR) {
226 		if (test_bit(syscall_vector, used_vectors) ||
227 		    vector_used_by_percpu_irq(syscall_vector)) {
228 			printk(KERN_ERR "lg: couldn't reserve syscall %u\n",
229 				 syscall_vector);
230 			return -EBUSY;
231 		}
232 		set_bit(syscall_vector, used_vectors);
233 	}
234 
235 	return 0;
236 }
237 
free_interrupts(void)238 void free_interrupts(void)
239 {
240 	if (syscall_vector != SYSCALL_VECTOR)
241 		clear_bit(syscall_vector, used_vectors);
242 }
243 
244 /*H:220 Now we've got the routines to deliver interrupts, delivering traps like
245  * page fault is easy.  The only trick is that Intel decided that some traps
246  * should have error codes: */
has_err(unsigned int trap)247 static int has_err(unsigned int trap)
248 {
249 	return (trap == 8 || (trap >= 10 && trap <= 14) || trap == 17);
250 }
251 
252 /* deliver_trap() returns true if it could deliver the trap. */
deliver_trap(struct lg_cpu * cpu,unsigned int num)253 int deliver_trap(struct lg_cpu *cpu, unsigned int num)
254 {
255 	/* Trap numbers are always 8 bit, but we set an impossible trap number
256 	 * for traps inside the Switcher, so check that here. */
257 	if (num >= ARRAY_SIZE(cpu->arch.idt))
258 		return 0;
259 
260 	/* Early on the Guest hasn't set the IDT entries (or maybe it put a
261 	 * bogus one in): if we fail here, the Guest will be killed. */
262 	if (!idt_present(cpu->arch.idt[num].a, cpu->arch.idt[num].b))
263 		return 0;
264 	set_guest_interrupt(cpu, cpu->arch.idt[num].a,
265 			    cpu->arch.idt[num].b, has_err(num));
266 	return 1;
267 }
268 
269 /*H:250 Here's the hard part: returning to the Host every time a trap happens
270  * and then calling deliver_trap() and re-entering the Guest is slow.
271  * Particularly because Guest userspace system calls are traps (usually trap
272  * 128).
273  *
274  * So we'd like to set up the IDT to tell the CPU to deliver traps directly
275  * into the Guest.  This is possible, but the complexities cause the size of
276  * this file to double!  However, 150 lines of code is worth writing for taking
277  * system calls down from 1750ns to 270ns.  Plus, if lguest didn't do it, all
278  * the other hypervisors would beat it up at lunchtime.
279  *
280  * This routine indicates if a particular trap number could be delivered
281  * directly. */
direct_trap(unsigned int num)282 static int direct_trap(unsigned int num)
283 {
284 	/* Hardware interrupts don't go to the Guest at all (except system
285 	 * call). */
286 	if (num >= FIRST_EXTERNAL_VECTOR && !could_be_syscall(num))
287 		return 0;
288 
289 	/* The Host needs to see page faults (for shadow paging and to save the
290 	 * fault address), general protection faults (in/out emulation) and
291 	 * device not available (TS handling), and of course, the hypercall
292 	 * trap. */
293 	return num != 14 && num != 13 && num != 7 && num != LGUEST_TRAP_ENTRY;
294 }
295 /*:*/
296 
297 /*M:005 The Guest has the ability to turn its interrupt gates into trap gates,
298  * if it is careful.  The Host will let trap gates can go directly to the
299  * Guest, but the Guest needs the interrupts atomically disabled for an
300  * interrupt gate.  It can do this by pointing the trap gate at instructions
301  * within noirq_start and noirq_end, where it can safely disable interrupts. */
302 
303 /*M:006 The Guests do not use the sysenter (fast system call) instruction,
304  * because it's hardcoded to enter privilege level 0 and so can't go direct.
305  * It's about twice as fast as the older "int 0x80" system call, so it might
306  * still be worthwhile to handle it in the Switcher and lcall down to the
307  * Guest.  The sysenter semantics are hairy tho: search for that keyword in
308  * entry.S :*/
309 
310 /*H:260 When we make traps go directly into the Guest, we need to make sure
311  * the kernel stack is valid (ie. mapped in the page tables).  Otherwise, the
312  * CPU trying to deliver the trap will fault while trying to push the interrupt
313  * words on the stack: this is called a double fault, and it forces us to kill
314  * the Guest.
315  *
316  * Which is deeply unfair, because (literally!) it wasn't the Guests' fault. */
pin_stack_pages(struct lg_cpu * cpu)317 void pin_stack_pages(struct lg_cpu *cpu)
318 {
319 	unsigned int i;
320 
321 	/* Depending on the CONFIG_4KSTACKS option, the Guest can have one or
322 	 * two pages of stack space. */
323 	for (i = 0; i < cpu->lg->stack_pages; i++)
324 		/* The stack grows *upwards*, so the address we're given is the
325 		 * start of the page after the kernel stack.  Subtract one to
326 		 * get back onto the first stack page, and keep subtracting to
327 		 * get to the rest of the stack pages. */
328 		pin_page(cpu, cpu->esp1 - 1 - i * PAGE_SIZE);
329 }
330 
331 /* Direct traps also mean that we need to know whenever the Guest wants to use
332  * a different kernel stack, so we can change the IDT entries to use that
333  * stack.  The IDT entries expect a virtual address, so unlike most addresses
334  * the Guest gives us, the "esp" (stack pointer) value here is virtual, not
335  * physical.
336  *
337  * In Linux each process has its own kernel stack, so this happens a lot: we
338  * change stacks on each context switch. */
guest_set_stack(struct lg_cpu * cpu,u32 seg,u32 esp,unsigned int pages)339 void guest_set_stack(struct lg_cpu *cpu, u32 seg, u32 esp, unsigned int pages)
340 {
341 	/* You are not allowed have a stack segment with privilege level 0: bad
342 	 * Guest! */
343 	if ((seg & 0x3) != GUEST_PL)
344 		kill_guest(cpu, "bad stack segment %i", seg);
345 	/* We only expect one or two stack pages. */
346 	if (pages > 2)
347 		kill_guest(cpu, "bad stack pages %u", pages);
348 	/* Save where the stack is, and how many pages */
349 	cpu->ss1 = seg;
350 	cpu->esp1 = esp;
351 	cpu->lg->stack_pages = pages;
352 	/* Make sure the new stack pages are mapped */
353 	pin_stack_pages(cpu);
354 }
355 
356 /* All this reference to mapping stacks leads us neatly into the other complex
357  * part of the Host: page table handling. */
358 
359 /*H:235 This is the routine which actually checks the Guest's IDT entry and
360  * transfers it into the entry in "struct lguest": */
set_trap(struct lg_cpu * cpu,struct desc_struct * trap,unsigned int num,u32 lo,u32 hi)361 static void set_trap(struct lg_cpu *cpu, struct desc_struct *trap,
362 		     unsigned int num, u32 lo, u32 hi)
363 {
364 	u8 type = idt_type(lo, hi);
365 
366 	/* We zero-out a not-present entry */
367 	if (!idt_present(lo, hi)) {
368 		trap->a = trap->b = 0;
369 		return;
370 	}
371 
372 	/* We only support interrupt and trap gates. */
373 	if (type != 0xE && type != 0xF)
374 		kill_guest(cpu, "bad IDT type %i", type);
375 
376 	/* We only copy the handler address, present bit, privilege level and
377 	 * type.  The privilege level controls where the trap can be triggered
378 	 * manually with an "int" instruction.  This is usually GUEST_PL,
379 	 * except for system calls which userspace can use. */
380 	trap->a = ((__KERNEL_CS|GUEST_PL)<<16) | (lo&0x0000FFFF);
381 	trap->b = (hi&0xFFFFEF00);
382 }
383 
384 /*H:230 While we're here, dealing with delivering traps and interrupts to the
385  * Guest, we might as well complete the picture: how the Guest tells us where
386  * it wants them to go.  This would be simple, except making traps fast
387  * requires some tricks.
388  *
389  * We saw the Guest setting Interrupt Descriptor Table (IDT) entries with the
390  * LHCALL_LOAD_IDT_ENTRY hypercall before: that comes here. */
load_guest_idt_entry(struct lg_cpu * cpu,unsigned int num,u32 lo,u32 hi)391 void load_guest_idt_entry(struct lg_cpu *cpu, unsigned int num, u32 lo, u32 hi)
392 {
393 	/* Guest never handles: NMI, doublefault, spurious interrupt or
394 	 * hypercall.  We ignore when it tries to set them. */
395 	if (num == 2 || num == 8 || num == 15 || num == LGUEST_TRAP_ENTRY)
396 		return;
397 
398 	/* Mark the IDT as changed: next time the Guest runs we'll know we have
399 	 * to copy this again. */
400 	cpu->changed |= CHANGED_IDT;
401 
402 	/* Check that the Guest doesn't try to step outside the bounds. */
403 	if (num >= ARRAY_SIZE(cpu->arch.idt))
404 		kill_guest(cpu, "Setting idt entry %u", num);
405 	else
406 		set_trap(cpu, &cpu->arch.idt[num], num, lo, hi);
407 }
408 
409 /* The default entry for each interrupt points into the Switcher routines which
410  * simply return to the Host.  The run_guest() loop will then call
411  * deliver_trap() to bounce it back into the Guest. */
default_idt_entry(struct desc_struct * idt,int trap,const unsigned long handler,const struct desc_struct * base)412 static void default_idt_entry(struct desc_struct *idt,
413 			      int trap,
414 			      const unsigned long handler,
415 			      const struct desc_struct *base)
416 {
417 	/* A present interrupt gate. */
418 	u32 flags = 0x8e00;
419 
420 	/* Set the privilege level on the entry for the hypercall: this allows
421 	 * the Guest to use the "int" instruction to trigger it. */
422 	if (trap == LGUEST_TRAP_ENTRY)
423 		flags |= (GUEST_PL << 13);
424 	else if (base)
425 		/* Copy priv. level from what Guest asked for.  This allows
426 		 * debug (int 3) traps from Guest userspace, for example. */
427 		flags |= (base->b & 0x6000);
428 
429 	/* Now pack it into the IDT entry in its weird format. */
430 	idt->a = (LGUEST_CS<<16) | (handler&0x0000FFFF);
431 	idt->b = (handler&0xFFFF0000) | flags;
432 }
433 
434 /* When the Guest first starts, we put default entries into the IDT. */
setup_default_idt_entries(struct lguest_ro_state * state,const unsigned long * def)435 void setup_default_idt_entries(struct lguest_ro_state *state,
436 			       const unsigned long *def)
437 {
438 	unsigned int i;
439 
440 	for (i = 0; i < ARRAY_SIZE(state->guest_idt); i++)
441 		default_idt_entry(&state->guest_idt[i], i, def[i], NULL);
442 }
443 
444 /*H:240 We don't use the IDT entries in the "struct lguest" directly, instead
445  * we copy them into the IDT which we've set up for Guests on this CPU, just
446  * before we run the Guest.  This routine does that copy. */
copy_traps(const struct lg_cpu * cpu,struct desc_struct * idt,const unsigned long * def)447 void copy_traps(const struct lg_cpu *cpu, struct desc_struct *idt,
448 		const unsigned long *def)
449 {
450 	unsigned int i;
451 
452 	/* We can simply copy the direct traps, otherwise we use the default
453 	 * ones in the Switcher: they will return to the Host. */
454 	for (i = 0; i < ARRAY_SIZE(cpu->arch.idt); i++) {
455 		const struct desc_struct *gidt = &cpu->arch.idt[i];
456 
457 		/* If no Guest can ever override this trap, leave it alone. */
458 		if (!direct_trap(i))
459 			continue;
460 
461 		/* Only trap gates (type 15) can go direct to the Guest.
462 		 * Interrupt gates (type 14) disable interrupts as they are
463 		 * entered, which we never let the Guest do.  Not present
464 		 * entries (type 0x0) also can't go direct, of course.
465 		 *
466 		 * If it can't go direct, we still need to copy the priv. level:
467 		 * they might want to give userspace access to a software
468 		 * interrupt. */
469 		if (idt_type(gidt->a, gidt->b) == 0xF)
470 			idt[i] = *gidt;
471 		else
472 			default_idt_entry(&idt[i], i, def[i], gidt);
473 	}
474 }
475 
476 /*H:200
477  * The Guest Clock.
478  *
479  * There are two sources of virtual interrupts.  We saw one in lguest_user.c:
480  * the Launcher sending interrupts for virtual devices.  The other is the Guest
481  * timer interrupt.
482  *
483  * The Guest uses the LHCALL_SET_CLOCKEVENT hypercall to tell us how long to
484  * the next timer interrupt (in nanoseconds).  We use the high-resolution timer
485  * infrastructure to set a callback at that time.
486  *
487  * 0 means "turn off the clock". */
guest_set_clockevent(struct lg_cpu * cpu,unsigned long delta)488 void guest_set_clockevent(struct lg_cpu *cpu, unsigned long delta)
489 {
490 	ktime_t expires;
491 
492 	if (unlikely(delta == 0)) {
493 		/* Clock event device is shutting down. */
494 		hrtimer_cancel(&cpu->hrt);
495 		return;
496 	}
497 
498 	/* We use wallclock time here, so the Guest might not be running for
499 	 * all the time between now and the timer interrupt it asked for.  This
500 	 * is almost always the right thing to do. */
501 	expires = ktime_add_ns(ktime_get_real(), delta);
502 	hrtimer_start(&cpu->hrt, expires, HRTIMER_MODE_ABS);
503 }
504 
505 /* This is the function called when the Guest's timer expires. */
clockdev_fn(struct hrtimer * timer)506 static enum hrtimer_restart clockdev_fn(struct hrtimer *timer)
507 {
508 	struct lg_cpu *cpu = container_of(timer, struct lg_cpu, hrt);
509 
510 	/* Remember the first interrupt is the timer interrupt. */
511 	set_bit(0, cpu->irqs_pending);
512 	/* If the Guest is actually stopped, we need to wake it up. */
513 	if (cpu->halted)
514 		wake_up_process(cpu->tsk);
515 	return HRTIMER_NORESTART;
516 }
517 
518 /* This sets up the timer for this Guest. */
init_clockdev(struct lg_cpu * cpu)519 void init_clockdev(struct lg_cpu *cpu)
520 {
521 	hrtimer_init(&cpu->hrt, CLOCK_REALTIME, HRTIMER_MODE_ABS);
522 	cpu->hrt.function = clockdev_fn;
523 }
524