• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2001 Troy D. Armstrong  IBM Corporation
3  * Copyright (C) 2004-2005 Stephen Rothwell  IBM Corporation
4  *
5  * This modules exists as an interface between a Linux secondary partition
6  * running on an iSeries and the primary partition's Virtual Service
7  * Processor (VSP) object.  The VSP has final authority over powering on/off
8  * all partitions in the iSeries.  It also provides miscellaneous low-level
9  * machine facility type operations.
10  *
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
25  */
26 
27 #include <linux/types.h>
28 #include <linux/errno.h>
29 #include <linux/kernel.h>
30 #include <linux/init.h>
31 #include <linux/completion.h>
32 #include <linux/delay.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/bcd.h>
35 #include <linux/rtc.h>
36 
37 #include <asm/time.h>
38 #include <asm/uaccess.h>
39 #include <asm/paca.h>
40 #include <asm/abs_addr.h>
41 #include <asm/firmware.h>
42 #include <asm/iseries/mf.h>
43 #include <asm/iseries/hv_lp_config.h>
44 #include <asm/iseries/hv_lp_event.h>
45 #include <asm/iseries/it_lp_queue.h>
46 
47 #include "setup.h"
48 
49 static int mf_initialized;
50 
51 /*
52  * This is the structure layout for the Machine Facilites LPAR event
53  * flows.
54  */
55 struct vsp_cmd_data {
56 	u64 token;
57 	u16 cmd;
58 	HvLpIndex lp_index;
59 	u8 result_code;
60 	u32 reserved;
61 	union {
62 		u64 state;	/* GetStateOut */
63 		u64 ipl_type;	/* GetIplTypeOut, Function02SelectIplTypeIn */
64 		u64 ipl_mode;	/* GetIplModeOut, Function02SelectIplModeIn */
65 		u64 page[4];	/* GetSrcHistoryIn */
66 		u64 flag;	/* GetAutoIplWhenPrimaryIplsOut,
67 				   SetAutoIplWhenPrimaryIplsIn,
68 				   WhiteButtonPowerOffIn,
69 				   Function08FastPowerOffIn,
70 				   IsSpcnRackPowerIncompleteOut */
71 		struct {
72 			u64 token;
73 			u64 address_type;
74 			u64 side;
75 			u32 length;
76 			u32 offset;
77 		} kern;		/* SetKernelImageIn, GetKernelImageIn,
78 				   SetKernelCmdLineIn, GetKernelCmdLineIn */
79 		u32 length_out;	/* GetKernelImageOut, GetKernelCmdLineOut */
80 		u8 reserved[80];
81 	} sub_data;
82 };
83 
84 struct vsp_rsp_data {
85 	struct completion com;
86 	struct vsp_cmd_data *response;
87 };
88 
89 struct alloc_data {
90 	u16 size;
91 	u16 type;
92 	u32 count;
93 	u16 reserved1;
94 	u8 reserved2;
95 	HvLpIndex target_lp;
96 };
97 
98 struct ce_msg_data;
99 
100 typedef void (*ce_msg_comp_hdlr)(void *token, struct ce_msg_data *vsp_cmd_rsp);
101 
102 struct ce_msg_comp_data {
103 	ce_msg_comp_hdlr handler;
104 	void *token;
105 };
106 
107 struct ce_msg_data {
108 	u8 ce_msg[12];
109 	char reserved[4];
110 	struct ce_msg_comp_data *completion;
111 };
112 
113 struct io_mf_lp_event {
114 	struct HvLpEvent hp_lp_event;
115 	u16 subtype_result_code;
116 	u16 reserved1;
117 	u32 reserved2;
118 	union {
119 		struct alloc_data alloc;
120 		struct ce_msg_data ce_msg;
121 		struct vsp_cmd_data vsp_cmd;
122 	} data;
123 };
124 
125 #define subtype_data(a, b, c, d)	\
126 		(((a) << 24) + ((b) << 16) + ((c) << 8) + (d))
127 
128 /*
129  * All outgoing event traffic is kept on a FIFO queue.  The first
130  * pointer points to the one that is outstanding, and all new
131  * requests get stuck on the end.  Also, we keep a certain number of
132  * preallocated pending events so that we can operate very early in
133  * the boot up sequence (before kmalloc is ready).
134  */
135 struct pending_event {
136 	struct pending_event *next;
137 	struct io_mf_lp_event event;
138 	MFCompleteHandler hdlr;
139 	char dma_data[72];
140 	unsigned dma_data_length;
141 	unsigned remote_address;
142 };
143 static spinlock_t pending_event_spinlock;
144 static struct pending_event *pending_event_head;
145 static struct pending_event *pending_event_tail;
146 static struct pending_event *pending_event_avail;
147 #define PENDING_EVENT_PREALLOC_LEN 16
148 static struct pending_event pending_event_prealloc[PENDING_EVENT_PREALLOC_LEN];
149 
150 /*
151  * Put a pending event onto the available queue, so it can get reused.
152  * Attention! You must have the pending_event_spinlock before calling!
153  */
free_pending_event(struct pending_event * ev)154 static void free_pending_event(struct pending_event *ev)
155 {
156 	if (ev != NULL) {
157 		ev->next = pending_event_avail;
158 		pending_event_avail = ev;
159 	}
160 }
161 
162 /*
163  * Enqueue the outbound event onto the stack.  If the queue was
164  * empty to begin with, we must also issue it via the Hypervisor
165  * interface.  There is a section of code below that will touch
166  * the first stack pointer without the protection of the pending_event_spinlock.
167  * This is OK, because we know that nobody else will be modifying
168  * the first pointer when we do this.
169  */
signal_event(struct pending_event * ev)170 static int signal_event(struct pending_event *ev)
171 {
172 	int rc = 0;
173 	unsigned long flags;
174 	int go = 1;
175 	struct pending_event *ev1;
176 	HvLpEvent_Rc hv_rc;
177 
178 	/* enqueue the event */
179 	if (ev != NULL) {
180 		ev->next = NULL;
181 		spin_lock_irqsave(&pending_event_spinlock, flags);
182 		if (pending_event_head == NULL)
183 			pending_event_head = ev;
184 		else {
185 			go = 0;
186 			pending_event_tail->next = ev;
187 		}
188 		pending_event_tail = ev;
189 		spin_unlock_irqrestore(&pending_event_spinlock, flags);
190 	}
191 
192 	/* send the event */
193 	while (go) {
194 		go = 0;
195 
196 		/* any DMA data to send beforehand? */
197 		if (pending_event_head->dma_data_length > 0)
198 			HvCallEvent_dmaToSp(pending_event_head->dma_data,
199 					pending_event_head->remote_address,
200 					pending_event_head->dma_data_length,
201 					HvLpDma_Direction_LocalToRemote);
202 
203 		hv_rc = HvCallEvent_signalLpEvent(
204 				&pending_event_head->event.hp_lp_event);
205 		if (hv_rc != HvLpEvent_Rc_Good) {
206 			printk(KERN_ERR "mf.c: HvCallEvent_signalLpEvent() "
207 					"failed with %d\n", (int)hv_rc);
208 
209 			spin_lock_irqsave(&pending_event_spinlock, flags);
210 			ev1 = pending_event_head;
211 			pending_event_head = pending_event_head->next;
212 			if (pending_event_head != NULL)
213 				go = 1;
214 			spin_unlock_irqrestore(&pending_event_spinlock, flags);
215 
216 			if (ev1 == ev)
217 				rc = -EIO;
218 			else if (ev1->hdlr != NULL)
219 				(*ev1->hdlr)((void *)ev1->event.hp_lp_event.xCorrelationToken, -EIO);
220 
221 			spin_lock_irqsave(&pending_event_spinlock, flags);
222 			free_pending_event(ev1);
223 			spin_unlock_irqrestore(&pending_event_spinlock, flags);
224 		}
225 	}
226 
227 	return rc;
228 }
229 
230 /*
231  * Allocate a new pending_event structure, and initialize it.
232  */
new_pending_event(void)233 static struct pending_event *new_pending_event(void)
234 {
235 	struct pending_event *ev = NULL;
236 	HvLpIndex primary_lp = HvLpConfig_getPrimaryLpIndex();
237 	unsigned long flags;
238 	struct HvLpEvent *hev;
239 
240 	spin_lock_irqsave(&pending_event_spinlock, flags);
241 	if (pending_event_avail != NULL) {
242 		ev = pending_event_avail;
243 		pending_event_avail = pending_event_avail->next;
244 	}
245 	spin_unlock_irqrestore(&pending_event_spinlock, flags);
246 	if (ev == NULL) {
247 		ev = kmalloc(sizeof(struct pending_event), GFP_ATOMIC);
248 		if (ev == NULL) {
249 			printk(KERN_ERR "mf.c: unable to kmalloc %ld bytes\n",
250 					sizeof(struct pending_event));
251 			return NULL;
252 		}
253 	}
254 	memset(ev, 0, sizeof(struct pending_event));
255 	hev = &ev->event.hp_lp_event;
256 	hev->flags = HV_LP_EVENT_VALID | HV_LP_EVENT_DO_ACK | HV_LP_EVENT_INT;
257 	hev->xType = HvLpEvent_Type_MachineFac;
258 	hev->xSourceLp = HvLpConfig_getLpIndex();
259 	hev->xTargetLp = primary_lp;
260 	hev->xSizeMinus1 = sizeof(ev->event) - 1;
261 	hev->xRc = HvLpEvent_Rc_Good;
262 	hev->xSourceInstanceId = HvCallEvent_getSourceLpInstanceId(primary_lp,
263 			HvLpEvent_Type_MachineFac);
264 	hev->xTargetInstanceId = HvCallEvent_getTargetLpInstanceId(primary_lp,
265 			HvLpEvent_Type_MachineFac);
266 
267 	return ev;
268 }
269 
signal_vsp_instruction(struct vsp_cmd_data * vsp_cmd)270 static int signal_vsp_instruction(struct vsp_cmd_data *vsp_cmd)
271 {
272 	struct pending_event *ev = new_pending_event();
273 	int rc;
274 	struct vsp_rsp_data response;
275 
276 	if (ev == NULL)
277 		return -ENOMEM;
278 
279 	init_completion(&response.com);
280 	response.response = vsp_cmd;
281 	ev->event.hp_lp_event.xSubtype = 6;
282 	ev->event.hp_lp_event.x.xSubtypeData =
283 		subtype_data('M', 'F',  'V',  'I');
284 	ev->event.data.vsp_cmd.token = (u64)&response;
285 	ev->event.data.vsp_cmd.cmd = vsp_cmd->cmd;
286 	ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex();
287 	ev->event.data.vsp_cmd.result_code = 0xFF;
288 	ev->event.data.vsp_cmd.reserved = 0;
289 	memcpy(&(ev->event.data.vsp_cmd.sub_data),
290 			&(vsp_cmd->sub_data), sizeof(vsp_cmd->sub_data));
291 	mb();
292 
293 	rc = signal_event(ev);
294 	if (rc == 0)
295 		wait_for_completion(&response.com);
296 	return rc;
297 }
298 
299 
300 /*
301  * Send a 12-byte CE message to the primary partition VSP object
302  */
signal_ce_msg(char * ce_msg,struct ce_msg_comp_data * completion)303 static int signal_ce_msg(char *ce_msg, struct ce_msg_comp_data *completion)
304 {
305 	struct pending_event *ev = new_pending_event();
306 
307 	if (ev == NULL)
308 		return -ENOMEM;
309 
310 	ev->event.hp_lp_event.xSubtype = 0;
311 	ev->event.hp_lp_event.x.xSubtypeData =
312 		subtype_data('M',  'F',  'C',  'E');
313 	memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
314 	ev->event.data.ce_msg.completion = completion;
315 	return signal_event(ev);
316 }
317 
318 /*
319  * Send a 12-byte CE message (with no data) to the primary partition VSP object
320  */
signal_ce_msg_simple(u8 ce_op,struct ce_msg_comp_data * completion)321 static int signal_ce_msg_simple(u8 ce_op, struct ce_msg_comp_data *completion)
322 {
323 	u8 ce_msg[12];
324 
325 	memset(ce_msg, 0, sizeof(ce_msg));
326 	ce_msg[3] = ce_op;
327 	return signal_ce_msg(ce_msg, completion);
328 }
329 
330 /*
331  * Send a 12-byte CE message and DMA data to the primary partition VSP object
332  */
dma_and_signal_ce_msg(char * ce_msg,struct ce_msg_comp_data * completion,void * dma_data,unsigned dma_data_length,unsigned remote_address)333 static int dma_and_signal_ce_msg(char *ce_msg,
334 		struct ce_msg_comp_data *completion, void *dma_data,
335 		unsigned dma_data_length, unsigned remote_address)
336 {
337 	struct pending_event *ev = new_pending_event();
338 
339 	if (ev == NULL)
340 		return -ENOMEM;
341 
342 	ev->event.hp_lp_event.xSubtype = 0;
343 	ev->event.hp_lp_event.x.xSubtypeData =
344 		subtype_data('M', 'F', 'C', 'E');
345 	memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
346 	ev->event.data.ce_msg.completion = completion;
347 	memcpy(ev->dma_data, dma_data, dma_data_length);
348 	ev->dma_data_length = dma_data_length;
349 	ev->remote_address = remote_address;
350 	return signal_event(ev);
351 }
352 
353 /*
354  * Initiate a nice (hopefully) shutdown of Linux.  We simply are
355  * going to try and send the init process a SIGINT signal.  If
356  * this fails (why?), we'll simply force it off in a not-so-nice
357  * manner.
358  */
shutdown(void)359 static int shutdown(void)
360 {
361 	int rc = kill_cad_pid(SIGINT, 1);
362 
363 	if (rc) {
364 		printk(KERN_ALERT "mf.c: SIGINT to init failed (%d), "
365 				"hard shutdown commencing\n", rc);
366 		mf_power_off();
367 	} else
368 		printk(KERN_INFO "mf.c: init has been successfully notified "
369 				"to proceed with shutdown\n");
370 	return rc;
371 }
372 
373 /*
374  * The primary partition VSP object is sending us a new
375  * event flow.  Handle it...
376  */
handle_int(struct io_mf_lp_event * event)377 static void handle_int(struct io_mf_lp_event *event)
378 {
379 	struct ce_msg_data *ce_msg_data;
380 	struct ce_msg_data *pce_msg_data;
381 	unsigned long flags;
382 	struct pending_event *pev;
383 
384 	/* ack the interrupt */
385 	event->hp_lp_event.xRc = HvLpEvent_Rc_Good;
386 	HvCallEvent_ackLpEvent(&event->hp_lp_event);
387 
388 	/* process interrupt */
389 	switch (event->hp_lp_event.xSubtype) {
390 	case 0:	/* CE message */
391 		ce_msg_data = &event->data.ce_msg;
392 		switch (ce_msg_data->ce_msg[3]) {
393 		case 0x5B:	/* power control notification */
394 			if ((ce_msg_data->ce_msg[5] & 0x20) != 0) {
395 				printk(KERN_INFO "mf.c: Commencing partition shutdown\n");
396 				if (shutdown() == 0)
397 					signal_ce_msg_simple(0xDB, NULL);
398 			}
399 			break;
400 		case 0xC0:	/* get time */
401 			spin_lock_irqsave(&pending_event_spinlock, flags);
402 			pev = pending_event_head;
403 			if (pev != NULL)
404 				pending_event_head = pending_event_head->next;
405 			spin_unlock_irqrestore(&pending_event_spinlock, flags);
406 			if (pev == NULL)
407 				break;
408 			pce_msg_data = &pev->event.data.ce_msg;
409 			if (pce_msg_data->ce_msg[3] != 0x40)
410 				break;
411 			if (pce_msg_data->completion != NULL) {
412 				ce_msg_comp_hdlr handler =
413 					pce_msg_data->completion->handler;
414 				void *token = pce_msg_data->completion->token;
415 
416 				if (handler != NULL)
417 					(*handler)(token, ce_msg_data);
418 			}
419 			spin_lock_irqsave(&pending_event_spinlock, flags);
420 			free_pending_event(pev);
421 			spin_unlock_irqrestore(&pending_event_spinlock, flags);
422 			/* send next waiting event */
423 			if (pending_event_head != NULL)
424 				signal_event(NULL);
425 			break;
426 		}
427 		break;
428 	case 1:	/* IT sys shutdown */
429 		printk(KERN_INFO "mf.c: Commencing system shutdown\n");
430 		shutdown();
431 		break;
432 	}
433 }
434 
435 /*
436  * The primary partition VSP object is acknowledging the receipt
437  * of a flow we sent to them.  If there are other flows queued
438  * up, we must send another one now...
439  */
handle_ack(struct io_mf_lp_event * event)440 static void handle_ack(struct io_mf_lp_event *event)
441 {
442 	unsigned long flags;
443 	struct pending_event *two = NULL;
444 	unsigned long free_it = 0;
445 	struct ce_msg_data *ce_msg_data;
446 	struct ce_msg_data *pce_msg_data;
447 	struct vsp_rsp_data *rsp;
448 
449 	/* handle current event */
450 	if (pending_event_head == NULL) {
451 		printk(KERN_ERR "mf.c: stack empty for receiving ack\n");
452 		return;
453 	}
454 
455 	switch (event->hp_lp_event.xSubtype) {
456 	case 0:     /* CE msg */
457 		ce_msg_data = &event->data.ce_msg;
458 		if (ce_msg_data->ce_msg[3] != 0x40) {
459 			free_it = 1;
460 			break;
461 		}
462 		if (ce_msg_data->ce_msg[2] == 0)
463 			break;
464 		free_it = 1;
465 		pce_msg_data = &pending_event_head->event.data.ce_msg;
466 		if (pce_msg_data->completion != NULL) {
467 			ce_msg_comp_hdlr handler =
468 				pce_msg_data->completion->handler;
469 			void *token = pce_msg_data->completion->token;
470 
471 			if (handler != NULL)
472 				(*handler)(token, ce_msg_data);
473 		}
474 		break;
475 	case 4:	/* allocate */
476 	case 5:	/* deallocate */
477 		if (pending_event_head->hdlr != NULL)
478 			(*pending_event_head->hdlr)((void *)event->hp_lp_event.xCorrelationToken, event->data.alloc.count);
479 		free_it = 1;
480 		break;
481 	case 6:
482 		free_it = 1;
483 		rsp = (struct vsp_rsp_data *)event->data.vsp_cmd.token;
484 		if (rsp == NULL) {
485 			printk(KERN_ERR "mf.c: no rsp\n");
486 			break;
487 		}
488 		if (rsp->response != NULL)
489 			memcpy(rsp->response, &event->data.vsp_cmd,
490 					sizeof(event->data.vsp_cmd));
491 		complete(&rsp->com);
492 		break;
493 	}
494 
495 	/* remove from queue */
496 	spin_lock_irqsave(&pending_event_spinlock, flags);
497 	if ((pending_event_head != NULL) && (free_it == 1)) {
498 		struct pending_event *oldHead = pending_event_head;
499 
500 		pending_event_head = pending_event_head->next;
501 		two = pending_event_head;
502 		free_pending_event(oldHead);
503 	}
504 	spin_unlock_irqrestore(&pending_event_spinlock, flags);
505 
506 	/* send next waiting event */
507 	if (two != NULL)
508 		signal_event(NULL);
509 }
510 
511 /*
512  * This is the generic event handler we are registering with
513  * the Hypervisor.  Ensure the flows are for us, and then
514  * parse it enough to know if it is an interrupt or an
515  * acknowledge.
516  */
hv_handler(struct HvLpEvent * event)517 static void hv_handler(struct HvLpEvent *event)
518 {
519 	if ((event != NULL) && (event->xType == HvLpEvent_Type_MachineFac)) {
520 		if (hvlpevent_is_ack(event))
521 			handle_ack((struct io_mf_lp_event *)event);
522 		else
523 			handle_int((struct io_mf_lp_event *)event);
524 	} else
525 		printk(KERN_ERR "mf.c: alien event received\n");
526 }
527 
528 /*
529  * Global kernel interface to allocate and seed events into the
530  * Hypervisor.
531  */
mf_allocate_lp_events(HvLpIndex target_lp,HvLpEvent_Type type,unsigned size,unsigned count,MFCompleteHandler hdlr,void * user_token)532 void mf_allocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type,
533 		unsigned size, unsigned count, MFCompleteHandler hdlr,
534 		void *user_token)
535 {
536 	struct pending_event *ev = new_pending_event();
537 	int rc;
538 
539 	if (ev == NULL) {
540 		rc = -ENOMEM;
541 	} else {
542 		ev->event.hp_lp_event.xSubtype = 4;
543 		ev->event.hp_lp_event.xCorrelationToken = (u64)user_token;
544 		ev->event.hp_lp_event.x.xSubtypeData =
545 			subtype_data('M', 'F', 'M', 'A');
546 		ev->event.data.alloc.target_lp = target_lp;
547 		ev->event.data.alloc.type = type;
548 		ev->event.data.alloc.size = size;
549 		ev->event.data.alloc.count = count;
550 		ev->hdlr = hdlr;
551 		rc = signal_event(ev);
552 	}
553 	if ((rc != 0) && (hdlr != NULL))
554 		(*hdlr)(user_token, rc);
555 }
556 EXPORT_SYMBOL(mf_allocate_lp_events);
557 
558 /*
559  * Global kernel interface to unseed and deallocate events already in
560  * Hypervisor.
561  */
mf_deallocate_lp_events(HvLpIndex target_lp,HvLpEvent_Type type,unsigned count,MFCompleteHandler hdlr,void * user_token)562 void mf_deallocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type,
563 		unsigned count, MFCompleteHandler hdlr, void *user_token)
564 {
565 	struct pending_event *ev = new_pending_event();
566 	int rc;
567 
568 	if (ev == NULL)
569 		rc = -ENOMEM;
570 	else {
571 		ev->event.hp_lp_event.xSubtype = 5;
572 		ev->event.hp_lp_event.xCorrelationToken = (u64)user_token;
573 		ev->event.hp_lp_event.x.xSubtypeData =
574 			subtype_data('M', 'F', 'M', 'D');
575 		ev->event.data.alloc.target_lp = target_lp;
576 		ev->event.data.alloc.type = type;
577 		ev->event.data.alloc.count = count;
578 		ev->hdlr = hdlr;
579 		rc = signal_event(ev);
580 	}
581 	if ((rc != 0) && (hdlr != NULL))
582 		(*hdlr)(user_token, rc);
583 }
584 EXPORT_SYMBOL(mf_deallocate_lp_events);
585 
586 /*
587  * Global kernel interface to tell the VSP object in the primary
588  * partition to power this partition off.
589  */
mf_power_off(void)590 void mf_power_off(void)
591 {
592 	printk(KERN_INFO "mf.c: Down it goes...\n");
593 	signal_ce_msg_simple(0x4d, NULL);
594 	for (;;)
595 		;
596 }
597 
598 /*
599  * Global kernel interface to tell the VSP object in the primary
600  * partition to reboot this partition.
601  */
mf_reboot(char * cmd)602 void mf_reboot(char *cmd)
603 {
604 	printk(KERN_INFO "mf.c: Preparing to bounce...\n");
605 	signal_ce_msg_simple(0x4e, NULL);
606 	for (;;)
607 		;
608 }
609 
610 /*
611  * Display a single word SRC onto the VSP control panel.
612  */
mf_display_src(u32 word)613 void mf_display_src(u32 word)
614 {
615 	u8 ce[12];
616 
617 	memset(ce, 0, sizeof(ce));
618 	ce[3] = 0x4a;
619 	ce[7] = 0x01;
620 	ce[8] = word >> 24;
621 	ce[9] = word >> 16;
622 	ce[10] = word >> 8;
623 	ce[11] = word;
624 	signal_ce_msg(ce, NULL);
625 }
626 
627 /*
628  * Display a single word SRC of the form "PROGXXXX" on the VSP control panel.
629  */
mf_display_progress_src(u16 value)630 static __init void mf_display_progress_src(u16 value)
631 {
632 	u8 ce[12];
633 	u8 src[72];
634 
635 	memcpy(ce, "\x00\x00\x04\x4A\x00\x00\x00\x48\x00\x00\x00\x00", 12);
636 	memcpy(src, "\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00"
637 		"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
638 		"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
639 		"\x00\x00\x00\x00PROGxxxx                        ",
640 		72);
641 	src[6] = value >> 8;
642 	src[7] = value & 255;
643 	src[44] = "0123456789ABCDEF"[(value >> 12) & 15];
644 	src[45] = "0123456789ABCDEF"[(value >> 8) & 15];
645 	src[46] = "0123456789ABCDEF"[(value >> 4) & 15];
646 	src[47] = "0123456789ABCDEF"[value & 15];
647 	dma_and_signal_ce_msg(ce, NULL, src, sizeof(src), 9 * 64 * 1024);
648 }
649 
650 /*
651  * Clear the VSP control panel.  Used to "erase" an SRC that was
652  * previously displayed.
653  */
mf_clear_src(void)654 static void mf_clear_src(void)
655 {
656 	signal_ce_msg_simple(0x4b, NULL);
657 }
658 
mf_display_progress(u16 value)659 void __init mf_display_progress(u16 value)
660 {
661 	if (!mf_initialized)
662 		return;
663 
664 	if (0xFFFF == value)
665 		mf_clear_src();
666 	else
667 		mf_display_progress_src(value);
668 }
669 
670 /*
671  * Initialization code here.
672  */
mf_init(void)673 void __init mf_init(void)
674 {
675 	int i;
676 
677 	spin_lock_init(&pending_event_spinlock);
678 
679 	for (i = 0; i < PENDING_EVENT_PREALLOC_LEN; i++)
680 		free_pending_event(&pending_event_prealloc[i]);
681 
682 	HvLpEvent_registerHandler(HvLpEvent_Type_MachineFac, &hv_handler);
683 
684 	/* virtual continue ack */
685 	signal_ce_msg_simple(0x57, NULL);
686 
687 	mf_initialized = 1;
688 	mb();
689 
690 	printk(KERN_NOTICE "mf.c: iSeries Linux LPAR Machine Facilities "
691 			"initialized\n");
692 }
693 
694 struct rtc_time_data {
695 	struct completion com;
696 	struct ce_msg_data ce_msg;
697 	int rc;
698 };
699 
get_rtc_time_complete(void * token,struct ce_msg_data * ce_msg)700 static void get_rtc_time_complete(void *token, struct ce_msg_data *ce_msg)
701 {
702 	struct rtc_time_data *rtc = token;
703 
704 	memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg));
705 	rtc->rc = 0;
706 	complete(&rtc->com);
707 }
708 
mf_set_rtc(struct rtc_time * tm)709 static int mf_set_rtc(struct rtc_time *tm)
710 {
711 	char ce_time[12];
712 	u8 day, mon, hour, min, sec, y1, y2;
713 	unsigned year;
714 
715 	year = 1900 + tm->tm_year;
716 	y1 = year / 100;
717 	y2 = year % 100;
718 
719 	sec = tm->tm_sec;
720 	min = tm->tm_min;
721 	hour = tm->tm_hour;
722 	day = tm->tm_mday;
723 	mon = tm->tm_mon + 1;
724 
725 	sec = bin2bcd(sec);
726 	min = bin2bcd(min);
727 	hour = bin2bcd(hour);
728 	mon = bin2bcd(mon);
729 	day = bin2bcd(day);
730 	y1 = bin2bcd(y1);
731 	y2 = bin2bcd(y2);
732 
733 	memset(ce_time, 0, sizeof(ce_time));
734 	ce_time[3] = 0x41;
735 	ce_time[4] = y1;
736 	ce_time[5] = y2;
737 	ce_time[6] = sec;
738 	ce_time[7] = min;
739 	ce_time[8] = hour;
740 	ce_time[10] = day;
741 	ce_time[11] = mon;
742 
743 	return signal_ce_msg(ce_time, NULL);
744 }
745 
rtc_set_tm(int rc,u8 * ce_msg,struct rtc_time * tm)746 static int rtc_set_tm(int rc, u8 *ce_msg, struct rtc_time *tm)
747 {
748 	tm->tm_wday = 0;
749 	tm->tm_yday = 0;
750 	tm->tm_isdst = 0;
751 	if (rc) {
752 		tm->tm_sec = 0;
753 		tm->tm_min = 0;
754 		tm->tm_hour = 0;
755 		tm->tm_mday = 15;
756 		tm->tm_mon = 5;
757 		tm->tm_year = 52;
758 		return rc;
759 	}
760 
761 	if ((ce_msg[2] == 0xa9) ||
762 	    (ce_msg[2] == 0xaf)) {
763 		/* TOD clock is not set */
764 		tm->tm_sec = 1;
765 		tm->tm_min = 1;
766 		tm->tm_hour = 1;
767 		tm->tm_mday = 10;
768 		tm->tm_mon = 8;
769 		tm->tm_year = 71;
770 		mf_set_rtc(tm);
771 	}
772 	{
773 		u8 year = ce_msg[5];
774 		u8 sec = ce_msg[6];
775 		u8 min = ce_msg[7];
776 		u8 hour = ce_msg[8];
777 		u8 day = ce_msg[10];
778 		u8 mon = ce_msg[11];
779 
780 		sec = bcd2bin(sec);
781 		min = bcd2bin(min);
782 		hour = bcd2bin(hour);
783 		day = bcd2bin(day);
784 		mon = bcd2bin(mon);
785 		year = bcd2bin(year);
786 
787 		if (year <= 69)
788 			year += 100;
789 
790 		tm->tm_sec = sec;
791 		tm->tm_min = min;
792 		tm->tm_hour = hour;
793 		tm->tm_mday = day;
794 		tm->tm_mon = mon;
795 		tm->tm_year = year;
796 	}
797 
798 	return 0;
799 }
800 
mf_get_rtc(struct rtc_time * tm)801 static int mf_get_rtc(struct rtc_time *tm)
802 {
803 	struct ce_msg_comp_data ce_complete;
804 	struct rtc_time_data rtc_data;
805 	int rc;
806 
807 	memset(&ce_complete, 0, sizeof(ce_complete));
808 	memset(&rtc_data, 0, sizeof(rtc_data));
809 	init_completion(&rtc_data.com);
810 	ce_complete.handler = &get_rtc_time_complete;
811 	ce_complete.token = &rtc_data;
812 	rc = signal_ce_msg_simple(0x40, &ce_complete);
813 	if (rc)
814 		return rc;
815 	wait_for_completion(&rtc_data.com);
816 	return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm);
817 }
818 
819 struct boot_rtc_time_data {
820 	int busy;
821 	struct ce_msg_data ce_msg;
822 	int rc;
823 };
824 
get_boot_rtc_time_complete(void * token,struct ce_msg_data * ce_msg)825 static void get_boot_rtc_time_complete(void *token, struct ce_msg_data *ce_msg)
826 {
827 	struct boot_rtc_time_data *rtc = token;
828 
829 	memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg));
830 	rtc->rc = 0;
831 	rtc->busy = 0;
832 }
833 
mf_get_boot_rtc(struct rtc_time * tm)834 static int mf_get_boot_rtc(struct rtc_time *tm)
835 {
836 	struct ce_msg_comp_data ce_complete;
837 	struct boot_rtc_time_data rtc_data;
838 	int rc;
839 
840 	memset(&ce_complete, 0, sizeof(ce_complete));
841 	memset(&rtc_data, 0, sizeof(rtc_data));
842 	rtc_data.busy = 1;
843 	ce_complete.handler = &get_boot_rtc_time_complete;
844 	ce_complete.token = &rtc_data;
845 	rc = signal_ce_msg_simple(0x40, &ce_complete);
846 	if (rc)
847 		return rc;
848 	/* We need to poll here as we are not yet taking interrupts */
849 	while (rtc_data.busy) {
850 		if (hvlpevent_is_pending())
851 			process_hvlpevents();
852 	}
853 	return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm);
854 }
855 
856 #ifdef CONFIG_PROC_FS
857 
proc_mf_dump_cmdline(char * page,char ** start,off_t off,int count,int * eof,void * data)858 static int proc_mf_dump_cmdline(char *page, char **start, off_t off,
859 		int count, int *eof, void *data)
860 {
861 	int len;
862 	char *p;
863 	struct vsp_cmd_data vsp_cmd;
864 	int rc;
865 	dma_addr_t dma_addr;
866 
867 	/* The HV appears to return no more than 256 bytes of command line */
868 	if (off >= 256)
869 		return 0;
870 	if ((off + count) > 256)
871 		count = 256 - off;
872 
873 	dma_addr = iseries_hv_map(page, off + count, DMA_FROM_DEVICE);
874 	if (dma_mapping_error(NULL, dma_addr))
875 		return -ENOMEM;
876 	memset(page, 0, off + count);
877 	memset(&vsp_cmd, 0, sizeof(vsp_cmd));
878 	vsp_cmd.cmd = 33;
879 	vsp_cmd.sub_data.kern.token = dma_addr;
880 	vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
881 	vsp_cmd.sub_data.kern.side = (u64)data;
882 	vsp_cmd.sub_data.kern.length = off + count;
883 	mb();
884 	rc = signal_vsp_instruction(&vsp_cmd);
885 	iseries_hv_unmap(dma_addr, off + count, DMA_FROM_DEVICE);
886 	if (rc)
887 		return rc;
888 	if (vsp_cmd.result_code != 0)
889 		return -ENOMEM;
890 	p = page;
891 	len = 0;
892 	while (len < (off + count)) {
893 		if ((*p == '\0') || (*p == '\n')) {
894 			if (*p == '\0')
895 				*p = '\n';
896 			p++;
897 			len++;
898 			*eof = 1;
899 			break;
900 		}
901 		p++;
902 		len++;
903 	}
904 
905 	if (len < off) {
906 		*eof = 1;
907 		len = 0;
908 	}
909 	return len;
910 }
911 
912 #if 0
913 static int mf_getVmlinuxChunk(char *buffer, int *size, int offset, u64 side)
914 {
915 	struct vsp_cmd_data vsp_cmd;
916 	int rc;
917 	int len = *size;
918 	dma_addr_t dma_addr;
919 
920 	dma_addr = iseries_hv_map(buffer, len, DMA_FROM_DEVICE);
921 	memset(buffer, 0, len);
922 	memset(&vsp_cmd, 0, sizeof(vsp_cmd));
923 	vsp_cmd.cmd = 32;
924 	vsp_cmd.sub_data.kern.token = dma_addr;
925 	vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
926 	vsp_cmd.sub_data.kern.side = side;
927 	vsp_cmd.sub_data.kern.offset = offset;
928 	vsp_cmd.sub_data.kern.length = len;
929 	mb();
930 	rc = signal_vsp_instruction(&vsp_cmd);
931 	if (rc == 0) {
932 		if (vsp_cmd.result_code == 0)
933 			*size = vsp_cmd.sub_data.length_out;
934 		else
935 			rc = -ENOMEM;
936 	}
937 
938 	iseries_hv_unmap(dma_addr, len, DMA_FROM_DEVICE);
939 
940 	return rc;
941 }
942 
943 static int proc_mf_dump_vmlinux(char *page, char **start, off_t off,
944 		int count, int *eof, void *data)
945 {
946 	int sizeToGet = count;
947 
948 	if (!capable(CAP_SYS_ADMIN))
949 		return -EACCES;
950 
951 	if (mf_getVmlinuxChunk(page, &sizeToGet, off, (u64)data) == 0) {
952 		if (sizeToGet != 0) {
953 			*start = page + off;
954 			return sizeToGet;
955 		}
956 		*eof = 1;
957 		return 0;
958 	}
959 	*eof = 1;
960 	return 0;
961 }
962 #endif
963 
proc_mf_dump_side(char * page,char ** start,off_t off,int count,int * eof,void * data)964 static int proc_mf_dump_side(char *page, char **start, off_t off,
965 		int count, int *eof, void *data)
966 {
967 	int len;
968 	char mf_current_side = ' ';
969 	struct vsp_cmd_data vsp_cmd;
970 
971 	memset(&vsp_cmd, 0, sizeof(vsp_cmd));
972 	vsp_cmd.cmd = 2;
973 	vsp_cmd.sub_data.ipl_type = 0;
974 	mb();
975 
976 	if (signal_vsp_instruction(&vsp_cmd) == 0) {
977 		if (vsp_cmd.result_code == 0) {
978 			switch (vsp_cmd.sub_data.ipl_type) {
979 			case 0:	mf_current_side = 'A';
980 				break;
981 			case 1:	mf_current_side = 'B';
982 				break;
983 			case 2:	mf_current_side = 'C';
984 				break;
985 			default:	mf_current_side = 'D';
986 				break;
987 			}
988 		}
989 	}
990 
991 	len = sprintf(page, "%c\n", mf_current_side);
992 
993 	if (len <= (off + count))
994 		*eof = 1;
995 	*start = page + off;
996 	len -= off;
997 	if (len > count)
998 		len = count;
999 	if (len < 0)
1000 		len = 0;
1001 	return len;
1002 }
1003 
proc_mf_change_side(struct file * file,const char __user * buffer,unsigned long count,void * data)1004 static int proc_mf_change_side(struct file *file, const char __user *buffer,
1005 		unsigned long count, void *data)
1006 {
1007 	char side;
1008 	u64 newSide;
1009 	struct vsp_cmd_data vsp_cmd;
1010 
1011 	if (!capable(CAP_SYS_ADMIN))
1012 		return -EACCES;
1013 
1014 	if (count == 0)
1015 		return 0;
1016 
1017 	if (get_user(side, buffer))
1018 		return -EFAULT;
1019 
1020 	switch (side) {
1021 	case 'A':	newSide = 0;
1022 			break;
1023 	case 'B':	newSide = 1;
1024 			break;
1025 	case 'C':	newSide = 2;
1026 			break;
1027 	case 'D':	newSide = 3;
1028 			break;
1029 	default:
1030 		printk(KERN_ERR "mf_proc.c: proc_mf_change_side: invalid side\n");
1031 		return -EINVAL;
1032 	}
1033 
1034 	memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1035 	vsp_cmd.sub_data.ipl_type = newSide;
1036 	vsp_cmd.cmd = 10;
1037 
1038 	(void)signal_vsp_instruction(&vsp_cmd);
1039 
1040 	return count;
1041 }
1042 
1043 #if 0
1044 static void mf_getSrcHistory(char *buffer, int size)
1045 {
1046 	struct IplTypeReturnStuff return_stuff;
1047 	struct pending_event *ev = new_pending_event();
1048 	int rc = 0;
1049 	char *pages[4];
1050 
1051 	pages[0] = kmalloc(4096, GFP_ATOMIC);
1052 	pages[1] = kmalloc(4096, GFP_ATOMIC);
1053 	pages[2] = kmalloc(4096, GFP_ATOMIC);
1054 	pages[3] = kmalloc(4096, GFP_ATOMIC);
1055 	if ((ev == NULL) || (pages[0] == NULL) || (pages[1] == NULL)
1056 			 || (pages[2] == NULL) || (pages[3] == NULL))
1057 		return -ENOMEM;
1058 
1059 	return_stuff.xType = 0;
1060 	return_stuff.xRc = 0;
1061 	return_stuff.xDone = 0;
1062 	ev->event.hp_lp_event.xSubtype = 6;
1063 	ev->event.hp_lp_event.x.xSubtypeData =
1064 		subtype_data('M', 'F', 'V', 'I');
1065 	ev->event.data.vsp_cmd.xEvent = &return_stuff;
1066 	ev->event.data.vsp_cmd.cmd = 4;
1067 	ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex();
1068 	ev->event.data.vsp_cmd.result_code = 0xFF;
1069 	ev->event.data.vsp_cmd.reserved = 0;
1070 	ev->event.data.vsp_cmd.sub_data.page[0] = iseries_hv_addr(pages[0]);
1071 	ev->event.data.vsp_cmd.sub_data.page[1] = iseries_hv_addr(pages[1]);
1072 	ev->event.data.vsp_cmd.sub_data.page[2] = iseries_hv_addr(pages[2]);
1073 	ev->event.data.vsp_cmd.sub_data.page[3] = iseries_hv_addr(pages[3]);
1074 	mb();
1075 	if (signal_event(ev) != 0)
1076 		return;
1077 
1078  	while (return_stuff.xDone != 1)
1079  		udelay(10);
1080  	if (return_stuff.xRc == 0)
1081  		memcpy(buffer, pages[0], size);
1082 	kfree(pages[0]);
1083 	kfree(pages[1]);
1084 	kfree(pages[2]);
1085 	kfree(pages[3]);
1086 }
1087 #endif
1088 
proc_mf_dump_src(char * page,char ** start,off_t off,int count,int * eof,void * data)1089 static int proc_mf_dump_src(char *page, char **start, off_t off,
1090 		int count, int *eof, void *data)
1091 {
1092 #if 0
1093 	int len;
1094 
1095 	mf_getSrcHistory(page, count);
1096 	len = count;
1097 	len -= off;
1098 	if (len < count) {
1099 		*eof = 1;
1100 		if (len <= 0)
1101 			return 0;
1102 	} else
1103 		len = count;
1104 	*start = page + off;
1105 	return len;
1106 #else
1107 	return 0;
1108 #endif
1109 }
1110 
proc_mf_change_src(struct file * file,const char __user * buffer,unsigned long count,void * data)1111 static int proc_mf_change_src(struct file *file, const char __user *buffer,
1112 		unsigned long count, void *data)
1113 {
1114 	char stkbuf[10];
1115 
1116 	if (!capable(CAP_SYS_ADMIN))
1117 		return -EACCES;
1118 
1119 	if ((count < 4) && (count != 1)) {
1120 		printk(KERN_ERR "mf_proc: invalid src\n");
1121 		return -EINVAL;
1122 	}
1123 
1124 	if (count > (sizeof(stkbuf) - 1))
1125 		count = sizeof(stkbuf) - 1;
1126 	if (copy_from_user(stkbuf, buffer, count))
1127 		return -EFAULT;
1128 
1129 	if ((count == 1) && (*stkbuf == '\0'))
1130 		mf_clear_src();
1131 	else
1132 		mf_display_src(*(u32 *)stkbuf);
1133 
1134 	return count;
1135 }
1136 
proc_mf_change_cmdline(struct file * file,const char __user * buffer,unsigned long count,void * data)1137 static int proc_mf_change_cmdline(struct file *file, const char __user *buffer,
1138 		unsigned long count, void *data)
1139 {
1140 	struct vsp_cmd_data vsp_cmd;
1141 	dma_addr_t dma_addr;
1142 	char *page;
1143 	int ret = -EACCES;
1144 
1145 	if (!capable(CAP_SYS_ADMIN))
1146 		goto out;
1147 
1148 	dma_addr = 0;
1149 	page = iseries_hv_alloc(count, &dma_addr, GFP_ATOMIC);
1150 	ret = -ENOMEM;
1151 	if (page == NULL)
1152 		goto out;
1153 
1154 	ret = -EFAULT;
1155 	if (copy_from_user(page, buffer, count))
1156 		goto out_free;
1157 
1158 	memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1159 	vsp_cmd.cmd = 31;
1160 	vsp_cmd.sub_data.kern.token = dma_addr;
1161 	vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
1162 	vsp_cmd.sub_data.kern.side = (u64)data;
1163 	vsp_cmd.sub_data.kern.length = count;
1164 	mb();
1165 	(void)signal_vsp_instruction(&vsp_cmd);
1166 	ret = count;
1167 
1168 out_free:
1169 	iseries_hv_free(count, page, dma_addr);
1170 out:
1171 	return ret;
1172 }
1173 
proc_mf_change_vmlinux(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1174 static ssize_t proc_mf_change_vmlinux(struct file *file,
1175 				      const char __user *buf,
1176 				      size_t count, loff_t *ppos)
1177 {
1178 	struct proc_dir_entry *dp = PDE(file->f_path.dentry->d_inode);
1179 	ssize_t rc;
1180 	dma_addr_t dma_addr;
1181 	char *page;
1182 	struct vsp_cmd_data vsp_cmd;
1183 
1184 	rc = -EACCES;
1185 	if (!capable(CAP_SYS_ADMIN))
1186 		goto out;
1187 
1188 	dma_addr = 0;
1189 	page = iseries_hv_alloc(count, &dma_addr, GFP_ATOMIC);
1190 	rc = -ENOMEM;
1191 	if (page == NULL) {
1192 		printk(KERN_ERR "mf.c: couldn't allocate memory to set vmlinux chunk\n");
1193 		goto out;
1194 	}
1195 	rc = -EFAULT;
1196 	if (copy_from_user(page, buf, count))
1197 		goto out_free;
1198 
1199 	memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1200 	vsp_cmd.cmd = 30;
1201 	vsp_cmd.sub_data.kern.token = dma_addr;
1202 	vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
1203 	vsp_cmd.sub_data.kern.side = (u64)dp->data;
1204 	vsp_cmd.sub_data.kern.offset = *ppos;
1205 	vsp_cmd.sub_data.kern.length = count;
1206 	mb();
1207 	rc = signal_vsp_instruction(&vsp_cmd);
1208 	if (rc)
1209 		goto out_free;
1210 	rc = -ENOMEM;
1211 	if (vsp_cmd.result_code != 0)
1212 		goto out_free;
1213 
1214 	*ppos += count;
1215 	rc = count;
1216 out_free:
1217 	iseries_hv_free(count, page, dma_addr);
1218 out:
1219 	return rc;
1220 }
1221 
1222 static const struct file_operations proc_vmlinux_operations = {
1223 	.write		= proc_mf_change_vmlinux,
1224 };
1225 
mf_proc_init(void)1226 static int __init mf_proc_init(void)
1227 {
1228 	struct proc_dir_entry *mf_proc_root;
1229 	struct proc_dir_entry *ent;
1230 	struct proc_dir_entry *mf;
1231 	char name[2];
1232 	int i;
1233 
1234 	if (!firmware_has_feature(FW_FEATURE_ISERIES))
1235 		return 0;
1236 
1237 	mf_proc_root = proc_mkdir("iSeries/mf", NULL);
1238 	if (!mf_proc_root)
1239 		return 1;
1240 
1241 	name[1] = '\0';
1242 	for (i = 0; i < 4; i++) {
1243 		name[0] = 'A' + i;
1244 		mf = proc_mkdir(name, mf_proc_root);
1245 		if (!mf)
1246 			return 1;
1247 
1248 		ent = create_proc_entry("cmdline", S_IFREG|S_IRUSR|S_IWUSR, mf);
1249 		if (!ent)
1250 			return 1;
1251 		ent->data = (void *)(long)i;
1252 		ent->read_proc = proc_mf_dump_cmdline;
1253 		ent->write_proc = proc_mf_change_cmdline;
1254 
1255 		if (i == 3)	/* no vmlinux entry for 'D' */
1256 			continue;
1257 
1258 		ent = proc_create_data("vmlinux", S_IFREG|S_IWUSR, mf,
1259 				       &proc_vmlinux_operations,
1260 				       (void *)(long)i);
1261 		if (!ent)
1262 			return 1;
1263 	}
1264 
1265 	ent = create_proc_entry("side", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root);
1266 	if (!ent)
1267 		return 1;
1268 	ent->data = (void *)0;
1269 	ent->read_proc = proc_mf_dump_side;
1270 	ent->write_proc = proc_mf_change_side;
1271 
1272 	ent = create_proc_entry("src", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root);
1273 	if (!ent)
1274 		return 1;
1275 	ent->data = (void *)0;
1276 	ent->read_proc = proc_mf_dump_src;
1277 	ent->write_proc = proc_mf_change_src;
1278 
1279 	return 0;
1280 }
1281 
1282 __initcall(mf_proc_init);
1283 
1284 #endif /* CONFIG_PROC_FS */
1285 
1286 /*
1287  * Get the RTC from the virtual service processor
1288  * This requires flowing LpEvents to the primary partition
1289  */
iSeries_get_rtc_time(struct rtc_time * rtc_tm)1290 void iSeries_get_rtc_time(struct rtc_time *rtc_tm)
1291 {
1292 	mf_get_rtc(rtc_tm);
1293 	rtc_tm->tm_mon--;
1294 }
1295 
1296 /*
1297  * Set the RTC in the virtual service processor
1298  * This requires flowing LpEvents to the primary partition
1299  */
iSeries_set_rtc_time(struct rtc_time * tm)1300 int iSeries_set_rtc_time(struct rtc_time *tm)
1301 {
1302 	mf_set_rtc(tm);
1303 	return 0;
1304 }
1305 
iSeries_get_boot_time(void)1306 unsigned long iSeries_get_boot_time(void)
1307 {
1308 	struct rtc_time tm;
1309 
1310 	mf_get_boot_rtc(&tm);
1311 	return mktime(tm.tm_year + 1900, tm.tm_mon, tm.tm_mday,
1312 		      tm.tm_hour, tm.tm_min, tm.tm_sec);
1313 }
1314