• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3  *   {mikejc|engebret}@us.ibm.com
4  *
5  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
6  *
7  * SMP scalability work:
8  *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
9  *
10  *    Module name: htab.c
11  *
12  *    Description:
13  *      PowerPC Hashed Page Table functions
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  */
20 
21 #undef DEBUG
22 #undef DEBUG_LOW
23 
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/ctype.h>
31 #include <linux/cache.h>
32 #include <linux/init.h>
33 #include <linux/signal.h>
34 #include <linux/lmb.h>
35 
36 #include <asm/processor.h>
37 #include <asm/pgtable.h>
38 #include <asm/mmu.h>
39 #include <asm/mmu_context.h>
40 #include <asm/page.h>
41 #include <asm/types.h>
42 #include <asm/system.h>
43 #include <asm/uaccess.h>
44 #include <asm/machdep.h>
45 #include <asm/prom.h>
46 #include <asm/abs_addr.h>
47 #include <asm/tlbflush.h>
48 #include <asm/io.h>
49 #include <asm/eeh.h>
50 #include <asm/tlb.h>
51 #include <asm/cacheflush.h>
52 #include <asm/cputable.h>
53 #include <asm/sections.h>
54 #include <asm/spu.h>
55 #include <asm/udbg.h>
56 
57 #ifdef DEBUG
58 #define DBG(fmt...) udbg_printf(fmt)
59 #else
60 #define DBG(fmt...)
61 #endif
62 
63 #ifdef DEBUG_LOW
64 #define DBG_LOW(fmt...) udbg_printf(fmt)
65 #else
66 #define DBG_LOW(fmt...)
67 #endif
68 
69 #define KB (1024)
70 #define MB (1024*KB)
71 #define GB (1024L*MB)
72 
73 /*
74  * Note:  pte   --> Linux PTE
75  *        HPTE  --> PowerPC Hashed Page Table Entry
76  *
77  * Execution context:
78  *   htab_initialize is called with the MMU off (of course), but
79  *   the kernel has been copied down to zero so it can directly
80  *   reference global data.  At this point it is very difficult
81  *   to print debug info.
82  *
83  */
84 
85 #ifdef CONFIG_U3_DART
86 extern unsigned long dart_tablebase;
87 #endif /* CONFIG_U3_DART */
88 
89 static unsigned long _SDR1;
90 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
91 
92 struct hash_pte *htab_address;
93 unsigned long htab_size_bytes;
94 unsigned long htab_hash_mask;
95 int mmu_linear_psize = MMU_PAGE_4K;
96 int mmu_virtual_psize = MMU_PAGE_4K;
97 int mmu_vmalloc_psize = MMU_PAGE_4K;
98 #ifdef CONFIG_SPARSEMEM_VMEMMAP
99 int mmu_vmemmap_psize = MMU_PAGE_4K;
100 #endif
101 int mmu_io_psize = MMU_PAGE_4K;
102 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
103 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
104 u16 mmu_slb_size = 64;
105 #ifdef CONFIG_HUGETLB_PAGE
106 unsigned int HPAGE_SHIFT;
107 #endif
108 #ifdef CONFIG_PPC_64K_PAGES
109 int mmu_ci_restrictions;
110 #endif
111 #ifdef CONFIG_DEBUG_PAGEALLOC
112 static u8 *linear_map_hash_slots;
113 static unsigned long linear_map_hash_count;
114 static DEFINE_SPINLOCK(linear_map_hash_lock);
115 #endif /* CONFIG_DEBUG_PAGEALLOC */
116 
117 /* There are definitions of page sizes arrays to be used when none
118  * is provided by the firmware.
119  */
120 
121 /* Pre-POWER4 CPUs (4k pages only)
122  */
123 static struct mmu_psize_def mmu_psize_defaults_old[] = {
124 	[MMU_PAGE_4K] = {
125 		.shift	= 12,
126 		.sllp	= 0,
127 		.penc	= 0,
128 		.avpnm	= 0,
129 		.tlbiel = 0,
130 	},
131 };
132 
133 /* POWER4, GPUL, POWER5
134  *
135  * Support for 16Mb large pages
136  */
137 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
138 	[MMU_PAGE_4K] = {
139 		.shift	= 12,
140 		.sllp	= 0,
141 		.penc	= 0,
142 		.avpnm	= 0,
143 		.tlbiel = 1,
144 	},
145 	[MMU_PAGE_16M] = {
146 		.shift	= 24,
147 		.sllp	= SLB_VSID_L,
148 		.penc	= 0,
149 		.avpnm	= 0x1UL,
150 		.tlbiel = 0,
151 	},
152 };
153 
htab_convert_pte_flags(unsigned long pteflags)154 static unsigned long htab_convert_pte_flags(unsigned long pteflags)
155 {
156 	unsigned long rflags = pteflags & 0x1fa;
157 
158 	/* _PAGE_EXEC -> NOEXEC */
159 	if ((pteflags & _PAGE_EXEC) == 0)
160 		rflags |= HPTE_R_N;
161 
162 	/* PP bits. PAGE_USER is already PP bit 0x2, so we only
163 	 * need to add in 0x1 if it's a read-only user page
164 	 */
165 	if ((pteflags & _PAGE_USER) && !((pteflags & _PAGE_RW) &&
166 					 (pteflags & _PAGE_DIRTY)))
167 		rflags |= 1;
168 
169 	/* Always add C */
170 	return rflags | HPTE_R_C;
171 }
172 
htab_bolt_mapping(unsigned long vstart,unsigned long vend,unsigned long pstart,unsigned long prot,int psize,int ssize)173 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
174 		      unsigned long pstart, unsigned long prot,
175 		      int psize, int ssize)
176 {
177 	unsigned long vaddr, paddr;
178 	unsigned int step, shift;
179 	int ret = 0;
180 
181 	shift = mmu_psize_defs[psize].shift;
182 	step = 1 << shift;
183 
184 	prot = htab_convert_pte_flags(prot);
185 
186 	DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
187 	    vstart, vend, pstart, prot, psize, ssize);
188 
189 	for (vaddr = vstart, paddr = pstart; vaddr < vend;
190 	     vaddr += step, paddr += step) {
191 		unsigned long hash, hpteg;
192 		unsigned long vsid = get_kernel_vsid(vaddr, ssize);
193 		unsigned long va = hpt_va(vaddr, vsid, ssize);
194 		unsigned long tprot = prot;
195 
196 		/* Make kernel text executable */
197 		if (overlaps_kernel_text(vaddr, vaddr + step))
198 			tprot &= ~HPTE_R_N;
199 
200 		hash = hpt_hash(va, shift, ssize);
201 		hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
202 
203 		BUG_ON(!ppc_md.hpte_insert);
204 		ret = ppc_md.hpte_insert(hpteg, va, paddr, tprot,
205 					 HPTE_V_BOLTED, psize, ssize);
206 
207 		if (ret < 0)
208 			break;
209 #ifdef CONFIG_DEBUG_PAGEALLOC
210 		if ((paddr >> PAGE_SHIFT) < linear_map_hash_count)
211 			linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
212 #endif /* CONFIG_DEBUG_PAGEALLOC */
213 	}
214 	return ret < 0 ? ret : 0;
215 }
216 
217 #ifdef CONFIG_MEMORY_HOTPLUG
htab_remove_mapping(unsigned long vstart,unsigned long vend,int psize,int ssize)218 static int htab_remove_mapping(unsigned long vstart, unsigned long vend,
219 		      int psize, int ssize)
220 {
221 	unsigned long vaddr;
222 	unsigned int step, shift;
223 
224 	shift = mmu_psize_defs[psize].shift;
225 	step = 1 << shift;
226 
227 	if (!ppc_md.hpte_removebolted) {
228 		printk(KERN_WARNING "Platform doesn't implement "
229 				"hpte_removebolted\n");
230 		return -EINVAL;
231 	}
232 
233 	for (vaddr = vstart; vaddr < vend; vaddr += step)
234 		ppc_md.hpte_removebolted(vaddr, psize, ssize);
235 
236 	return 0;
237 }
238 #endif /* CONFIG_MEMORY_HOTPLUG */
239 
htab_dt_scan_seg_sizes(unsigned long node,const char * uname,int depth,void * data)240 static int __init htab_dt_scan_seg_sizes(unsigned long node,
241 					 const char *uname, int depth,
242 					 void *data)
243 {
244 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
245 	u32 *prop;
246 	unsigned long size = 0;
247 
248 	/* We are scanning "cpu" nodes only */
249 	if (type == NULL || strcmp(type, "cpu") != 0)
250 		return 0;
251 
252 	prop = (u32 *)of_get_flat_dt_prop(node, "ibm,processor-segment-sizes",
253 					  &size);
254 	if (prop == NULL)
255 		return 0;
256 	for (; size >= 4; size -= 4, ++prop) {
257 		if (prop[0] == 40) {
258 			DBG("1T segment support detected\n");
259 			cur_cpu_spec->cpu_features |= CPU_FTR_1T_SEGMENT;
260 			return 1;
261 		}
262 	}
263 	cur_cpu_spec->cpu_features &= ~CPU_FTR_NO_SLBIE_B;
264 	return 0;
265 }
266 
htab_init_seg_sizes(void)267 static void __init htab_init_seg_sizes(void)
268 {
269 	of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
270 }
271 
htab_dt_scan_page_sizes(unsigned long node,const char * uname,int depth,void * data)272 static int __init htab_dt_scan_page_sizes(unsigned long node,
273 					  const char *uname, int depth,
274 					  void *data)
275 {
276 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
277 	u32 *prop;
278 	unsigned long size = 0;
279 
280 	/* We are scanning "cpu" nodes only */
281 	if (type == NULL || strcmp(type, "cpu") != 0)
282 		return 0;
283 
284 	prop = (u32 *)of_get_flat_dt_prop(node,
285 					  "ibm,segment-page-sizes", &size);
286 	if (prop != NULL) {
287 		DBG("Page sizes from device-tree:\n");
288 		size /= 4;
289 		cur_cpu_spec->cpu_features &= ~(CPU_FTR_16M_PAGE);
290 		while(size > 0) {
291 			unsigned int shift = prop[0];
292 			unsigned int slbenc = prop[1];
293 			unsigned int lpnum = prop[2];
294 			unsigned int lpenc = 0;
295 			struct mmu_psize_def *def;
296 			int idx = -1;
297 
298 			size -= 3; prop += 3;
299 			while(size > 0 && lpnum) {
300 				if (prop[0] == shift)
301 					lpenc = prop[1];
302 				prop += 2; size -= 2;
303 				lpnum--;
304 			}
305 			switch(shift) {
306 			case 0xc:
307 				idx = MMU_PAGE_4K;
308 				break;
309 			case 0x10:
310 				idx = MMU_PAGE_64K;
311 				break;
312 			case 0x14:
313 				idx = MMU_PAGE_1M;
314 				break;
315 			case 0x18:
316 				idx = MMU_PAGE_16M;
317 				cur_cpu_spec->cpu_features |= CPU_FTR_16M_PAGE;
318 				break;
319 			case 0x22:
320 				idx = MMU_PAGE_16G;
321 				break;
322 			}
323 			if (idx < 0)
324 				continue;
325 			def = &mmu_psize_defs[idx];
326 			def->shift = shift;
327 			if (shift <= 23)
328 				def->avpnm = 0;
329 			else
330 				def->avpnm = (1 << (shift - 23)) - 1;
331 			def->sllp = slbenc;
332 			def->penc = lpenc;
333 			/* We don't know for sure what's up with tlbiel, so
334 			 * for now we only set it for 4K and 64K pages
335 			 */
336 			if (idx == MMU_PAGE_4K || idx == MMU_PAGE_64K)
337 				def->tlbiel = 1;
338 			else
339 				def->tlbiel = 0;
340 
341 			DBG(" %d: shift=%02x, sllp=%04x, avpnm=%08x, "
342 			    "tlbiel=%d, penc=%d\n",
343 			    idx, shift, def->sllp, def->avpnm, def->tlbiel,
344 			    def->penc);
345 		}
346 		return 1;
347 	}
348 	return 0;
349 }
350 
351 #ifdef CONFIG_HUGETLB_PAGE
352 /* Scan for 16G memory blocks that have been set aside for huge pages
353  * and reserve those blocks for 16G huge pages.
354  */
htab_dt_scan_hugepage_blocks(unsigned long node,const char * uname,int depth,void * data)355 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
356 					const char *uname, int depth,
357 					void *data) {
358 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
359 	unsigned long *addr_prop;
360 	u32 *page_count_prop;
361 	unsigned int expected_pages;
362 	long unsigned int phys_addr;
363 	long unsigned int block_size;
364 
365 	/* We are scanning "memory" nodes only */
366 	if (type == NULL || strcmp(type, "memory") != 0)
367 		return 0;
368 
369 	/* This property is the log base 2 of the number of virtual pages that
370 	 * will represent this memory block. */
371 	page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
372 	if (page_count_prop == NULL)
373 		return 0;
374 	expected_pages = (1 << page_count_prop[0]);
375 	addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
376 	if (addr_prop == NULL)
377 		return 0;
378 	phys_addr = addr_prop[0];
379 	block_size = addr_prop[1];
380 	if (block_size != (16 * GB))
381 		return 0;
382 	printk(KERN_INFO "Huge page(16GB) memory: "
383 			"addr = 0x%lX size = 0x%lX pages = %d\n",
384 			phys_addr, block_size, expected_pages);
385 	if (phys_addr + (16 * GB) <= lmb_end_of_DRAM()) {
386 		lmb_reserve(phys_addr, block_size * expected_pages);
387 		add_gpage(phys_addr, block_size, expected_pages);
388 	}
389 	return 0;
390 }
391 #endif /* CONFIG_HUGETLB_PAGE */
392 
htab_init_page_sizes(void)393 static void __init htab_init_page_sizes(void)
394 {
395 	int rc;
396 
397 	/* Default to 4K pages only */
398 	memcpy(mmu_psize_defs, mmu_psize_defaults_old,
399 	       sizeof(mmu_psize_defaults_old));
400 
401 	/*
402 	 * Try to find the available page sizes in the device-tree
403 	 */
404 	rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
405 	if (rc != 0)  /* Found */
406 		goto found;
407 
408 	/*
409 	 * Not in the device-tree, let's fallback on known size
410 	 * list for 16M capable GP & GR
411 	 */
412 	if (cpu_has_feature(CPU_FTR_16M_PAGE))
413 		memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
414 		       sizeof(mmu_psize_defaults_gp));
415  found:
416 #ifndef CONFIG_DEBUG_PAGEALLOC
417 	/*
418 	 * Pick a size for the linear mapping. Currently, we only support
419 	 * 16M, 1M and 4K which is the default
420 	 */
421 	if (mmu_psize_defs[MMU_PAGE_16M].shift)
422 		mmu_linear_psize = MMU_PAGE_16M;
423 	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
424 		mmu_linear_psize = MMU_PAGE_1M;
425 #endif /* CONFIG_DEBUG_PAGEALLOC */
426 
427 #ifdef CONFIG_PPC_64K_PAGES
428 	/*
429 	 * Pick a size for the ordinary pages. Default is 4K, we support
430 	 * 64K for user mappings and vmalloc if supported by the processor.
431 	 * We only use 64k for ioremap if the processor
432 	 * (and firmware) support cache-inhibited large pages.
433 	 * If not, we use 4k and set mmu_ci_restrictions so that
434 	 * hash_page knows to switch processes that use cache-inhibited
435 	 * mappings to 4k pages.
436 	 */
437 	if (mmu_psize_defs[MMU_PAGE_64K].shift) {
438 		mmu_virtual_psize = MMU_PAGE_64K;
439 		mmu_vmalloc_psize = MMU_PAGE_64K;
440 		if (mmu_linear_psize == MMU_PAGE_4K)
441 			mmu_linear_psize = MMU_PAGE_64K;
442 		if (cpu_has_feature(CPU_FTR_CI_LARGE_PAGE)) {
443 			/*
444 			 * Don't use 64k pages for ioremap on pSeries, since
445 			 * that would stop us accessing the HEA ethernet.
446 			 */
447 			if (!machine_is(pseries))
448 				mmu_io_psize = MMU_PAGE_64K;
449 		} else
450 			mmu_ci_restrictions = 1;
451 	}
452 #endif /* CONFIG_PPC_64K_PAGES */
453 
454 #ifdef CONFIG_SPARSEMEM_VMEMMAP
455 	/* We try to use 16M pages for vmemmap if that is supported
456 	 * and we have at least 1G of RAM at boot
457 	 */
458 	if (mmu_psize_defs[MMU_PAGE_16M].shift &&
459 	    lmb_phys_mem_size() >= 0x40000000)
460 		mmu_vmemmap_psize = MMU_PAGE_16M;
461 	else if (mmu_psize_defs[MMU_PAGE_64K].shift)
462 		mmu_vmemmap_psize = MMU_PAGE_64K;
463 	else
464 		mmu_vmemmap_psize = MMU_PAGE_4K;
465 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
466 
467 	printk(KERN_DEBUG "Page orders: linear mapping = %d, "
468 	       "virtual = %d, io = %d"
469 #ifdef CONFIG_SPARSEMEM_VMEMMAP
470 	       ", vmemmap = %d"
471 #endif
472 	       "\n",
473 	       mmu_psize_defs[mmu_linear_psize].shift,
474 	       mmu_psize_defs[mmu_virtual_psize].shift,
475 	       mmu_psize_defs[mmu_io_psize].shift
476 #ifdef CONFIG_SPARSEMEM_VMEMMAP
477 	       ,mmu_psize_defs[mmu_vmemmap_psize].shift
478 #endif
479 	       );
480 
481 #ifdef CONFIG_HUGETLB_PAGE
482 	/* Reserve 16G huge page memory sections for huge pages */
483 	of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
484 
485 /* Set default large page size. Currently, we pick 16M or 1M depending
486 	 * on what is available
487 	 */
488 	if (mmu_psize_defs[MMU_PAGE_16M].shift)
489 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
490 	/* With 4k/4level pagetables, we can't (for now) cope with a
491 	 * huge page size < PMD_SIZE */
492 	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
493 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
494 #endif /* CONFIG_HUGETLB_PAGE */
495 }
496 
htab_dt_scan_pftsize(unsigned long node,const char * uname,int depth,void * data)497 static int __init htab_dt_scan_pftsize(unsigned long node,
498 				       const char *uname, int depth,
499 				       void *data)
500 {
501 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
502 	u32 *prop;
503 
504 	/* We are scanning "cpu" nodes only */
505 	if (type == NULL || strcmp(type, "cpu") != 0)
506 		return 0;
507 
508 	prop = (u32 *)of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
509 	if (prop != NULL) {
510 		/* pft_size[0] is the NUMA CEC cookie */
511 		ppc64_pft_size = prop[1];
512 		return 1;
513 	}
514 	return 0;
515 }
516 
htab_get_table_size(void)517 static unsigned long __init htab_get_table_size(void)
518 {
519 	unsigned long mem_size, rnd_mem_size, pteg_count;
520 
521 	/* If hash size isn't already provided by the platform, we try to
522 	 * retrieve it from the device-tree. If it's not there neither, we
523 	 * calculate it now based on the total RAM size
524 	 */
525 	if (ppc64_pft_size == 0)
526 		of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
527 	if (ppc64_pft_size)
528 		return 1UL << ppc64_pft_size;
529 
530 	/* round mem_size up to next power of 2 */
531 	mem_size = lmb_phys_mem_size();
532 	rnd_mem_size = 1UL << __ilog2(mem_size);
533 	if (rnd_mem_size < mem_size)
534 		rnd_mem_size <<= 1;
535 
536 	/* # pages / 2 */
537 	pteg_count = max(rnd_mem_size >> (12 + 1), 1UL << 11);
538 
539 	return pteg_count << 7;
540 }
541 
542 #ifdef CONFIG_MEMORY_HOTPLUG
create_section_mapping(unsigned long start,unsigned long end)543 void create_section_mapping(unsigned long start, unsigned long end)
544 {
545 	BUG_ON(htab_bolt_mapping(start, end, __pa(start),
546 				 pgprot_val(PAGE_KERNEL), mmu_linear_psize,
547 				 mmu_kernel_ssize));
548 }
549 
remove_section_mapping(unsigned long start,unsigned long end)550 int remove_section_mapping(unsigned long start, unsigned long end)
551 {
552 	return htab_remove_mapping(start, end, mmu_linear_psize,
553 			mmu_kernel_ssize);
554 }
555 #endif /* CONFIG_MEMORY_HOTPLUG */
556 
make_bl(unsigned int * insn_addr,void * func)557 static inline void make_bl(unsigned int *insn_addr, void *func)
558 {
559 	unsigned long funcp = *((unsigned long *)func);
560 	int offset = funcp - (unsigned long)insn_addr;
561 
562 	*insn_addr = (unsigned int)(0x48000001 | (offset & 0x03fffffc));
563 	flush_icache_range((unsigned long)insn_addr, 4+
564 			   (unsigned long)insn_addr);
565 }
566 
htab_finish_init(void)567 static void __init htab_finish_init(void)
568 {
569 	extern unsigned int *htab_call_hpte_insert1;
570 	extern unsigned int *htab_call_hpte_insert2;
571 	extern unsigned int *htab_call_hpte_remove;
572 	extern unsigned int *htab_call_hpte_updatepp;
573 
574 #ifdef CONFIG_PPC_HAS_HASH_64K
575 	extern unsigned int *ht64_call_hpte_insert1;
576 	extern unsigned int *ht64_call_hpte_insert2;
577 	extern unsigned int *ht64_call_hpte_remove;
578 	extern unsigned int *ht64_call_hpte_updatepp;
579 
580 	make_bl(ht64_call_hpte_insert1, ppc_md.hpte_insert);
581 	make_bl(ht64_call_hpte_insert2, ppc_md.hpte_insert);
582 	make_bl(ht64_call_hpte_remove, ppc_md.hpte_remove);
583 	make_bl(ht64_call_hpte_updatepp, ppc_md.hpte_updatepp);
584 #endif /* CONFIG_PPC_HAS_HASH_64K */
585 
586 	make_bl(htab_call_hpte_insert1, ppc_md.hpte_insert);
587 	make_bl(htab_call_hpte_insert2, ppc_md.hpte_insert);
588 	make_bl(htab_call_hpte_remove, ppc_md.hpte_remove);
589 	make_bl(htab_call_hpte_updatepp, ppc_md.hpte_updatepp);
590 }
591 
htab_initialize(void)592 void __init htab_initialize(void)
593 {
594 	unsigned long table;
595 	unsigned long pteg_count;
596 	unsigned long prot;
597 	unsigned long base = 0, size = 0, limit;
598 	int i;
599 
600 	DBG(" -> htab_initialize()\n");
601 
602 	/* Initialize segment sizes */
603 	htab_init_seg_sizes();
604 
605 	/* Initialize page sizes */
606 	htab_init_page_sizes();
607 
608 	if (cpu_has_feature(CPU_FTR_1T_SEGMENT)) {
609 		mmu_kernel_ssize = MMU_SEGSIZE_1T;
610 		mmu_highuser_ssize = MMU_SEGSIZE_1T;
611 		printk(KERN_INFO "Using 1TB segments\n");
612 	}
613 
614 	/*
615 	 * Calculate the required size of the htab.  We want the number of
616 	 * PTEGs to equal one half the number of real pages.
617 	 */
618 	htab_size_bytes = htab_get_table_size();
619 	pteg_count = htab_size_bytes >> 7;
620 
621 	htab_hash_mask = pteg_count - 1;
622 
623 	if (firmware_has_feature(FW_FEATURE_LPAR)) {
624 		/* Using a hypervisor which owns the htab */
625 		htab_address = NULL;
626 		_SDR1 = 0;
627 	} else {
628 		/* Find storage for the HPT.  Must be contiguous in
629 		 * the absolute address space. On cell we want it to be
630 		 * in the first 2 Gig so we can use it for IOMMU hacks.
631 		 */
632 		if (machine_is(cell))
633 			limit = 0x80000000;
634 		else
635 			limit = 0;
636 
637 		table = lmb_alloc_base(htab_size_bytes, htab_size_bytes, limit);
638 
639 		DBG("Hash table allocated at %lx, size: %lx\n", table,
640 		    htab_size_bytes);
641 
642 		htab_address = abs_to_virt(table);
643 
644 		/* htab absolute addr + encoded htabsize */
645 		_SDR1 = table + __ilog2(pteg_count) - 11;
646 
647 		/* Initialize the HPT with no entries */
648 		memset((void *)table, 0, htab_size_bytes);
649 
650 		/* Set SDR1 */
651 		mtspr(SPRN_SDR1, _SDR1);
652 	}
653 
654 	prot = pgprot_val(PAGE_KERNEL);
655 
656 #ifdef CONFIG_DEBUG_PAGEALLOC
657 	linear_map_hash_count = lmb_end_of_DRAM() >> PAGE_SHIFT;
658 	linear_map_hash_slots = __va(lmb_alloc_base(linear_map_hash_count,
659 						    1, lmb.rmo_size));
660 	memset(linear_map_hash_slots, 0, linear_map_hash_count);
661 #endif /* CONFIG_DEBUG_PAGEALLOC */
662 
663 	/* On U3 based machines, we need to reserve the DART area and
664 	 * _NOT_ map it to avoid cache paradoxes as it's remapped non
665 	 * cacheable later on
666 	 */
667 
668 	/* create bolted the linear mapping in the hash table */
669 	for (i=0; i < lmb.memory.cnt; i++) {
670 		base = (unsigned long)__va(lmb.memory.region[i].base);
671 		size = lmb.memory.region[i].size;
672 
673 		DBG("creating mapping for region: %lx..%lx (prot: %x)\n",
674 		    base, size, prot);
675 
676 #ifdef CONFIG_U3_DART
677 		/* Do not map the DART space. Fortunately, it will be aligned
678 		 * in such a way that it will not cross two lmb regions and
679 		 * will fit within a single 16Mb page.
680 		 * The DART space is assumed to be a full 16Mb region even if
681 		 * we only use 2Mb of that space. We will use more of it later
682 		 * for AGP GART. We have to use a full 16Mb large page.
683 		 */
684 		DBG("DART base: %lx\n", dart_tablebase);
685 
686 		if (dart_tablebase != 0 && dart_tablebase >= base
687 		    && dart_tablebase < (base + size)) {
688 			unsigned long dart_table_end = dart_tablebase + 16 * MB;
689 			if (base != dart_tablebase)
690 				BUG_ON(htab_bolt_mapping(base, dart_tablebase,
691 							__pa(base), prot,
692 							mmu_linear_psize,
693 							mmu_kernel_ssize));
694 			if ((base + size) > dart_table_end)
695 				BUG_ON(htab_bolt_mapping(dart_tablebase+16*MB,
696 							base + size,
697 							__pa(dart_table_end),
698 							 prot,
699 							 mmu_linear_psize,
700 							 mmu_kernel_ssize));
701 			continue;
702 		}
703 #endif /* CONFIG_U3_DART */
704 		BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
705 				prot, mmu_linear_psize, mmu_kernel_ssize));
706        }
707 
708 	/*
709 	 * If we have a memory_limit and we've allocated TCEs then we need to
710 	 * explicitly map the TCE area at the top of RAM. We also cope with the
711 	 * case that the TCEs start below memory_limit.
712 	 * tce_alloc_start/end are 16MB aligned so the mapping should work
713 	 * for either 4K or 16MB pages.
714 	 */
715 	if (tce_alloc_start) {
716 		tce_alloc_start = (unsigned long)__va(tce_alloc_start);
717 		tce_alloc_end = (unsigned long)__va(tce_alloc_end);
718 
719 		if (base + size >= tce_alloc_start)
720 			tce_alloc_start = base + size + 1;
721 
722 		BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
723 					 __pa(tce_alloc_start), prot,
724 					 mmu_linear_psize, mmu_kernel_ssize));
725 	}
726 
727 	htab_finish_init();
728 
729 	DBG(" <- htab_initialize()\n");
730 }
731 #undef KB
732 #undef MB
733 
htab_initialize_secondary(void)734 void htab_initialize_secondary(void)
735 {
736 	if (!firmware_has_feature(FW_FEATURE_LPAR))
737 		mtspr(SPRN_SDR1, _SDR1);
738 }
739 
740 /*
741  * Called by asm hashtable.S for doing lazy icache flush
742  */
hash_page_do_lazy_icache(unsigned int pp,pte_t pte,int trap)743 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
744 {
745 	struct page *page;
746 
747 	if (!pfn_valid(pte_pfn(pte)))
748 		return pp;
749 
750 	page = pte_page(pte);
751 
752 	/* page is dirty */
753 	if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
754 		if (trap == 0x400) {
755 			__flush_dcache_icache(page_address(page));
756 			set_bit(PG_arch_1, &page->flags);
757 		} else
758 			pp |= HPTE_R_N;
759 	}
760 	return pp;
761 }
762 
763 #ifdef CONFIG_PPC_MM_SLICES
get_paca_psize(unsigned long addr)764 unsigned int get_paca_psize(unsigned long addr)
765 {
766 	unsigned long index, slices;
767 
768 	if (addr < SLICE_LOW_TOP) {
769 		slices = get_paca()->context.low_slices_psize;
770 		index = GET_LOW_SLICE_INDEX(addr);
771 	} else {
772 		slices = get_paca()->context.high_slices_psize;
773 		index = GET_HIGH_SLICE_INDEX(addr);
774 	}
775 	return (slices >> (index * 4)) & 0xF;
776 }
777 
778 #else
get_paca_psize(unsigned long addr)779 unsigned int get_paca_psize(unsigned long addr)
780 {
781 	return get_paca()->context.user_psize;
782 }
783 #endif
784 
785 /*
786  * Demote a segment to using 4k pages.
787  * For now this makes the whole process use 4k pages.
788  */
789 #ifdef CONFIG_PPC_64K_PAGES
demote_segment_4k(struct mm_struct * mm,unsigned long addr)790 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
791 {
792 	if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
793 		return;
794 	slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
795 #ifdef CONFIG_SPU_BASE
796 	spu_flush_all_slbs(mm);
797 #endif
798 	if (get_paca_psize(addr) != MMU_PAGE_4K) {
799 		get_paca()->context = mm->context;
800 		slb_flush_and_rebolt();
801 	}
802 }
803 #endif /* CONFIG_PPC_64K_PAGES */
804 
805 #ifdef CONFIG_PPC_SUBPAGE_PROT
806 /*
807  * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
808  * Userspace sets the subpage permissions using the subpage_prot system call.
809  *
810  * Result is 0: full permissions, _PAGE_RW: read-only,
811  * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access.
812  */
subpage_protection(pgd_t * pgdir,unsigned long ea)813 static int subpage_protection(pgd_t *pgdir, unsigned long ea)
814 {
815 	struct subpage_prot_table *spt = pgd_subpage_prot(pgdir);
816 	u32 spp = 0;
817 	u32 **sbpm, *sbpp;
818 
819 	if (ea >= spt->maxaddr)
820 		return 0;
821 	if (ea < 0x100000000) {
822 		/* addresses below 4GB use spt->low_prot */
823 		sbpm = spt->low_prot;
824 	} else {
825 		sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
826 		if (!sbpm)
827 			return 0;
828 	}
829 	sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
830 	if (!sbpp)
831 		return 0;
832 	spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
833 
834 	/* extract 2-bit bitfield for this 4k subpage */
835 	spp >>= 30 - 2 * ((ea >> 12) & 0xf);
836 
837 	/* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */
838 	spp = ((spp & 2) ? _PAGE_USER : 0) | ((spp & 1) ? _PAGE_RW : 0);
839 	return spp;
840 }
841 
842 #else /* CONFIG_PPC_SUBPAGE_PROT */
subpage_protection(pgd_t * pgdir,unsigned long ea)843 static inline int subpage_protection(pgd_t *pgdir, unsigned long ea)
844 {
845 	return 0;
846 }
847 #endif
848 
849 /* Result code is:
850  *  0 - handled
851  *  1 - normal page fault
852  * -1 - critical hash insertion error
853  * -2 - access not permitted by subpage protection mechanism
854  */
hash_page(unsigned long ea,unsigned long access,unsigned long trap)855 int hash_page(unsigned long ea, unsigned long access, unsigned long trap)
856 {
857 	void *pgdir;
858 	unsigned long vsid;
859 	struct mm_struct *mm;
860 	pte_t *ptep;
861 	cpumask_t tmp;
862 	int rc, user_region = 0, local = 0;
863 	int psize, ssize;
864 
865 	DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
866 		ea, access, trap);
867 
868 	if ((ea & ~REGION_MASK) >= PGTABLE_RANGE) {
869 		DBG_LOW(" out of pgtable range !\n");
870  		return 1;
871 	}
872 
873 	/* Get region & vsid */
874  	switch (REGION_ID(ea)) {
875 	case USER_REGION_ID:
876 		user_region = 1;
877 		mm = current->mm;
878 		if (! mm) {
879 			DBG_LOW(" user region with no mm !\n");
880 			return 1;
881 		}
882 		psize = get_slice_psize(mm, ea);
883 		ssize = user_segment_size(ea);
884 		vsid = get_vsid(mm->context.id, ea, ssize);
885 		break;
886 	case VMALLOC_REGION_ID:
887 		mm = &init_mm;
888 		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
889 		if (ea < VMALLOC_END)
890 			psize = mmu_vmalloc_psize;
891 		else
892 			psize = mmu_io_psize;
893 		ssize = mmu_kernel_ssize;
894 		break;
895 	default:
896 		/* Not a valid range
897 		 * Send the problem up to do_page_fault
898 		 */
899 		return 1;
900 	}
901 	DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
902 
903 	/* Get pgdir */
904 	pgdir = mm->pgd;
905 	if (pgdir == NULL)
906 		return 1;
907 
908 	/* Check CPU locality */
909 	tmp = cpumask_of_cpu(smp_processor_id());
910 	if (user_region && cpus_equal(mm->cpu_vm_mask, tmp))
911 		local = 1;
912 
913 #ifdef CONFIG_HUGETLB_PAGE
914 	/* Handle hugepage regions */
915 	if (HPAGE_SHIFT && mmu_huge_psizes[psize]) {
916 		DBG_LOW(" -> huge page !\n");
917 		return hash_huge_page(mm, access, ea, vsid, local, trap);
918 	}
919 #endif /* CONFIG_HUGETLB_PAGE */
920 
921 #ifndef CONFIG_PPC_64K_PAGES
922 	/* If we use 4K pages and our psize is not 4K, then we are hitting
923 	 * a special driver mapping, we need to align the address before
924 	 * we fetch the PTE
925 	 */
926 	if (psize != MMU_PAGE_4K)
927 		ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
928 #endif /* CONFIG_PPC_64K_PAGES */
929 
930 	/* Get PTE and page size from page tables */
931 	ptep = find_linux_pte(pgdir, ea);
932 	if (ptep == NULL || !pte_present(*ptep)) {
933 		DBG_LOW(" no PTE !\n");
934 		return 1;
935 	}
936 
937 #ifndef CONFIG_PPC_64K_PAGES
938 	DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
939 #else
940 	DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
941 		pte_val(*(ptep + PTRS_PER_PTE)));
942 #endif
943 	/* Pre-check access permissions (will be re-checked atomically
944 	 * in __hash_page_XX but this pre-check is a fast path
945 	 */
946 	if (access & ~pte_val(*ptep)) {
947 		DBG_LOW(" no access !\n");
948 		return 1;
949 	}
950 
951 	/* Do actual hashing */
952 #ifdef CONFIG_PPC_64K_PAGES
953 	/* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
954 	if ((pte_val(*ptep) & _PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
955 		demote_segment_4k(mm, ea);
956 		psize = MMU_PAGE_4K;
957 	}
958 
959 	/* If this PTE is non-cacheable and we have restrictions on
960 	 * using non cacheable large pages, then we switch to 4k
961 	 */
962 	if (mmu_ci_restrictions && psize == MMU_PAGE_64K &&
963 	    (pte_val(*ptep) & _PAGE_NO_CACHE)) {
964 		if (user_region) {
965 			demote_segment_4k(mm, ea);
966 			psize = MMU_PAGE_4K;
967 		} else if (ea < VMALLOC_END) {
968 			/*
969 			 * some driver did a non-cacheable mapping
970 			 * in vmalloc space, so switch vmalloc
971 			 * to 4k pages
972 			 */
973 			printk(KERN_ALERT "Reducing vmalloc segment "
974 			       "to 4kB pages because of "
975 			       "non-cacheable mapping\n");
976 			psize = mmu_vmalloc_psize = MMU_PAGE_4K;
977 #ifdef CONFIG_SPU_BASE
978 			spu_flush_all_slbs(mm);
979 #endif
980 		}
981 	}
982 	if (user_region) {
983 		if (psize != get_paca_psize(ea)) {
984 			get_paca()->context = mm->context;
985 			slb_flush_and_rebolt();
986 		}
987 	} else if (get_paca()->vmalloc_sllp !=
988 		   mmu_psize_defs[mmu_vmalloc_psize].sllp) {
989 		get_paca()->vmalloc_sllp =
990 			mmu_psize_defs[mmu_vmalloc_psize].sllp;
991 		slb_vmalloc_update();
992 	}
993 #endif /* CONFIG_PPC_64K_PAGES */
994 
995 #ifdef CONFIG_PPC_HAS_HASH_64K
996 	if (psize == MMU_PAGE_64K)
997 		rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
998 	else
999 #endif /* CONFIG_PPC_HAS_HASH_64K */
1000 	{
1001 		int spp = subpage_protection(pgdir, ea);
1002 		if (access & spp)
1003 			rc = -2;
1004 		else
1005 			rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1006 					    local, ssize, spp);
1007 	}
1008 
1009 #ifndef CONFIG_PPC_64K_PAGES
1010 	DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1011 #else
1012 	DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1013 		pte_val(*(ptep + PTRS_PER_PTE)));
1014 #endif
1015 	DBG_LOW(" -> rc=%d\n", rc);
1016 	return rc;
1017 }
1018 EXPORT_SYMBOL_GPL(hash_page);
1019 
hash_preload(struct mm_struct * mm,unsigned long ea,unsigned long access,unsigned long trap)1020 void hash_preload(struct mm_struct *mm, unsigned long ea,
1021 		  unsigned long access, unsigned long trap)
1022 {
1023 	unsigned long vsid;
1024 	void *pgdir;
1025 	pte_t *ptep;
1026 	cpumask_t mask;
1027 	unsigned long flags;
1028 	int local = 0;
1029 	int ssize;
1030 
1031 	BUG_ON(REGION_ID(ea) != USER_REGION_ID);
1032 
1033 #ifdef CONFIG_PPC_MM_SLICES
1034 	/* We only prefault standard pages for now */
1035 	if (unlikely(get_slice_psize(mm, ea) != mm->context.user_psize))
1036 		return;
1037 #endif
1038 
1039 	DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1040 		" trap=%lx\n", mm, mm->pgd, ea, access, trap);
1041 
1042 	/* Get Linux PTE if available */
1043 	pgdir = mm->pgd;
1044 	if (pgdir == NULL)
1045 		return;
1046 	ptep = find_linux_pte(pgdir, ea);
1047 	if (!ptep)
1048 		return;
1049 
1050 #ifdef CONFIG_PPC_64K_PAGES
1051 	/* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
1052 	 * a 64K kernel), then we don't preload, hash_page() will take
1053 	 * care of it once we actually try to access the page.
1054 	 * That way we don't have to duplicate all of the logic for segment
1055 	 * page size demotion here
1056 	 */
1057 	if (pte_val(*ptep) & (_PAGE_4K_PFN | _PAGE_NO_CACHE))
1058 		return;
1059 #endif /* CONFIG_PPC_64K_PAGES */
1060 
1061 	/* Get VSID */
1062 	ssize = user_segment_size(ea);
1063 	vsid = get_vsid(mm->context.id, ea, ssize);
1064 
1065 	/* Hash doesn't like irqs */
1066 	local_irq_save(flags);
1067 
1068 	/* Is that local to this CPU ? */
1069 	mask = cpumask_of_cpu(smp_processor_id());
1070 	if (cpus_equal(mm->cpu_vm_mask, mask))
1071 		local = 1;
1072 
1073 	/* Hash it in */
1074 #ifdef CONFIG_PPC_HAS_HASH_64K
1075 	if (mm->context.user_psize == MMU_PAGE_64K)
1076 		__hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1077 	else
1078 #endif /* CONFIG_PPC_HAS_HASH_64K */
1079 		__hash_page_4K(ea, access, vsid, ptep, trap, local, ssize,
1080 			       subpage_protection(pgdir, ea));
1081 
1082 	local_irq_restore(flags);
1083 }
1084 
1085 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1086  *          do not forget to update the assembly call site !
1087  */
flush_hash_page(unsigned long va,real_pte_t pte,int psize,int ssize,int local)1088 void flush_hash_page(unsigned long va, real_pte_t pte, int psize, int ssize,
1089 		     int local)
1090 {
1091 	unsigned long hash, index, shift, hidx, slot;
1092 
1093 	DBG_LOW("flush_hash_page(va=%016x)\n", va);
1094 	pte_iterate_hashed_subpages(pte, psize, va, index, shift) {
1095 		hash = hpt_hash(va, shift, ssize);
1096 		hidx = __rpte_to_hidx(pte, index);
1097 		if (hidx & _PTEIDX_SECONDARY)
1098 			hash = ~hash;
1099 		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1100 		slot += hidx & _PTEIDX_GROUP_IX;
1101 		DBG_LOW(" sub %d: hash=%x, hidx=%x\n", index, slot, hidx);
1102 		ppc_md.hpte_invalidate(slot, va, psize, ssize, local);
1103 	} pte_iterate_hashed_end();
1104 }
1105 
flush_hash_range(unsigned long number,int local)1106 void flush_hash_range(unsigned long number, int local)
1107 {
1108 	if (ppc_md.flush_hash_range)
1109 		ppc_md.flush_hash_range(number, local);
1110 	else {
1111 		int i;
1112 		struct ppc64_tlb_batch *batch =
1113 			&__get_cpu_var(ppc64_tlb_batch);
1114 
1115 		for (i = 0; i < number; i++)
1116 			flush_hash_page(batch->vaddr[i], batch->pte[i],
1117 					batch->psize, batch->ssize, local);
1118 	}
1119 }
1120 
1121 /*
1122  * low_hash_fault is called when we the low level hash code failed
1123  * to instert a PTE due to an hypervisor error
1124  */
low_hash_fault(struct pt_regs * regs,unsigned long address,int rc)1125 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1126 {
1127 	if (user_mode(regs)) {
1128 #ifdef CONFIG_PPC_SUBPAGE_PROT
1129 		if (rc == -2)
1130 			_exception(SIGSEGV, regs, SEGV_ACCERR, address);
1131 		else
1132 #endif
1133 			_exception(SIGBUS, regs, BUS_ADRERR, address);
1134 	} else
1135 		bad_page_fault(regs, address, SIGBUS);
1136 }
1137 
1138 #ifdef CONFIG_DEBUG_PAGEALLOC
kernel_map_linear_page(unsigned long vaddr,unsigned long lmi)1139 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1140 {
1141 	unsigned long hash, hpteg;
1142 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1143 	unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
1144 	unsigned long mode = htab_convert_pte_flags(PAGE_KERNEL);
1145 	int ret;
1146 
1147 	hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
1148 	hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
1149 
1150 	ret = ppc_md.hpte_insert(hpteg, va, __pa(vaddr),
1151 				 mode, HPTE_V_BOLTED,
1152 				 mmu_linear_psize, mmu_kernel_ssize);
1153 	BUG_ON (ret < 0);
1154 	spin_lock(&linear_map_hash_lock);
1155 	BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1156 	linear_map_hash_slots[lmi] = ret | 0x80;
1157 	spin_unlock(&linear_map_hash_lock);
1158 }
1159 
kernel_unmap_linear_page(unsigned long vaddr,unsigned long lmi)1160 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1161 {
1162 	unsigned long hash, hidx, slot;
1163 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1164 	unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
1165 
1166 	hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
1167 	spin_lock(&linear_map_hash_lock);
1168 	BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1169 	hidx = linear_map_hash_slots[lmi] & 0x7f;
1170 	linear_map_hash_slots[lmi] = 0;
1171 	spin_unlock(&linear_map_hash_lock);
1172 	if (hidx & _PTEIDX_SECONDARY)
1173 		hash = ~hash;
1174 	slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1175 	slot += hidx & _PTEIDX_GROUP_IX;
1176 	ppc_md.hpte_invalidate(slot, va, mmu_linear_psize, mmu_kernel_ssize, 0);
1177 }
1178 
kernel_map_pages(struct page * page,int numpages,int enable)1179 void kernel_map_pages(struct page *page, int numpages, int enable)
1180 {
1181 	unsigned long flags, vaddr, lmi;
1182 	int i;
1183 
1184 	local_irq_save(flags);
1185 	for (i = 0; i < numpages; i++, page++) {
1186 		vaddr = (unsigned long)page_address(page);
1187 		lmi = __pa(vaddr) >> PAGE_SHIFT;
1188 		if (lmi >= linear_map_hash_count)
1189 			continue;
1190 		if (enable)
1191 			kernel_map_linear_page(vaddr, lmi);
1192 		else
1193 			kernel_unmap_linear_page(vaddr, lmi);
1194 	}
1195 	local_irq_restore(flags);
1196 }
1197 #endif /* CONFIG_DEBUG_PAGEALLOC */
1198