1 /*
2 * Kernel support for the ptrace() and syscall tracing interfaces.
3 *
4 * Copyright (C) 1999-2005 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * Copyright (C) 2006 Intel Co
7 * 2006-08-12 - IA64 Native Utrace implementation support added by
8 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9 *
10 * Derived from the x86 and Alpha versions.
11 */
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/slab.h>
15 #include <linux/mm.h>
16 #include <linux/errno.h>
17 #include <linux/ptrace.h>
18 #include <linux/smp_lock.h>
19 #include <linux/user.h>
20 #include <linux/security.h>
21 #include <linux/audit.h>
22 #include <linux/signal.h>
23 #include <linux/regset.h>
24 #include <linux/elf.h>
25 #include <linux/tracehook.h>
26
27 #include <asm/pgtable.h>
28 #include <asm/processor.h>
29 #include <asm/ptrace_offsets.h>
30 #include <asm/rse.h>
31 #include <asm/system.h>
32 #include <asm/uaccess.h>
33 #include <asm/unwind.h>
34 #ifdef CONFIG_PERFMON
35 #include <asm/perfmon.h>
36 #endif
37
38 #include "entry.h"
39
40 /*
41 * Bits in the PSR that we allow ptrace() to change:
42 * be, up, ac, mfl, mfh (the user mask; five bits total)
43 * db (debug breakpoint fault; one bit)
44 * id (instruction debug fault disable; one bit)
45 * dd (data debug fault disable; one bit)
46 * ri (restart instruction; two bits)
47 * is (instruction set; one bit)
48 */
49 #define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \
50 | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
51
52 #define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */
53 #define PFM_MASK MASK(38)
54
55 #define PTRACE_DEBUG 0
56
57 #if PTRACE_DEBUG
58 # define dprintk(format...) printk(format)
59 # define inline
60 #else
61 # define dprintk(format...)
62 #endif
63
64 /* Return TRUE if PT was created due to kernel-entry via a system-call. */
65
66 static inline int
in_syscall(struct pt_regs * pt)67 in_syscall (struct pt_regs *pt)
68 {
69 return (long) pt->cr_ifs >= 0;
70 }
71
72 /*
73 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
74 * bitset where bit i is set iff the NaT bit of register i is set.
75 */
76 unsigned long
ia64_get_scratch_nat_bits(struct pt_regs * pt,unsigned long scratch_unat)77 ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
78 {
79 # define GET_BITS(first, last, unat) \
80 ({ \
81 unsigned long bit = ia64_unat_pos(&pt->r##first); \
82 unsigned long nbits = (last - first + 1); \
83 unsigned long mask = MASK(nbits) << first; \
84 unsigned long dist; \
85 if (bit < first) \
86 dist = 64 + bit - first; \
87 else \
88 dist = bit - first; \
89 ia64_rotr(unat, dist) & mask; \
90 })
91 unsigned long val;
92
93 /*
94 * Registers that are stored consecutively in struct pt_regs
95 * can be handled in parallel. If the register order in
96 * struct_pt_regs changes, this code MUST be updated.
97 */
98 val = GET_BITS( 1, 1, scratch_unat);
99 val |= GET_BITS( 2, 3, scratch_unat);
100 val |= GET_BITS(12, 13, scratch_unat);
101 val |= GET_BITS(14, 14, scratch_unat);
102 val |= GET_BITS(15, 15, scratch_unat);
103 val |= GET_BITS( 8, 11, scratch_unat);
104 val |= GET_BITS(16, 31, scratch_unat);
105 return val;
106
107 # undef GET_BITS
108 }
109
110 /*
111 * Set the NaT bits for the scratch registers according to NAT and
112 * return the resulting unat (assuming the scratch registers are
113 * stored in PT).
114 */
115 unsigned long
ia64_put_scratch_nat_bits(struct pt_regs * pt,unsigned long nat)116 ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
117 {
118 # define PUT_BITS(first, last, nat) \
119 ({ \
120 unsigned long bit = ia64_unat_pos(&pt->r##first); \
121 unsigned long nbits = (last - first + 1); \
122 unsigned long mask = MASK(nbits) << first; \
123 long dist; \
124 if (bit < first) \
125 dist = 64 + bit - first; \
126 else \
127 dist = bit - first; \
128 ia64_rotl(nat & mask, dist); \
129 })
130 unsigned long scratch_unat;
131
132 /*
133 * Registers that are stored consecutively in struct pt_regs
134 * can be handled in parallel. If the register order in
135 * struct_pt_regs changes, this code MUST be updated.
136 */
137 scratch_unat = PUT_BITS( 1, 1, nat);
138 scratch_unat |= PUT_BITS( 2, 3, nat);
139 scratch_unat |= PUT_BITS(12, 13, nat);
140 scratch_unat |= PUT_BITS(14, 14, nat);
141 scratch_unat |= PUT_BITS(15, 15, nat);
142 scratch_unat |= PUT_BITS( 8, 11, nat);
143 scratch_unat |= PUT_BITS(16, 31, nat);
144
145 return scratch_unat;
146
147 # undef PUT_BITS
148 }
149
150 #define IA64_MLX_TEMPLATE 0x2
151 #define IA64_MOVL_OPCODE 6
152
153 void
ia64_increment_ip(struct pt_regs * regs)154 ia64_increment_ip (struct pt_regs *regs)
155 {
156 unsigned long w0, ri = ia64_psr(regs)->ri + 1;
157
158 if (ri > 2) {
159 ri = 0;
160 regs->cr_iip += 16;
161 } else if (ri == 2) {
162 get_user(w0, (char __user *) regs->cr_iip + 0);
163 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
164 /*
165 * rfi'ing to slot 2 of an MLX bundle causes
166 * an illegal operation fault. We don't want
167 * that to happen...
168 */
169 ri = 0;
170 regs->cr_iip += 16;
171 }
172 }
173 ia64_psr(regs)->ri = ri;
174 }
175
176 void
ia64_decrement_ip(struct pt_regs * regs)177 ia64_decrement_ip (struct pt_regs *regs)
178 {
179 unsigned long w0, ri = ia64_psr(regs)->ri - 1;
180
181 if (ia64_psr(regs)->ri == 0) {
182 regs->cr_iip -= 16;
183 ri = 2;
184 get_user(w0, (char __user *) regs->cr_iip + 0);
185 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
186 /*
187 * rfi'ing to slot 2 of an MLX bundle causes
188 * an illegal operation fault. We don't want
189 * that to happen...
190 */
191 ri = 1;
192 }
193 }
194 ia64_psr(regs)->ri = ri;
195 }
196
197 /*
198 * This routine is used to read an rnat bits that are stored on the
199 * kernel backing store. Since, in general, the alignment of the user
200 * and kernel are different, this is not completely trivial. In
201 * essence, we need to construct the user RNAT based on up to two
202 * kernel RNAT values and/or the RNAT value saved in the child's
203 * pt_regs.
204 *
205 * user rbs
206 *
207 * +--------+ <-- lowest address
208 * | slot62 |
209 * +--------+
210 * | rnat | 0x....1f8
211 * +--------+
212 * | slot00 | \
213 * +--------+ |
214 * | slot01 | > child_regs->ar_rnat
215 * +--------+ |
216 * | slot02 | / kernel rbs
217 * +--------+ +--------+
218 * <- child_regs->ar_bspstore | slot61 | <-- krbs
219 * +- - - - + +--------+
220 * | slot62 |
221 * +- - - - + +--------+
222 * | rnat |
223 * +- - - - + +--------+
224 * vrnat | slot00 |
225 * +- - - - + +--------+
226 * = =
227 * +--------+
228 * | slot00 | \
229 * +--------+ |
230 * | slot01 | > child_stack->ar_rnat
231 * +--------+ |
232 * | slot02 | /
233 * +--------+
234 * <--- child_stack->ar_bspstore
235 *
236 * The way to think of this code is as follows: bit 0 in the user rnat
237 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
238 * value. The kernel rnat value holding this bit is stored in
239 * variable rnat0. rnat1 is loaded with the kernel rnat value that
240 * form the upper bits of the user rnat value.
241 *
242 * Boundary cases:
243 *
244 * o when reading the rnat "below" the first rnat slot on the kernel
245 * backing store, rnat0/rnat1 are set to 0 and the low order bits are
246 * merged in from pt->ar_rnat.
247 *
248 * o when reading the rnat "above" the last rnat slot on the kernel
249 * backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
250 */
251 static unsigned long
get_rnat(struct task_struct * task,struct switch_stack * sw,unsigned long * krbs,unsigned long * urnat_addr,unsigned long * urbs_end)252 get_rnat (struct task_struct *task, struct switch_stack *sw,
253 unsigned long *krbs, unsigned long *urnat_addr,
254 unsigned long *urbs_end)
255 {
256 unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
257 unsigned long umask = 0, mask, m;
258 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
259 long num_regs, nbits;
260 struct pt_regs *pt;
261
262 pt = task_pt_regs(task);
263 kbsp = (unsigned long *) sw->ar_bspstore;
264 ubspstore = (unsigned long *) pt->ar_bspstore;
265
266 if (urbs_end < urnat_addr)
267 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
268 else
269 nbits = 63;
270 mask = MASK(nbits);
271 /*
272 * First, figure out which bit number slot 0 in user-land maps
273 * to in the kernel rnat. Do this by figuring out how many
274 * register slots we're beyond the user's backingstore and
275 * then computing the equivalent address in kernel space.
276 */
277 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
278 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
279 shift = ia64_rse_slot_num(slot0_kaddr);
280 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
281 rnat0_kaddr = rnat1_kaddr - 64;
282
283 if (ubspstore + 63 > urnat_addr) {
284 /* some bits need to be merged in from pt->ar_rnat */
285 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
286 urnat = (pt->ar_rnat & umask);
287 mask &= ~umask;
288 if (!mask)
289 return urnat;
290 }
291
292 m = mask << shift;
293 if (rnat0_kaddr >= kbsp)
294 rnat0 = sw->ar_rnat;
295 else if (rnat0_kaddr > krbs)
296 rnat0 = *rnat0_kaddr;
297 urnat |= (rnat0 & m) >> shift;
298
299 m = mask >> (63 - shift);
300 if (rnat1_kaddr >= kbsp)
301 rnat1 = sw->ar_rnat;
302 else if (rnat1_kaddr > krbs)
303 rnat1 = *rnat1_kaddr;
304 urnat |= (rnat1 & m) << (63 - shift);
305 return urnat;
306 }
307
308 /*
309 * The reverse of get_rnat.
310 */
311 static void
put_rnat(struct task_struct * task,struct switch_stack * sw,unsigned long * krbs,unsigned long * urnat_addr,unsigned long urnat,unsigned long * urbs_end)312 put_rnat (struct task_struct *task, struct switch_stack *sw,
313 unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
314 unsigned long *urbs_end)
315 {
316 unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
317 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
318 long num_regs, nbits;
319 struct pt_regs *pt;
320 unsigned long cfm, *urbs_kargs;
321
322 pt = task_pt_regs(task);
323 kbsp = (unsigned long *) sw->ar_bspstore;
324 ubspstore = (unsigned long *) pt->ar_bspstore;
325
326 urbs_kargs = urbs_end;
327 if (in_syscall(pt)) {
328 /*
329 * If entered via syscall, don't allow user to set rnat bits
330 * for syscall args.
331 */
332 cfm = pt->cr_ifs;
333 urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
334 }
335
336 if (urbs_kargs >= urnat_addr)
337 nbits = 63;
338 else {
339 if ((urnat_addr - 63) >= urbs_kargs)
340 return;
341 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
342 }
343 mask = MASK(nbits);
344
345 /*
346 * First, figure out which bit number slot 0 in user-land maps
347 * to in the kernel rnat. Do this by figuring out how many
348 * register slots we're beyond the user's backingstore and
349 * then computing the equivalent address in kernel space.
350 */
351 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
352 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
353 shift = ia64_rse_slot_num(slot0_kaddr);
354 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
355 rnat0_kaddr = rnat1_kaddr - 64;
356
357 if (ubspstore + 63 > urnat_addr) {
358 /* some bits need to be place in pt->ar_rnat: */
359 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
360 pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
361 mask &= ~umask;
362 if (!mask)
363 return;
364 }
365 /*
366 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
367 * rnat slot is ignored. so we don't have to clear it here.
368 */
369 rnat0 = (urnat << shift);
370 m = mask << shift;
371 if (rnat0_kaddr >= kbsp)
372 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
373 else if (rnat0_kaddr > krbs)
374 *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
375
376 rnat1 = (urnat >> (63 - shift));
377 m = mask >> (63 - shift);
378 if (rnat1_kaddr >= kbsp)
379 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
380 else if (rnat1_kaddr > krbs)
381 *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
382 }
383
384 static inline int
on_kernel_rbs(unsigned long addr,unsigned long bspstore,unsigned long urbs_end)385 on_kernel_rbs (unsigned long addr, unsigned long bspstore,
386 unsigned long urbs_end)
387 {
388 unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
389 urbs_end);
390 return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
391 }
392
393 /*
394 * Read a word from the user-level backing store of task CHILD. ADDR
395 * is the user-level address to read the word from, VAL a pointer to
396 * the return value, and USER_BSP gives the end of the user-level
397 * backing store (i.e., it's the address that would be in ar.bsp after
398 * the user executed a "cover" instruction).
399 *
400 * This routine takes care of accessing the kernel register backing
401 * store for those registers that got spilled there. It also takes
402 * care of calculating the appropriate RNaT collection words.
403 */
404 long
ia64_peek(struct task_struct * child,struct switch_stack * child_stack,unsigned long user_rbs_end,unsigned long addr,long * val)405 ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
406 unsigned long user_rbs_end, unsigned long addr, long *val)
407 {
408 unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
409 struct pt_regs *child_regs;
410 size_t copied;
411 long ret;
412
413 urbs_end = (long *) user_rbs_end;
414 laddr = (unsigned long *) addr;
415 child_regs = task_pt_regs(child);
416 bspstore = (unsigned long *) child_regs->ar_bspstore;
417 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
418 if (on_kernel_rbs(addr, (unsigned long) bspstore,
419 (unsigned long) urbs_end))
420 {
421 /*
422 * Attempt to read the RBS in an area that's actually
423 * on the kernel RBS => read the corresponding bits in
424 * the kernel RBS.
425 */
426 rnat_addr = ia64_rse_rnat_addr(laddr);
427 ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
428
429 if (laddr == rnat_addr) {
430 /* return NaT collection word itself */
431 *val = ret;
432 return 0;
433 }
434
435 if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
436 /*
437 * It is implementation dependent whether the
438 * data portion of a NaT value gets saved on a
439 * st8.spill or RSE spill (e.g., see EAS 2.6,
440 * 4.4.4.6 Register Spill and Fill). To get
441 * consistent behavior across all possible
442 * IA-64 implementations, we return zero in
443 * this case.
444 */
445 *val = 0;
446 return 0;
447 }
448
449 if (laddr < urbs_end) {
450 /*
451 * The desired word is on the kernel RBS and
452 * is not a NaT.
453 */
454 regnum = ia64_rse_num_regs(bspstore, laddr);
455 *val = *ia64_rse_skip_regs(krbs, regnum);
456 return 0;
457 }
458 }
459 copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);
460 if (copied != sizeof(ret))
461 return -EIO;
462 *val = ret;
463 return 0;
464 }
465
466 long
ia64_poke(struct task_struct * child,struct switch_stack * child_stack,unsigned long user_rbs_end,unsigned long addr,long val)467 ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
468 unsigned long user_rbs_end, unsigned long addr, long val)
469 {
470 unsigned long *bspstore, *krbs, regnum, *laddr;
471 unsigned long *urbs_end = (long *) user_rbs_end;
472 struct pt_regs *child_regs;
473
474 laddr = (unsigned long *) addr;
475 child_regs = task_pt_regs(child);
476 bspstore = (unsigned long *) child_regs->ar_bspstore;
477 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
478 if (on_kernel_rbs(addr, (unsigned long) bspstore,
479 (unsigned long) urbs_end))
480 {
481 /*
482 * Attempt to write the RBS in an area that's actually
483 * on the kernel RBS => write the corresponding bits
484 * in the kernel RBS.
485 */
486 if (ia64_rse_is_rnat_slot(laddr))
487 put_rnat(child, child_stack, krbs, laddr, val,
488 urbs_end);
489 else {
490 if (laddr < urbs_end) {
491 regnum = ia64_rse_num_regs(bspstore, laddr);
492 *ia64_rse_skip_regs(krbs, regnum) = val;
493 }
494 }
495 } else if (access_process_vm(child, addr, &val, sizeof(val), 1)
496 != sizeof(val))
497 return -EIO;
498 return 0;
499 }
500
501 /*
502 * Calculate the address of the end of the user-level register backing
503 * store. This is the address that would have been stored in ar.bsp
504 * if the user had executed a "cover" instruction right before
505 * entering the kernel. If CFMP is not NULL, it is used to return the
506 * "current frame mask" that was active at the time the kernel was
507 * entered.
508 */
509 unsigned long
ia64_get_user_rbs_end(struct task_struct * child,struct pt_regs * pt,unsigned long * cfmp)510 ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
511 unsigned long *cfmp)
512 {
513 unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
514 long ndirty;
515
516 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
517 bspstore = (unsigned long *) pt->ar_bspstore;
518 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
519
520 if (in_syscall(pt))
521 ndirty += (cfm & 0x7f);
522 else
523 cfm &= ~(1UL << 63); /* clear valid bit */
524
525 if (cfmp)
526 *cfmp = cfm;
527 return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
528 }
529
530 /*
531 * Synchronize (i.e, write) the RSE backing store living in kernel
532 * space to the VM of the CHILD task. SW and PT are the pointers to
533 * the switch_stack and pt_regs structures, respectively.
534 * USER_RBS_END is the user-level address at which the backing store
535 * ends.
536 */
537 long
ia64_sync_user_rbs(struct task_struct * child,struct switch_stack * sw,unsigned long user_rbs_start,unsigned long user_rbs_end)538 ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
539 unsigned long user_rbs_start, unsigned long user_rbs_end)
540 {
541 unsigned long addr, val;
542 long ret;
543
544 /* now copy word for word from kernel rbs to user rbs: */
545 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
546 ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
547 if (ret < 0)
548 return ret;
549 if (access_process_vm(child, addr, &val, sizeof(val), 1)
550 != sizeof(val))
551 return -EIO;
552 }
553 return 0;
554 }
555
556 static long
ia64_sync_kernel_rbs(struct task_struct * child,struct switch_stack * sw,unsigned long user_rbs_start,unsigned long user_rbs_end)557 ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
558 unsigned long user_rbs_start, unsigned long user_rbs_end)
559 {
560 unsigned long addr, val;
561 long ret;
562
563 /* now copy word for word from user rbs to kernel rbs: */
564 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
565 if (access_process_vm(child, addr, &val, sizeof(val), 0)
566 != sizeof(val))
567 return -EIO;
568
569 ret = ia64_poke(child, sw, user_rbs_end, addr, val);
570 if (ret < 0)
571 return ret;
572 }
573 return 0;
574 }
575
576 typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
577 unsigned long, unsigned long);
578
do_sync_rbs(struct unw_frame_info * info,void * arg)579 static void do_sync_rbs(struct unw_frame_info *info, void *arg)
580 {
581 struct pt_regs *pt;
582 unsigned long urbs_end;
583 syncfunc_t fn = arg;
584
585 if (unw_unwind_to_user(info) < 0)
586 return;
587 pt = task_pt_regs(info->task);
588 urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
589
590 fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
591 }
592
593 /*
594 * when a thread is stopped (ptraced), debugger might change thread's user
595 * stack (change memory directly), and we must avoid the RSE stored in kernel
596 * to override user stack (user space's RSE is newer than kernel's in the
597 * case). To workaround the issue, we copy kernel RSE to user RSE before the
598 * task is stopped, so user RSE has updated data. we then copy user RSE to
599 * kernel after the task is resummed from traced stop and kernel will use the
600 * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
601 * synchronize user RSE to kernel.
602 */
ia64_ptrace_stop(void)603 void ia64_ptrace_stop(void)
604 {
605 if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
606 return;
607 set_notify_resume(current);
608 unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
609 }
610
611 /*
612 * This is called to read back the register backing store.
613 */
ia64_sync_krbs(void)614 void ia64_sync_krbs(void)
615 {
616 clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
617
618 unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
619 }
620
621 /*
622 * After PTRACE_ATTACH, a thread's register backing store area in user
623 * space is assumed to contain correct data whenever the thread is
624 * stopped. arch_ptrace_stop takes care of this on tracing stops.
625 * But if the child was already stopped for job control when we attach
626 * to it, then it might not ever get into ptrace_stop by the time we
627 * want to examine the user memory containing the RBS.
628 */
629 void
ptrace_attach_sync_user_rbs(struct task_struct * child)630 ptrace_attach_sync_user_rbs (struct task_struct *child)
631 {
632 int stopped = 0;
633 struct unw_frame_info info;
634
635 /*
636 * If the child is in TASK_STOPPED, we need to change that to
637 * TASK_TRACED momentarily while we operate on it. This ensures
638 * that the child won't be woken up and return to user mode while
639 * we are doing the sync. (It can only be woken up for SIGKILL.)
640 */
641
642 read_lock(&tasklist_lock);
643 if (child->signal) {
644 spin_lock_irq(&child->sighand->siglock);
645 if (child->state == TASK_STOPPED &&
646 !test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) {
647 set_notify_resume(child);
648
649 child->state = TASK_TRACED;
650 stopped = 1;
651 }
652 spin_unlock_irq(&child->sighand->siglock);
653 }
654 read_unlock(&tasklist_lock);
655
656 if (!stopped)
657 return;
658
659 unw_init_from_blocked_task(&info, child);
660 do_sync_rbs(&info, ia64_sync_user_rbs);
661
662 /*
663 * Now move the child back into TASK_STOPPED if it should be in a
664 * job control stop, so that SIGCONT can be used to wake it up.
665 */
666 read_lock(&tasklist_lock);
667 if (child->signal) {
668 spin_lock_irq(&child->sighand->siglock);
669 if (child->state == TASK_TRACED &&
670 (child->signal->flags & SIGNAL_STOP_STOPPED)) {
671 child->state = TASK_STOPPED;
672 }
673 spin_unlock_irq(&child->sighand->siglock);
674 }
675 read_unlock(&tasklist_lock);
676 }
677
678 static inline int
thread_matches(struct task_struct * thread,unsigned long addr)679 thread_matches (struct task_struct *thread, unsigned long addr)
680 {
681 unsigned long thread_rbs_end;
682 struct pt_regs *thread_regs;
683
684 if (ptrace_check_attach(thread, 0) < 0)
685 /*
686 * If the thread is not in an attachable state, we'll
687 * ignore it. The net effect is that if ADDR happens
688 * to overlap with the portion of the thread's
689 * register backing store that is currently residing
690 * on the thread's kernel stack, then ptrace() may end
691 * up accessing a stale value. But if the thread
692 * isn't stopped, that's a problem anyhow, so we're
693 * doing as well as we can...
694 */
695 return 0;
696
697 thread_regs = task_pt_regs(thread);
698 thread_rbs_end = ia64_get_user_rbs_end(thread, thread_regs, NULL);
699 if (!on_kernel_rbs(addr, thread_regs->ar_bspstore, thread_rbs_end))
700 return 0;
701
702 return 1; /* looks like we've got a winner */
703 }
704
705 /*
706 * Write f32-f127 back to task->thread.fph if it has been modified.
707 */
708 inline void
ia64_flush_fph(struct task_struct * task)709 ia64_flush_fph (struct task_struct *task)
710 {
711 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
712
713 /*
714 * Prevent migrating this task while
715 * we're fiddling with the FPU state
716 */
717 preempt_disable();
718 if (ia64_is_local_fpu_owner(task) && psr->mfh) {
719 psr->mfh = 0;
720 task->thread.flags |= IA64_THREAD_FPH_VALID;
721 ia64_save_fpu(&task->thread.fph[0]);
722 }
723 preempt_enable();
724 }
725
726 /*
727 * Sync the fph state of the task so that it can be manipulated
728 * through thread.fph. If necessary, f32-f127 are written back to
729 * thread.fph or, if the fph state hasn't been used before, thread.fph
730 * is cleared to zeroes. Also, access to f32-f127 is disabled to
731 * ensure that the task picks up the state from thread.fph when it
732 * executes again.
733 */
734 void
ia64_sync_fph(struct task_struct * task)735 ia64_sync_fph (struct task_struct *task)
736 {
737 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
738
739 ia64_flush_fph(task);
740 if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
741 task->thread.flags |= IA64_THREAD_FPH_VALID;
742 memset(&task->thread.fph, 0, sizeof(task->thread.fph));
743 }
744 ia64_drop_fpu(task);
745 psr->dfh = 1;
746 }
747
748 /*
749 * Change the machine-state of CHILD such that it will return via the normal
750 * kernel exit-path, rather than the syscall-exit path.
751 */
752 static void
convert_to_non_syscall(struct task_struct * child,struct pt_regs * pt,unsigned long cfm)753 convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt,
754 unsigned long cfm)
755 {
756 struct unw_frame_info info, prev_info;
757 unsigned long ip, sp, pr;
758
759 unw_init_from_blocked_task(&info, child);
760 while (1) {
761 prev_info = info;
762 if (unw_unwind(&info) < 0)
763 return;
764
765 unw_get_sp(&info, &sp);
766 if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
767 < IA64_PT_REGS_SIZE) {
768 dprintk("ptrace.%s: ran off the top of the kernel "
769 "stack\n", __func__);
770 return;
771 }
772 if (unw_get_pr (&prev_info, &pr) < 0) {
773 unw_get_rp(&prev_info, &ip);
774 dprintk("ptrace.%s: failed to read "
775 "predicate register (ip=0x%lx)\n",
776 __func__, ip);
777 return;
778 }
779 if (unw_is_intr_frame(&info)
780 && (pr & (1UL << PRED_USER_STACK)))
781 break;
782 }
783
784 /*
785 * Note: at the time of this call, the target task is blocked
786 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
787 * (aka, "pLvSys") we redirect execution from
788 * .work_pending_syscall_end to .work_processed_kernel.
789 */
790 unw_get_pr(&prev_info, &pr);
791 pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
792 pr |= (1UL << PRED_NON_SYSCALL);
793 unw_set_pr(&prev_info, pr);
794
795 pt->cr_ifs = (1UL << 63) | cfm;
796 /*
797 * Clear the memory that is NOT written on syscall-entry to
798 * ensure we do not leak kernel-state to user when execution
799 * resumes.
800 */
801 pt->r2 = 0;
802 pt->r3 = 0;
803 pt->r14 = 0;
804 memset(&pt->r16, 0, 16*8); /* clear r16-r31 */
805 memset(&pt->f6, 0, 6*16); /* clear f6-f11 */
806 pt->b7 = 0;
807 pt->ar_ccv = 0;
808 pt->ar_csd = 0;
809 pt->ar_ssd = 0;
810 }
811
812 static int
access_nat_bits(struct task_struct * child,struct pt_regs * pt,struct unw_frame_info * info,unsigned long * data,int write_access)813 access_nat_bits (struct task_struct *child, struct pt_regs *pt,
814 struct unw_frame_info *info,
815 unsigned long *data, int write_access)
816 {
817 unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
818 char nat = 0;
819
820 if (write_access) {
821 nat_bits = *data;
822 scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
823 if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
824 dprintk("ptrace: failed to set ar.unat\n");
825 return -1;
826 }
827 for (regnum = 4; regnum <= 7; ++regnum) {
828 unw_get_gr(info, regnum, &dummy, &nat);
829 unw_set_gr(info, regnum, dummy,
830 (nat_bits >> regnum) & 1);
831 }
832 } else {
833 if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
834 dprintk("ptrace: failed to read ar.unat\n");
835 return -1;
836 }
837 nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
838 for (regnum = 4; regnum <= 7; ++regnum) {
839 unw_get_gr(info, regnum, &dummy, &nat);
840 nat_bits |= (nat != 0) << regnum;
841 }
842 *data = nat_bits;
843 }
844 return 0;
845 }
846
847 static int
848 access_uarea (struct task_struct *child, unsigned long addr,
849 unsigned long *data, int write_access);
850
851 static long
ptrace_getregs(struct task_struct * child,struct pt_all_user_regs __user * ppr)852 ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
853 {
854 unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
855 struct unw_frame_info info;
856 struct ia64_fpreg fpval;
857 struct switch_stack *sw;
858 struct pt_regs *pt;
859 long ret, retval = 0;
860 char nat = 0;
861 int i;
862
863 if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
864 return -EIO;
865
866 pt = task_pt_regs(child);
867 sw = (struct switch_stack *) (child->thread.ksp + 16);
868 unw_init_from_blocked_task(&info, child);
869 if (unw_unwind_to_user(&info) < 0) {
870 return -EIO;
871 }
872
873 if (((unsigned long) ppr & 0x7) != 0) {
874 dprintk("ptrace:unaligned register address %p\n", ppr);
875 return -EIO;
876 }
877
878 if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
879 || access_uarea(child, PT_AR_EC, &ec, 0) < 0
880 || access_uarea(child, PT_AR_LC, &lc, 0) < 0
881 || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
882 || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
883 || access_uarea(child, PT_CFM, &cfm, 0)
884 || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
885 return -EIO;
886
887 /* control regs */
888
889 retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
890 retval |= __put_user(psr, &ppr->cr_ipsr);
891
892 /* app regs */
893
894 retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
895 retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
896 retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
897 retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
898 retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
899 retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
900
901 retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
902 retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
903 retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
904 retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
905 retval |= __put_user(cfm, &ppr->cfm);
906
907 /* gr1-gr3 */
908
909 retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
910 retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
911
912 /* gr4-gr7 */
913
914 for (i = 4; i < 8; i++) {
915 if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
916 return -EIO;
917 retval |= __put_user(val, &ppr->gr[i]);
918 }
919
920 /* gr8-gr11 */
921
922 retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
923
924 /* gr12-gr15 */
925
926 retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
927 retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
928 retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
929
930 /* gr16-gr31 */
931
932 retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
933
934 /* b0 */
935
936 retval |= __put_user(pt->b0, &ppr->br[0]);
937
938 /* b1-b5 */
939
940 for (i = 1; i < 6; i++) {
941 if (unw_access_br(&info, i, &val, 0) < 0)
942 return -EIO;
943 __put_user(val, &ppr->br[i]);
944 }
945
946 /* b6-b7 */
947
948 retval |= __put_user(pt->b6, &ppr->br[6]);
949 retval |= __put_user(pt->b7, &ppr->br[7]);
950
951 /* fr2-fr5 */
952
953 for (i = 2; i < 6; i++) {
954 if (unw_get_fr(&info, i, &fpval) < 0)
955 return -EIO;
956 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
957 }
958
959 /* fr6-fr11 */
960
961 retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
962 sizeof(struct ia64_fpreg) * 6);
963
964 /* fp scratch regs(12-15) */
965
966 retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
967 sizeof(struct ia64_fpreg) * 4);
968
969 /* fr16-fr31 */
970
971 for (i = 16; i < 32; i++) {
972 if (unw_get_fr(&info, i, &fpval) < 0)
973 return -EIO;
974 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
975 }
976
977 /* fph */
978
979 ia64_flush_fph(child);
980 retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
981 sizeof(ppr->fr[32]) * 96);
982
983 /* preds */
984
985 retval |= __put_user(pt->pr, &ppr->pr);
986
987 /* nat bits */
988
989 retval |= __put_user(nat_bits, &ppr->nat);
990
991 ret = retval ? -EIO : 0;
992 return ret;
993 }
994
995 static long
ptrace_setregs(struct task_struct * child,struct pt_all_user_regs __user * ppr)996 ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
997 {
998 unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
999 struct unw_frame_info info;
1000 struct switch_stack *sw;
1001 struct ia64_fpreg fpval;
1002 struct pt_regs *pt;
1003 long ret, retval = 0;
1004 int i;
1005
1006 memset(&fpval, 0, sizeof(fpval));
1007
1008 if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs)))
1009 return -EIO;
1010
1011 pt = task_pt_regs(child);
1012 sw = (struct switch_stack *) (child->thread.ksp + 16);
1013 unw_init_from_blocked_task(&info, child);
1014 if (unw_unwind_to_user(&info) < 0) {
1015 return -EIO;
1016 }
1017
1018 if (((unsigned long) ppr & 0x7) != 0) {
1019 dprintk("ptrace:unaligned register address %p\n", ppr);
1020 return -EIO;
1021 }
1022
1023 /* control regs */
1024
1025 retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
1026 retval |= __get_user(psr, &ppr->cr_ipsr);
1027
1028 /* app regs */
1029
1030 retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1031 retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
1032 retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1033 retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1034 retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1035 retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1036
1037 retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
1038 retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
1039 retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1040 retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
1041 retval |= __get_user(cfm, &ppr->cfm);
1042
1043 /* gr1-gr3 */
1044
1045 retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
1046 retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
1047
1048 /* gr4-gr7 */
1049
1050 for (i = 4; i < 8; i++) {
1051 retval |= __get_user(val, &ppr->gr[i]);
1052 /* NaT bit will be set via PT_NAT_BITS: */
1053 if (unw_set_gr(&info, i, val, 0) < 0)
1054 return -EIO;
1055 }
1056
1057 /* gr8-gr11 */
1058
1059 retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
1060
1061 /* gr12-gr15 */
1062
1063 retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
1064 retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
1065 retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
1066
1067 /* gr16-gr31 */
1068
1069 retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
1070
1071 /* b0 */
1072
1073 retval |= __get_user(pt->b0, &ppr->br[0]);
1074
1075 /* b1-b5 */
1076
1077 for (i = 1; i < 6; i++) {
1078 retval |= __get_user(val, &ppr->br[i]);
1079 unw_set_br(&info, i, val);
1080 }
1081
1082 /* b6-b7 */
1083
1084 retval |= __get_user(pt->b6, &ppr->br[6]);
1085 retval |= __get_user(pt->b7, &ppr->br[7]);
1086
1087 /* fr2-fr5 */
1088
1089 for (i = 2; i < 6; i++) {
1090 retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1091 if (unw_set_fr(&info, i, fpval) < 0)
1092 return -EIO;
1093 }
1094
1095 /* fr6-fr11 */
1096
1097 retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1098 sizeof(ppr->fr[6]) * 6);
1099
1100 /* fp scratch regs(12-15) */
1101
1102 retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1103 sizeof(ppr->fr[12]) * 4);
1104
1105 /* fr16-fr31 */
1106
1107 for (i = 16; i < 32; i++) {
1108 retval |= __copy_from_user(&fpval, &ppr->fr[i],
1109 sizeof(fpval));
1110 if (unw_set_fr(&info, i, fpval) < 0)
1111 return -EIO;
1112 }
1113
1114 /* fph */
1115
1116 ia64_sync_fph(child);
1117 retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1118 sizeof(ppr->fr[32]) * 96);
1119
1120 /* preds */
1121
1122 retval |= __get_user(pt->pr, &ppr->pr);
1123
1124 /* nat bits */
1125
1126 retval |= __get_user(nat_bits, &ppr->nat);
1127
1128 retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
1129 retval |= access_uarea(child, PT_AR_RSC, &rsc, 1);
1130 retval |= access_uarea(child, PT_AR_EC, &ec, 1);
1131 retval |= access_uarea(child, PT_AR_LC, &lc, 1);
1132 retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
1133 retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
1134 retval |= access_uarea(child, PT_CFM, &cfm, 1);
1135 retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
1136
1137 ret = retval ? -EIO : 0;
1138 return ret;
1139 }
1140
1141 void
user_enable_single_step(struct task_struct * child)1142 user_enable_single_step (struct task_struct *child)
1143 {
1144 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1145
1146 set_tsk_thread_flag(child, TIF_SINGLESTEP);
1147 child_psr->ss = 1;
1148 }
1149
1150 void
user_enable_block_step(struct task_struct * child)1151 user_enable_block_step (struct task_struct *child)
1152 {
1153 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1154
1155 set_tsk_thread_flag(child, TIF_SINGLESTEP);
1156 child_psr->tb = 1;
1157 }
1158
1159 void
user_disable_single_step(struct task_struct * child)1160 user_disable_single_step (struct task_struct *child)
1161 {
1162 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1163
1164 /* make sure the single step/taken-branch trap bits are not set: */
1165 clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1166 child_psr->ss = 0;
1167 child_psr->tb = 0;
1168 }
1169
1170 /*
1171 * Called by kernel/ptrace.c when detaching..
1172 *
1173 * Make sure the single step bit is not set.
1174 */
1175 void
ptrace_disable(struct task_struct * child)1176 ptrace_disable (struct task_struct *child)
1177 {
1178 user_disable_single_step(child);
1179 }
1180
1181 long
arch_ptrace(struct task_struct * child,long request,long addr,long data)1182 arch_ptrace (struct task_struct *child, long request, long addr, long data)
1183 {
1184 switch (request) {
1185 case PTRACE_PEEKTEXT:
1186 case PTRACE_PEEKDATA:
1187 /* read word at location addr */
1188 if (access_process_vm(child, addr, &data, sizeof(data), 0)
1189 != sizeof(data))
1190 return -EIO;
1191 /* ensure return value is not mistaken for error code */
1192 force_successful_syscall_return();
1193 return data;
1194
1195 /* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
1196 * by the generic ptrace_request().
1197 */
1198
1199 case PTRACE_PEEKUSR:
1200 /* read the word at addr in the USER area */
1201 if (access_uarea(child, addr, &data, 0) < 0)
1202 return -EIO;
1203 /* ensure return value is not mistaken for error code */
1204 force_successful_syscall_return();
1205 return data;
1206
1207 case PTRACE_POKEUSR:
1208 /* write the word at addr in the USER area */
1209 if (access_uarea(child, addr, &data, 1) < 0)
1210 return -EIO;
1211 return 0;
1212
1213 case PTRACE_OLD_GETSIGINFO:
1214 /* for backwards-compatibility */
1215 return ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
1216
1217 case PTRACE_OLD_SETSIGINFO:
1218 /* for backwards-compatibility */
1219 return ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
1220
1221 case PTRACE_GETREGS:
1222 return ptrace_getregs(child,
1223 (struct pt_all_user_regs __user *) data);
1224
1225 case PTRACE_SETREGS:
1226 return ptrace_setregs(child,
1227 (struct pt_all_user_regs __user *) data);
1228
1229 default:
1230 return ptrace_request(child, request, addr, data);
1231 }
1232 }
1233
1234
1235 /* "asmlinkage" so the input arguments are preserved... */
1236
1237 asmlinkage long
syscall_trace_enter(long arg0,long arg1,long arg2,long arg3,long arg4,long arg5,long arg6,long arg7,struct pt_regs regs)1238 syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1239 long arg4, long arg5, long arg6, long arg7,
1240 struct pt_regs regs)
1241 {
1242 if (test_thread_flag(TIF_SYSCALL_TRACE))
1243 if (tracehook_report_syscall_entry(®s))
1244 return -ENOSYS;
1245
1246 /* copy user rbs to kernel rbs */
1247 if (test_thread_flag(TIF_RESTORE_RSE))
1248 ia64_sync_krbs();
1249
1250 if (unlikely(current->audit_context)) {
1251 long syscall;
1252 int arch;
1253
1254 if (IS_IA32_PROCESS(®s)) {
1255 syscall = regs.r1;
1256 arch = AUDIT_ARCH_I386;
1257 } else {
1258 syscall = regs.r15;
1259 arch = AUDIT_ARCH_IA64;
1260 }
1261
1262 audit_syscall_entry(arch, syscall, arg0, arg1, arg2, arg3);
1263 }
1264
1265 return 0;
1266 }
1267
1268 /* "asmlinkage" so the input arguments are preserved... */
1269
1270 asmlinkage void
syscall_trace_leave(long arg0,long arg1,long arg2,long arg3,long arg4,long arg5,long arg6,long arg7,struct pt_regs regs)1271 syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1272 long arg4, long arg5, long arg6, long arg7,
1273 struct pt_regs regs)
1274 {
1275 int step;
1276
1277 if (unlikely(current->audit_context)) {
1278 int success = AUDITSC_RESULT(regs.r10);
1279 long result = regs.r8;
1280
1281 if (success != AUDITSC_SUCCESS)
1282 result = -result;
1283 audit_syscall_exit(success, result);
1284 }
1285
1286 step = test_thread_flag(TIF_SINGLESTEP);
1287 if (step || test_thread_flag(TIF_SYSCALL_TRACE))
1288 tracehook_report_syscall_exit(®s, step);
1289
1290 /* copy user rbs to kernel rbs */
1291 if (test_thread_flag(TIF_RESTORE_RSE))
1292 ia64_sync_krbs();
1293 }
1294
1295 /* Utrace implementation starts here */
1296 struct regset_get {
1297 void *kbuf;
1298 void __user *ubuf;
1299 };
1300
1301 struct regset_set {
1302 const void *kbuf;
1303 const void __user *ubuf;
1304 };
1305
1306 struct regset_getset {
1307 struct task_struct *target;
1308 const struct user_regset *regset;
1309 union {
1310 struct regset_get get;
1311 struct regset_set set;
1312 } u;
1313 unsigned int pos;
1314 unsigned int count;
1315 int ret;
1316 };
1317
1318 static int
access_elf_gpreg(struct task_struct * target,struct unw_frame_info * info,unsigned long addr,unsigned long * data,int write_access)1319 access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info,
1320 unsigned long addr, unsigned long *data, int write_access)
1321 {
1322 struct pt_regs *pt;
1323 unsigned long *ptr = NULL;
1324 int ret;
1325 char nat = 0;
1326
1327 pt = task_pt_regs(target);
1328 switch (addr) {
1329 case ELF_GR_OFFSET(1):
1330 ptr = &pt->r1;
1331 break;
1332 case ELF_GR_OFFSET(2):
1333 case ELF_GR_OFFSET(3):
1334 ptr = (void *)&pt->r2 + (addr - ELF_GR_OFFSET(2));
1335 break;
1336 case ELF_GR_OFFSET(4) ... ELF_GR_OFFSET(7):
1337 if (write_access) {
1338 /* read NaT bit first: */
1339 unsigned long dummy;
1340
1341 ret = unw_get_gr(info, addr/8, &dummy, &nat);
1342 if (ret < 0)
1343 return ret;
1344 }
1345 return unw_access_gr(info, addr/8, data, &nat, write_access);
1346 case ELF_GR_OFFSET(8) ... ELF_GR_OFFSET(11):
1347 ptr = (void *)&pt->r8 + addr - ELF_GR_OFFSET(8);
1348 break;
1349 case ELF_GR_OFFSET(12):
1350 case ELF_GR_OFFSET(13):
1351 ptr = (void *)&pt->r12 + addr - ELF_GR_OFFSET(12);
1352 break;
1353 case ELF_GR_OFFSET(14):
1354 ptr = &pt->r14;
1355 break;
1356 case ELF_GR_OFFSET(15):
1357 ptr = &pt->r15;
1358 }
1359 if (write_access)
1360 *ptr = *data;
1361 else
1362 *data = *ptr;
1363 return 0;
1364 }
1365
1366 static int
access_elf_breg(struct task_struct * target,struct unw_frame_info * info,unsigned long addr,unsigned long * data,int write_access)1367 access_elf_breg(struct task_struct *target, struct unw_frame_info *info,
1368 unsigned long addr, unsigned long *data, int write_access)
1369 {
1370 struct pt_regs *pt;
1371 unsigned long *ptr = NULL;
1372
1373 pt = task_pt_regs(target);
1374 switch (addr) {
1375 case ELF_BR_OFFSET(0):
1376 ptr = &pt->b0;
1377 break;
1378 case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
1379 return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8,
1380 data, write_access);
1381 case ELF_BR_OFFSET(6):
1382 ptr = &pt->b6;
1383 break;
1384 case ELF_BR_OFFSET(7):
1385 ptr = &pt->b7;
1386 }
1387 if (write_access)
1388 *ptr = *data;
1389 else
1390 *data = *ptr;
1391 return 0;
1392 }
1393
1394 static int
access_elf_areg(struct task_struct * target,struct unw_frame_info * info,unsigned long addr,unsigned long * data,int write_access)1395 access_elf_areg(struct task_struct *target, struct unw_frame_info *info,
1396 unsigned long addr, unsigned long *data, int write_access)
1397 {
1398 struct pt_regs *pt;
1399 unsigned long cfm, urbs_end;
1400 unsigned long *ptr = NULL;
1401
1402 pt = task_pt_regs(target);
1403 if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) {
1404 switch (addr) {
1405 case ELF_AR_RSC_OFFSET:
1406 /* force PL3 */
1407 if (write_access)
1408 pt->ar_rsc = *data | (3 << 2);
1409 else
1410 *data = pt->ar_rsc;
1411 return 0;
1412 case ELF_AR_BSP_OFFSET:
1413 /*
1414 * By convention, we use PT_AR_BSP to refer to
1415 * the end of the user-level backing store.
1416 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
1417 * to get the real value of ar.bsp at the time
1418 * the kernel was entered.
1419 *
1420 * Furthermore, when changing the contents of
1421 * PT_AR_BSP (or PT_CFM) while the task is
1422 * blocked in a system call, convert the state
1423 * so that the non-system-call exit
1424 * path is used. This ensures that the proper
1425 * state will be picked up when resuming
1426 * execution. However, it *also* means that
1427 * once we write PT_AR_BSP/PT_CFM, it won't be
1428 * possible to modify the syscall arguments of
1429 * the pending system call any longer. This
1430 * shouldn't be an issue because modifying
1431 * PT_AR_BSP/PT_CFM generally implies that
1432 * we're either abandoning the pending system
1433 * call or that we defer it's re-execution
1434 * (e.g., due to GDB doing an inferior
1435 * function call).
1436 */
1437 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1438 if (write_access) {
1439 if (*data != urbs_end) {
1440 if (in_syscall(pt))
1441 convert_to_non_syscall(target,
1442 pt,
1443 cfm);
1444 /*
1445 * Simulate user-level write
1446 * of ar.bsp:
1447 */
1448 pt->loadrs = 0;
1449 pt->ar_bspstore = *data;
1450 }
1451 } else
1452 *data = urbs_end;
1453 return 0;
1454 case ELF_AR_BSPSTORE_OFFSET:
1455 ptr = &pt->ar_bspstore;
1456 break;
1457 case ELF_AR_RNAT_OFFSET:
1458 ptr = &pt->ar_rnat;
1459 break;
1460 case ELF_AR_CCV_OFFSET:
1461 ptr = &pt->ar_ccv;
1462 break;
1463 case ELF_AR_UNAT_OFFSET:
1464 ptr = &pt->ar_unat;
1465 break;
1466 case ELF_AR_FPSR_OFFSET:
1467 ptr = &pt->ar_fpsr;
1468 break;
1469 case ELF_AR_PFS_OFFSET:
1470 ptr = &pt->ar_pfs;
1471 break;
1472 case ELF_AR_LC_OFFSET:
1473 return unw_access_ar(info, UNW_AR_LC, data,
1474 write_access);
1475 case ELF_AR_EC_OFFSET:
1476 return unw_access_ar(info, UNW_AR_EC, data,
1477 write_access);
1478 case ELF_AR_CSD_OFFSET:
1479 ptr = &pt->ar_csd;
1480 break;
1481 case ELF_AR_SSD_OFFSET:
1482 ptr = &pt->ar_ssd;
1483 }
1484 } else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) {
1485 switch (addr) {
1486 case ELF_CR_IIP_OFFSET:
1487 ptr = &pt->cr_iip;
1488 break;
1489 case ELF_CFM_OFFSET:
1490 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1491 if (write_access) {
1492 if (((cfm ^ *data) & PFM_MASK) != 0) {
1493 if (in_syscall(pt))
1494 convert_to_non_syscall(target,
1495 pt,
1496 cfm);
1497 pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
1498 | (*data & PFM_MASK));
1499 }
1500 } else
1501 *data = cfm;
1502 return 0;
1503 case ELF_CR_IPSR_OFFSET:
1504 if (write_access) {
1505 unsigned long tmp = *data;
1506 /* psr.ri==3 is a reserved value: SDM 2:25 */
1507 if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
1508 tmp &= ~IA64_PSR_RI;
1509 pt->cr_ipsr = ((tmp & IPSR_MASK)
1510 | (pt->cr_ipsr & ~IPSR_MASK));
1511 } else
1512 *data = (pt->cr_ipsr & IPSR_MASK);
1513 return 0;
1514 }
1515 } else if (addr == ELF_NAT_OFFSET)
1516 return access_nat_bits(target, pt, info,
1517 data, write_access);
1518 else if (addr == ELF_PR_OFFSET)
1519 ptr = &pt->pr;
1520 else
1521 return -1;
1522
1523 if (write_access)
1524 *ptr = *data;
1525 else
1526 *data = *ptr;
1527
1528 return 0;
1529 }
1530
1531 static int
access_elf_reg(struct task_struct * target,struct unw_frame_info * info,unsigned long addr,unsigned long * data,int write_access)1532 access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
1533 unsigned long addr, unsigned long *data, int write_access)
1534 {
1535 if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(15))
1536 return access_elf_gpreg(target, info, addr, data, write_access);
1537 else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7))
1538 return access_elf_breg(target, info, addr, data, write_access);
1539 else
1540 return access_elf_areg(target, info, addr, data, write_access);
1541 }
1542
do_gpregs_get(struct unw_frame_info * info,void * arg)1543 void do_gpregs_get(struct unw_frame_info *info, void *arg)
1544 {
1545 struct pt_regs *pt;
1546 struct regset_getset *dst = arg;
1547 elf_greg_t tmp[16];
1548 unsigned int i, index, min_copy;
1549
1550 if (unw_unwind_to_user(info) < 0)
1551 return;
1552
1553 /*
1554 * coredump format:
1555 * r0-r31
1556 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
1557 * predicate registers (p0-p63)
1558 * b0-b7
1559 * ip cfm user-mask
1560 * ar.rsc ar.bsp ar.bspstore ar.rnat
1561 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
1562 */
1563
1564
1565 /* Skip r0 */
1566 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1567 dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1568 &dst->u.get.kbuf,
1569 &dst->u.get.ubuf,
1570 0, ELF_GR_OFFSET(1));
1571 if (dst->ret || dst->count == 0)
1572 return;
1573 }
1574
1575 /* gr1 - gr15 */
1576 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1577 index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1578 min_copy = ELF_GR_OFFSET(16) > (dst->pos + dst->count) ?
1579 (dst->pos + dst->count) : ELF_GR_OFFSET(16);
1580 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1581 index++)
1582 if (access_elf_reg(dst->target, info, i,
1583 &tmp[index], 0) < 0) {
1584 dst->ret = -EIO;
1585 return;
1586 }
1587 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1588 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1589 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1590 if (dst->ret || dst->count == 0)
1591 return;
1592 }
1593
1594 /* r16-r31 */
1595 if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1596 pt = task_pt_regs(dst->target);
1597 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1598 &dst->u.get.kbuf, &dst->u.get.ubuf, &pt->r16,
1599 ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1600 if (dst->ret || dst->count == 0)
1601 return;
1602 }
1603
1604 /* nat, pr, b0 - b7 */
1605 if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1606 index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1607 min_copy = ELF_CR_IIP_OFFSET > (dst->pos + dst->count) ?
1608 (dst->pos + dst->count) : ELF_CR_IIP_OFFSET;
1609 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1610 index++)
1611 if (access_elf_reg(dst->target, info, i,
1612 &tmp[index], 0) < 0) {
1613 dst->ret = -EIO;
1614 return;
1615 }
1616 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1617 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1618 ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1619 if (dst->ret || dst->count == 0)
1620 return;
1621 }
1622
1623 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1624 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1625 */
1626 if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1627 index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1628 min_copy = ELF_AR_END_OFFSET > (dst->pos + dst->count) ?
1629 (dst->pos + dst->count) : ELF_AR_END_OFFSET;
1630 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1631 index++)
1632 if (access_elf_reg(dst->target, info, i,
1633 &tmp[index], 0) < 0) {
1634 dst->ret = -EIO;
1635 return;
1636 }
1637 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1638 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1639 ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1640 }
1641 }
1642
do_gpregs_set(struct unw_frame_info * info,void * arg)1643 void do_gpregs_set(struct unw_frame_info *info, void *arg)
1644 {
1645 struct pt_regs *pt;
1646 struct regset_getset *dst = arg;
1647 elf_greg_t tmp[16];
1648 unsigned int i, index;
1649
1650 if (unw_unwind_to_user(info) < 0)
1651 return;
1652
1653 /* Skip r0 */
1654 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1655 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1656 &dst->u.set.kbuf,
1657 &dst->u.set.ubuf,
1658 0, ELF_GR_OFFSET(1));
1659 if (dst->ret || dst->count == 0)
1660 return;
1661 }
1662
1663 /* gr1-gr15 */
1664 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1665 i = dst->pos;
1666 index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1667 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1668 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1669 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1670 if (dst->ret)
1671 return;
1672 for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1673 if (access_elf_reg(dst->target, info, i,
1674 &tmp[index], 1) < 0) {
1675 dst->ret = -EIO;
1676 return;
1677 }
1678 if (dst->count == 0)
1679 return;
1680 }
1681
1682 /* gr16-gr31 */
1683 if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1684 pt = task_pt_regs(dst->target);
1685 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1686 &dst->u.set.kbuf, &dst->u.set.ubuf, &pt->r16,
1687 ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1688 if (dst->ret || dst->count == 0)
1689 return;
1690 }
1691
1692 /* nat, pr, b0 - b7 */
1693 if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1694 i = dst->pos;
1695 index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1696 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1697 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1698 ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1699 if (dst->ret)
1700 return;
1701 for (; i < dst->pos; i += sizeof(elf_greg_t), index++)
1702 if (access_elf_reg(dst->target, info, i,
1703 &tmp[index], 1) < 0) {
1704 dst->ret = -EIO;
1705 return;
1706 }
1707 if (dst->count == 0)
1708 return;
1709 }
1710
1711 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1712 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1713 */
1714 if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1715 i = dst->pos;
1716 index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1717 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1718 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1719 ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1720 if (dst->ret)
1721 return;
1722 for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1723 if (access_elf_reg(dst->target, info, i,
1724 &tmp[index], 1) < 0) {
1725 dst->ret = -EIO;
1726 return;
1727 }
1728 }
1729 }
1730
1731 #define ELF_FP_OFFSET(i) (i * sizeof(elf_fpreg_t))
1732
do_fpregs_get(struct unw_frame_info * info,void * arg)1733 void do_fpregs_get(struct unw_frame_info *info, void *arg)
1734 {
1735 struct regset_getset *dst = arg;
1736 struct task_struct *task = dst->target;
1737 elf_fpreg_t tmp[30];
1738 int index, min_copy, i;
1739
1740 if (unw_unwind_to_user(info) < 0)
1741 return;
1742
1743 /* Skip pos 0 and 1 */
1744 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1745 dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1746 &dst->u.get.kbuf,
1747 &dst->u.get.ubuf,
1748 0, ELF_FP_OFFSET(2));
1749 if (dst->count == 0 || dst->ret)
1750 return;
1751 }
1752
1753 /* fr2-fr31 */
1754 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1755 index = (dst->pos - ELF_FP_OFFSET(2)) / sizeof(elf_fpreg_t);
1756
1757 min_copy = min(((unsigned int)ELF_FP_OFFSET(32)),
1758 dst->pos + dst->count);
1759 for (i = dst->pos; i < min_copy; i += sizeof(elf_fpreg_t),
1760 index++)
1761 if (unw_get_fr(info, i / sizeof(elf_fpreg_t),
1762 &tmp[index])) {
1763 dst->ret = -EIO;
1764 return;
1765 }
1766 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1767 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1768 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1769 if (dst->count == 0 || dst->ret)
1770 return;
1771 }
1772
1773 /* fph */
1774 if (dst->count > 0) {
1775 ia64_flush_fph(dst->target);
1776 if (task->thread.flags & IA64_THREAD_FPH_VALID)
1777 dst->ret = user_regset_copyout(
1778 &dst->pos, &dst->count,
1779 &dst->u.get.kbuf, &dst->u.get.ubuf,
1780 &dst->target->thread.fph,
1781 ELF_FP_OFFSET(32), -1);
1782 else
1783 /* Zero fill instead. */
1784 dst->ret = user_regset_copyout_zero(
1785 &dst->pos, &dst->count,
1786 &dst->u.get.kbuf, &dst->u.get.ubuf,
1787 ELF_FP_OFFSET(32), -1);
1788 }
1789 }
1790
do_fpregs_set(struct unw_frame_info * info,void * arg)1791 void do_fpregs_set(struct unw_frame_info *info, void *arg)
1792 {
1793 struct regset_getset *dst = arg;
1794 elf_fpreg_t fpreg, tmp[30];
1795 int index, start, end;
1796
1797 if (unw_unwind_to_user(info) < 0)
1798 return;
1799
1800 /* Skip pos 0 and 1 */
1801 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1802 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1803 &dst->u.set.kbuf,
1804 &dst->u.set.ubuf,
1805 0, ELF_FP_OFFSET(2));
1806 if (dst->count == 0 || dst->ret)
1807 return;
1808 }
1809
1810 /* fr2-fr31 */
1811 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1812 start = dst->pos;
1813 end = min(((unsigned int)ELF_FP_OFFSET(32)),
1814 dst->pos + dst->count);
1815 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1816 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1817 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1818 if (dst->ret)
1819 return;
1820
1821 if (start & 0xF) { /* only write high part */
1822 if (unw_get_fr(info, start / sizeof(elf_fpreg_t),
1823 &fpreg)) {
1824 dst->ret = -EIO;
1825 return;
1826 }
1827 tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0]
1828 = fpreg.u.bits[0];
1829 start &= ~0xFUL;
1830 }
1831 if (end & 0xF) { /* only write low part */
1832 if (unw_get_fr(info, end / sizeof(elf_fpreg_t),
1833 &fpreg)) {
1834 dst->ret = -EIO;
1835 return;
1836 }
1837 tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1]
1838 = fpreg.u.bits[1];
1839 end = (end + 0xF) & ~0xFUL;
1840 }
1841
1842 for ( ; start < end ; start += sizeof(elf_fpreg_t)) {
1843 index = start / sizeof(elf_fpreg_t);
1844 if (unw_set_fr(info, index, tmp[index - 2])) {
1845 dst->ret = -EIO;
1846 return;
1847 }
1848 }
1849 if (dst->ret || dst->count == 0)
1850 return;
1851 }
1852
1853 /* fph */
1854 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) {
1855 ia64_sync_fph(dst->target);
1856 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1857 &dst->u.set.kbuf,
1858 &dst->u.set.ubuf,
1859 &dst->target->thread.fph,
1860 ELF_FP_OFFSET(32), -1);
1861 }
1862 }
1863
1864 static int
do_regset_call(void (* call)(struct unw_frame_info *,void *),struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1865 do_regset_call(void (*call)(struct unw_frame_info *, void *),
1866 struct task_struct *target,
1867 const struct user_regset *regset,
1868 unsigned int pos, unsigned int count,
1869 const void *kbuf, const void __user *ubuf)
1870 {
1871 struct regset_getset info = { .target = target, .regset = regset,
1872 .pos = pos, .count = count,
1873 .u.set = { .kbuf = kbuf, .ubuf = ubuf },
1874 .ret = 0 };
1875
1876 if (target == current)
1877 unw_init_running(call, &info);
1878 else {
1879 struct unw_frame_info ufi;
1880 memset(&ufi, 0, sizeof(ufi));
1881 unw_init_from_blocked_task(&ufi, target);
1882 (*call)(&ufi, &info);
1883 }
1884
1885 return info.ret;
1886 }
1887
1888 static int
gpregs_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1889 gpregs_get(struct task_struct *target,
1890 const struct user_regset *regset,
1891 unsigned int pos, unsigned int count,
1892 void *kbuf, void __user *ubuf)
1893 {
1894 return do_regset_call(do_gpregs_get, target, regset, pos, count,
1895 kbuf, ubuf);
1896 }
1897
gpregs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1898 static int gpregs_set(struct task_struct *target,
1899 const struct user_regset *regset,
1900 unsigned int pos, unsigned int count,
1901 const void *kbuf, const void __user *ubuf)
1902 {
1903 return do_regset_call(do_gpregs_set, target, regset, pos, count,
1904 kbuf, ubuf);
1905 }
1906
do_gpregs_writeback(struct unw_frame_info * info,void * arg)1907 static void do_gpregs_writeback(struct unw_frame_info *info, void *arg)
1908 {
1909 do_sync_rbs(info, ia64_sync_user_rbs);
1910 }
1911
1912 /*
1913 * This is called to write back the register backing store.
1914 * ptrace does this before it stops, so that a tracer reading the user
1915 * memory after the thread stops will get the current register data.
1916 */
1917 static int
gpregs_writeback(struct task_struct * target,const struct user_regset * regset,int now)1918 gpregs_writeback(struct task_struct *target,
1919 const struct user_regset *regset,
1920 int now)
1921 {
1922 if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE))
1923 return 0;
1924 set_notify_resume(target);
1925 return do_regset_call(do_gpregs_writeback, target, regset, 0, 0,
1926 NULL, NULL);
1927 }
1928
1929 static int
fpregs_active(struct task_struct * target,const struct user_regset * regset)1930 fpregs_active(struct task_struct *target, const struct user_regset *regset)
1931 {
1932 return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32;
1933 }
1934
fpregs_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1935 static int fpregs_get(struct task_struct *target,
1936 const struct user_regset *regset,
1937 unsigned int pos, unsigned int count,
1938 void *kbuf, void __user *ubuf)
1939 {
1940 return do_regset_call(do_fpregs_get, target, regset, pos, count,
1941 kbuf, ubuf);
1942 }
1943
fpregs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1944 static int fpregs_set(struct task_struct *target,
1945 const struct user_regset *regset,
1946 unsigned int pos, unsigned int count,
1947 const void *kbuf, const void __user *ubuf)
1948 {
1949 return do_regset_call(do_fpregs_set, target, regset, pos, count,
1950 kbuf, ubuf);
1951 }
1952
1953 static int
access_uarea(struct task_struct * child,unsigned long addr,unsigned long * data,int write_access)1954 access_uarea(struct task_struct *child, unsigned long addr,
1955 unsigned long *data, int write_access)
1956 {
1957 unsigned int pos = -1; /* an invalid value */
1958 int ret;
1959 unsigned long *ptr, regnum;
1960
1961 if ((addr & 0x7) != 0) {
1962 dprintk("ptrace: unaligned register address 0x%lx\n", addr);
1963 return -1;
1964 }
1965 if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) ||
1966 (addr >= PT_R7 + 8 && addr < PT_B1) ||
1967 (addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) ||
1968 (addr >= PT_AR_SSD + 8 && addr < PT_DBR)) {
1969 dprintk("ptrace: rejecting access to register "
1970 "address 0x%lx\n", addr);
1971 return -1;
1972 }
1973
1974 switch (addr) {
1975 case PT_F32 ... (PT_F127 + 15):
1976 pos = addr - PT_F32 + ELF_FP_OFFSET(32);
1977 break;
1978 case PT_F2 ... (PT_F5 + 15):
1979 pos = addr - PT_F2 + ELF_FP_OFFSET(2);
1980 break;
1981 case PT_F10 ... (PT_F31 + 15):
1982 pos = addr - PT_F10 + ELF_FP_OFFSET(10);
1983 break;
1984 case PT_F6 ... (PT_F9 + 15):
1985 pos = addr - PT_F6 + ELF_FP_OFFSET(6);
1986 break;
1987 }
1988
1989 if (pos != -1) {
1990 if (write_access)
1991 ret = fpregs_set(child, NULL, pos,
1992 sizeof(unsigned long), data, NULL);
1993 else
1994 ret = fpregs_get(child, NULL, pos,
1995 sizeof(unsigned long), data, NULL);
1996 if (ret != 0)
1997 return -1;
1998 return 0;
1999 }
2000
2001 switch (addr) {
2002 case PT_NAT_BITS:
2003 pos = ELF_NAT_OFFSET;
2004 break;
2005 case PT_R4 ... PT_R7:
2006 pos = addr - PT_R4 + ELF_GR_OFFSET(4);
2007 break;
2008 case PT_B1 ... PT_B5:
2009 pos = addr - PT_B1 + ELF_BR_OFFSET(1);
2010 break;
2011 case PT_AR_EC:
2012 pos = ELF_AR_EC_OFFSET;
2013 break;
2014 case PT_AR_LC:
2015 pos = ELF_AR_LC_OFFSET;
2016 break;
2017 case PT_CR_IPSR:
2018 pos = ELF_CR_IPSR_OFFSET;
2019 break;
2020 case PT_CR_IIP:
2021 pos = ELF_CR_IIP_OFFSET;
2022 break;
2023 case PT_CFM:
2024 pos = ELF_CFM_OFFSET;
2025 break;
2026 case PT_AR_UNAT:
2027 pos = ELF_AR_UNAT_OFFSET;
2028 break;
2029 case PT_AR_PFS:
2030 pos = ELF_AR_PFS_OFFSET;
2031 break;
2032 case PT_AR_RSC:
2033 pos = ELF_AR_RSC_OFFSET;
2034 break;
2035 case PT_AR_RNAT:
2036 pos = ELF_AR_RNAT_OFFSET;
2037 break;
2038 case PT_AR_BSPSTORE:
2039 pos = ELF_AR_BSPSTORE_OFFSET;
2040 break;
2041 case PT_PR:
2042 pos = ELF_PR_OFFSET;
2043 break;
2044 case PT_B6:
2045 pos = ELF_BR_OFFSET(6);
2046 break;
2047 case PT_AR_BSP:
2048 pos = ELF_AR_BSP_OFFSET;
2049 break;
2050 case PT_R1 ... PT_R3:
2051 pos = addr - PT_R1 + ELF_GR_OFFSET(1);
2052 break;
2053 case PT_R12 ... PT_R15:
2054 pos = addr - PT_R12 + ELF_GR_OFFSET(12);
2055 break;
2056 case PT_R8 ... PT_R11:
2057 pos = addr - PT_R8 + ELF_GR_OFFSET(8);
2058 break;
2059 case PT_R16 ... PT_R31:
2060 pos = addr - PT_R16 + ELF_GR_OFFSET(16);
2061 break;
2062 case PT_AR_CCV:
2063 pos = ELF_AR_CCV_OFFSET;
2064 break;
2065 case PT_AR_FPSR:
2066 pos = ELF_AR_FPSR_OFFSET;
2067 break;
2068 case PT_B0:
2069 pos = ELF_BR_OFFSET(0);
2070 break;
2071 case PT_B7:
2072 pos = ELF_BR_OFFSET(7);
2073 break;
2074 case PT_AR_CSD:
2075 pos = ELF_AR_CSD_OFFSET;
2076 break;
2077 case PT_AR_SSD:
2078 pos = ELF_AR_SSD_OFFSET;
2079 break;
2080 }
2081
2082 if (pos != -1) {
2083 if (write_access)
2084 ret = gpregs_set(child, NULL, pos,
2085 sizeof(unsigned long), data, NULL);
2086 else
2087 ret = gpregs_get(child, NULL, pos,
2088 sizeof(unsigned long), data, NULL);
2089 if (ret != 0)
2090 return -1;
2091 return 0;
2092 }
2093
2094 /* access debug registers */
2095 if (addr >= PT_IBR) {
2096 regnum = (addr - PT_IBR) >> 3;
2097 ptr = &child->thread.ibr[0];
2098 } else {
2099 regnum = (addr - PT_DBR) >> 3;
2100 ptr = &child->thread.dbr[0];
2101 }
2102
2103 if (regnum >= 8) {
2104 dprintk("ptrace: rejecting access to register "
2105 "address 0x%lx\n", addr);
2106 return -1;
2107 }
2108 #ifdef CONFIG_PERFMON
2109 /*
2110 * Check if debug registers are used by perfmon. This
2111 * test must be done once we know that we can do the
2112 * operation, i.e. the arguments are all valid, but
2113 * before we start modifying the state.
2114 *
2115 * Perfmon needs to keep a count of how many processes
2116 * are trying to modify the debug registers for system
2117 * wide monitoring sessions.
2118 *
2119 * We also include read access here, because they may
2120 * cause the PMU-installed debug register state
2121 * (dbr[], ibr[]) to be reset. The two arrays are also
2122 * used by perfmon, but we do not use
2123 * IA64_THREAD_DBG_VALID. The registers are restored
2124 * by the PMU context switch code.
2125 */
2126 if (pfm_use_debug_registers(child))
2127 return -1;
2128 #endif
2129
2130 if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
2131 child->thread.flags |= IA64_THREAD_DBG_VALID;
2132 memset(child->thread.dbr, 0,
2133 sizeof(child->thread.dbr));
2134 memset(child->thread.ibr, 0,
2135 sizeof(child->thread.ibr));
2136 }
2137
2138 ptr += regnum;
2139
2140 if ((regnum & 1) && write_access) {
2141 /* don't let the user set kernel-level breakpoints: */
2142 *ptr = *data & ~(7UL << 56);
2143 return 0;
2144 }
2145 if (write_access)
2146 *ptr = *data;
2147 else
2148 *data = *ptr;
2149 return 0;
2150 }
2151
2152 static const struct user_regset native_regsets[] = {
2153 {
2154 .core_note_type = NT_PRSTATUS,
2155 .n = ELF_NGREG,
2156 .size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t),
2157 .get = gpregs_get, .set = gpregs_set,
2158 .writeback = gpregs_writeback
2159 },
2160 {
2161 .core_note_type = NT_PRFPREG,
2162 .n = ELF_NFPREG,
2163 .size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t),
2164 .get = fpregs_get, .set = fpregs_set, .active = fpregs_active
2165 },
2166 };
2167
2168 static const struct user_regset_view user_ia64_view = {
2169 .name = "ia64",
2170 .e_machine = EM_IA_64,
2171 .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
2172 };
2173
task_user_regset_view(struct task_struct * tsk)2174 const struct user_regset_view *task_user_regset_view(struct task_struct *tsk)
2175 {
2176 #ifdef CONFIG_IA32_SUPPORT
2177 extern const struct user_regset_view user_ia32_view;
2178 if (IS_IA32_PROCESS(task_pt_regs(tsk)))
2179 return &user_ia32_view;
2180 #endif
2181 return &user_ia64_view;
2182 }
2183
2184 struct syscall_get_set_args {
2185 unsigned int i;
2186 unsigned int n;
2187 unsigned long *args;
2188 struct pt_regs *regs;
2189 int rw;
2190 };
2191
syscall_get_set_args_cb(struct unw_frame_info * info,void * data)2192 static void syscall_get_set_args_cb(struct unw_frame_info *info, void *data)
2193 {
2194 struct syscall_get_set_args *args = data;
2195 struct pt_regs *pt = args->regs;
2196 unsigned long *krbs, cfm, ndirty;
2197 int i, count;
2198
2199 if (unw_unwind_to_user(info) < 0)
2200 return;
2201
2202 cfm = pt->cr_ifs;
2203 krbs = (unsigned long *)info->task + IA64_RBS_OFFSET/8;
2204 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
2205
2206 count = 0;
2207 if (in_syscall(pt))
2208 count = min_t(int, args->n, cfm & 0x7f);
2209
2210 for (i = 0; i < count; i++) {
2211 if (args->rw)
2212 *ia64_rse_skip_regs(krbs, ndirty + i + args->i) =
2213 args->args[i];
2214 else
2215 args->args[i] = *ia64_rse_skip_regs(krbs,
2216 ndirty + i + args->i);
2217 }
2218
2219 if (!args->rw) {
2220 while (i < args->n) {
2221 args->args[i] = 0;
2222 i++;
2223 }
2224 }
2225 }
2226
ia64_syscall_get_set_arguments(struct task_struct * task,struct pt_regs * regs,unsigned int i,unsigned int n,unsigned long * args,int rw)2227 void ia64_syscall_get_set_arguments(struct task_struct *task,
2228 struct pt_regs *regs, unsigned int i, unsigned int n,
2229 unsigned long *args, int rw)
2230 {
2231 struct syscall_get_set_args data = {
2232 .i = i,
2233 .n = n,
2234 .args = args,
2235 .regs = regs,
2236 .rw = rw,
2237 };
2238
2239 if (task == current)
2240 unw_init_running(syscall_get_set_args_cb, &data);
2241 else {
2242 struct unw_frame_info ufi;
2243 memset(&ufi, 0, sizeof(ufi));
2244 unw_init_from_blocked_task(&ufi, task);
2245 syscall_get_set_args_cb(&ufi, &data);
2246 }
2247 }
2248