1 /*
2 * Copyright (c) 2001 Jean-Fredric Clere, Nikolas Zimmermann, Georg Acher
3 * Mark Cave-Ayland, Carlo E Prelz, Dick Streefland
4 * Copyright (c) 2002, 2003 Tuukka Toivonen
5 * Copyright (c) 2008 Erik Andrén
6 * Copyright (c) 2008 Chia-I Wu
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * P/N 861037: Sensor HDCS1000 ASIC STV0600
23 * P/N 861050-0010: Sensor HDCS1000 ASIC STV0600
24 * P/N 861050-0020: Sensor Photobit PB100 ASIC STV0600-1 - QuickCam Express
25 * P/N 861055: Sensor ST VV6410 ASIC STV0610 - LEGO cam
26 * P/N 861075-0040: Sensor HDCS1000 ASIC
27 * P/N 961179-0700: Sensor ST VV6410 ASIC STV0602 - Dexxa WebCam USB
28 * P/N 861040-0000: Sensor ST VV6410 ASIC STV0610 - QuickCam Web
29 */
30
31 #include "stv06xx_hdcs.h"
32
33 enum hdcs_power_state {
34 HDCS_STATE_SLEEP,
35 HDCS_STATE_IDLE,
36 HDCS_STATE_RUN
37 };
38
39 /* no lock? */
40 struct hdcs {
41 enum hdcs_power_state state;
42 int w, h;
43
44 /* visible area of the sensor array */
45 struct {
46 int left, top;
47 int width, height;
48 int border;
49 } array;
50
51 struct {
52 /* Column timing overhead */
53 u8 cto;
54 /* Column processing overhead */
55 u8 cpo;
56 /* Row sample period constant */
57 u16 rs;
58 /* Exposure reset duration */
59 u16 er;
60 } exp;
61
62 int psmp;
63 };
64
hdcs_reg_write_seq(struct sd * sd,u8 reg,u8 * vals,u8 len)65 static int hdcs_reg_write_seq(struct sd *sd, u8 reg, u8 *vals, u8 len)
66 {
67 u8 regs[I2C_MAX_BYTES * 2];
68 int i;
69
70 if (unlikely((len <= 0) || (len >= I2C_MAX_BYTES) ||
71 (reg + len > 0xff)))
72 return -EINVAL;
73
74 for (i = 0; i < len; i++, reg++) {
75 regs[2*i] = reg;
76 regs[2*i+1] = vals[i];
77 }
78
79 return stv06xx_write_sensor_bytes(sd, regs, len);
80 }
81
hdcs_set_state(struct sd * sd,enum hdcs_power_state state)82 static int hdcs_set_state(struct sd *sd, enum hdcs_power_state state)
83 {
84 struct hdcs *hdcs = sd->sensor_priv;
85 u8 val;
86 int ret;
87
88 if (hdcs->state == state)
89 return 0;
90
91 /* we need to go idle before running or sleeping */
92 if (hdcs->state != HDCS_STATE_IDLE) {
93 ret = stv06xx_write_sensor(sd, HDCS_REG_CONTROL(sd), 0);
94 if (ret)
95 return ret;
96 }
97
98 hdcs->state = HDCS_STATE_IDLE;
99
100 if (state == HDCS_STATE_IDLE)
101 return 0;
102
103 switch (state) {
104 case HDCS_STATE_SLEEP:
105 val = HDCS_SLEEP_MODE;
106 break;
107
108 case HDCS_STATE_RUN:
109 val = HDCS_RUN_ENABLE;
110 break;
111
112 default:
113 return -EINVAL;
114 }
115
116 ret = stv06xx_write_sensor(sd, HDCS_REG_CONTROL(sd), val);
117 if (ret < 0)
118 hdcs->state = state;
119
120 return ret;
121 }
122
hdcs_reset(struct sd * sd)123 static int hdcs_reset(struct sd *sd)
124 {
125 struct hdcs *hdcs = sd->sensor_priv;
126 int err;
127
128 err = stv06xx_write_sensor(sd, HDCS_REG_CONTROL(sd), 1);
129 if (err < 0)
130 return err;
131
132 err = stv06xx_write_sensor(sd, HDCS_REG_CONTROL(sd), 0);
133 if (err < 0)
134 hdcs->state = HDCS_STATE_IDLE;
135
136 return err;
137 }
138
hdcs_get_exposure(struct gspca_dev * gspca_dev,__s32 * val)139 static int hdcs_get_exposure(struct gspca_dev *gspca_dev, __s32 *val)
140 {
141 struct sd *sd = (struct sd *) gspca_dev;
142 struct hdcs *hdcs = sd->sensor_priv;
143
144 /* Column time period */
145 int ct;
146 /* Column processing period */
147 int cp;
148 /* Row processing period */
149 int rp;
150 int cycles;
151 int err;
152 int rowexp;
153 u16 data[2];
154
155 err = stv06xx_read_sensor(sd, HDCS_ROWEXPL, &data[0]);
156 if (err < 0)
157 return err;
158
159 err = stv06xx_read_sensor(sd, HDCS_ROWEXPH, &data[1]);
160 if (err < 0)
161 return err;
162
163 rowexp = (data[1] << 8) | data[0];
164
165 ct = hdcs->exp.cto + hdcs->psmp + (HDCS_ADC_START_SIG_DUR + 2);
166 cp = hdcs->exp.cto + (hdcs->w * ct / 2);
167 rp = hdcs->exp.rs + cp;
168
169 cycles = rp * rowexp;
170 *val = cycles / HDCS_CLK_FREQ_MHZ;
171 PDEBUG(D_V4L2, "Read exposure %d", *val);
172 return 0;
173 }
174
hdcs_set_exposure(struct gspca_dev * gspca_dev,__s32 val)175 static int hdcs_set_exposure(struct gspca_dev *gspca_dev, __s32 val)
176 {
177 struct sd *sd = (struct sd *) gspca_dev;
178 struct hdcs *hdcs = sd->sensor_priv;
179 int rowexp, srowexp;
180 int max_srowexp;
181 /* Column time period */
182 int ct;
183 /* Column processing period */
184 int cp;
185 /* Row processing period */
186 int rp;
187 /* Minimum number of column timing periods
188 within the column processing period */
189 int mnct;
190 int cycles, err;
191 u8 exp[4];
192
193 cycles = val * HDCS_CLK_FREQ_MHZ;
194
195 ct = hdcs->exp.cto + hdcs->psmp + (HDCS_ADC_START_SIG_DUR + 2);
196 cp = hdcs->exp.cto + (hdcs->w * ct / 2);
197
198 /* the cycles one row takes */
199 rp = hdcs->exp.rs + cp;
200
201 rowexp = cycles / rp;
202
203 /* the remaining cycles */
204 cycles -= rowexp * rp;
205
206 /* calculate sub-row exposure */
207 if (IS_1020(sd)) {
208 /* see HDCS-1020 datasheet 3.5.6.4, p. 63 */
209 srowexp = hdcs->w - (cycles + hdcs->exp.er + 13) / ct;
210
211 mnct = (hdcs->exp.er + 12 + ct - 1) / ct;
212 max_srowexp = hdcs->w - mnct;
213 } else {
214 /* see HDCS-1000 datasheet 3.4.5.5, p. 61 */
215 srowexp = cp - hdcs->exp.er - 6 - cycles;
216
217 mnct = (hdcs->exp.er + 5 + ct - 1) / ct;
218 max_srowexp = cp - mnct * ct - 1;
219 }
220
221 if (srowexp < 0)
222 srowexp = 0;
223 else if (srowexp > max_srowexp)
224 srowexp = max_srowexp;
225
226 if (IS_1020(sd)) {
227 exp[0] = rowexp & 0xff;
228 exp[1] = rowexp >> 8;
229 exp[2] = (srowexp >> 2) & 0xff;
230 /* this clears exposure error flag */
231 exp[3] = 0x1;
232 err = hdcs_reg_write_seq(sd, HDCS_ROWEXPL, exp, 4);
233 } else {
234 exp[0] = rowexp & 0xff;
235 exp[1] = rowexp >> 8;
236 exp[2] = srowexp & 0xff;
237 exp[3] = srowexp >> 8;
238 err = hdcs_reg_write_seq(sd, HDCS_ROWEXPL, exp, 4);
239 if (err < 0)
240 return err;
241
242 /* clear exposure error flag */
243 err = stv06xx_write_sensor(sd,
244 HDCS_STATUS, BIT(4));
245 }
246 PDEBUG(D_V4L2, "Writing exposure %d, rowexp %d, srowexp %d",
247 val, rowexp, srowexp);
248 return err;
249 }
250
hdcs_set_gains(struct sd * sd,u8 r,u8 g,u8 b)251 static int hdcs_set_gains(struct sd *sd, u8 r, u8 g, u8 b)
252 {
253 u8 gains[4];
254
255 /* the voltage gain Av = (1 + 19 * val / 127) * (1 + bit7) */
256 if (r > 127)
257 r = 0x80 | (r / 2);
258 if (g > 127)
259 g = 0x80 | (g / 2);
260 if (b > 127)
261 b = 0x80 | (b / 2);
262
263 gains[0] = g;
264 gains[1] = r;
265 gains[2] = b;
266 gains[3] = g;
267
268 return hdcs_reg_write_seq(sd, HDCS_ERECPGA, gains, 4);
269 }
270
hdcs_get_gain(struct gspca_dev * gspca_dev,__s32 * val)271 static int hdcs_get_gain(struct gspca_dev *gspca_dev, __s32 *val)
272 {
273 struct sd *sd = (struct sd *) gspca_dev;
274 int err;
275 u16 data;
276
277 err = stv06xx_read_sensor(sd, HDCS_ERECPGA, &data);
278
279 /* Bit 7 doubles the gain */
280 if (data & 0x80)
281 *val = (data & 0x7f) * 2;
282 else
283 *val = data;
284
285 PDEBUG(D_V4L2, "Read gain %d", *val);
286 return err;
287 }
288
hdcs_set_gain(struct gspca_dev * gspca_dev,__s32 val)289 static int hdcs_set_gain(struct gspca_dev *gspca_dev, __s32 val)
290 {
291 PDEBUG(D_V4L2, "Writing gain %d", val);
292 return hdcs_set_gains((struct sd *) gspca_dev,
293 val & 0xff, val & 0xff, val & 0xff);
294 }
295
hdcs_set_size(struct sd * sd,unsigned int width,unsigned int height)296 static int hdcs_set_size(struct sd *sd,
297 unsigned int width, unsigned int height)
298 {
299 struct hdcs *hdcs = sd->sensor_priv;
300 u8 win[4];
301 unsigned int x, y;
302 int err;
303
304 /* must be multiple of 4 */
305 width = (width + 3) & ~0x3;
306 height = (height + 3) & ~0x3;
307
308 if (width > hdcs->array.width)
309 width = hdcs->array.width;
310
311 if (IS_1020(sd)) {
312 /* the borders are also invalid */
313 if (height + 2 * hdcs->array.border + HDCS_1020_BOTTOM_Y_SKIP
314 > hdcs->array.height)
315 height = hdcs->array.height - 2 * hdcs->array.border -
316 HDCS_1020_BOTTOM_Y_SKIP;
317
318 y = (hdcs->array.height - HDCS_1020_BOTTOM_Y_SKIP - height) / 2
319 + hdcs->array.top;
320 } else {
321 if (height > hdcs->array.height)
322 height = hdcs->array.height;
323
324 y = hdcs->array.top + (hdcs->array.height - height) / 2;
325 }
326
327 x = hdcs->array.left + (hdcs->array.width - width) / 2;
328
329 win[0] = y / 4;
330 win[1] = x / 4;
331 win[2] = (y + height) / 4 - 1;
332 win[3] = (x + width) / 4 - 1;
333
334 err = hdcs_reg_write_seq(sd, HDCS_FWROW, win, 4);
335 if (err < 0)
336 return err;
337
338 /* Update the current width and height */
339 hdcs->w = width;
340 hdcs->h = height;
341 return err;
342 }
343
hdcs_probe_1x00(struct sd * sd)344 static int hdcs_probe_1x00(struct sd *sd)
345 {
346 struct hdcs *hdcs;
347 u16 sensor;
348 int ret;
349
350 ret = stv06xx_read_sensor(sd, HDCS_IDENT, &sensor);
351 if (ret < 0 || sensor != 0x08)
352 return -ENODEV;
353
354 info("HDCS-1000/1100 sensor detected");
355
356 sd->gspca_dev.cam.cam_mode = stv06xx_sensor_hdcs1x00.modes;
357 sd->gspca_dev.cam.nmodes = stv06xx_sensor_hdcs1x00.nmodes;
358 sd->desc.ctrls = stv06xx_sensor_hdcs1x00.ctrls;
359 sd->desc.nctrls = stv06xx_sensor_hdcs1x00.nctrls;
360
361 hdcs = kmalloc(sizeof(struct hdcs), GFP_KERNEL);
362 if (!hdcs)
363 return -ENOMEM;
364
365 hdcs->array.left = 8;
366 hdcs->array.top = 8;
367 hdcs->array.width = HDCS_1X00_DEF_WIDTH;
368 hdcs->array.height = HDCS_1X00_DEF_HEIGHT;
369 hdcs->array.border = 4;
370
371 hdcs->exp.cto = 4;
372 hdcs->exp.cpo = 2;
373 hdcs->exp.rs = 186;
374 hdcs->exp.er = 100;
375
376 /*
377 * Frame rate on HDCS-1000 0x46D:0x840 depends on PSMP:
378 * 4 = doesn't work at all
379 * 5 = 7.8 fps,
380 * 6 = 6.9 fps,
381 * 8 = 6.3 fps,
382 * 10 = 5.5 fps,
383 * 15 = 4.4 fps,
384 * 31 = 2.8 fps
385 *
386 * Frame rate on HDCS-1000 0x46D:0x870 depends on PSMP:
387 * 15 = doesn't work at all
388 * 18 = doesn't work at all
389 * 19 = 7.3 fps
390 * 20 = 7.4 fps
391 * 21 = 7.4 fps
392 * 22 = 7.4 fps
393 * 24 = 6.3 fps
394 * 30 = 5.4 fps
395 */
396 hdcs->psmp = IS_870(sd) ? 20 : 5;
397
398 sd->sensor_priv = hdcs;
399
400 return 0;
401 }
402
hdcs_probe_1020(struct sd * sd)403 static int hdcs_probe_1020(struct sd *sd)
404 {
405 struct hdcs *hdcs;
406 u16 sensor;
407 int ret;
408
409 ret = stv06xx_read_sensor(sd, HDCS_IDENT, &sensor);
410 if (ret < 0 || sensor != 0x10)
411 return -ENODEV;
412
413 info("HDCS-1020 sensor detected");
414
415 sd->gspca_dev.cam.cam_mode = stv06xx_sensor_hdcs1020.modes;
416 sd->gspca_dev.cam.nmodes = stv06xx_sensor_hdcs1020.nmodes;
417 sd->desc.ctrls = stv06xx_sensor_hdcs1020.ctrls;
418 sd->desc.nctrls = stv06xx_sensor_hdcs1020.nctrls;
419
420 hdcs = kmalloc(sizeof(struct hdcs), GFP_KERNEL);
421 if (!hdcs)
422 return -ENOMEM;
423
424 /*
425 * From Andrey's test image: looks like HDCS-1020 upper-left
426 * visible pixel is at 24,8 (y maybe even smaller?) and lower-right
427 * visible pixel at 375,299 (x maybe even larger?)
428 */
429 hdcs->array.left = 24;
430 hdcs->array.top = 4;
431 hdcs->array.width = HDCS_1020_DEF_WIDTH;
432 hdcs->array.height = 304;
433 hdcs->array.border = 4;
434
435 hdcs->psmp = 6;
436
437 hdcs->exp.cto = 3;
438 hdcs->exp.cpo = 3;
439 hdcs->exp.rs = 155;
440 hdcs->exp.er = 96;
441
442 sd->sensor_priv = hdcs;
443
444 return 0;
445 }
446
hdcs_start(struct sd * sd)447 static int hdcs_start(struct sd *sd)
448 {
449 PDEBUG(D_STREAM, "Starting stream");
450
451 return hdcs_set_state(sd, HDCS_STATE_RUN);
452 }
453
hdcs_stop(struct sd * sd)454 static int hdcs_stop(struct sd *sd)
455 {
456 PDEBUG(D_STREAM, "Halting stream");
457
458 return hdcs_set_state(sd, HDCS_STATE_SLEEP);
459 }
460
hdcs_disconnect(struct sd * sd)461 static void hdcs_disconnect(struct sd *sd)
462 {
463 PDEBUG(D_PROBE, "Disconnecting the sensor");
464 kfree(sd->sensor_priv);
465 }
466
hdcs_init(struct sd * sd)467 static int hdcs_init(struct sd *sd)
468 {
469 struct hdcs *hdcs = sd->sensor_priv;
470 int i, err = 0;
471
472 /* Set the STV0602AA in STV0600 emulation mode */
473 if (IS_870(sd))
474 stv06xx_write_bridge(sd, STV_STV0600_EMULATION, 1);
475
476 /* Execute the bridge init */
477 for (i = 0; i < ARRAY_SIZE(stv_bridge_init) && !err; i++) {
478 err = stv06xx_write_bridge(sd, stv_bridge_init[i][0],
479 stv_bridge_init[i][1]);
480 }
481 if (err < 0)
482 return err;
483
484 /* sensor soft reset */
485 hdcs_reset(sd);
486
487 /* Execute the sensor init */
488 for (i = 0; i < ARRAY_SIZE(stv_sensor_init) && !err; i++) {
489 err = stv06xx_write_sensor(sd, stv_sensor_init[i][0],
490 stv_sensor_init[i][1]);
491 }
492 if (err < 0)
493 return err;
494
495 /* Enable continous frame capture, bit 2: stop when frame complete */
496 err = stv06xx_write_sensor(sd, HDCS_REG_CONFIG(sd), BIT(3));
497 if (err < 0)
498 return err;
499
500 /* Set PGA sample duration
501 (was 0x7E for IS_870, but caused slow framerate with HDCS-1020) */
502 if (IS_1020(sd))
503 err = stv06xx_write_sensor(sd, HDCS_TCTRL,
504 (HDCS_ADC_START_SIG_DUR << 6) | hdcs->psmp);
505 else
506 err = stv06xx_write_sensor(sd, HDCS_TCTRL,
507 (HDCS_ADC_START_SIG_DUR << 5) | hdcs->psmp);
508 if (err < 0)
509 return err;
510
511 err = hdcs_set_gains(sd, HDCS_DEFAULT_GAIN, HDCS_DEFAULT_GAIN,
512 HDCS_DEFAULT_GAIN);
513 if (err < 0)
514 return err;
515
516 err = hdcs_set_exposure(&sd->gspca_dev, HDCS_DEFAULT_EXPOSURE);
517 if (err < 0)
518 return err;
519
520 err = hdcs_set_size(sd, hdcs->array.width, hdcs->array.height);
521 return err;
522 }
523
hdcs_dump(struct sd * sd)524 static int hdcs_dump(struct sd *sd)
525 {
526 u16 reg, val;
527
528 info("Dumping sensor registers:");
529
530 for (reg = HDCS_IDENT; reg <= HDCS_ROWEXPH; reg++) {
531 stv06xx_read_sensor(sd, reg, &val);
532 info("reg 0x%02x = 0x%02x", reg, val);
533 }
534 return 0;
535 }
536