• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * pci.c - Low-Level PCI Access in IA-64
3  *
4  * Derived from bios32.c of i386 tree.
5  *
6  * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
7  *	David Mosberger-Tang <davidm@hpl.hp.com>
8  *	Bjorn Helgaas <bjorn.helgaas@hp.com>
9  * Copyright (C) 2004 Silicon Graphics, Inc.
10  *
11  * Note: Above list of copyright holders is incomplete...
12  */
13 
14 #include <linux/acpi.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/pci.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/spinlock.h>
22 #include <linux/bootmem.h>
23 
24 #include <asm/machvec.h>
25 #include <asm/page.h>
26 #include <asm/system.h>
27 #include <asm/io.h>
28 #include <asm/sal.h>
29 #include <asm/smp.h>
30 #include <asm/irq.h>
31 #include <asm/hw_irq.h>
32 
33 /*
34  * Low-level SAL-based PCI configuration access functions. Note that SAL
35  * calls are already serialized (via sal_lock), so we don't need another
36  * synchronization mechanism here.
37  */
38 
39 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg)		\
40 	(((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
41 
42 /* SAL 3.2 adds support for extended config space. */
43 
44 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg)	\
45 	(((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
46 
raw_pci_read(unsigned int seg,unsigned int bus,unsigned int devfn,int reg,int len,u32 * value)47 int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn,
48 	      int reg, int len, u32 *value)
49 {
50 	u64 addr, data = 0;
51 	int mode, result;
52 
53 	if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
54 		return -EINVAL;
55 
56 	if ((seg | reg) <= 255) {
57 		addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
58 		mode = 0;
59 	} else {
60 		addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
61 		mode = 1;
62 	}
63 	result = ia64_sal_pci_config_read(addr, mode, len, &data);
64 	if (result != 0)
65 		return -EINVAL;
66 
67 	*value = (u32) data;
68 	return 0;
69 }
70 
raw_pci_write(unsigned int seg,unsigned int bus,unsigned int devfn,int reg,int len,u32 value)71 int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn,
72 	       int reg, int len, u32 value)
73 {
74 	u64 addr;
75 	int mode, result;
76 
77 	if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
78 		return -EINVAL;
79 
80 	if ((seg | reg) <= 255) {
81 		addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
82 		mode = 0;
83 	} else {
84 		addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
85 		mode = 1;
86 	}
87 	result = ia64_sal_pci_config_write(addr, mode, len, value);
88 	if (result != 0)
89 		return -EINVAL;
90 	return 0;
91 }
92 
pci_read(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 * value)93 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
94 							int size, u32 *value)
95 {
96 	return raw_pci_read(pci_domain_nr(bus), bus->number,
97 				 devfn, where, size, value);
98 }
99 
pci_write(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 value)100 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
101 							int size, u32 value)
102 {
103 	return raw_pci_write(pci_domain_nr(bus), bus->number,
104 				  devfn, where, size, value);
105 }
106 
107 struct pci_ops pci_root_ops = {
108 	.read = pci_read,
109 	.write = pci_write,
110 };
111 
112 /* Called by ACPI when it finds a new root bus.  */
113 
114 static struct pci_controller * __devinit
alloc_pci_controller(int seg)115 alloc_pci_controller (int seg)
116 {
117 	struct pci_controller *controller;
118 
119 	controller = kzalloc(sizeof(*controller), GFP_KERNEL);
120 	if (!controller)
121 		return NULL;
122 
123 	controller->segment = seg;
124 	controller->node = -1;
125 	return controller;
126 }
127 
128 struct pci_root_info {
129 	struct pci_controller *controller;
130 	char *name;
131 };
132 
133 static unsigned int
new_space(u64 phys_base,int sparse)134 new_space (u64 phys_base, int sparse)
135 {
136 	u64 mmio_base;
137 	int i;
138 
139 	if (phys_base == 0)
140 		return 0;	/* legacy I/O port space */
141 
142 	mmio_base = (u64) ioremap(phys_base, 0);
143 	for (i = 0; i < num_io_spaces; i++)
144 		if (io_space[i].mmio_base == mmio_base &&
145 		    io_space[i].sparse == sparse)
146 			return i;
147 
148 	if (num_io_spaces == MAX_IO_SPACES) {
149 		printk(KERN_ERR "PCI: Too many IO port spaces "
150 			"(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
151 		return ~0;
152 	}
153 
154 	i = num_io_spaces++;
155 	io_space[i].mmio_base = mmio_base;
156 	io_space[i].sparse = sparse;
157 
158 	return i;
159 }
160 
161 static u64 __devinit
add_io_space(struct pci_root_info * info,struct acpi_resource_address64 * addr)162 add_io_space (struct pci_root_info *info, struct acpi_resource_address64 *addr)
163 {
164 	struct resource *resource;
165 	char *name;
166 	u64 base, min, max, base_port;
167 	unsigned int sparse = 0, space_nr, len;
168 
169 	resource = kzalloc(sizeof(*resource), GFP_KERNEL);
170 	if (!resource) {
171 		printk(KERN_ERR "PCI: No memory for %s I/O port space\n",
172 			info->name);
173 		goto out;
174 	}
175 
176 	len = strlen(info->name) + 32;
177 	name = kzalloc(len, GFP_KERNEL);
178 	if (!name) {
179 		printk(KERN_ERR "PCI: No memory for %s I/O port space name\n",
180 			info->name);
181 		goto free_resource;
182 	}
183 
184 	min = addr->minimum;
185 	max = min + addr->address_length - 1;
186 	if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION)
187 		sparse = 1;
188 
189 	space_nr = new_space(addr->translation_offset, sparse);
190 	if (space_nr == ~0)
191 		goto free_name;
192 
193 	base = __pa(io_space[space_nr].mmio_base);
194 	base_port = IO_SPACE_BASE(space_nr);
195 	snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name,
196 		base_port + min, base_port + max);
197 
198 	/*
199 	 * The SDM guarantees the legacy 0-64K space is sparse, but if the
200 	 * mapping is done by the processor (not the bridge), ACPI may not
201 	 * mark it as sparse.
202 	 */
203 	if (space_nr == 0)
204 		sparse = 1;
205 
206 	resource->name  = name;
207 	resource->flags = IORESOURCE_MEM;
208 	resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
209 	resource->end   = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
210 	insert_resource(&iomem_resource, resource);
211 
212 	return base_port;
213 
214 free_name:
215 	kfree(name);
216 free_resource:
217 	kfree(resource);
218 out:
219 	return ~0;
220 }
221 
resource_to_window(struct acpi_resource * resource,struct acpi_resource_address64 * addr)222 static acpi_status __devinit resource_to_window(struct acpi_resource *resource,
223 	struct acpi_resource_address64 *addr)
224 {
225 	acpi_status status;
226 
227 	/*
228 	 * We're only interested in _CRS descriptors that are
229 	 *	- address space descriptors for memory or I/O space
230 	 *	- non-zero size
231 	 *	- producers, i.e., the address space is routed downstream,
232 	 *	  not consumed by the bridge itself
233 	 */
234 	status = acpi_resource_to_address64(resource, addr);
235 	if (ACPI_SUCCESS(status) &&
236 	    (addr->resource_type == ACPI_MEMORY_RANGE ||
237 	     addr->resource_type == ACPI_IO_RANGE) &&
238 	    addr->address_length &&
239 	    addr->producer_consumer == ACPI_PRODUCER)
240 		return AE_OK;
241 
242 	return AE_ERROR;
243 }
244 
245 static acpi_status __devinit
count_window(struct acpi_resource * resource,void * data)246 count_window (struct acpi_resource *resource, void *data)
247 {
248 	unsigned int *windows = (unsigned int *) data;
249 	struct acpi_resource_address64 addr;
250 	acpi_status status;
251 
252 	status = resource_to_window(resource, &addr);
253 	if (ACPI_SUCCESS(status))
254 		(*windows)++;
255 
256 	return AE_OK;
257 }
258 
add_window(struct acpi_resource * res,void * data)259 static __devinit acpi_status add_window(struct acpi_resource *res, void *data)
260 {
261 	struct pci_root_info *info = data;
262 	struct pci_window *window;
263 	struct acpi_resource_address64 addr;
264 	acpi_status status;
265 	unsigned long flags, offset = 0;
266 	struct resource *root;
267 
268 	/* Return AE_OK for non-window resources to keep scanning for more */
269 	status = resource_to_window(res, &addr);
270 	if (!ACPI_SUCCESS(status))
271 		return AE_OK;
272 
273 	if (addr.resource_type == ACPI_MEMORY_RANGE) {
274 		flags = IORESOURCE_MEM;
275 		root = &iomem_resource;
276 		offset = addr.translation_offset;
277 	} else if (addr.resource_type == ACPI_IO_RANGE) {
278 		flags = IORESOURCE_IO;
279 		root = &ioport_resource;
280 		offset = add_io_space(info, &addr);
281 		if (offset == ~0)
282 			return AE_OK;
283 	} else
284 		return AE_OK;
285 
286 	window = &info->controller->window[info->controller->windows++];
287 	window->resource.name = info->name;
288 	window->resource.flags = flags;
289 	window->resource.start = addr.minimum + offset;
290 	window->resource.end = window->resource.start + addr.address_length - 1;
291 	window->resource.child = NULL;
292 	window->offset = offset;
293 
294 	if (insert_resource(root, &window->resource)) {
295 		printk(KERN_ERR "alloc 0x%lx-0x%lx from %s for %s failed\n",
296 			window->resource.start, window->resource.end,
297 			root->name, info->name);
298 	}
299 
300 	return AE_OK;
301 }
302 
303 static void __devinit
pcibios_setup_root_windows(struct pci_bus * bus,struct pci_controller * ctrl)304 pcibios_setup_root_windows(struct pci_bus *bus, struct pci_controller *ctrl)
305 {
306 	int i, j;
307 
308 	j = 0;
309 	for (i = 0; i < ctrl->windows; i++) {
310 		struct resource *res = &ctrl->window[i].resource;
311 		/* HP's firmware has a hack to work around a Windows bug.
312 		 * Ignore these tiny memory ranges */
313 		if ((res->flags & IORESOURCE_MEM) &&
314 		    (res->end - res->start < 16))
315 			continue;
316 		if (j >= PCI_BUS_NUM_RESOURCES) {
317 			printk("Ignoring range [%lx-%lx] (%lx)\n", res->start,
318 					res->end, res->flags);
319 			continue;
320 		}
321 		bus->resource[j++] = res;
322 	}
323 }
324 
325 struct pci_bus * __devinit
pci_acpi_scan_root(struct acpi_device * device,int domain,int bus)326 pci_acpi_scan_root(struct acpi_device *device, int domain, int bus)
327 {
328 	struct pci_controller *controller;
329 	unsigned int windows = 0;
330 	struct pci_bus *pbus;
331 	char *name;
332 	int pxm;
333 
334 	controller = alloc_pci_controller(domain);
335 	if (!controller)
336 		goto out1;
337 
338 	controller->acpi_handle = device->handle;
339 
340 	pxm = acpi_get_pxm(controller->acpi_handle);
341 #ifdef CONFIG_NUMA
342 	if (pxm >= 0)
343 		controller->node = pxm_to_node(pxm);
344 #endif
345 
346 	acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
347 			&windows);
348 	if (windows) {
349 		struct pci_root_info info;
350 
351 		controller->window =
352 			kmalloc_node(sizeof(*controller->window) * windows,
353 				     GFP_KERNEL, controller->node);
354 		if (!controller->window)
355 			goto out2;
356 
357 		name = kmalloc(16, GFP_KERNEL);
358 		if (!name)
359 			goto out3;
360 
361 		sprintf(name, "PCI Bus %04x:%02x", domain, bus);
362 		info.controller = controller;
363 		info.name = name;
364 		acpi_walk_resources(device->handle, METHOD_NAME__CRS,
365 			add_window, &info);
366 	}
367 	/*
368 	 * See arch/x86/pci/acpi.c.
369 	 * The desired pci bus might already be scanned in a quirk. We
370 	 * should handle the case here, but it appears that IA64 hasn't
371 	 * such quirk. So we just ignore the case now.
372 	 */
373 	pbus = pci_scan_bus_parented(NULL, bus, &pci_root_ops, controller);
374 	if (pbus)
375 		pcibios_setup_root_windows(pbus, controller);
376 
377 	return pbus;
378 
379 out3:
380 	kfree(controller->window);
381 out2:
382 	kfree(controller);
383 out1:
384 	return NULL;
385 }
386 
pcibios_resource_to_bus(struct pci_dev * dev,struct pci_bus_region * region,struct resource * res)387 void pcibios_resource_to_bus(struct pci_dev *dev,
388 		struct pci_bus_region *region, struct resource *res)
389 {
390 	struct pci_controller *controller = PCI_CONTROLLER(dev);
391 	unsigned long offset = 0;
392 	int i;
393 
394 	for (i = 0; i < controller->windows; i++) {
395 		struct pci_window *window = &controller->window[i];
396 		if (!(window->resource.flags & res->flags))
397 			continue;
398 		if (window->resource.start > res->start)
399 			continue;
400 		if (window->resource.end < res->end)
401 			continue;
402 		offset = window->offset;
403 		break;
404 	}
405 
406 	region->start = res->start - offset;
407 	region->end = res->end - offset;
408 }
409 EXPORT_SYMBOL(pcibios_resource_to_bus);
410 
pcibios_bus_to_resource(struct pci_dev * dev,struct resource * res,struct pci_bus_region * region)411 void pcibios_bus_to_resource(struct pci_dev *dev,
412 		struct resource *res, struct pci_bus_region *region)
413 {
414 	struct pci_controller *controller = PCI_CONTROLLER(dev);
415 	unsigned long offset = 0;
416 	int i;
417 
418 	for (i = 0; i < controller->windows; i++) {
419 		struct pci_window *window = &controller->window[i];
420 		if (!(window->resource.flags & res->flags))
421 			continue;
422 		if (window->resource.start - window->offset > region->start)
423 			continue;
424 		if (window->resource.end - window->offset < region->end)
425 			continue;
426 		offset = window->offset;
427 		break;
428 	}
429 
430 	res->start = region->start + offset;
431 	res->end = region->end + offset;
432 }
433 EXPORT_SYMBOL(pcibios_bus_to_resource);
434 
is_valid_resource(struct pci_dev * dev,int idx)435 static int __devinit is_valid_resource(struct pci_dev *dev, int idx)
436 {
437 	unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
438 	struct resource *devr = &dev->resource[idx];
439 
440 	if (!dev->bus)
441 		return 0;
442 	for (i=0; i<PCI_BUS_NUM_RESOURCES; i++) {
443 		struct resource *busr = dev->bus->resource[i];
444 
445 		if (!busr || ((busr->flags ^ devr->flags) & type_mask))
446 			continue;
447 		if ((devr->start) && (devr->start >= busr->start) &&
448 				(devr->end <= busr->end))
449 			return 1;
450 	}
451 	return 0;
452 }
453 
454 static void __devinit
pcibios_fixup_resources(struct pci_dev * dev,int start,int limit)455 pcibios_fixup_resources(struct pci_dev *dev, int start, int limit)
456 {
457 	struct pci_bus_region region;
458 	int i;
459 
460 	for (i = start; i < limit; i++) {
461 		if (!dev->resource[i].flags)
462 			continue;
463 		region.start = dev->resource[i].start;
464 		region.end = dev->resource[i].end;
465 		pcibios_bus_to_resource(dev, &dev->resource[i], &region);
466 		if ((is_valid_resource(dev, i)))
467 			pci_claim_resource(dev, i);
468 	}
469 }
470 
pcibios_fixup_device_resources(struct pci_dev * dev)471 void __devinit pcibios_fixup_device_resources(struct pci_dev *dev)
472 {
473 	pcibios_fixup_resources(dev, 0, PCI_BRIDGE_RESOURCES);
474 }
475 EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
476 
pcibios_fixup_bridge_resources(struct pci_dev * dev)477 static void __devinit pcibios_fixup_bridge_resources(struct pci_dev *dev)
478 {
479 	pcibios_fixup_resources(dev, PCI_BRIDGE_RESOURCES, PCI_NUM_RESOURCES);
480 }
481 
482 /*
483  *  Called after each bus is probed, but before its children are examined.
484  */
485 void __devinit
pcibios_fixup_bus(struct pci_bus * b)486 pcibios_fixup_bus (struct pci_bus *b)
487 {
488 	struct pci_dev *dev;
489 
490 	if (b->self) {
491 		pci_read_bridge_bases(b);
492 		pcibios_fixup_bridge_resources(b->self);
493 	}
494 	list_for_each_entry(dev, &b->devices, bus_list)
495 		pcibios_fixup_device_resources(dev);
496 	platform_pci_fixup_bus(b);
497 
498 	return;
499 }
500 
501 void __devinit
pcibios_update_irq(struct pci_dev * dev,int irq)502 pcibios_update_irq (struct pci_dev *dev, int irq)
503 {
504 	pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
505 
506 	/* ??? FIXME -- record old value for shutdown.  */
507 }
508 
509 int
pcibios_enable_device(struct pci_dev * dev,int mask)510 pcibios_enable_device (struct pci_dev *dev, int mask)
511 {
512 	int ret;
513 
514 	ret = pci_enable_resources(dev, mask);
515 	if (ret < 0)
516 		return ret;
517 
518 	if (!dev->msi_enabled)
519 		return acpi_pci_irq_enable(dev);
520 	return 0;
521 }
522 
523 void
pcibios_disable_device(struct pci_dev * dev)524 pcibios_disable_device (struct pci_dev *dev)
525 {
526 	BUG_ON(atomic_read(&dev->enable_cnt));
527 	if (!dev->msi_enabled)
528 		acpi_pci_irq_disable(dev);
529 }
530 
531 void
pcibios_align_resource(void * data,struct resource * res,resource_size_t size,resource_size_t align)532 pcibios_align_resource (void *data, struct resource *res,
533 		        resource_size_t size, resource_size_t align)
534 {
535 }
536 
537 /*
538  * PCI BIOS setup, always defaults to SAL interface
539  */
540 char * __devinit
pcibios_setup(char * str)541 pcibios_setup (char *str)
542 {
543 	return str;
544 }
545 
546 int
pci_mmap_page_range(struct pci_dev * dev,struct vm_area_struct * vma,enum pci_mmap_state mmap_state,int write_combine)547 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
548 		     enum pci_mmap_state mmap_state, int write_combine)
549 {
550 	unsigned long size = vma->vm_end - vma->vm_start;
551 	pgprot_t prot;
552 
553 	/*
554 	 * I/O space cannot be accessed via normal processor loads and
555 	 * stores on this platform.
556 	 */
557 	if (mmap_state == pci_mmap_io)
558 		/*
559 		 * XXX we could relax this for I/O spaces for which ACPI
560 		 * indicates that the space is 1-to-1 mapped.  But at the
561 		 * moment, we don't support multiple PCI address spaces and
562 		 * the legacy I/O space is not 1-to-1 mapped, so this is moot.
563 		 */
564 		return -EINVAL;
565 
566 	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
567 		return -EINVAL;
568 
569 	prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
570 				    vma->vm_page_prot);
571 
572 	/*
573 	 * If the user requested WC, the kernel uses UC or WC for this region,
574 	 * and the chipset supports WC, we can use WC. Otherwise, we have to
575 	 * use the same attribute the kernel uses.
576 	 */
577 	if (write_combine &&
578 	    ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC ||
579 	     (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) &&
580 	    efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start))
581 		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
582 	else
583 		vma->vm_page_prot = prot;
584 
585 	if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
586 			     vma->vm_end - vma->vm_start, vma->vm_page_prot))
587 		return -EAGAIN;
588 
589 	return 0;
590 }
591 
592 /**
593  * ia64_pci_get_legacy_mem - generic legacy mem routine
594  * @bus: bus to get legacy memory base address for
595  *
596  * Find the base of legacy memory for @bus.  This is typically the first
597  * megabyte of bus address space for @bus or is simply 0 on platforms whose
598  * chipsets support legacy I/O and memory routing.  Returns the base address
599  * or an error pointer if an error occurred.
600  *
601  * This is the ia64 generic version of this routine.  Other platforms
602  * are free to override it with a machine vector.
603  */
ia64_pci_get_legacy_mem(struct pci_bus * bus)604 char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
605 {
606 	return (char *)__IA64_UNCACHED_OFFSET;
607 }
608 
609 /**
610  * pci_mmap_legacy_page_range - map legacy memory space to userland
611  * @bus: bus whose legacy space we're mapping
612  * @vma: vma passed in by mmap
613  *
614  * Map legacy memory space for this device back to userspace using a machine
615  * vector to get the base address.
616  */
617 int
pci_mmap_legacy_page_range(struct pci_bus * bus,struct vm_area_struct * vma,enum pci_mmap_state mmap_state)618 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma,
619 			   enum pci_mmap_state mmap_state)
620 {
621 	unsigned long size = vma->vm_end - vma->vm_start;
622 	pgprot_t prot;
623 	char *addr;
624 
625 	/* We only support mmap'ing of legacy memory space */
626 	if (mmap_state != pci_mmap_mem)
627 		return -ENOSYS;
628 
629 	/*
630 	 * Avoid attribute aliasing.  See Documentation/ia64/aliasing.txt
631 	 * for more details.
632 	 */
633 	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
634 		return -EINVAL;
635 	prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
636 				    vma->vm_page_prot);
637 
638 	addr = pci_get_legacy_mem(bus);
639 	if (IS_ERR(addr))
640 		return PTR_ERR(addr);
641 
642 	vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
643 	vma->vm_page_prot = prot;
644 
645 	if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
646 			    size, vma->vm_page_prot))
647 		return -EAGAIN;
648 
649 	return 0;
650 }
651 
652 /**
653  * ia64_pci_legacy_read - read from legacy I/O space
654  * @bus: bus to read
655  * @port: legacy port value
656  * @val: caller allocated storage for returned value
657  * @size: number of bytes to read
658  *
659  * Simply reads @size bytes from @port and puts the result in @val.
660  *
661  * Again, this (and the write routine) are generic versions that can be
662  * overridden by the platform.  This is necessary on platforms that don't
663  * support legacy I/O routing or that hard fail on legacy I/O timeouts.
664  */
ia64_pci_legacy_read(struct pci_bus * bus,u16 port,u32 * val,u8 size)665 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
666 {
667 	int ret = size;
668 
669 	switch (size) {
670 	case 1:
671 		*val = inb(port);
672 		break;
673 	case 2:
674 		*val = inw(port);
675 		break;
676 	case 4:
677 		*val = inl(port);
678 		break;
679 	default:
680 		ret = -EINVAL;
681 		break;
682 	}
683 
684 	return ret;
685 }
686 
687 /**
688  * ia64_pci_legacy_write - perform a legacy I/O write
689  * @bus: bus pointer
690  * @port: port to write
691  * @val: value to write
692  * @size: number of bytes to write from @val
693  *
694  * Simply writes @size bytes of @val to @port.
695  */
ia64_pci_legacy_write(struct pci_bus * bus,u16 port,u32 val,u8 size)696 int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
697 {
698 	int ret = size;
699 
700 	switch (size) {
701 	case 1:
702 		outb(val, port);
703 		break;
704 	case 2:
705 		outw(val, port);
706 		break;
707 	case 4:
708 		outl(val, port);
709 		break;
710 	default:
711 		ret = -EINVAL;
712 		break;
713 	}
714 
715 	return ret;
716 }
717 
718 /* It's defined in drivers/pci/pci.c */
719 extern u8 pci_cache_line_size;
720 
721 /**
722  * set_pci_cacheline_size - determine cacheline size for PCI devices
723  *
724  * We want to use the line-size of the outer-most cache.  We assume
725  * that this line-size is the same for all CPUs.
726  *
727  * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
728  */
set_pci_cacheline_size(void)729 static void __init set_pci_cacheline_size(void)
730 {
731 	u64 levels, unique_caches;
732 	s64 status;
733 	pal_cache_config_info_t cci;
734 
735 	status = ia64_pal_cache_summary(&levels, &unique_caches);
736 	if (status != 0) {
737 		printk(KERN_ERR "%s: ia64_pal_cache_summary() failed "
738 			"(status=%ld)\n", __func__, status);
739 		return;
740 	}
741 
742 	status = ia64_pal_cache_config_info(levels - 1,
743 				/* cache_type (data_or_unified)= */ 2, &cci);
744 	if (status != 0) {
745 		printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed "
746 			"(status=%ld)\n", __func__, status);
747 		return;
748 	}
749 	pci_cache_line_size = (1 << cci.pcci_line_size) / 4;
750 }
751 
ia64_dma_get_required_mask(struct device * dev)752 u64 ia64_dma_get_required_mask(struct device *dev)
753 {
754 	u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
755 	u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
756 	u64 mask;
757 
758 	if (!high_totalram) {
759 		/* convert to mask just covering totalram */
760 		low_totalram = (1 << (fls(low_totalram) - 1));
761 		low_totalram += low_totalram - 1;
762 		mask = low_totalram;
763 	} else {
764 		high_totalram = (1 << (fls(high_totalram) - 1));
765 		high_totalram += high_totalram - 1;
766 		mask = (((u64)high_totalram) << 32) + 0xffffffff;
767 	}
768 	return mask;
769 }
770 EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask);
771 
dma_get_required_mask(struct device * dev)772 u64 dma_get_required_mask(struct device *dev)
773 {
774 	return platform_dma_get_required_mask(dev);
775 }
776 EXPORT_SYMBOL_GPL(dma_get_required_mask);
777 
pcibios_init(void)778 static int __init pcibios_init(void)
779 {
780 	set_pci_cacheline_size();
781 	return 0;
782 }
783 
784 subsys_initcall(pcibios_init);
785