• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Kernel support for the ptrace() and syscall tracing interfaces.
3  *
4  * Copyright (C) 1999-2005 Hewlett-Packard Co
5  *	David Mosberger-Tang <davidm@hpl.hp.com>
6  * Copyright (C) 2006 Intel Co
7  *  2006-08-12	- IA64 Native Utrace implementation support added by
8  *	Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *
10  * Derived from the x86 and Alpha versions.
11  */
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/slab.h>
15 #include <linux/mm.h>
16 #include <linux/errno.h>
17 #include <linux/ptrace.h>
18 #include <linux/smp_lock.h>
19 #include <linux/user.h>
20 #include <linux/security.h>
21 #include <linux/audit.h>
22 #include <linux/signal.h>
23 #include <linux/regset.h>
24 #include <linux/elf.h>
25 #include <linux/tracehook.h>
26 
27 #include <asm/pgtable.h>
28 #include <asm/processor.h>
29 #include <asm/ptrace_offsets.h>
30 #include <asm/rse.h>
31 #include <asm/system.h>
32 #include <asm/uaccess.h>
33 #include <asm/unwind.h>
34 #ifdef CONFIG_PERFMON
35 #include <asm/perfmon.h>
36 #endif
37 
38 #include "entry.h"
39 
40 /*
41  * Bits in the PSR that we allow ptrace() to change:
42  *	be, up, ac, mfl, mfh (the user mask; five bits total)
43  *	db (debug breakpoint fault; one bit)
44  *	id (instruction debug fault disable; one bit)
45  *	dd (data debug fault disable; one bit)
46  *	ri (restart instruction; two bits)
47  *	is (instruction set; one bit)
48  */
49 #define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS	\
50 		   | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
51 
52 #define MASK(nbits)	((1UL << (nbits)) - 1)	/* mask with NBITS bits set */
53 #define PFM_MASK	MASK(38)
54 
55 #define PTRACE_DEBUG	0
56 
57 #if PTRACE_DEBUG
58 # define dprintk(format...)	printk(format)
59 # define inline
60 #else
61 # define dprintk(format...)
62 #endif
63 
64 /* Return TRUE if PT was created due to kernel-entry via a system-call.  */
65 
66 static inline int
in_syscall(struct pt_regs * pt)67 in_syscall (struct pt_regs *pt)
68 {
69 	return (long) pt->cr_ifs >= 0;
70 }
71 
72 /*
73  * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
74  * bitset where bit i is set iff the NaT bit of register i is set.
75  */
76 unsigned long
ia64_get_scratch_nat_bits(struct pt_regs * pt,unsigned long scratch_unat)77 ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
78 {
79 #	define GET_BITS(first, last, unat)				\
80 	({								\
81 		unsigned long bit = ia64_unat_pos(&pt->r##first);	\
82 		unsigned long nbits = (last - first + 1);		\
83 		unsigned long mask = MASK(nbits) << first;		\
84 		unsigned long dist;					\
85 		if (bit < first)					\
86 			dist = 64 + bit - first;			\
87 		else							\
88 			dist = bit - first;				\
89 		ia64_rotr(unat, dist) & mask;				\
90 	})
91 	unsigned long val;
92 
93 	/*
94 	 * Registers that are stored consecutively in struct pt_regs
95 	 * can be handled in parallel.  If the register order in
96 	 * struct_pt_regs changes, this code MUST be updated.
97 	 */
98 	val  = GET_BITS( 1,  1, scratch_unat);
99 	val |= GET_BITS( 2,  3, scratch_unat);
100 	val |= GET_BITS(12, 13, scratch_unat);
101 	val |= GET_BITS(14, 14, scratch_unat);
102 	val |= GET_BITS(15, 15, scratch_unat);
103 	val |= GET_BITS( 8, 11, scratch_unat);
104 	val |= GET_BITS(16, 31, scratch_unat);
105 	return val;
106 
107 #	undef GET_BITS
108 }
109 
110 /*
111  * Set the NaT bits for the scratch registers according to NAT and
112  * return the resulting unat (assuming the scratch registers are
113  * stored in PT).
114  */
115 unsigned long
ia64_put_scratch_nat_bits(struct pt_regs * pt,unsigned long nat)116 ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
117 {
118 #	define PUT_BITS(first, last, nat)				\
119 	({								\
120 		unsigned long bit = ia64_unat_pos(&pt->r##first);	\
121 		unsigned long nbits = (last - first + 1);		\
122 		unsigned long mask = MASK(nbits) << first;		\
123 		long dist;						\
124 		if (bit < first)					\
125 			dist = 64 + bit - first;			\
126 		else							\
127 			dist = bit - first;				\
128 		ia64_rotl(nat & mask, dist);				\
129 	})
130 	unsigned long scratch_unat;
131 
132 	/*
133 	 * Registers that are stored consecutively in struct pt_regs
134 	 * can be handled in parallel.  If the register order in
135 	 * struct_pt_regs changes, this code MUST be updated.
136 	 */
137 	scratch_unat  = PUT_BITS( 1,  1, nat);
138 	scratch_unat |= PUT_BITS( 2,  3, nat);
139 	scratch_unat |= PUT_BITS(12, 13, nat);
140 	scratch_unat |= PUT_BITS(14, 14, nat);
141 	scratch_unat |= PUT_BITS(15, 15, nat);
142 	scratch_unat |= PUT_BITS( 8, 11, nat);
143 	scratch_unat |= PUT_BITS(16, 31, nat);
144 
145 	return scratch_unat;
146 
147 #	undef PUT_BITS
148 }
149 
150 #define IA64_MLX_TEMPLATE	0x2
151 #define IA64_MOVL_OPCODE	6
152 
153 void
ia64_increment_ip(struct pt_regs * regs)154 ia64_increment_ip (struct pt_regs *regs)
155 {
156 	unsigned long w0, ri = ia64_psr(regs)->ri + 1;
157 
158 	if (ri > 2) {
159 		ri = 0;
160 		regs->cr_iip += 16;
161 	} else if (ri == 2) {
162 		get_user(w0, (char __user *) regs->cr_iip + 0);
163 		if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
164 			/*
165 			 * rfi'ing to slot 2 of an MLX bundle causes
166 			 * an illegal operation fault.  We don't want
167 			 * that to happen...
168 			 */
169 			ri = 0;
170 			regs->cr_iip += 16;
171 		}
172 	}
173 	ia64_psr(regs)->ri = ri;
174 }
175 
176 void
ia64_decrement_ip(struct pt_regs * regs)177 ia64_decrement_ip (struct pt_regs *regs)
178 {
179 	unsigned long w0, ri = ia64_psr(regs)->ri - 1;
180 
181 	if (ia64_psr(regs)->ri == 0) {
182 		regs->cr_iip -= 16;
183 		ri = 2;
184 		get_user(w0, (char __user *) regs->cr_iip + 0);
185 		if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
186 			/*
187 			 * rfi'ing to slot 2 of an MLX bundle causes
188 			 * an illegal operation fault.  We don't want
189 			 * that to happen...
190 			 */
191 			ri = 1;
192 		}
193 	}
194 	ia64_psr(regs)->ri = ri;
195 }
196 
197 /*
198  * This routine is used to read an rnat bits that are stored on the
199  * kernel backing store.  Since, in general, the alignment of the user
200  * and kernel are different, this is not completely trivial.  In
201  * essence, we need to construct the user RNAT based on up to two
202  * kernel RNAT values and/or the RNAT value saved in the child's
203  * pt_regs.
204  *
205  * user rbs
206  *
207  * +--------+ <-- lowest address
208  * | slot62 |
209  * +--------+
210  * |  rnat  | 0x....1f8
211  * +--------+
212  * | slot00 | \
213  * +--------+ |
214  * | slot01 | > child_regs->ar_rnat
215  * +--------+ |
216  * | slot02 | /				kernel rbs
217  * +--------+				+--------+
218  *	    <- child_regs->ar_bspstore	| slot61 | <-- krbs
219  * +- - - - +				+--------+
220  *					| slot62 |
221  * +- - - - +				+--------+
222  *					|  rnat	 |
223  * +- - - - +				+--------+
224  *   vrnat				| slot00 |
225  * +- - - - +				+--------+
226  *					=	 =
227  *					+--------+
228  *					| slot00 | \
229  *					+--------+ |
230  *					| slot01 | > child_stack->ar_rnat
231  *					+--------+ |
232  *					| slot02 | /
233  *					+--------+
234  *						  <--- child_stack->ar_bspstore
235  *
236  * The way to think of this code is as follows: bit 0 in the user rnat
237  * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
238  * value.  The kernel rnat value holding this bit is stored in
239  * variable rnat0.  rnat1 is loaded with the kernel rnat value that
240  * form the upper bits of the user rnat value.
241  *
242  * Boundary cases:
243  *
244  * o when reading the rnat "below" the first rnat slot on the kernel
245  *   backing store, rnat0/rnat1 are set to 0 and the low order bits are
246  *   merged in from pt->ar_rnat.
247  *
248  * o when reading the rnat "above" the last rnat slot on the kernel
249  *   backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
250  */
251 static unsigned long
get_rnat(struct task_struct * task,struct switch_stack * sw,unsigned long * krbs,unsigned long * urnat_addr,unsigned long * urbs_end)252 get_rnat (struct task_struct *task, struct switch_stack *sw,
253 	  unsigned long *krbs, unsigned long *urnat_addr,
254 	  unsigned long *urbs_end)
255 {
256 	unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
257 	unsigned long umask = 0, mask, m;
258 	unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
259 	long num_regs, nbits;
260 	struct pt_regs *pt;
261 
262 	pt = task_pt_regs(task);
263 	kbsp = (unsigned long *) sw->ar_bspstore;
264 	ubspstore = (unsigned long *) pt->ar_bspstore;
265 
266 	if (urbs_end < urnat_addr)
267 		nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
268 	else
269 		nbits = 63;
270 	mask = MASK(nbits);
271 	/*
272 	 * First, figure out which bit number slot 0 in user-land maps
273 	 * to in the kernel rnat.  Do this by figuring out how many
274 	 * register slots we're beyond the user's backingstore and
275 	 * then computing the equivalent address in kernel space.
276 	 */
277 	num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
278 	slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
279 	shift = ia64_rse_slot_num(slot0_kaddr);
280 	rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
281 	rnat0_kaddr = rnat1_kaddr - 64;
282 
283 	if (ubspstore + 63 > urnat_addr) {
284 		/* some bits need to be merged in from pt->ar_rnat */
285 		umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
286 		urnat = (pt->ar_rnat & umask);
287 		mask &= ~umask;
288 		if (!mask)
289 			return urnat;
290 	}
291 
292 	m = mask << shift;
293 	if (rnat0_kaddr >= kbsp)
294 		rnat0 = sw->ar_rnat;
295 	else if (rnat0_kaddr > krbs)
296 		rnat0 = *rnat0_kaddr;
297 	urnat |= (rnat0 & m) >> shift;
298 
299 	m = mask >> (63 - shift);
300 	if (rnat1_kaddr >= kbsp)
301 		rnat1 = sw->ar_rnat;
302 	else if (rnat1_kaddr > krbs)
303 		rnat1 = *rnat1_kaddr;
304 	urnat |= (rnat1 & m) << (63 - shift);
305 	return urnat;
306 }
307 
308 /*
309  * The reverse of get_rnat.
310  */
311 static void
put_rnat(struct task_struct * task,struct switch_stack * sw,unsigned long * krbs,unsigned long * urnat_addr,unsigned long urnat,unsigned long * urbs_end)312 put_rnat (struct task_struct *task, struct switch_stack *sw,
313 	  unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
314 	  unsigned long *urbs_end)
315 {
316 	unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
317 	unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
318 	long num_regs, nbits;
319 	struct pt_regs *pt;
320 	unsigned long cfm, *urbs_kargs;
321 
322 	pt = task_pt_regs(task);
323 	kbsp = (unsigned long *) sw->ar_bspstore;
324 	ubspstore = (unsigned long *) pt->ar_bspstore;
325 
326 	urbs_kargs = urbs_end;
327 	if (in_syscall(pt)) {
328 		/*
329 		 * If entered via syscall, don't allow user to set rnat bits
330 		 * for syscall args.
331 		 */
332 		cfm = pt->cr_ifs;
333 		urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
334 	}
335 
336 	if (urbs_kargs >= urnat_addr)
337 		nbits = 63;
338 	else {
339 		if ((urnat_addr - 63) >= urbs_kargs)
340 			return;
341 		nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
342 	}
343 	mask = MASK(nbits);
344 
345 	/*
346 	 * First, figure out which bit number slot 0 in user-land maps
347 	 * to in the kernel rnat.  Do this by figuring out how many
348 	 * register slots we're beyond the user's backingstore and
349 	 * then computing the equivalent address in kernel space.
350 	 */
351 	num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
352 	slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
353 	shift = ia64_rse_slot_num(slot0_kaddr);
354 	rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
355 	rnat0_kaddr = rnat1_kaddr - 64;
356 
357 	if (ubspstore + 63 > urnat_addr) {
358 		/* some bits need to be place in pt->ar_rnat: */
359 		umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
360 		pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
361 		mask &= ~umask;
362 		if (!mask)
363 			return;
364 	}
365 	/*
366 	 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
367 	 * rnat slot is ignored. so we don't have to clear it here.
368 	 */
369 	rnat0 = (urnat << shift);
370 	m = mask << shift;
371 	if (rnat0_kaddr >= kbsp)
372 		sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
373 	else if (rnat0_kaddr > krbs)
374 		*rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
375 
376 	rnat1 = (urnat >> (63 - shift));
377 	m = mask >> (63 - shift);
378 	if (rnat1_kaddr >= kbsp)
379 		sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
380 	else if (rnat1_kaddr > krbs)
381 		*rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
382 }
383 
384 static inline int
on_kernel_rbs(unsigned long addr,unsigned long bspstore,unsigned long urbs_end)385 on_kernel_rbs (unsigned long addr, unsigned long bspstore,
386 	       unsigned long urbs_end)
387 {
388 	unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
389 						      urbs_end);
390 	return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
391 }
392 
393 /*
394  * Read a word from the user-level backing store of task CHILD.  ADDR
395  * is the user-level address to read the word from, VAL a pointer to
396  * the return value, and USER_BSP gives the end of the user-level
397  * backing store (i.e., it's the address that would be in ar.bsp after
398  * the user executed a "cover" instruction).
399  *
400  * This routine takes care of accessing the kernel register backing
401  * store for those registers that got spilled there.  It also takes
402  * care of calculating the appropriate RNaT collection words.
403  */
404 long
ia64_peek(struct task_struct * child,struct switch_stack * child_stack,unsigned long user_rbs_end,unsigned long addr,long * val)405 ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
406 	   unsigned long user_rbs_end, unsigned long addr, long *val)
407 {
408 	unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
409 	struct pt_regs *child_regs;
410 	size_t copied;
411 	long ret;
412 
413 	urbs_end = (long *) user_rbs_end;
414 	laddr = (unsigned long *) addr;
415 	child_regs = task_pt_regs(child);
416 	bspstore = (unsigned long *) child_regs->ar_bspstore;
417 	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
418 	if (on_kernel_rbs(addr, (unsigned long) bspstore,
419 			  (unsigned long) urbs_end))
420 	{
421 		/*
422 		 * Attempt to read the RBS in an area that's actually
423 		 * on the kernel RBS => read the corresponding bits in
424 		 * the kernel RBS.
425 		 */
426 		rnat_addr = ia64_rse_rnat_addr(laddr);
427 		ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
428 
429 		if (laddr == rnat_addr) {
430 			/* return NaT collection word itself */
431 			*val = ret;
432 			return 0;
433 		}
434 
435 		if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
436 			/*
437 			 * It is implementation dependent whether the
438 			 * data portion of a NaT value gets saved on a
439 			 * st8.spill or RSE spill (e.g., see EAS 2.6,
440 			 * 4.4.4.6 Register Spill and Fill).  To get
441 			 * consistent behavior across all possible
442 			 * IA-64 implementations, we return zero in
443 			 * this case.
444 			 */
445 			*val = 0;
446 			return 0;
447 		}
448 
449 		if (laddr < urbs_end) {
450 			/*
451 			 * The desired word is on the kernel RBS and
452 			 * is not a NaT.
453 			 */
454 			regnum = ia64_rse_num_regs(bspstore, laddr);
455 			*val = *ia64_rse_skip_regs(krbs, regnum);
456 			return 0;
457 		}
458 	}
459 	copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);
460 	if (copied != sizeof(ret))
461 		return -EIO;
462 	*val = ret;
463 	return 0;
464 }
465 
466 long
ia64_poke(struct task_struct * child,struct switch_stack * child_stack,unsigned long user_rbs_end,unsigned long addr,long val)467 ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
468 	   unsigned long user_rbs_end, unsigned long addr, long val)
469 {
470 	unsigned long *bspstore, *krbs, regnum, *laddr;
471 	unsigned long *urbs_end = (long *) user_rbs_end;
472 	struct pt_regs *child_regs;
473 
474 	laddr = (unsigned long *) addr;
475 	child_regs = task_pt_regs(child);
476 	bspstore = (unsigned long *) child_regs->ar_bspstore;
477 	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
478 	if (on_kernel_rbs(addr, (unsigned long) bspstore,
479 			  (unsigned long) urbs_end))
480 	{
481 		/*
482 		 * Attempt to write the RBS in an area that's actually
483 		 * on the kernel RBS => write the corresponding bits
484 		 * in the kernel RBS.
485 		 */
486 		if (ia64_rse_is_rnat_slot(laddr))
487 			put_rnat(child, child_stack, krbs, laddr, val,
488 				 urbs_end);
489 		else {
490 			if (laddr < urbs_end) {
491 				regnum = ia64_rse_num_regs(bspstore, laddr);
492 				*ia64_rse_skip_regs(krbs, regnum) = val;
493 			}
494 		}
495 	} else if (access_process_vm(child, addr, &val, sizeof(val), 1)
496 		   != sizeof(val))
497 		return -EIO;
498 	return 0;
499 }
500 
501 /*
502  * Calculate the address of the end of the user-level register backing
503  * store.  This is the address that would have been stored in ar.bsp
504  * if the user had executed a "cover" instruction right before
505  * entering the kernel.  If CFMP is not NULL, it is used to return the
506  * "current frame mask" that was active at the time the kernel was
507  * entered.
508  */
509 unsigned long
ia64_get_user_rbs_end(struct task_struct * child,struct pt_regs * pt,unsigned long * cfmp)510 ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
511 		       unsigned long *cfmp)
512 {
513 	unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
514 	long ndirty;
515 
516 	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
517 	bspstore = (unsigned long *) pt->ar_bspstore;
518 	ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
519 
520 	if (in_syscall(pt))
521 		ndirty += (cfm & 0x7f);
522 	else
523 		cfm &= ~(1UL << 63);	/* clear valid bit */
524 
525 	if (cfmp)
526 		*cfmp = cfm;
527 	return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
528 }
529 
530 /*
531  * Synchronize (i.e, write) the RSE backing store living in kernel
532  * space to the VM of the CHILD task.  SW and PT are the pointers to
533  * the switch_stack and pt_regs structures, respectively.
534  * USER_RBS_END is the user-level address at which the backing store
535  * ends.
536  */
537 long
ia64_sync_user_rbs(struct task_struct * child,struct switch_stack * sw,unsigned long user_rbs_start,unsigned long user_rbs_end)538 ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
539 		    unsigned long user_rbs_start, unsigned long user_rbs_end)
540 {
541 	unsigned long addr, val;
542 	long ret;
543 
544 	/* now copy word for word from kernel rbs to user rbs: */
545 	for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
546 		ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
547 		if (ret < 0)
548 			return ret;
549 		if (access_process_vm(child, addr, &val, sizeof(val), 1)
550 		    != sizeof(val))
551 			return -EIO;
552 	}
553 	return 0;
554 }
555 
556 static long
ia64_sync_kernel_rbs(struct task_struct * child,struct switch_stack * sw,unsigned long user_rbs_start,unsigned long user_rbs_end)557 ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
558 		unsigned long user_rbs_start, unsigned long user_rbs_end)
559 {
560 	unsigned long addr, val;
561 	long ret;
562 
563 	/* now copy word for word from user rbs to kernel rbs: */
564 	for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
565 		if (access_process_vm(child, addr, &val, sizeof(val), 0)
566 				!= sizeof(val))
567 			return -EIO;
568 
569 		ret = ia64_poke(child, sw, user_rbs_end, addr, val);
570 		if (ret < 0)
571 			return ret;
572 	}
573 	return 0;
574 }
575 
576 typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
577 			    unsigned long, unsigned long);
578 
do_sync_rbs(struct unw_frame_info * info,void * arg)579 static void do_sync_rbs(struct unw_frame_info *info, void *arg)
580 {
581 	struct pt_regs *pt;
582 	unsigned long urbs_end;
583 	syncfunc_t fn = arg;
584 
585 	if (unw_unwind_to_user(info) < 0)
586 		return;
587 	pt = task_pt_regs(info->task);
588 	urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
589 
590 	fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
591 }
592 
593 /*
594  * when a thread is stopped (ptraced), debugger might change thread's user
595  * stack (change memory directly), and we must avoid the RSE stored in kernel
596  * to override user stack (user space's RSE is newer than kernel's in the
597  * case). To workaround the issue, we copy kernel RSE to user RSE before the
598  * task is stopped, so user RSE has updated data.  we then copy user RSE to
599  * kernel after the task is resummed from traced stop and kernel will use the
600  * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
601  * synchronize user RSE to kernel.
602  */
ia64_ptrace_stop(void)603 void ia64_ptrace_stop(void)
604 {
605 	if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
606 		return;
607 	set_notify_resume(current);
608 	unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
609 }
610 
611 /*
612  * This is called to read back the register backing store.
613  */
ia64_sync_krbs(void)614 void ia64_sync_krbs(void)
615 {
616 	clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
617 
618 	unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
619 }
620 
621 /*
622  * After PTRACE_ATTACH, a thread's register backing store area in user
623  * space is assumed to contain correct data whenever the thread is
624  * stopped.  arch_ptrace_stop takes care of this on tracing stops.
625  * But if the child was already stopped for job control when we attach
626  * to it, then it might not ever get into ptrace_stop by the time we
627  * want to examine the user memory containing the RBS.
628  */
629 void
ptrace_attach_sync_user_rbs(struct task_struct * child)630 ptrace_attach_sync_user_rbs (struct task_struct *child)
631 {
632 	int stopped = 0;
633 	struct unw_frame_info info;
634 
635 	/*
636 	 * If the child is in TASK_STOPPED, we need to change that to
637 	 * TASK_TRACED momentarily while we operate on it.  This ensures
638 	 * that the child won't be woken up and return to user mode while
639 	 * we are doing the sync.  (It can only be woken up for SIGKILL.)
640 	 */
641 
642 	read_lock(&tasklist_lock);
643 	if (child->signal) {
644 		spin_lock_irq(&child->sighand->siglock);
645 		if (child->state == TASK_STOPPED &&
646 		    !test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) {
647 			set_notify_resume(child);
648 
649 			child->state = TASK_TRACED;
650 			stopped = 1;
651 		}
652 		spin_unlock_irq(&child->sighand->siglock);
653 	}
654 	read_unlock(&tasklist_lock);
655 
656 	if (!stopped)
657 		return;
658 
659 	unw_init_from_blocked_task(&info, child);
660 	do_sync_rbs(&info, ia64_sync_user_rbs);
661 
662 	/*
663 	 * Now move the child back into TASK_STOPPED if it should be in a
664 	 * job control stop, so that SIGCONT can be used to wake it up.
665 	 */
666 	read_lock(&tasklist_lock);
667 	if (child->signal) {
668 		spin_lock_irq(&child->sighand->siglock);
669 		if (child->state == TASK_TRACED &&
670 		    (child->signal->flags & SIGNAL_STOP_STOPPED)) {
671 			child->state = TASK_STOPPED;
672 		}
673 		spin_unlock_irq(&child->sighand->siglock);
674 	}
675 	read_unlock(&tasklist_lock);
676 }
677 
678 static inline int
thread_matches(struct task_struct * thread,unsigned long addr)679 thread_matches (struct task_struct *thread, unsigned long addr)
680 {
681 	unsigned long thread_rbs_end;
682 	struct pt_regs *thread_regs;
683 
684 	if (ptrace_check_attach(thread, 0) < 0)
685 		/*
686 		 * If the thread is not in an attachable state, we'll
687 		 * ignore it.  The net effect is that if ADDR happens
688 		 * to overlap with the portion of the thread's
689 		 * register backing store that is currently residing
690 		 * on the thread's kernel stack, then ptrace() may end
691 		 * up accessing a stale value.  But if the thread
692 		 * isn't stopped, that's a problem anyhow, so we're
693 		 * doing as well as we can...
694 		 */
695 		return 0;
696 
697 	thread_regs = task_pt_regs(thread);
698 	thread_rbs_end = ia64_get_user_rbs_end(thread, thread_regs, NULL);
699 	if (!on_kernel_rbs(addr, thread_regs->ar_bspstore, thread_rbs_end))
700 		return 0;
701 
702 	return 1;	/* looks like we've got a winner */
703 }
704 
705 /*
706  * Write f32-f127 back to task->thread.fph if it has been modified.
707  */
708 inline void
ia64_flush_fph(struct task_struct * task)709 ia64_flush_fph (struct task_struct *task)
710 {
711 	struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
712 
713 	/*
714 	 * Prevent migrating this task while
715 	 * we're fiddling with the FPU state
716 	 */
717 	preempt_disable();
718 	if (ia64_is_local_fpu_owner(task) && psr->mfh) {
719 		psr->mfh = 0;
720 		task->thread.flags |= IA64_THREAD_FPH_VALID;
721 		ia64_save_fpu(&task->thread.fph[0]);
722 	}
723 	preempt_enable();
724 }
725 
726 /*
727  * Sync the fph state of the task so that it can be manipulated
728  * through thread.fph.  If necessary, f32-f127 are written back to
729  * thread.fph or, if the fph state hasn't been used before, thread.fph
730  * is cleared to zeroes.  Also, access to f32-f127 is disabled to
731  * ensure that the task picks up the state from thread.fph when it
732  * executes again.
733  */
734 void
ia64_sync_fph(struct task_struct * task)735 ia64_sync_fph (struct task_struct *task)
736 {
737 	struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
738 
739 	ia64_flush_fph(task);
740 	if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
741 		task->thread.flags |= IA64_THREAD_FPH_VALID;
742 		memset(&task->thread.fph, 0, sizeof(task->thread.fph));
743 	}
744 	ia64_drop_fpu(task);
745 	psr->dfh = 1;
746 }
747 
748 /*
749  * Change the machine-state of CHILD such that it will return via the normal
750  * kernel exit-path, rather than the syscall-exit path.
751  */
752 static void
convert_to_non_syscall(struct task_struct * child,struct pt_regs * pt,unsigned long cfm)753 convert_to_non_syscall (struct task_struct *child, struct pt_regs  *pt,
754 			unsigned long cfm)
755 {
756 	struct unw_frame_info info, prev_info;
757 	unsigned long ip, sp, pr;
758 
759 	unw_init_from_blocked_task(&info, child);
760 	while (1) {
761 		prev_info = info;
762 		if (unw_unwind(&info) < 0)
763 			return;
764 
765 		unw_get_sp(&info, &sp);
766 		if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
767 		    < IA64_PT_REGS_SIZE) {
768 			dprintk("ptrace.%s: ran off the top of the kernel "
769 				"stack\n", __func__);
770 			return;
771 		}
772 		if (unw_get_pr (&prev_info, &pr) < 0) {
773 			unw_get_rp(&prev_info, &ip);
774 			dprintk("ptrace.%s: failed to read "
775 				"predicate register (ip=0x%lx)\n",
776 				__func__, ip);
777 			return;
778 		}
779 		if (unw_is_intr_frame(&info)
780 		    && (pr & (1UL << PRED_USER_STACK)))
781 			break;
782 	}
783 
784 	/*
785 	 * Note: at the time of this call, the target task is blocked
786 	 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
787 	 * (aka, "pLvSys") we redirect execution from
788 	 * .work_pending_syscall_end to .work_processed_kernel.
789 	 */
790 	unw_get_pr(&prev_info, &pr);
791 	pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
792 	pr |=  (1UL << PRED_NON_SYSCALL);
793 	unw_set_pr(&prev_info, pr);
794 
795 	pt->cr_ifs = (1UL << 63) | cfm;
796 	/*
797 	 * Clear the memory that is NOT written on syscall-entry to
798 	 * ensure we do not leak kernel-state to user when execution
799 	 * resumes.
800 	 */
801 	pt->r2 = 0;
802 	pt->r3 = 0;
803 	pt->r14 = 0;
804 	memset(&pt->r16, 0, 16*8);	/* clear r16-r31 */
805 	memset(&pt->f6, 0, 6*16);	/* clear f6-f11 */
806 	pt->b7 = 0;
807 	pt->ar_ccv = 0;
808 	pt->ar_csd = 0;
809 	pt->ar_ssd = 0;
810 }
811 
812 static int
access_nat_bits(struct task_struct * child,struct pt_regs * pt,struct unw_frame_info * info,unsigned long * data,int write_access)813 access_nat_bits (struct task_struct *child, struct pt_regs *pt,
814 		 struct unw_frame_info *info,
815 		 unsigned long *data, int write_access)
816 {
817 	unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
818 	char nat = 0;
819 
820 	if (write_access) {
821 		nat_bits = *data;
822 		scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
823 		if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
824 			dprintk("ptrace: failed to set ar.unat\n");
825 			return -1;
826 		}
827 		for (regnum = 4; regnum <= 7; ++regnum) {
828 			unw_get_gr(info, regnum, &dummy, &nat);
829 			unw_set_gr(info, regnum, dummy,
830 				   (nat_bits >> regnum) & 1);
831 		}
832 	} else {
833 		if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
834 			dprintk("ptrace: failed to read ar.unat\n");
835 			return -1;
836 		}
837 		nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
838 		for (regnum = 4; regnum <= 7; ++regnum) {
839 			unw_get_gr(info, regnum, &dummy, &nat);
840 			nat_bits |= (nat != 0) << regnum;
841 		}
842 		*data = nat_bits;
843 	}
844 	return 0;
845 }
846 
847 static int
848 access_uarea (struct task_struct *child, unsigned long addr,
849 	      unsigned long *data, int write_access);
850 
851 static long
ptrace_getregs(struct task_struct * child,struct pt_all_user_regs __user * ppr)852 ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
853 {
854 	unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
855 	struct unw_frame_info info;
856 	struct ia64_fpreg fpval;
857 	struct switch_stack *sw;
858 	struct pt_regs *pt;
859 	long ret, retval = 0;
860 	char nat = 0;
861 	int i;
862 
863 	if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
864 		return -EIO;
865 
866 	pt = task_pt_regs(child);
867 	sw = (struct switch_stack *) (child->thread.ksp + 16);
868 	unw_init_from_blocked_task(&info, child);
869 	if (unw_unwind_to_user(&info) < 0) {
870 		return -EIO;
871 	}
872 
873 	if (((unsigned long) ppr & 0x7) != 0) {
874 		dprintk("ptrace:unaligned register address %p\n", ppr);
875 		return -EIO;
876 	}
877 
878 	if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
879 	    || access_uarea(child, PT_AR_EC, &ec, 0) < 0
880 	    || access_uarea(child, PT_AR_LC, &lc, 0) < 0
881 	    || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
882 	    || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
883 	    || access_uarea(child, PT_CFM, &cfm, 0)
884 	    || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
885 		return -EIO;
886 
887 	/* control regs */
888 
889 	retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
890 	retval |= __put_user(psr, &ppr->cr_ipsr);
891 
892 	/* app regs */
893 
894 	retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
895 	retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
896 	retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
897 	retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
898 	retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
899 	retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
900 
901 	retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
902 	retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
903 	retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
904 	retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
905 	retval |= __put_user(cfm, &ppr->cfm);
906 
907 	/* gr1-gr3 */
908 
909 	retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
910 	retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
911 
912 	/* gr4-gr7 */
913 
914 	for (i = 4; i < 8; i++) {
915 		if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
916 			return -EIO;
917 		retval |= __put_user(val, &ppr->gr[i]);
918 	}
919 
920 	/* gr8-gr11 */
921 
922 	retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
923 
924 	/* gr12-gr15 */
925 
926 	retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
927 	retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
928 	retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
929 
930 	/* gr16-gr31 */
931 
932 	retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
933 
934 	/* b0 */
935 
936 	retval |= __put_user(pt->b0, &ppr->br[0]);
937 
938 	/* b1-b5 */
939 
940 	for (i = 1; i < 6; i++) {
941 		if (unw_access_br(&info, i, &val, 0) < 0)
942 			return -EIO;
943 		__put_user(val, &ppr->br[i]);
944 	}
945 
946 	/* b6-b7 */
947 
948 	retval |= __put_user(pt->b6, &ppr->br[6]);
949 	retval |= __put_user(pt->b7, &ppr->br[7]);
950 
951 	/* fr2-fr5 */
952 
953 	for (i = 2; i < 6; i++) {
954 		if (unw_get_fr(&info, i, &fpval) < 0)
955 			return -EIO;
956 		retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
957 	}
958 
959 	/* fr6-fr11 */
960 
961 	retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
962 				 sizeof(struct ia64_fpreg) * 6);
963 
964 	/* fp scratch regs(12-15) */
965 
966 	retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
967 				 sizeof(struct ia64_fpreg) * 4);
968 
969 	/* fr16-fr31 */
970 
971 	for (i = 16; i < 32; i++) {
972 		if (unw_get_fr(&info, i, &fpval) < 0)
973 			return -EIO;
974 		retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
975 	}
976 
977 	/* fph */
978 
979 	ia64_flush_fph(child);
980 	retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
981 				 sizeof(ppr->fr[32]) * 96);
982 
983 	/*  preds */
984 
985 	retval |= __put_user(pt->pr, &ppr->pr);
986 
987 	/* nat bits */
988 
989 	retval |= __put_user(nat_bits, &ppr->nat);
990 
991 	ret = retval ? -EIO : 0;
992 	return ret;
993 }
994 
995 static long
ptrace_setregs(struct task_struct * child,struct pt_all_user_regs __user * ppr)996 ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
997 {
998 	unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
999 	struct unw_frame_info info;
1000 	struct switch_stack *sw;
1001 	struct ia64_fpreg fpval;
1002 	struct pt_regs *pt;
1003 	long ret, retval = 0;
1004 	int i;
1005 
1006 	memset(&fpval, 0, sizeof(fpval));
1007 
1008 	if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs)))
1009 		return -EIO;
1010 
1011 	pt = task_pt_regs(child);
1012 	sw = (struct switch_stack *) (child->thread.ksp + 16);
1013 	unw_init_from_blocked_task(&info, child);
1014 	if (unw_unwind_to_user(&info) < 0) {
1015 		return -EIO;
1016 	}
1017 
1018 	if (((unsigned long) ppr & 0x7) != 0) {
1019 		dprintk("ptrace:unaligned register address %p\n", ppr);
1020 		return -EIO;
1021 	}
1022 
1023 	/* control regs */
1024 
1025 	retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
1026 	retval |= __get_user(psr, &ppr->cr_ipsr);
1027 
1028 	/* app regs */
1029 
1030 	retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1031 	retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
1032 	retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1033 	retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1034 	retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1035 	retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1036 
1037 	retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
1038 	retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
1039 	retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1040 	retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
1041 	retval |= __get_user(cfm, &ppr->cfm);
1042 
1043 	/* gr1-gr3 */
1044 
1045 	retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
1046 	retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
1047 
1048 	/* gr4-gr7 */
1049 
1050 	for (i = 4; i < 8; i++) {
1051 		retval |= __get_user(val, &ppr->gr[i]);
1052 		/* NaT bit will be set via PT_NAT_BITS: */
1053 		if (unw_set_gr(&info, i, val, 0) < 0)
1054 			return -EIO;
1055 	}
1056 
1057 	/* gr8-gr11 */
1058 
1059 	retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
1060 
1061 	/* gr12-gr15 */
1062 
1063 	retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
1064 	retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
1065 	retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
1066 
1067 	/* gr16-gr31 */
1068 
1069 	retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
1070 
1071 	/* b0 */
1072 
1073 	retval |= __get_user(pt->b0, &ppr->br[0]);
1074 
1075 	/* b1-b5 */
1076 
1077 	for (i = 1; i < 6; i++) {
1078 		retval |= __get_user(val, &ppr->br[i]);
1079 		unw_set_br(&info, i, val);
1080 	}
1081 
1082 	/* b6-b7 */
1083 
1084 	retval |= __get_user(pt->b6, &ppr->br[6]);
1085 	retval |= __get_user(pt->b7, &ppr->br[7]);
1086 
1087 	/* fr2-fr5 */
1088 
1089 	for (i = 2; i < 6; i++) {
1090 		retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1091 		if (unw_set_fr(&info, i, fpval) < 0)
1092 			return -EIO;
1093 	}
1094 
1095 	/* fr6-fr11 */
1096 
1097 	retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1098 				   sizeof(ppr->fr[6]) * 6);
1099 
1100 	/* fp scratch regs(12-15) */
1101 
1102 	retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1103 				   sizeof(ppr->fr[12]) * 4);
1104 
1105 	/* fr16-fr31 */
1106 
1107 	for (i = 16; i < 32; i++) {
1108 		retval |= __copy_from_user(&fpval, &ppr->fr[i],
1109 					   sizeof(fpval));
1110 		if (unw_set_fr(&info, i, fpval) < 0)
1111 			return -EIO;
1112 	}
1113 
1114 	/* fph */
1115 
1116 	ia64_sync_fph(child);
1117 	retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1118 				   sizeof(ppr->fr[32]) * 96);
1119 
1120 	/* preds */
1121 
1122 	retval |= __get_user(pt->pr, &ppr->pr);
1123 
1124 	/* nat bits */
1125 
1126 	retval |= __get_user(nat_bits, &ppr->nat);
1127 
1128 	retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
1129 	retval |= access_uarea(child, PT_AR_RSC, &rsc, 1);
1130 	retval |= access_uarea(child, PT_AR_EC, &ec, 1);
1131 	retval |= access_uarea(child, PT_AR_LC, &lc, 1);
1132 	retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
1133 	retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
1134 	retval |= access_uarea(child, PT_CFM, &cfm, 1);
1135 	retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
1136 
1137 	ret = retval ? -EIO : 0;
1138 	return ret;
1139 }
1140 
1141 void
user_enable_single_step(struct task_struct * child)1142 user_enable_single_step (struct task_struct *child)
1143 {
1144 	struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1145 
1146 	set_tsk_thread_flag(child, TIF_SINGLESTEP);
1147 	child_psr->ss = 1;
1148 }
1149 
1150 void
user_enable_block_step(struct task_struct * child)1151 user_enable_block_step (struct task_struct *child)
1152 {
1153 	struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1154 
1155 	set_tsk_thread_flag(child, TIF_SINGLESTEP);
1156 	child_psr->tb = 1;
1157 }
1158 
1159 void
user_disable_single_step(struct task_struct * child)1160 user_disable_single_step (struct task_struct *child)
1161 {
1162 	struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1163 
1164 	/* make sure the single step/taken-branch trap bits are not set: */
1165 	clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1166 	child_psr->ss = 0;
1167 	child_psr->tb = 0;
1168 }
1169 
1170 /*
1171  * Called by kernel/ptrace.c when detaching..
1172  *
1173  * Make sure the single step bit is not set.
1174  */
1175 void
ptrace_disable(struct task_struct * child)1176 ptrace_disable (struct task_struct *child)
1177 {
1178 	user_disable_single_step(child);
1179 }
1180 
1181 long
arch_ptrace(struct task_struct * child,long request,long addr,long data)1182 arch_ptrace (struct task_struct *child, long request, long addr, long data)
1183 {
1184 	switch (request) {
1185 	case PTRACE_PEEKTEXT:
1186 	case PTRACE_PEEKDATA:
1187 		/* read word at location addr */
1188 		if (access_process_vm(child, addr, &data, sizeof(data), 0)
1189 		    != sizeof(data))
1190 			return -EIO;
1191 		/* ensure return value is not mistaken for error code */
1192 		force_successful_syscall_return();
1193 		return data;
1194 
1195 	/* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
1196 	 * by the generic ptrace_request().
1197 	 */
1198 
1199 	case PTRACE_PEEKUSR:
1200 		/* read the word at addr in the USER area */
1201 		if (access_uarea(child, addr, &data, 0) < 0)
1202 			return -EIO;
1203 		/* ensure return value is not mistaken for error code */
1204 		force_successful_syscall_return();
1205 		return data;
1206 
1207 	case PTRACE_POKEUSR:
1208 		/* write the word at addr in the USER area */
1209 		if (access_uarea(child, addr, &data, 1) < 0)
1210 			return -EIO;
1211 		return 0;
1212 
1213 	case PTRACE_OLD_GETSIGINFO:
1214 		/* for backwards-compatibility */
1215 		return ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
1216 
1217 	case PTRACE_OLD_SETSIGINFO:
1218 		/* for backwards-compatibility */
1219 		return ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
1220 
1221 	case PTRACE_GETREGS:
1222 		return ptrace_getregs(child,
1223 				      (struct pt_all_user_regs __user *) data);
1224 
1225 	case PTRACE_SETREGS:
1226 		return ptrace_setregs(child,
1227 				      (struct pt_all_user_regs __user *) data);
1228 
1229 	default:
1230 		return ptrace_request(child, request, addr, data);
1231 	}
1232 }
1233 
1234 
1235 /* "asmlinkage" so the input arguments are preserved... */
1236 
1237 asmlinkage long
syscall_trace_enter(long arg0,long arg1,long arg2,long arg3,long arg4,long arg5,long arg6,long arg7,struct pt_regs regs)1238 syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1239 		     long arg4, long arg5, long arg6, long arg7,
1240 		     struct pt_regs regs)
1241 {
1242 	if (test_thread_flag(TIF_SYSCALL_TRACE))
1243 		if (tracehook_report_syscall_entry(&regs))
1244 			return -ENOSYS;
1245 
1246 	/* copy user rbs to kernel rbs */
1247 	if (test_thread_flag(TIF_RESTORE_RSE))
1248 		ia64_sync_krbs();
1249 
1250 	if (unlikely(current->audit_context)) {
1251 		long syscall;
1252 		int arch;
1253 
1254 		if (IS_IA32_PROCESS(&regs)) {
1255 			syscall = regs.r1;
1256 			arch = AUDIT_ARCH_I386;
1257 		} else {
1258 			syscall = regs.r15;
1259 			arch = AUDIT_ARCH_IA64;
1260 		}
1261 
1262 		audit_syscall_entry(arch, syscall, arg0, arg1, arg2, arg3);
1263 	}
1264 
1265 	return 0;
1266 }
1267 
1268 /* "asmlinkage" so the input arguments are preserved... */
1269 
1270 asmlinkage void
syscall_trace_leave(long arg0,long arg1,long arg2,long arg3,long arg4,long arg5,long arg6,long arg7,struct pt_regs regs)1271 syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1272 		     long arg4, long arg5, long arg6, long arg7,
1273 		     struct pt_regs regs)
1274 {
1275 	int step;
1276 
1277 	if (unlikely(current->audit_context)) {
1278 		int success = AUDITSC_RESULT(regs.r10);
1279 		long result = regs.r8;
1280 
1281 		if (success != AUDITSC_SUCCESS)
1282 			result = -result;
1283 		audit_syscall_exit(success, result);
1284 	}
1285 
1286 	step = test_thread_flag(TIF_SINGLESTEP);
1287 	if (step || test_thread_flag(TIF_SYSCALL_TRACE))
1288 		tracehook_report_syscall_exit(&regs, step);
1289 
1290 	/* copy user rbs to kernel rbs */
1291 	if (test_thread_flag(TIF_RESTORE_RSE))
1292 		ia64_sync_krbs();
1293 }
1294 
1295 /* Utrace implementation starts here */
1296 struct regset_get {
1297 	void *kbuf;
1298 	void __user *ubuf;
1299 };
1300 
1301 struct regset_set {
1302 	const void *kbuf;
1303 	const void __user *ubuf;
1304 };
1305 
1306 struct regset_getset {
1307 	struct task_struct *target;
1308 	const struct user_regset *regset;
1309 	union {
1310 		struct regset_get get;
1311 		struct regset_set set;
1312 	} u;
1313 	unsigned int pos;
1314 	unsigned int count;
1315 	int ret;
1316 };
1317 
1318 static int
access_elf_gpreg(struct task_struct * target,struct unw_frame_info * info,unsigned long addr,unsigned long * data,int write_access)1319 access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info,
1320 		unsigned long addr, unsigned long *data, int write_access)
1321 {
1322 	struct pt_regs *pt;
1323 	unsigned long *ptr = NULL;
1324 	int ret;
1325 	char nat = 0;
1326 
1327 	pt = task_pt_regs(target);
1328 	switch (addr) {
1329 	case ELF_GR_OFFSET(1):
1330 		ptr = &pt->r1;
1331 		break;
1332 	case ELF_GR_OFFSET(2):
1333 	case ELF_GR_OFFSET(3):
1334 		ptr = (void *)&pt->r2 + (addr - ELF_GR_OFFSET(2));
1335 		break;
1336 	case ELF_GR_OFFSET(4) ... ELF_GR_OFFSET(7):
1337 		if (write_access) {
1338 			/* read NaT bit first: */
1339 			unsigned long dummy;
1340 
1341 			ret = unw_get_gr(info, addr/8, &dummy, &nat);
1342 			if (ret < 0)
1343 				return ret;
1344 		}
1345 		return unw_access_gr(info, addr/8, data, &nat, write_access);
1346 	case ELF_GR_OFFSET(8) ... ELF_GR_OFFSET(11):
1347 		ptr = (void *)&pt->r8 + addr - ELF_GR_OFFSET(8);
1348 		break;
1349 	case ELF_GR_OFFSET(12):
1350 	case ELF_GR_OFFSET(13):
1351 		ptr = (void *)&pt->r12 + addr - ELF_GR_OFFSET(12);
1352 		break;
1353 	case ELF_GR_OFFSET(14):
1354 		ptr = &pt->r14;
1355 		break;
1356 	case ELF_GR_OFFSET(15):
1357 		ptr = &pt->r15;
1358 	}
1359 	if (write_access)
1360 		*ptr = *data;
1361 	else
1362 		*data = *ptr;
1363 	return 0;
1364 }
1365 
1366 static int
access_elf_breg(struct task_struct * target,struct unw_frame_info * info,unsigned long addr,unsigned long * data,int write_access)1367 access_elf_breg(struct task_struct *target, struct unw_frame_info *info,
1368 		unsigned long addr, unsigned long *data, int write_access)
1369 {
1370 	struct pt_regs *pt;
1371 	unsigned long *ptr = NULL;
1372 
1373 	pt = task_pt_regs(target);
1374 	switch (addr) {
1375 	case ELF_BR_OFFSET(0):
1376 		ptr = &pt->b0;
1377 		break;
1378 	case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
1379 		return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8,
1380 				     data, write_access);
1381 	case ELF_BR_OFFSET(6):
1382 		ptr = &pt->b6;
1383 		break;
1384 	case ELF_BR_OFFSET(7):
1385 		ptr = &pt->b7;
1386 	}
1387 	if (write_access)
1388 		*ptr = *data;
1389 	else
1390 		*data = *ptr;
1391 	return 0;
1392 }
1393 
1394 static int
access_elf_areg(struct task_struct * target,struct unw_frame_info * info,unsigned long addr,unsigned long * data,int write_access)1395 access_elf_areg(struct task_struct *target, struct unw_frame_info *info,
1396 		unsigned long addr, unsigned long *data, int write_access)
1397 {
1398 	struct pt_regs *pt;
1399 	unsigned long cfm, urbs_end;
1400 	unsigned long *ptr = NULL;
1401 
1402 	pt = task_pt_regs(target);
1403 	if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) {
1404 		switch (addr) {
1405 		case ELF_AR_RSC_OFFSET:
1406 			/* force PL3 */
1407 			if (write_access)
1408 				pt->ar_rsc = *data | (3 << 2);
1409 			else
1410 				*data = pt->ar_rsc;
1411 			return 0;
1412 		case ELF_AR_BSP_OFFSET:
1413 			/*
1414 			 * By convention, we use PT_AR_BSP to refer to
1415 			 * the end of the user-level backing store.
1416 			 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
1417 			 * to get the real value of ar.bsp at the time
1418 			 * the kernel was entered.
1419 			 *
1420 			 * Furthermore, when changing the contents of
1421 			 * PT_AR_BSP (or PT_CFM) while the task is
1422 			 * blocked in a system call, convert the state
1423 			 * so that the non-system-call exit
1424 			 * path is used.  This ensures that the proper
1425 			 * state will be picked up when resuming
1426 			 * execution.  However, it *also* means that
1427 			 * once we write PT_AR_BSP/PT_CFM, it won't be
1428 			 * possible to modify the syscall arguments of
1429 			 * the pending system call any longer.  This
1430 			 * shouldn't be an issue because modifying
1431 			 * PT_AR_BSP/PT_CFM generally implies that
1432 			 * we're either abandoning the pending system
1433 			 * call or that we defer it's re-execution
1434 			 * (e.g., due to GDB doing an inferior
1435 			 * function call).
1436 			 */
1437 			urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1438 			if (write_access) {
1439 				if (*data != urbs_end) {
1440 					if (in_syscall(pt))
1441 						convert_to_non_syscall(target,
1442 								       pt,
1443 								       cfm);
1444 					/*
1445 					 * Simulate user-level write
1446 					 * of ar.bsp:
1447 					 */
1448 					pt->loadrs = 0;
1449 					pt->ar_bspstore = *data;
1450 				}
1451 			} else
1452 				*data = urbs_end;
1453 			return 0;
1454 		case ELF_AR_BSPSTORE_OFFSET:
1455 			ptr = &pt->ar_bspstore;
1456 			break;
1457 		case ELF_AR_RNAT_OFFSET:
1458 			ptr = &pt->ar_rnat;
1459 			break;
1460 		case ELF_AR_CCV_OFFSET:
1461 			ptr = &pt->ar_ccv;
1462 			break;
1463 		case ELF_AR_UNAT_OFFSET:
1464 			ptr = &pt->ar_unat;
1465 			break;
1466 		case ELF_AR_FPSR_OFFSET:
1467 			ptr = &pt->ar_fpsr;
1468 			break;
1469 		case ELF_AR_PFS_OFFSET:
1470 			ptr = &pt->ar_pfs;
1471 			break;
1472 		case ELF_AR_LC_OFFSET:
1473 			return unw_access_ar(info, UNW_AR_LC, data,
1474 					     write_access);
1475 		case ELF_AR_EC_OFFSET:
1476 			return unw_access_ar(info, UNW_AR_EC, data,
1477 					     write_access);
1478 		case ELF_AR_CSD_OFFSET:
1479 			ptr = &pt->ar_csd;
1480 			break;
1481 		case ELF_AR_SSD_OFFSET:
1482 			ptr = &pt->ar_ssd;
1483 		}
1484 	} else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) {
1485 		switch (addr) {
1486 		case ELF_CR_IIP_OFFSET:
1487 			ptr = &pt->cr_iip;
1488 			break;
1489 		case ELF_CFM_OFFSET:
1490 			urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1491 			if (write_access) {
1492 				if (((cfm ^ *data) & PFM_MASK) != 0) {
1493 					if (in_syscall(pt))
1494 						convert_to_non_syscall(target,
1495 								       pt,
1496 								       cfm);
1497 					pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
1498 						      | (*data & PFM_MASK));
1499 				}
1500 			} else
1501 				*data = cfm;
1502 			return 0;
1503 		case ELF_CR_IPSR_OFFSET:
1504 			if (write_access) {
1505 				unsigned long tmp = *data;
1506 				/* psr.ri==3 is a reserved value: SDM 2:25 */
1507 				if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
1508 					tmp &= ~IA64_PSR_RI;
1509 				pt->cr_ipsr = ((tmp & IPSR_MASK)
1510 					       | (pt->cr_ipsr & ~IPSR_MASK));
1511 			} else
1512 				*data = (pt->cr_ipsr & IPSR_MASK);
1513 			return 0;
1514 		}
1515 	} else if (addr == ELF_NAT_OFFSET)
1516 		return access_nat_bits(target, pt, info,
1517 				       data, write_access);
1518 	else if (addr == ELF_PR_OFFSET)
1519 		ptr = &pt->pr;
1520 	else
1521 		return -1;
1522 
1523 	if (write_access)
1524 		*ptr = *data;
1525 	else
1526 		*data = *ptr;
1527 
1528 	return 0;
1529 }
1530 
1531 static int
access_elf_reg(struct task_struct * target,struct unw_frame_info * info,unsigned long addr,unsigned long * data,int write_access)1532 access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
1533 		unsigned long addr, unsigned long *data, int write_access)
1534 {
1535 	if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(15))
1536 		return access_elf_gpreg(target, info, addr, data, write_access);
1537 	else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7))
1538 		return access_elf_breg(target, info, addr, data, write_access);
1539 	else
1540 		return access_elf_areg(target, info, addr, data, write_access);
1541 }
1542 
do_gpregs_get(struct unw_frame_info * info,void * arg)1543 void do_gpregs_get(struct unw_frame_info *info, void *arg)
1544 {
1545 	struct pt_regs *pt;
1546 	struct regset_getset *dst = arg;
1547 	elf_greg_t tmp[16];
1548 	unsigned int i, index, min_copy;
1549 
1550 	if (unw_unwind_to_user(info) < 0)
1551 		return;
1552 
1553 	/*
1554 	 * coredump format:
1555 	 *      r0-r31
1556 	 *      NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
1557 	 *      predicate registers (p0-p63)
1558 	 *      b0-b7
1559 	 *      ip cfm user-mask
1560 	 *      ar.rsc ar.bsp ar.bspstore ar.rnat
1561 	 *      ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
1562 	 */
1563 
1564 
1565 	/* Skip r0 */
1566 	if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1567 		dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1568 						      &dst->u.get.kbuf,
1569 						      &dst->u.get.ubuf,
1570 						      0, ELF_GR_OFFSET(1));
1571 		if (dst->ret || dst->count == 0)
1572 			return;
1573 	}
1574 
1575 	/* gr1 - gr15 */
1576 	if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1577 		index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1578 		min_copy = ELF_GR_OFFSET(16) > (dst->pos + dst->count) ?
1579 			 (dst->pos + dst->count) : ELF_GR_OFFSET(16);
1580 		for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1581 				index++)
1582 			if (access_elf_reg(dst->target, info, i,
1583 						&tmp[index], 0) < 0) {
1584 				dst->ret = -EIO;
1585 				return;
1586 			}
1587 		dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1588 				&dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1589 				ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1590 		if (dst->ret || dst->count == 0)
1591 			return;
1592 	}
1593 
1594 	/* r16-r31 */
1595 	if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1596 		pt = task_pt_regs(dst->target);
1597 		dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1598 				&dst->u.get.kbuf, &dst->u.get.ubuf, &pt->r16,
1599 				ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1600 		if (dst->ret || dst->count == 0)
1601 			return;
1602 	}
1603 
1604 	/* nat, pr, b0 - b7 */
1605 	if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1606 		index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1607 		min_copy = ELF_CR_IIP_OFFSET > (dst->pos + dst->count) ?
1608 			 (dst->pos + dst->count) : ELF_CR_IIP_OFFSET;
1609 		for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1610 				index++)
1611 			if (access_elf_reg(dst->target, info, i,
1612 						&tmp[index], 0) < 0) {
1613 				dst->ret = -EIO;
1614 				return;
1615 			}
1616 		dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1617 				&dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1618 				ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1619 		if (dst->ret || dst->count == 0)
1620 			return;
1621 	}
1622 
1623 	/* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1624 	 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1625 	 */
1626 	if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1627 		index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1628 		min_copy = ELF_AR_END_OFFSET > (dst->pos + dst->count) ?
1629 			 (dst->pos + dst->count) : ELF_AR_END_OFFSET;
1630 		for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1631 				index++)
1632 			if (access_elf_reg(dst->target, info, i,
1633 						&tmp[index], 0) < 0) {
1634 				dst->ret = -EIO;
1635 				return;
1636 			}
1637 		dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1638 				&dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1639 				ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1640 	}
1641 }
1642 
do_gpregs_set(struct unw_frame_info * info,void * arg)1643 void do_gpregs_set(struct unw_frame_info *info, void *arg)
1644 {
1645 	struct pt_regs *pt;
1646 	struct regset_getset *dst = arg;
1647 	elf_greg_t tmp[16];
1648 	unsigned int i, index;
1649 
1650 	if (unw_unwind_to_user(info) < 0)
1651 		return;
1652 
1653 	/* Skip r0 */
1654 	if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1655 		dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1656 						       &dst->u.set.kbuf,
1657 						       &dst->u.set.ubuf,
1658 						       0, ELF_GR_OFFSET(1));
1659 		if (dst->ret || dst->count == 0)
1660 			return;
1661 	}
1662 
1663 	/* gr1-gr15 */
1664 	if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1665 		i = dst->pos;
1666 		index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1667 		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1668 				&dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1669 				ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1670 		if (dst->ret)
1671 			return;
1672 		for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1673 			if (access_elf_reg(dst->target, info, i,
1674 						&tmp[index], 1) < 0) {
1675 				dst->ret = -EIO;
1676 				return;
1677 			}
1678 		if (dst->count == 0)
1679 			return;
1680 	}
1681 
1682 	/* gr16-gr31 */
1683 	if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1684 		pt = task_pt_regs(dst->target);
1685 		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1686 				&dst->u.set.kbuf, &dst->u.set.ubuf, &pt->r16,
1687 				ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1688 		if (dst->ret || dst->count == 0)
1689 			return;
1690 	}
1691 
1692 	/* nat, pr, b0 - b7 */
1693 	if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1694 		i = dst->pos;
1695 		index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1696 		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1697 				&dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1698 				ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1699 		if (dst->ret)
1700 			return;
1701 		for (; i < dst->pos; i += sizeof(elf_greg_t), index++)
1702 			if (access_elf_reg(dst->target, info, i,
1703 						&tmp[index], 1) < 0) {
1704 				dst->ret = -EIO;
1705 				return;
1706 			}
1707 		if (dst->count == 0)
1708 			return;
1709 	}
1710 
1711 	/* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1712 	 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1713 	 */
1714 	if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1715 		i = dst->pos;
1716 		index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1717 		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1718 				&dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1719 				ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1720 		if (dst->ret)
1721 			return;
1722 		for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1723 			if (access_elf_reg(dst->target, info, i,
1724 						&tmp[index], 1) < 0) {
1725 				dst->ret = -EIO;
1726 				return;
1727 			}
1728 	}
1729 }
1730 
1731 #define ELF_FP_OFFSET(i)	(i * sizeof(elf_fpreg_t))
1732 
do_fpregs_get(struct unw_frame_info * info,void * arg)1733 void do_fpregs_get(struct unw_frame_info *info, void *arg)
1734 {
1735 	struct regset_getset *dst = arg;
1736 	struct task_struct *task = dst->target;
1737 	elf_fpreg_t tmp[30];
1738 	int index, min_copy, i;
1739 
1740 	if (unw_unwind_to_user(info) < 0)
1741 		return;
1742 
1743 	/* Skip pos 0 and 1 */
1744 	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1745 		dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1746 						      &dst->u.get.kbuf,
1747 						      &dst->u.get.ubuf,
1748 						      0, ELF_FP_OFFSET(2));
1749 		if (dst->count == 0 || dst->ret)
1750 			return;
1751 	}
1752 
1753 	/* fr2-fr31 */
1754 	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1755 		index = (dst->pos - ELF_FP_OFFSET(2)) / sizeof(elf_fpreg_t);
1756 
1757 		min_copy = min(((unsigned int)ELF_FP_OFFSET(32)),
1758 				dst->pos + dst->count);
1759 		for (i = dst->pos; i < min_copy; i += sizeof(elf_fpreg_t),
1760 				index++)
1761 			if (unw_get_fr(info, i / sizeof(elf_fpreg_t),
1762 					 &tmp[index])) {
1763 				dst->ret = -EIO;
1764 				return;
1765 			}
1766 		dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1767 				&dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1768 				ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1769 		if (dst->count == 0 || dst->ret)
1770 			return;
1771 	}
1772 
1773 	/* fph */
1774 	if (dst->count > 0) {
1775 		ia64_flush_fph(dst->target);
1776 		if (task->thread.flags & IA64_THREAD_FPH_VALID)
1777 			dst->ret = user_regset_copyout(
1778 				&dst->pos, &dst->count,
1779 				&dst->u.get.kbuf, &dst->u.get.ubuf,
1780 				&dst->target->thread.fph,
1781 				ELF_FP_OFFSET(32), -1);
1782 		else
1783 			/* Zero fill instead.  */
1784 			dst->ret = user_regset_copyout_zero(
1785 				&dst->pos, &dst->count,
1786 				&dst->u.get.kbuf, &dst->u.get.ubuf,
1787 				ELF_FP_OFFSET(32), -1);
1788 	}
1789 }
1790 
do_fpregs_set(struct unw_frame_info * info,void * arg)1791 void do_fpregs_set(struct unw_frame_info *info, void *arg)
1792 {
1793 	struct regset_getset *dst = arg;
1794 	elf_fpreg_t fpreg, tmp[30];
1795 	int index, start, end;
1796 
1797 	if (unw_unwind_to_user(info) < 0)
1798 		return;
1799 
1800 	/* Skip pos 0 and 1 */
1801 	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1802 		dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1803 						       &dst->u.set.kbuf,
1804 						       &dst->u.set.ubuf,
1805 						       0, ELF_FP_OFFSET(2));
1806 		if (dst->count == 0 || dst->ret)
1807 			return;
1808 	}
1809 
1810 	/* fr2-fr31 */
1811 	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1812 		start = dst->pos;
1813 		end = min(((unsigned int)ELF_FP_OFFSET(32)),
1814 			 dst->pos + dst->count);
1815 		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1816 				&dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1817 				ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1818 		if (dst->ret)
1819 			return;
1820 
1821 		if (start & 0xF) { /* only write high part */
1822 			if (unw_get_fr(info, start / sizeof(elf_fpreg_t),
1823 					 &fpreg)) {
1824 				dst->ret = -EIO;
1825 				return;
1826 			}
1827 			tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0]
1828 				= fpreg.u.bits[0];
1829 			start &= ~0xFUL;
1830 		}
1831 		if (end & 0xF) { /* only write low part */
1832 			if (unw_get_fr(info, end / sizeof(elf_fpreg_t),
1833 					&fpreg)) {
1834 				dst->ret = -EIO;
1835 				return;
1836 			}
1837 			tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1]
1838 				= fpreg.u.bits[1];
1839 			end = (end + 0xF) & ~0xFUL;
1840 		}
1841 
1842 		for ( ;	start < end ; start += sizeof(elf_fpreg_t)) {
1843 			index = start / sizeof(elf_fpreg_t);
1844 			if (unw_set_fr(info, index, tmp[index - 2])) {
1845 				dst->ret = -EIO;
1846 				return;
1847 			}
1848 		}
1849 		if (dst->ret || dst->count == 0)
1850 			return;
1851 	}
1852 
1853 	/* fph */
1854 	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) {
1855 		ia64_sync_fph(dst->target);
1856 		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1857 						&dst->u.set.kbuf,
1858 						&dst->u.set.ubuf,
1859 						&dst->target->thread.fph,
1860 						ELF_FP_OFFSET(32), -1);
1861 	}
1862 }
1863 
1864 static int
do_regset_call(void (* call)(struct unw_frame_info *,void *),struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1865 do_regset_call(void (*call)(struct unw_frame_info *, void *),
1866 	       struct task_struct *target,
1867 	       const struct user_regset *regset,
1868 	       unsigned int pos, unsigned int count,
1869 	       const void *kbuf, const void __user *ubuf)
1870 {
1871 	struct regset_getset info = { .target = target, .regset = regset,
1872 				 .pos = pos, .count = count,
1873 				 .u.set = { .kbuf = kbuf, .ubuf = ubuf },
1874 				 .ret = 0 };
1875 
1876 	if (target == current)
1877 		unw_init_running(call, &info);
1878 	else {
1879 		struct unw_frame_info ufi;
1880 		memset(&ufi, 0, sizeof(ufi));
1881 		unw_init_from_blocked_task(&ufi, target);
1882 		(*call)(&ufi, &info);
1883 	}
1884 
1885 	return info.ret;
1886 }
1887 
1888 static int
gpregs_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1889 gpregs_get(struct task_struct *target,
1890 	   const struct user_regset *regset,
1891 	   unsigned int pos, unsigned int count,
1892 	   void *kbuf, void __user *ubuf)
1893 {
1894 	return do_regset_call(do_gpregs_get, target, regset, pos, count,
1895 		kbuf, ubuf);
1896 }
1897 
gpregs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1898 static int gpregs_set(struct task_struct *target,
1899 		const struct user_regset *regset,
1900 		unsigned int pos, unsigned int count,
1901 		const void *kbuf, const void __user *ubuf)
1902 {
1903 	return do_regset_call(do_gpregs_set, target, regset, pos, count,
1904 		kbuf, ubuf);
1905 }
1906 
do_gpregs_writeback(struct unw_frame_info * info,void * arg)1907 static void do_gpregs_writeback(struct unw_frame_info *info, void *arg)
1908 {
1909 	do_sync_rbs(info, ia64_sync_user_rbs);
1910 }
1911 
1912 /*
1913  * This is called to write back the register backing store.
1914  * ptrace does this before it stops, so that a tracer reading the user
1915  * memory after the thread stops will get the current register data.
1916  */
1917 static int
gpregs_writeback(struct task_struct * target,const struct user_regset * regset,int now)1918 gpregs_writeback(struct task_struct *target,
1919 		 const struct user_regset *regset,
1920 		 int now)
1921 {
1922 	if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE))
1923 		return 0;
1924 	set_notify_resume(target);
1925 	return do_regset_call(do_gpregs_writeback, target, regset, 0, 0,
1926 		NULL, NULL);
1927 }
1928 
1929 static int
fpregs_active(struct task_struct * target,const struct user_regset * regset)1930 fpregs_active(struct task_struct *target, const struct user_regset *regset)
1931 {
1932 	return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32;
1933 }
1934 
fpregs_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1935 static int fpregs_get(struct task_struct *target,
1936 		const struct user_regset *regset,
1937 		unsigned int pos, unsigned int count,
1938 		void *kbuf, void __user *ubuf)
1939 {
1940 	return do_regset_call(do_fpregs_get, target, regset, pos, count,
1941 		kbuf, ubuf);
1942 }
1943 
fpregs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1944 static int fpregs_set(struct task_struct *target,
1945 		const struct user_regset *regset,
1946 		unsigned int pos, unsigned int count,
1947 		const void *kbuf, const void __user *ubuf)
1948 {
1949 	return do_regset_call(do_fpregs_set, target, regset, pos, count,
1950 		kbuf, ubuf);
1951 }
1952 
1953 static int
access_uarea(struct task_struct * child,unsigned long addr,unsigned long * data,int write_access)1954 access_uarea(struct task_struct *child, unsigned long addr,
1955 	      unsigned long *data, int write_access)
1956 {
1957 	unsigned int pos = -1; /* an invalid value */
1958 	int ret;
1959 	unsigned long *ptr, regnum;
1960 
1961 	if ((addr & 0x7) != 0) {
1962 		dprintk("ptrace: unaligned register address 0x%lx\n", addr);
1963 		return -1;
1964 	}
1965 	if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) ||
1966 		(addr >= PT_R7 + 8 && addr < PT_B1) ||
1967 		(addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) ||
1968 		(addr >= PT_AR_SSD + 8 && addr < PT_DBR)) {
1969 		dprintk("ptrace: rejecting access to register "
1970 					"address 0x%lx\n", addr);
1971 		return -1;
1972 	}
1973 
1974 	switch (addr) {
1975 	case PT_F32 ... (PT_F127 + 15):
1976 		pos = addr - PT_F32 + ELF_FP_OFFSET(32);
1977 		break;
1978 	case PT_F2 ... (PT_F5 + 15):
1979 		pos = addr - PT_F2 + ELF_FP_OFFSET(2);
1980 		break;
1981 	case PT_F10 ... (PT_F31 + 15):
1982 		pos = addr - PT_F10 + ELF_FP_OFFSET(10);
1983 		break;
1984 	case PT_F6 ... (PT_F9 + 15):
1985 		pos = addr - PT_F6 + ELF_FP_OFFSET(6);
1986 		break;
1987 	}
1988 
1989 	if (pos != -1) {
1990 		if (write_access)
1991 			ret = fpregs_set(child, NULL, pos,
1992 				sizeof(unsigned long), data, NULL);
1993 		else
1994 			ret = fpregs_get(child, NULL, pos,
1995 				sizeof(unsigned long), data, NULL);
1996 		if (ret != 0)
1997 			return -1;
1998 		return 0;
1999 	}
2000 
2001 	switch (addr) {
2002 	case PT_NAT_BITS:
2003 		pos = ELF_NAT_OFFSET;
2004 		break;
2005 	case PT_R4 ... PT_R7:
2006 		pos = addr - PT_R4 + ELF_GR_OFFSET(4);
2007 		break;
2008 	case PT_B1 ... PT_B5:
2009 		pos = addr - PT_B1 + ELF_BR_OFFSET(1);
2010 		break;
2011 	case PT_AR_EC:
2012 		pos = ELF_AR_EC_OFFSET;
2013 		break;
2014 	case PT_AR_LC:
2015 		pos = ELF_AR_LC_OFFSET;
2016 		break;
2017 	case PT_CR_IPSR:
2018 		pos = ELF_CR_IPSR_OFFSET;
2019 		break;
2020 	case PT_CR_IIP:
2021 		pos = ELF_CR_IIP_OFFSET;
2022 		break;
2023 	case PT_CFM:
2024 		pos = ELF_CFM_OFFSET;
2025 		break;
2026 	case PT_AR_UNAT:
2027 		pos = ELF_AR_UNAT_OFFSET;
2028 		break;
2029 	case PT_AR_PFS:
2030 		pos = ELF_AR_PFS_OFFSET;
2031 		break;
2032 	case PT_AR_RSC:
2033 		pos = ELF_AR_RSC_OFFSET;
2034 		break;
2035 	case PT_AR_RNAT:
2036 		pos = ELF_AR_RNAT_OFFSET;
2037 		break;
2038 	case PT_AR_BSPSTORE:
2039 		pos = ELF_AR_BSPSTORE_OFFSET;
2040 		break;
2041 	case PT_PR:
2042 		pos = ELF_PR_OFFSET;
2043 		break;
2044 	case PT_B6:
2045 		pos = ELF_BR_OFFSET(6);
2046 		break;
2047 	case PT_AR_BSP:
2048 		pos = ELF_AR_BSP_OFFSET;
2049 		break;
2050 	case PT_R1 ... PT_R3:
2051 		pos = addr - PT_R1 + ELF_GR_OFFSET(1);
2052 		break;
2053 	case PT_R12 ... PT_R15:
2054 		pos = addr - PT_R12 + ELF_GR_OFFSET(12);
2055 		break;
2056 	case PT_R8 ... PT_R11:
2057 		pos = addr - PT_R8 + ELF_GR_OFFSET(8);
2058 		break;
2059 	case PT_R16 ... PT_R31:
2060 		pos = addr - PT_R16 + ELF_GR_OFFSET(16);
2061 		break;
2062 	case PT_AR_CCV:
2063 		pos = ELF_AR_CCV_OFFSET;
2064 		break;
2065 	case PT_AR_FPSR:
2066 		pos = ELF_AR_FPSR_OFFSET;
2067 		break;
2068 	case PT_B0:
2069 		pos = ELF_BR_OFFSET(0);
2070 		break;
2071 	case PT_B7:
2072 		pos = ELF_BR_OFFSET(7);
2073 		break;
2074 	case PT_AR_CSD:
2075 		pos = ELF_AR_CSD_OFFSET;
2076 		break;
2077 	case PT_AR_SSD:
2078 		pos = ELF_AR_SSD_OFFSET;
2079 		break;
2080 	}
2081 
2082 	if (pos != -1) {
2083 		if (write_access)
2084 			ret = gpregs_set(child, NULL, pos,
2085 				sizeof(unsigned long), data, NULL);
2086 		else
2087 			ret = gpregs_get(child, NULL, pos,
2088 				sizeof(unsigned long), data, NULL);
2089 		if (ret != 0)
2090 			return -1;
2091 		return 0;
2092 	}
2093 
2094 	/* access debug registers */
2095 	if (addr >= PT_IBR) {
2096 		regnum = (addr - PT_IBR) >> 3;
2097 		ptr = &child->thread.ibr[0];
2098 	} else {
2099 		regnum = (addr - PT_DBR) >> 3;
2100 		ptr = &child->thread.dbr[0];
2101 	}
2102 
2103 	if (regnum >= 8) {
2104 		dprintk("ptrace: rejecting access to register "
2105 				"address 0x%lx\n", addr);
2106 		return -1;
2107 	}
2108 #ifdef CONFIG_PERFMON
2109 	/*
2110 	 * Check if debug registers are used by perfmon. This
2111 	 * test must be done once we know that we can do the
2112 	 * operation, i.e. the arguments are all valid, but
2113 	 * before we start modifying the state.
2114 	 *
2115 	 * Perfmon needs to keep a count of how many processes
2116 	 * are trying to modify the debug registers for system
2117 	 * wide monitoring sessions.
2118 	 *
2119 	 * We also include read access here, because they may
2120 	 * cause the PMU-installed debug register state
2121 	 * (dbr[], ibr[]) to be reset. The two arrays are also
2122 	 * used by perfmon, but we do not use
2123 	 * IA64_THREAD_DBG_VALID. The registers are restored
2124 	 * by the PMU context switch code.
2125 	 */
2126 	if (pfm_use_debug_registers(child))
2127 		return -1;
2128 #endif
2129 
2130 	if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
2131 		child->thread.flags |= IA64_THREAD_DBG_VALID;
2132 		memset(child->thread.dbr, 0,
2133 				sizeof(child->thread.dbr));
2134 		memset(child->thread.ibr, 0,
2135 				sizeof(child->thread.ibr));
2136 	}
2137 
2138 	ptr += regnum;
2139 
2140 	if ((regnum & 1) && write_access) {
2141 		/* don't let the user set kernel-level breakpoints: */
2142 		*ptr = *data & ~(7UL << 56);
2143 		return 0;
2144 	}
2145 	if (write_access)
2146 		*ptr = *data;
2147 	else
2148 		*data = *ptr;
2149 	return 0;
2150 }
2151 
2152 static const struct user_regset native_regsets[] = {
2153 	{
2154 		.core_note_type = NT_PRSTATUS,
2155 		.n = ELF_NGREG,
2156 		.size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t),
2157 		.get = gpregs_get, .set = gpregs_set,
2158 		.writeback = gpregs_writeback
2159 	},
2160 	{
2161 		.core_note_type = NT_PRFPREG,
2162 		.n = ELF_NFPREG,
2163 		.size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t),
2164 		.get = fpregs_get, .set = fpregs_set, .active = fpregs_active
2165 	},
2166 };
2167 
2168 static const struct user_regset_view user_ia64_view = {
2169 	.name = "ia64",
2170 	.e_machine = EM_IA_64,
2171 	.regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
2172 };
2173 
task_user_regset_view(struct task_struct * tsk)2174 const struct user_regset_view *task_user_regset_view(struct task_struct *tsk)
2175 {
2176 #ifdef CONFIG_IA32_SUPPORT
2177 	extern const struct user_regset_view user_ia32_view;
2178 	if (IS_IA32_PROCESS(task_pt_regs(tsk)))
2179 		return &user_ia32_view;
2180 #endif
2181 	return &user_ia64_view;
2182 }
2183 
2184 struct syscall_get_set_args {
2185 	unsigned int i;
2186 	unsigned int n;
2187 	unsigned long *args;
2188 	struct pt_regs *regs;
2189 	int rw;
2190 };
2191 
syscall_get_set_args_cb(struct unw_frame_info * info,void * data)2192 static void syscall_get_set_args_cb(struct unw_frame_info *info, void *data)
2193 {
2194 	struct syscall_get_set_args *args = data;
2195 	struct pt_regs *pt = args->regs;
2196 	unsigned long *krbs, cfm, ndirty;
2197 	int i, count;
2198 
2199 	if (unw_unwind_to_user(info) < 0)
2200 		return;
2201 
2202 	cfm = pt->cr_ifs;
2203 	krbs = (unsigned long *)info->task + IA64_RBS_OFFSET/8;
2204 	ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
2205 
2206 	count = 0;
2207 	if (in_syscall(pt))
2208 		count = min_t(int, args->n, cfm & 0x7f);
2209 
2210 	for (i = 0; i < count; i++) {
2211 		if (args->rw)
2212 			*ia64_rse_skip_regs(krbs, ndirty + i + args->i) =
2213 				args->args[i];
2214 		else
2215 			args->args[i] = *ia64_rse_skip_regs(krbs,
2216 				ndirty + i + args->i);
2217 	}
2218 
2219 	if (!args->rw) {
2220 		while (i < args->n) {
2221 			args->args[i] = 0;
2222 			i++;
2223 		}
2224 	}
2225 }
2226 
ia64_syscall_get_set_arguments(struct task_struct * task,struct pt_regs * regs,unsigned int i,unsigned int n,unsigned long * args,int rw)2227 void ia64_syscall_get_set_arguments(struct task_struct *task,
2228 	struct pt_regs *regs, unsigned int i, unsigned int n,
2229 	unsigned long *args, int rw)
2230 {
2231 	struct syscall_get_set_args data = {
2232 		.i = i,
2233 		.n = n,
2234 		.args = args,
2235 		.regs = regs,
2236 		.rw = rw,
2237 	};
2238 
2239 	if (task == current)
2240 		unw_init_running(syscall_get_set_args_cb, &data);
2241 	else {
2242 		struct unw_frame_info ufi;
2243 		memset(&ufi, 0, sizeof(ufi));
2244 		unw_init_from_blocked_task(&ufi, task);
2245 		syscall_get_set_args_cb(&ufi, &data);
2246 	}
2247 }
2248