• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Intel Wireless WiMAX Connection 2400m
3  * Generic probe/disconnect, reset and message passing
4  *
5  *
6  * Copyright (C) 2007-2008 Intel Corporation <linux-wimax@intel.com>
7  * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License version
11  * 2 as published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21  * 02110-1301, USA.
22  *
23  *
24  * See i2400m.h for driver documentation. This contains helpers for
25  * the driver model glue [_setup()/_release()], handling device resets
26  * [_dev_reset_handle()], and the backends for the WiMAX stack ops
27  * reset [_op_reset()] and message from user [_op_msg_from_user()].
28  *
29  * ROADMAP:
30  *
31  * i2400m_op_msg_from_user()
32  *   i2400m_msg_to_dev()
33  *   wimax_msg_to_user_send()
34  *
35  * i2400m_op_reset()
36  *   i240m->bus_reset()
37  *
38  * i2400m_dev_reset_handle()
39  *   __i2400m_dev_reset_handle()
40  *     __i2400m_dev_stop()
41  *     __i2400m_dev_start()
42  *
43  * i2400m_setup()
44  *   i2400m_bootrom_init()
45  *   register_netdev()
46  *   i2400m_dev_start()
47  *     __i2400m_dev_start()
48  *       i2400m_dev_bootstrap()
49  *       i2400m_tx_setup()
50  *       i2400m->bus_dev_start()
51  *       i2400m_check_mac_addr()
52  *   wimax_dev_add()
53  *
54  * i2400m_release()
55  *   wimax_dev_rm()
56  *   i2400m_dev_stop()
57  *     __i2400m_dev_stop()
58  *       i2400m_dev_shutdown()
59  *       i2400m->bus_dev_stop()
60  *       i2400m_tx_release()
61  *   unregister_netdev()
62  */
63 #include "i2400m.h"
64 #include <linux/wimax/i2400m.h>
65 #include <linux/module.h>
66 #include <linux/moduleparam.h>
67 
68 #define D_SUBMODULE driver
69 #include "debug-levels.h"
70 
71 
72 int i2400m_idle_mode_disabled;	/* 0 (idle mode enabled) by default */
73 module_param_named(idle_mode_disabled, i2400m_idle_mode_disabled, int, 0644);
74 MODULE_PARM_DESC(idle_mode_disabled,
75 		 "If true, the device will not enable idle mode negotiation "
76 		 "with the base station (when connected) to save power.");
77 
78 /**
79  * i2400m_queue_work - schedule work on a i2400m's queue
80  *
81  * @i2400m: device descriptor
82  *
83  * @fn: function to run to execute work. It gets passed a 'struct
84  *     work_struct' that is wrapped in a 'struct i2400m_work'. Once
85  *     done, you have to (1) i2400m_put(i2400m_work->i2400m) and then
86  *     (2) kfree(i2400m_work).
87  *
88  * @gfp_flags: GFP flags for memory allocation.
89  *
90  * @pl: pointer to a payload buffer that you want to pass to the _work
91  *     function. Use this to pack (for example) a struct with extra
92  *     arguments.
93  *
94  * @pl_size: size of the payload buffer.
95  *
96  * We do this quite often, so this just saves typing; allocate a
97  * wrapper for a i2400m, get a ref to it, pack arguments and launch
98  * the work.
99  *
100  * A usual workflow is:
101  *
102  * struct my_work_args {
103  *         void *something;
104  *         int whatever;
105  * };
106  * ...
107  *
108  * struct my_work_args my_args = {
109  *         .something = FOO,
110  *         .whaetever = BLAH
111  * };
112  * i2400m_queue_work(i2400m, 1, my_work_function, GFP_KERNEL,
113  *                   &args, sizeof(args))
114  *
115  * And now the work function can unpack the arguments and call the
116  * real function (or do the job itself):
117  *
118  * static
119  * void my_work_fn((struct work_struct *ws)
120  * {
121  *         struct i2400m_work *iw =
122  *	           container_of(ws, struct i2400m_work, ws);
123  *	   struct my_work_args *my_args = (void *) iw->pl;
124  *
125  *	   my_work(iw->i2400m, my_args->something, my_args->whatevert);
126  * }
127  */
i2400m_queue_work(struct i2400m * i2400m,void (* fn)(struct work_struct *),gfp_t gfp_flags,const void * pl,size_t pl_size)128 int i2400m_queue_work(struct i2400m *i2400m,
129 		      void (*fn)(struct work_struct *), gfp_t gfp_flags,
130 		      const void *pl, size_t pl_size)
131 {
132 	int result;
133 	struct i2400m_work *iw;
134 
135 	BUG_ON(i2400m->work_queue == NULL);
136 	result = -ENOMEM;
137 	iw = kzalloc(sizeof(*iw) + pl_size, gfp_flags);
138 	if (iw == NULL)
139 		goto error_kzalloc;
140 	iw->i2400m = i2400m_get(i2400m);
141 	memcpy(iw->pl, pl, pl_size);
142 	INIT_WORK(&iw->ws, fn);
143 	result = queue_work(i2400m->work_queue, &iw->ws);
144 error_kzalloc:
145 	return result;
146 }
147 EXPORT_SYMBOL_GPL(i2400m_queue_work);
148 
149 
150 /*
151  * Schedule i2400m's specific work on the system's queue.
152  *
153  * Used for a few cases where we really need it; otherwise, identical
154  * to i2400m_queue_work().
155  *
156  * Returns < 0 errno code on error, 1 if ok.
157  *
158  * If it returns zero, something really bad happened, as it means the
159  * works struct was already queued, but we have just allocated it, so
160  * it should not happen.
161  */
i2400m_schedule_work(struct i2400m * i2400m,void (* fn)(struct work_struct *),gfp_t gfp_flags)162 int i2400m_schedule_work(struct i2400m *i2400m,
163 			 void (*fn)(struct work_struct *), gfp_t gfp_flags)
164 {
165 	int result;
166 	struct i2400m_work *iw;
167 
168 	BUG_ON(i2400m->work_queue == NULL);
169 	result = -ENOMEM;
170 	iw = kzalloc(sizeof(*iw), gfp_flags);
171 	if (iw == NULL)
172 		goto error_kzalloc;
173 	iw->i2400m = i2400m_get(i2400m);
174 	INIT_WORK(&iw->ws, fn);
175 	result = schedule_work(&iw->ws);
176 	if (result == 0)
177 		result = -ENXIO;
178 error_kzalloc:
179 	return result;
180 }
181 
182 
183 /*
184  * WiMAX stack operation: relay a message from user space
185  *
186  * @wimax_dev: device descriptor
187  * @pipe_name: named pipe the message is for
188  * @msg_buf: pointer to the message bytes
189  * @msg_len: length of the buffer
190  * @genl_info: passed by the generic netlink layer
191  *
192  * The WiMAX stack will call this function when a message was received
193  * from user space.
194  *
195  * For the i2400m, this is an L3L4 message, as specified in
196  * include/linux/wimax/i2400m.h, and thus prefixed with a 'struct
197  * i2400m_l3l4_hdr'. Driver (and device) expect the messages to be
198  * coded in Little Endian.
199  *
200  * This function just verifies that the header declaration and the
201  * payload are consistent and then deals with it, either forwarding it
202  * to the device or procesing it locally.
203  *
204  * In the i2400m, messages are basically commands that will carry an
205  * ack, so we use i2400m_msg_to_dev() and then deliver the ack back to
206  * user space. The rx.c code might intercept the response and use it
207  * to update the driver's state, but then it will pass it on so it can
208  * be relayed back to user space.
209  *
210  * Note that asynchronous events from the device are processed and
211  * sent to user space in rx.c.
212  */
213 static
i2400m_op_msg_from_user(struct wimax_dev * wimax_dev,const char * pipe_name,const void * msg_buf,size_t msg_len,const struct genl_info * genl_info)214 int i2400m_op_msg_from_user(struct wimax_dev *wimax_dev,
215 			    const char *pipe_name,
216 			    const void *msg_buf, size_t msg_len,
217 			    const struct genl_info *genl_info)
218 {
219 	int result;
220 	struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev);
221 	struct device *dev = i2400m_dev(i2400m);
222 	struct sk_buff *ack_skb;
223 
224 	d_fnstart(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p "
225 		  "msg_len %zu genl_info %p)\n", wimax_dev, i2400m,
226 		  msg_buf, msg_len, genl_info);
227 	ack_skb = i2400m_msg_to_dev(i2400m, msg_buf, msg_len);
228 	result = PTR_ERR(ack_skb);
229 	if (IS_ERR(ack_skb))
230 		goto error_msg_to_dev;
231 	if (unlikely(i2400m->trace_msg_from_user))
232 		wimax_msg(&i2400m->wimax_dev, "trace",
233 			  msg_buf, msg_len, GFP_KERNEL);
234 	result = wimax_msg_send(&i2400m->wimax_dev, ack_skb);
235 error_msg_to_dev:
236 	d_fnend(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p msg_len %zu "
237 		"genl_info %p) = %d\n", wimax_dev, i2400m, msg_buf, msg_len,
238 		genl_info, result);
239 	return result;
240 }
241 
242 
243 /*
244  * Context to wait for a reset to finalize
245  */
246 struct i2400m_reset_ctx {
247 	struct completion completion;
248 	int result;
249 };
250 
251 
252 /*
253  * WiMAX stack operation: reset a device
254  *
255  * @wimax_dev: device descriptor
256  *
257  * See the documentation for wimax_reset() and wimax_dev->op_reset for
258  * the requirements of this function. The WiMAX stack guarantees
259  * serialization on calls to this function.
260  *
261  * Do a warm reset on the device; if it fails, resort to a cold reset
262  * and return -ENODEV. On successful warm reset, we need to block
263  * until it is complete.
264  *
265  * The bus-driver implementation of reset takes care of falling back
266  * to cold reset if warm fails.
267  */
268 static
i2400m_op_reset(struct wimax_dev * wimax_dev)269 int i2400m_op_reset(struct wimax_dev *wimax_dev)
270 {
271 	int result;
272 	struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev);
273 	struct device *dev = i2400m_dev(i2400m);
274 	struct i2400m_reset_ctx ctx = {
275 		.completion = COMPLETION_INITIALIZER_ONSTACK(ctx.completion),
276 		.result = 0,
277 	};
278 
279 	d_fnstart(4, dev, "(wimax_dev %p)\n", wimax_dev);
280 	mutex_lock(&i2400m->init_mutex);
281 	i2400m->reset_ctx = &ctx;
282 	mutex_unlock(&i2400m->init_mutex);
283 	result = i2400m->bus_reset(i2400m, I2400M_RT_WARM);
284 	if (result < 0)
285 		goto out;
286 	result = wait_for_completion_timeout(&ctx.completion, 4*HZ);
287 	if (result == 0)
288 		result = -ETIMEDOUT;
289 	else if (result > 0)
290 		result = ctx.result;
291 	/* if result < 0, pass it on */
292 	mutex_lock(&i2400m->init_mutex);
293 	i2400m->reset_ctx = NULL;
294 	mutex_unlock(&i2400m->init_mutex);
295 out:
296 	d_fnend(4, dev, "(wimax_dev %p) = %d\n", wimax_dev, result);
297 	return result;
298 }
299 
300 
301 /*
302  * Check the MAC address we got from boot mode is ok
303  *
304  * @i2400m: device descriptor
305  *
306  * Returns: 0 if ok, < 0 errno code on error.
307  */
308 static
i2400m_check_mac_addr(struct i2400m * i2400m)309 int i2400m_check_mac_addr(struct i2400m *i2400m)
310 {
311 	int result;
312 	struct device *dev = i2400m_dev(i2400m);
313 	struct sk_buff *skb;
314 	const struct i2400m_tlv_detailed_device_info *ddi;
315 	struct net_device *net_dev = i2400m->wimax_dev.net_dev;
316 	const unsigned char zeromac[ETH_ALEN] = { 0 };
317 
318 	d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
319 	skb = i2400m_get_device_info(i2400m);
320 	if (IS_ERR(skb)) {
321 		result = PTR_ERR(skb);
322 		dev_err(dev, "Cannot verify MAC address, error reading: %d\n",
323 			result);
324 		goto error;
325 	}
326 	/* Extract MAC addresss */
327 	ddi = (void *) skb->data;
328 	BUILD_BUG_ON(ETH_ALEN != sizeof(ddi->mac_address));
329 	d_printf(2, dev, "GET DEVICE INFO: mac addr "
330 		 "%02x:%02x:%02x:%02x:%02x:%02x\n",
331 		 ddi->mac_address[0], ddi->mac_address[1],
332 		 ddi->mac_address[2], ddi->mac_address[3],
333 		 ddi->mac_address[4], ddi->mac_address[5]);
334 	if (!memcmp(net_dev->perm_addr, ddi->mac_address,
335 		   sizeof(ddi->mac_address)))
336 		goto ok;
337 	dev_warn(dev, "warning: device reports a different MAC address "
338 		 "to that of boot mode's\n");
339 	dev_warn(dev, "device reports     %02x:%02x:%02x:%02x:%02x:%02x\n",
340 		 ddi->mac_address[0], ddi->mac_address[1],
341 		 ddi->mac_address[2], ddi->mac_address[3],
342 		 ddi->mac_address[4], ddi->mac_address[5]);
343 	dev_warn(dev, "boot mode reported %02x:%02x:%02x:%02x:%02x:%02x\n",
344 		 net_dev->perm_addr[0], net_dev->perm_addr[1],
345 		 net_dev->perm_addr[2], net_dev->perm_addr[3],
346 		 net_dev->perm_addr[4], net_dev->perm_addr[5]);
347 	if (!memcmp(zeromac, ddi->mac_address, sizeof(zeromac)))
348 		dev_err(dev, "device reports an invalid MAC address, "
349 			"not updating\n");
350 	else {
351 		dev_warn(dev, "updating MAC address\n");
352 		net_dev->addr_len = ETH_ALEN;
353 		memcpy(net_dev->perm_addr, ddi->mac_address, ETH_ALEN);
354 		memcpy(net_dev->dev_addr, ddi->mac_address, ETH_ALEN);
355 	}
356 ok:
357 	result = 0;
358 	kfree_skb(skb);
359 error:
360 	d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
361 	return result;
362 }
363 
364 
365 /**
366  * __i2400m_dev_start - Bring up driver communication with the device
367  *
368  * @i2400m: device descriptor
369  * @flags: boot mode flags
370  *
371  * Returns: 0 if ok, < 0 errno code on error.
372  *
373  * Uploads firmware and brings up all the resources needed to be able
374  * to communicate with the device.
375  *
376  * TX needs to be setup before the bus-specific code (otherwise on
377  * shutdown, the bus-tx code could try to access it).
378  */
379 static
__i2400m_dev_start(struct i2400m * i2400m,enum i2400m_bri flags)380 int __i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri flags)
381 {
382 	int result;
383 	struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
384 	struct net_device *net_dev = wimax_dev->net_dev;
385 	struct device *dev = i2400m_dev(i2400m);
386 	int times = 3;
387 
388 	d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
389 retry:
390 	result = i2400m_dev_bootstrap(i2400m, flags);
391 	if (result < 0) {
392 		dev_err(dev, "cannot bootstrap device: %d\n", result);
393 		goto error_bootstrap;
394 	}
395 	result = i2400m_tx_setup(i2400m);
396 	if (result < 0)
397 		goto error_tx_setup;
398 	result = i2400m->bus_dev_start(i2400m);
399 	if (result < 0)
400 		goto error_bus_dev_start;
401 	i2400m->work_queue = create_singlethread_workqueue(wimax_dev->name);
402 	if (i2400m->work_queue == NULL) {
403 		result = -ENOMEM;
404 		dev_err(dev, "cannot create workqueue\n");
405 		goto error_create_workqueue;
406 	}
407 	/* At this point is ok to send commands to the device */
408 	result = i2400m_check_mac_addr(i2400m);
409 	if (result < 0)
410 		goto error_check_mac_addr;
411 	i2400m->ready = 1;
412 	wimax_state_change(wimax_dev, WIMAX_ST_UNINITIALIZED);
413 	result = i2400m_dev_initialize(i2400m);
414 	if (result < 0)
415 		goto error_dev_initialize;
416 	/* At this point, reports will come for the device and set it
417 	 * to the right state if it is different than UNINITIALIZED */
418 	d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
419 		net_dev, i2400m, result);
420 	return result;
421 
422 error_dev_initialize:
423 error_check_mac_addr:
424 	destroy_workqueue(i2400m->work_queue);
425 error_create_workqueue:
426 	i2400m->bus_dev_stop(i2400m);
427 error_bus_dev_start:
428 	i2400m_tx_release(i2400m);
429 error_tx_setup:
430 error_bootstrap:
431 	if (result == -ERESTARTSYS && times-- > 0) {
432 		flags = I2400M_BRI_SOFT;
433 		goto retry;
434 	}
435 	d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
436 		net_dev, i2400m, result);
437 	return result;
438 }
439 
440 
441 static
i2400m_dev_start(struct i2400m * i2400m,enum i2400m_bri bm_flags)442 int i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri bm_flags)
443 {
444 	int result;
445 	mutex_lock(&i2400m->init_mutex);	/* Well, start the device */
446 	result = __i2400m_dev_start(i2400m, bm_flags);
447 	if (result >= 0)
448 		i2400m->updown = 1;
449 	mutex_unlock(&i2400m->init_mutex);
450 	return result;
451 }
452 
453 
454 /**
455  * i2400m_dev_stop - Tear down driver communication with the device
456  *
457  * @i2400m: device descriptor
458  *
459  * Returns: 0 if ok, < 0 errno code on error.
460  *
461  * Releases all the resources allocated to communicate with the device.
462  */
463 static
__i2400m_dev_stop(struct i2400m * i2400m)464 void __i2400m_dev_stop(struct i2400m *i2400m)
465 {
466 	struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
467 	struct device *dev = i2400m_dev(i2400m);
468 
469 	d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
470 	wimax_state_change(wimax_dev, __WIMAX_ST_QUIESCING);
471 	i2400m_dev_shutdown(i2400m);
472 	i2400m->ready = 0;
473 	destroy_workqueue(i2400m->work_queue);
474 	i2400m->bus_dev_stop(i2400m);
475 	i2400m_tx_release(i2400m);
476 	wimax_state_change(wimax_dev, WIMAX_ST_DOWN);
477 	d_fnend(3, dev, "(i2400m %p) = 0\n", i2400m);
478 }
479 
480 
481 /*
482  * Watch out -- we only need to stop if there is a need for it. The
483  * device could have reset itself and failed to come up again (see
484  * _i2400m_dev_reset_handle()).
485  */
486 static
i2400m_dev_stop(struct i2400m * i2400m)487 void i2400m_dev_stop(struct i2400m *i2400m)
488 {
489 	mutex_lock(&i2400m->init_mutex);
490 	if (i2400m->updown) {
491 		__i2400m_dev_stop(i2400m);
492 		i2400m->updown = 0;
493 	}
494 	mutex_unlock(&i2400m->init_mutex);
495 }
496 
497 
498 /*
499  * The device has rebooted; fix up the device and the driver
500  *
501  * Tear down the driver communication with the device, reload the
502  * firmware and reinitialize the communication with the device.
503  *
504  * If someone calls a reset when the device's firmware is down, in
505  * theory we won't see it because we are not listening. However, just
506  * in case, leave the code to handle it.
507  *
508  * If there is a reset context, use it; this means someone is waiting
509  * for us to tell him when the reset operation is complete and the
510  * device is ready to rock again.
511  *
512  * NOTE: if we are in the process of bringing up or down the
513  *       communication with the device [running i2400m_dev_start() or
514  *       _stop()], don't do anything, let it fail and handle it.
515  *
516  * This function is ran always in a thread context
517  */
518 static
__i2400m_dev_reset_handle(struct work_struct * ws)519 void __i2400m_dev_reset_handle(struct work_struct *ws)
520 {
521 	int result;
522 	struct i2400m_work *iw = container_of(ws, struct i2400m_work, ws);
523 	struct i2400m *i2400m = iw->i2400m;
524 	struct device *dev = i2400m_dev(i2400m);
525 	enum wimax_st wimax_state;
526 	struct i2400m_reset_ctx *ctx = i2400m->reset_ctx;
527 
528 	d_fnstart(3, dev, "(ws %p i2400m %p)\n", ws, i2400m);
529 	result = 0;
530 	if (mutex_trylock(&i2400m->init_mutex) == 0) {
531 		/* We are still in i2400m_dev_start() [let it fail] or
532 		 * i2400m_dev_stop() [we are shutting down anyway, so
533 		 * ignore it] or we are resetting somewhere else. */
534 		dev_err(dev, "device rebooted\n");
535 		i2400m_msg_to_dev_cancel_wait(i2400m, -ERESTARTSYS);
536 		complete(&i2400m->msg_completion);
537 		goto out;
538 	}
539 	wimax_state = wimax_state_get(&i2400m->wimax_dev);
540 	if (wimax_state < WIMAX_ST_UNINITIALIZED) {
541 		dev_info(dev, "device rebooted: it is down, ignoring\n");
542 		goto out_unlock;	/* ifconfig up/down wasn't called */
543 	}
544 	dev_err(dev, "device rebooted: reinitializing driver\n");
545 	__i2400m_dev_stop(i2400m);
546 	i2400m->updown = 0;
547 	result = __i2400m_dev_start(i2400m,
548 				    I2400M_BRI_SOFT | I2400M_BRI_MAC_REINIT);
549 	if (result < 0) {
550 		dev_err(dev, "device reboot: cannot start the device: %d\n",
551 			result);
552 		result = i2400m->bus_reset(i2400m, I2400M_RT_BUS);
553 		if (result >= 0)
554 			result = -ENODEV;
555 	} else
556 		i2400m->updown = 1;
557 out_unlock:
558 	if (i2400m->reset_ctx) {
559 		ctx->result = result;
560 		complete(&ctx->completion);
561 	}
562 	mutex_unlock(&i2400m->init_mutex);
563 out:
564 	i2400m_put(i2400m);
565 	kfree(iw);
566 	d_fnend(3, dev, "(ws %p i2400m %p) = void\n", ws, i2400m);
567 	return;
568 }
569 
570 
571 /**
572  * i2400m_dev_reset_handle - Handle a device's reset in a thread context
573  *
574  * Schedule a device reset handling out on a thread context, so it
575  * is safe to call from atomic context. We can't use the i2400m's
576  * queue as we are going to destroy it and reinitialize it as part of
577  * the driver bringup/bringup process.
578  *
579  * See __i2400m_dev_reset_handle() for details; that takes care of
580  * reinitializing the driver to handle the reset, calling into the
581  * bus-specific functions ops as needed.
582  */
i2400m_dev_reset_handle(struct i2400m * i2400m)583 int i2400m_dev_reset_handle(struct i2400m *i2400m)
584 {
585 	return i2400m_schedule_work(i2400m, __i2400m_dev_reset_handle,
586 				    GFP_ATOMIC);
587 }
588 EXPORT_SYMBOL_GPL(i2400m_dev_reset_handle);
589 
590 
591 /**
592  * i2400m_setup - bus-generic setup function for the i2400m device
593  *
594  * @i2400m: device descriptor (bus-specific parts have been initialized)
595  *
596  * Returns: 0 if ok, < 0 errno code on error.
597  *
598  * Initializes the bus-generic parts of the i2400m driver; the
599  * bus-specific parts have been initialized, function pointers filled
600  * out by the bus-specific probe function.
601  *
602  * As well, this registers the WiMAX and net device nodes. Once this
603  * function returns, the device is operative and has to be ready to
604  * receive and send network traffic and WiMAX control operations.
605  */
i2400m_setup(struct i2400m * i2400m,enum i2400m_bri bm_flags)606 int i2400m_setup(struct i2400m *i2400m, enum i2400m_bri bm_flags)
607 {
608 	int result = -ENODEV;
609 	struct device *dev = i2400m_dev(i2400m);
610 	struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
611 	struct net_device *net_dev = i2400m->wimax_dev.net_dev;
612 
613 	d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
614 
615 	snprintf(wimax_dev->name, sizeof(wimax_dev->name),
616 		 "i2400m-%s:%s", dev->bus->name, dev->bus_id);
617 
618 	i2400m->bm_cmd_buf = kzalloc(I2400M_BM_CMD_BUF_SIZE, GFP_KERNEL);
619 	if (i2400m->bm_cmd_buf == NULL) {
620 		dev_err(dev, "cannot allocate USB command buffer\n");
621 		goto error_bm_cmd_kzalloc;
622 	}
623 	i2400m->bm_ack_buf = kzalloc(I2400M_BM_ACK_BUF_SIZE, GFP_KERNEL);
624 	if (i2400m->bm_ack_buf == NULL) {
625 		dev_err(dev, "cannot allocate USB ack buffer\n");
626 		goto error_bm_ack_buf_kzalloc;
627 	}
628 	result = i2400m_bootrom_init(i2400m, bm_flags);
629 	if (result < 0) {
630 		dev_err(dev, "read mac addr: bootrom init "
631 			"failed: %d\n", result);
632 		goto error_bootrom_init;
633 	}
634 	result = i2400m_read_mac_addr(i2400m);
635 	if (result < 0)
636 		goto error_read_mac_addr;
637 
638 	result = register_netdev(net_dev);	/* Okey dokey, bring it up */
639 	if (result < 0) {
640 		dev_err(dev, "cannot register i2400m network device: %d\n",
641 			result);
642 		goto error_register_netdev;
643 	}
644 	netif_carrier_off(net_dev);
645 
646 	result = i2400m_dev_start(i2400m, bm_flags);
647 	if (result < 0)
648 		goto error_dev_start;
649 
650 	i2400m->wimax_dev.op_msg_from_user = i2400m_op_msg_from_user;
651 	i2400m->wimax_dev.op_rfkill_sw_toggle = i2400m_op_rfkill_sw_toggle;
652 	i2400m->wimax_dev.op_reset = i2400m_op_reset;
653 	result = wimax_dev_add(&i2400m->wimax_dev, net_dev);
654 	if (result < 0)
655 		goto error_wimax_dev_add;
656 	/* User space needs to do some init stuff */
657 	wimax_state_change(wimax_dev, WIMAX_ST_UNINITIALIZED);
658 
659 	/* Now setup all that requires a registered net and wimax device. */
660 	result = i2400m_debugfs_add(i2400m);
661 	if (result < 0) {
662 		dev_err(dev, "cannot setup i2400m's debugfs: %d\n", result);
663 		goto error_debugfs_setup;
664 	}
665 	d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
666 	return result;
667 
668 error_debugfs_setup:
669 	wimax_dev_rm(&i2400m->wimax_dev);
670 error_wimax_dev_add:
671 	i2400m_dev_stop(i2400m);
672 error_dev_start:
673 	unregister_netdev(net_dev);
674 error_register_netdev:
675 error_read_mac_addr:
676 error_bootrom_init:
677 	kfree(i2400m->bm_ack_buf);
678 error_bm_ack_buf_kzalloc:
679 	kfree(i2400m->bm_cmd_buf);
680 error_bm_cmd_kzalloc:
681 	d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
682 	return result;
683 }
684 EXPORT_SYMBOL_GPL(i2400m_setup);
685 
686 
687 /**
688  * i2400m_release - release the bus-generic driver resources
689  *
690  * Sends a disconnect message and undoes any setup done by i2400m_setup()
691  */
i2400m_release(struct i2400m * i2400m)692 void i2400m_release(struct i2400m *i2400m)
693 {
694 	struct device *dev = i2400m_dev(i2400m);
695 
696 	d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
697 	netif_stop_queue(i2400m->wimax_dev.net_dev);
698 
699 	i2400m_debugfs_rm(i2400m);
700 	wimax_dev_rm(&i2400m->wimax_dev);
701 	i2400m_dev_stop(i2400m);
702 	unregister_netdev(i2400m->wimax_dev.net_dev);
703 	kfree(i2400m->bm_ack_buf);
704 	kfree(i2400m->bm_cmd_buf);
705 	d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
706 }
707 EXPORT_SYMBOL_GPL(i2400m_release);
708 
709 
710 /*
711  * Debug levels control; see debug.h
712  */
713 struct d_level D_LEVEL[] = {
714 	D_SUBMODULE_DEFINE(control),
715 	D_SUBMODULE_DEFINE(driver),
716 	D_SUBMODULE_DEFINE(debugfs),
717 	D_SUBMODULE_DEFINE(fw),
718 	D_SUBMODULE_DEFINE(netdev),
719 	D_SUBMODULE_DEFINE(rfkill),
720 	D_SUBMODULE_DEFINE(rx),
721 	D_SUBMODULE_DEFINE(tx),
722 };
723 size_t D_LEVEL_SIZE = ARRAY_SIZE(D_LEVEL);
724 
725 
726 static
i2400m_driver_init(void)727 int __init i2400m_driver_init(void)
728 {
729 	return 0;
730 }
731 module_init(i2400m_driver_init);
732 
733 static
i2400m_driver_exit(void)734 void __exit i2400m_driver_exit(void)
735 {
736 	/* for scheds i2400m_dev_reset_handle() */
737 	flush_scheduled_work();
738 	return;
739 }
740 module_exit(i2400m_driver_exit);
741 
742 MODULE_AUTHOR("Intel Corporation <linux-wimax@intel.com>");
743 MODULE_DESCRIPTION("Intel 2400M WiMAX networking bus-generic driver");
744 MODULE_LICENSE("GPL");
745