• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (C) 2000-2002	Andre Hedrick <andre@linux-ide.org>
3  *  Copyright (C) 2003		Red Hat
4  *
5  */
6 
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 #include <linux/timer.h>
12 #include <linux/mm.h>
13 #include <linux/interrupt.h>
14 #include <linux/major.h>
15 #include <linux/errno.h>
16 #include <linux/genhd.h>
17 #include <linux/blkpg.h>
18 #include <linux/slab.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/ide.h>
22 #include <linux/bitops.h>
23 #include <linux/nmi.h>
24 
25 #include <asm/byteorder.h>
26 #include <asm/irq.h>
27 #include <asm/uaccess.h>
28 #include <asm/io.h>
29 
30 /*
31  *	Conventional PIO operations for ATA devices
32  */
33 
ide_inb(unsigned long port)34 static u8 ide_inb (unsigned long port)
35 {
36 	return (u8) inb(port);
37 }
38 
ide_outb(u8 val,unsigned long port)39 static void ide_outb (u8 val, unsigned long port)
40 {
41 	outb(val, port);
42 }
43 
44 /*
45  *	MMIO operations, typically used for SATA controllers
46  */
47 
ide_mm_inb(unsigned long port)48 static u8 ide_mm_inb (unsigned long port)
49 {
50 	return (u8) readb((void __iomem *) port);
51 }
52 
ide_mm_outb(u8 value,unsigned long port)53 static void ide_mm_outb (u8 value, unsigned long port)
54 {
55 	writeb(value, (void __iomem *) port);
56 }
57 
SELECT_DRIVE(ide_drive_t * drive)58 void SELECT_DRIVE (ide_drive_t *drive)
59 {
60 	ide_hwif_t *hwif = drive->hwif;
61 	const struct ide_port_ops *port_ops = hwif->port_ops;
62 	ide_task_t task;
63 
64 	if (port_ops && port_ops->selectproc)
65 		port_ops->selectproc(drive);
66 
67 	memset(&task, 0, sizeof(task));
68 	task.tf_flags = IDE_TFLAG_OUT_DEVICE;
69 
70 	drive->hwif->tp_ops->tf_load(drive, &task);
71 }
72 
SELECT_MASK(ide_drive_t * drive,int mask)73 void SELECT_MASK(ide_drive_t *drive, int mask)
74 {
75 	const struct ide_port_ops *port_ops = drive->hwif->port_ops;
76 
77 	if (port_ops && port_ops->maskproc)
78 		port_ops->maskproc(drive, mask);
79 }
80 
ide_exec_command(ide_hwif_t * hwif,u8 cmd)81 void ide_exec_command(ide_hwif_t *hwif, u8 cmd)
82 {
83 	if (hwif->host_flags & IDE_HFLAG_MMIO)
84 		writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
85 	else
86 		outb(cmd, hwif->io_ports.command_addr);
87 }
88 EXPORT_SYMBOL_GPL(ide_exec_command);
89 
ide_read_status(ide_hwif_t * hwif)90 u8 ide_read_status(ide_hwif_t *hwif)
91 {
92 	if (hwif->host_flags & IDE_HFLAG_MMIO)
93 		return readb((void __iomem *)hwif->io_ports.status_addr);
94 	else
95 		return inb(hwif->io_ports.status_addr);
96 }
97 EXPORT_SYMBOL_GPL(ide_read_status);
98 
ide_read_altstatus(ide_hwif_t * hwif)99 u8 ide_read_altstatus(ide_hwif_t *hwif)
100 {
101 	if (hwif->host_flags & IDE_HFLAG_MMIO)
102 		return readb((void __iomem *)hwif->io_ports.ctl_addr);
103 	else
104 		return inb(hwif->io_ports.ctl_addr);
105 }
106 EXPORT_SYMBOL_GPL(ide_read_altstatus);
107 
ide_set_irq(ide_hwif_t * hwif,int on)108 void ide_set_irq(ide_hwif_t *hwif, int on)
109 {
110 	u8 ctl = ATA_DEVCTL_OBS;
111 
112 	if (on == 4) { /* hack for SRST */
113 		ctl |= 4;
114 		on &= ~4;
115 	}
116 
117 	ctl |= on ? 0 : 2;
118 
119 	if (hwif->host_flags & IDE_HFLAG_MMIO)
120 		writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr);
121 	else
122 		outb(ctl, hwif->io_ports.ctl_addr);
123 }
124 EXPORT_SYMBOL_GPL(ide_set_irq);
125 
ide_tf_load(ide_drive_t * drive,ide_task_t * task)126 void ide_tf_load(ide_drive_t *drive, ide_task_t *task)
127 {
128 	ide_hwif_t *hwif = drive->hwif;
129 	struct ide_io_ports *io_ports = &hwif->io_ports;
130 	struct ide_taskfile *tf = &task->tf;
131 	void (*tf_outb)(u8 addr, unsigned long port);
132 	u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
133 	u8 HIHI = (task->tf_flags & IDE_TFLAG_LBA48) ? 0xE0 : 0xEF;
134 
135 	if (mmio)
136 		tf_outb = ide_mm_outb;
137 	else
138 		tf_outb = ide_outb;
139 
140 	if (task->tf_flags & IDE_TFLAG_FLAGGED)
141 		HIHI = 0xFF;
142 
143 	if (task->tf_flags & IDE_TFLAG_OUT_DATA) {
144 		u16 data = (tf->hob_data << 8) | tf->data;
145 
146 		if (mmio)
147 			writew(data, (void __iomem *)io_ports->data_addr);
148 		else
149 			outw(data, io_ports->data_addr);
150 	}
151 
152 	if (task->tf_flags & IDE_TFLAG_OUT_HOB_FEATURE)
153 		tf_outb(tf->hob_feature, io_ports->feature_addr);
154 	if (task->tf_flags & IDE_TFLAG_OUT_HOB_NSECT)
155 		tf_outb(tf->hob_nsect, io_ports->nsect_addr);
156 	if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAL)
157 		tf_outb(tf->hob_lbal, io_ports->lbal_addr);
158 	if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAM)
159 		tf_outb(tf->hob_lbam, io_ports->lbam_addr);
160 	if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAH)
161 		tf_outb(tf->hob_lbah, io_ports->lbah_addr);
162 
163 	if (task->tf_flags & IDE_TFLAG_OUT_FEATURE)
164 		tf_outb(tf->feature, io_ports->feature_addr);
165 	if (task->tf_flags & IDE_TFLAG_OUT_NSECT)
166 		tf_outb(tf->nsect, io_ports->nsect_addr);
167 	if (task->tf_flags & IDE_TFLAG_OUT_LBAL)
168 		tf_outb(tf->lbal, io_ports->lbal_addr);
169 	if (task->tf_flags & IDE_TFLAG_OUT_LBAM)
170 		tf_outb(tf->lbam, io_ports->lbam_addr);
171 	if (task->tf_flags & IDE_TFLAG_OUT_LBAH)
172 		tf_outb(tf->lbah, io_ports->lbah_addr);
173 
174 	if (task->tf_flags & IDE_TFLAG_OUT_DEVICE)
175 		tf_outb((tf->device & HIHI) | drive->select,
176 			 io_ports->device_addr);
177 }
178 EXPORT_SYMBOL_GPL(ide_tf_load);
179 
ide_tf_read(ide_drive_t * drive,ide_task_t * task)180 void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
181 {
182 	ide_hwif_t *hwif = drive->hwif;
183 	struct ide_io_ports *io_ports = &hwif->io_ports;
184 	struct ide_taskfile *tf = &task->tf;
185 	void (*tf_outb)(u8 addr, unsigned long port);
186 	u8 (*tf_inb)(unsigned long port);
187 	u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
188 
189 	if (mmio) {
190 		tf_outb = ide_mm_outb;
191 		tf_inb  = ide_mm_inb;
192 	} else {
193 		tf_outb = ide_outb;
194 		tf_inb  = ide_inb;
195 	}
196 
197 	if (task->tf_flags & IDE_TFLAG_IN_DATA) {
198 		u16 data;
199 
200 		if (mmio)
201 			data = readw((void __iomem *)io_ports->data_addr);
202 		else
203 			data = inw(io_ports->data_addr);
204 
205 		tf->data = data & 0xff;
206 		tf->hob_data = (data >> 8) & 0xff;
207 	}
208 
209 	/* be sure we're looking at the low order bits */
210 	tf_outb(ATA_DEVCTL_OBS & ~0x80, io_ports->ctl_addr);
211 
212 	if (task->tf_flags & IDE_TFLAG_IN_FEATURE)
213 		tf->feature = tf_inb(io_ports->feature_addr);
214 	if (task->tf_flags & IDE_TFLAG_IN_NSECT)
215 		tf->nsect  = tf_inb(io_ports->nsect_addr);
216 	if (task->tf_flags & IDE_TFLAG_IN_LBAL)
217 		tf->lbal   = tf_inb(io_ports->lbal_addr);
218 	if (task->tf_flags & IDE_TFLAG_IN_LBAM)
219 		tf->lbam   = tf_inb(io_ports->lbam_addr);
220 	if (task->tf_flags & IDE_TFLAG_IN_LBAH)
221 		tf->lbah   = tf_inb(io_ports->lbah_addr);
222 	if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
223 		tf->device = tf_inb(io_ports->device_addr);
224 
225 	if (task->tf_flags & IDE_TFLAG_LBA48) {
226 		tf_outb(ATA_DEVCTL_OBS | 0x80, io_ports->ctl_addr);
227 
228 		if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
229 			tf->hob_feature = tf_inb(io_ports->feature_addr);
230 		if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
231 			tf->hob_nsect   = tf_inb(io_ports->nsect_addr);
232 		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
233 			tf->hob_lbal    = tf_inb(io_ports->lbal_addr);
234 		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
235 			tf->hob_lbam    = tf_inb(io_ports->lbam_addr);
236 		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
237 			tf->hob_lbah    = tf_inb(io_ports->lbah_addr);
238 	}
239 }
240 EXPORT_SYMBOL_GPL(ide_tf_read);
241 
242 /*
243  * Some localbus EIDE interfaces require a special access sequence
244  * when using 32-bit I/O instructions to transfer data.  We call this
245  * the "vlb_sync" sequence, which consists of three successive reads
246  * of the sector count register location, with interrupts disabled
247  * to ensure that the reads all happen together.
248  */
ata_vlb_sync(unsigned long port)249 static void ata_vlb_sync(unsigned long port)
250 {
251 	(void)inb(port);
252 	(void)inb(port);
253 	(void)inb(port);
254 }
255 
256 /*
257  * This is used for most PIO data transfers *from* the IDE interface
258  *
259  * These routines will round up any request for an odd number of bytes,
260  * so if an odd len is specified, be sure that there's at least one
261  * extra byte allocated for the buffer.
262  */
ide_input_data(ide_drive_t * drive,struct request * rq,void * buf,unsigned int len)263 void ide_input_data(ide_drive_t *drive, struct request *rq, void *buf,
264 		    unsigned int len)
265 {
266 	ide_hwif_t *hwif = drive->hwif;
267 	struct ide_io_ports *io_ports = &hwif->io_ports;
268 	unsigned long data_addr = io_ports->data_addr;
269 	u8 io_32bit = drive->io_32bit;
270 	u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
271 
272 	len++;
273 
274 	if (io_32bit) {
275 		unsigned long uninitialized_var(flags);
276 
277 		if ((io_32bit & 2) && !mmio) {
278 			local_irq_save(flags);
279 			ata_vlb_sync(io_ports->nsect_addr);
280 		}
281 
282 		if (mmio)
283 			__ide_mm_insl((void __iomem *)data_addr, buf, len / 4);
284 		else
285 			insl(data_addr, buf, len / 4);
286 
287 		if ((io_32bit & 2) && !mmio)
288 			local_irq_restore(flags);
289 
290 		if ((len & 3) >= 2) {
291 			if (mmio)
292 				__ide_mm_insw((void __iomem *)data_addr,
293 						(u8 *)buf + (len & ~3), 1);
294 			else
295 				insw(data_addr, (u8 *)buf + (len & ~3), 1);
296 		}
297 	} else {
298 		if (mmio)
299 			__ide_mm_insw((void __iomem *)data_addr, buf, len / 2);
300 		else
301 			insw(data_addr, buf, len / 2);
302 	}
303 }
304 EXPORT_SYMBOL_GPL(ide_input_data);
305 
306 /*
307  * This is used for most PIO data transfers *to* the IDE interface
308  */
ide_output_data(ide_drive_t * drive,struct request * rq,void * buf,unsigned int len)309 void ide_output_data(ide_drive_t *drive, struct request *rq, void *buf,
310 		     unsigned int len)
311 {
312 	ide_hwif_t *hwif = drive->hwif;
313 	struct ide_io_ports *io_ports = &hwif->io_ports;
314 	unsigned long data_addr = io_ports->data_addr;
315 	u8 io_32bit = drive->io_32bit;
316 	u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
317 
318 	len++;
319 
320 	if (io_32bit) {
321 		unsigned long uninitialized_var(flags);
322 
323 		if ((io_32bit & 2) && !mmio) {
324 			local_irq_save(flags);
325 			ata_vlb_sync(io_ports->nsect_addr);
326 		}
327 
328 		if (mmio)
329 			__ide_mm_outsl((void __iomem *)data_addr, buf, len / 4);
330 		else
331 			outsl(data_addr, buf, len / 4);
332 
333 		if ((io_32bit & 2) && !mmio)
334 			local_irq_restore(flags);
335 
336 		if ((len & 3) >= 2) {
337 			if (mmio)
338 				__ide_mm_outsw((void __iomem *)data_addr,
339 						 (u8 *)buf + (len & ~3), 1);
340 			else
341 				outsw(data_addr, (u8 *)buf + (len & ~3), 1);
342 		}
343 	} else {
344 		if (mmio)
345 			__ide_mm_outsw((void __iomem *)data_addr, buf, len / 2);
346 		else
347 			outsw(data_addr, buf, len / 2);
348 	}
349 }
350 EXPORT_SYMBOL_GPL(ide_output_data);
351 
ide_read_error(ide_drive_t * drive)352 u8 ide_read_error(ide_drive_t *drive)
353 {
354 	ide_task_t task;
355 
356 	memset(&task, 0, sizeof(task));
357 	task.tf_flags = IDE_TFLAG_IN_FEATURE;
358 
359 	drive->hwif->tp_ops->tf_read(drive, &task);
360 
361 	return task.tf.error;
362 }
363 EXPORT_SYMBOL_GPL(ide_read_error);
364 
ide_read_bcount_and_ireason(ide_drive_t * drive,u16 * bcount,u8 * ireason)365 void ide_read_bcount_and_ireason(ide_drive_t *drive, u16 *bcount, u8 *ireason)
366 {
367 	ide_task_t task;
368 
369 	memset(&task, 0, sizeof(task));
370 	task.tf_flags = IDE_TFLAG_IN_LBAH | IDE_TFLAG_IN_LBAM |
371 			IDE_TFLAG_IN_NSECT;
372 
373 	drive->hwif->tp_ops->tf_read(drive, &task);
374 
375 	*bcount = (task.tf.lbah << 8) | task.tf.lbam;
376 	*ireason = task.tf.nsect & 3;
377 }
378 EXPORT_SYMBOL_GPL(ide_read_bcount_and_ireason);
379 
380 const struct ide_tp_ops default_tp_ops = {
381 	.exec_command		= ide_exec_command,
382 	.read_status		= ide_read_status,
383 	.read_altstatus		= ide_read_altstatus,
384 
385 	.set_irq		= ide_set_irq,
386 
387 	.tf_load		= ide_tf_load,
388 	.tf_read		= ide_tf_read,
389 
390 	.input_data		= ide_input_data,
391 	.output_data		= ide_output_data,
392 };
393 
ide_fix_driveid(u16 * id)394 void ide_fix_driveid(u16 *id)
395 {
396 #ifndef __LITTLE_ENDIAN
397 # ifdef __BIG_ENDIAN
398 	int i;
399 
400 	for (i = 0; i < 256; i++)
401 		id[i] = __le16_to_cpu(id[i]);
402 # else
403 #  error "Please fix <asm/byteorder.h>"
404 # endif
405 #endif
406 }
407 
408 /*
409  * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
410  * removing leading/trailing blanks and compressing internal blanks.
411  * It is primarily used to tidy up the model name/number fields as
412  * returned by the ATA_CMD_ID_ATA[PI] commands.
413  */
414 
ide_fixstring(u8 * s,const int bytecount,const int byteswap)415 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
416 {
417 	u8 *p, *end = &s[bytecount & ~1]; /* bytecount must be even */
418 
419 	if (byteswap) {
420 		/* convert from big-endian to host byte order */
421 		for (p = s ; p != end ; p += 2)
422 			be16_to_cpus((u16 *) p);
423 	}
424 
425 	/* strip leading blanks */
426 	p = s;
427 	while (s != end && *s == ' ')
428 		++s;
429 	/* compress internal blanks and strip trailing blanks */
430 	while (s != end && *s) {
431 		if (*s++ != ' ' || (s != end && *s && *s != ' '))
432 			*p++ = *(s-1);
433 	}
434 	/* wipe out trailing garbage */
435 	while (p != end)
436 		*p++ = '\0';
437 }
438 
439 EXPORT_SYMBOL(ide_fixstring);
440 
441 /*
442  * Needed for PCI irq sharing
443  */
drive_is_ready(ide_drive_t * drive)444 int drive_is_ready (ide_drive_t *drive)
445 {
446 	ide_hwif_t *hwif	= drive->hwif;
447 	u8 stat			= 0;
448 
449 	if (drive->waiting_for_dma)
450 		return hwif->dma_ops->dma_test_irq(drive);
451 
452 	/*
453 	 * We do a passive status test under shared PCI interrupts on
454 	 * cards that truly share the ATA side interrupt, but may also share
455 	 * an interrupt with another pci card/device.  We make no assumptions
456 	 * about possible isa-pnp and pci-pnp issues yet.
457 	 */
458 	if (hwif->io_ports.ctl_addr &&
459 	    (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
460 		stat = hwif->tp_ops->read_altstatus(hwif);
461 	else
462 		/* Note: this may clear a pending IRQ!! */
463 		stat = hwif->tp_ops->read_status(hwif);
464 
465 	if (stat & ATA_BUSY)
466 		/* drive busy:  definitely not interrupting */
467 		return 0;
468 
469 	/* drive ready: *might* be interrupting */
470 	return 1;
471 }
472 
473 EXPORT_SYMBOL(drive_is_ready);
474 
475 /*
476  * This routine busy-waits for the drive status to be not "busy".
477  * It then checks the status for all of the "good" bits and none
478  * of the "bad" bits, and if all is okay it returns 0.  All other
479  * cases return error -- caller may then invoke ide_error().
480  *
481  * This routine should get fixed to not hog the cpu during extra long waits..
482  * That could be done by busy-waiting for the first jiffy or two, and then
483  * setting a timer to wake up at half second intervals thereafter,
484  * until timeout is achieved, before timing out.
485  */
__ide_wait_stat(ide_drive_t * drive,u8 good,u8 bad,unsigned long timeout,u8 * rstat)486 static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
487 {
488 	ide_hwif_t *hwif = drive->hwif;
489 	const struct ide_tp_ops *tp_ops = hwif->tp_ops;
490 	unsigned long flags;
491 	int i;
492 	u8 stat;
493 
494 	udelay(1);	/* spec allows drive 400ns to assert "BUSY" */
495 	stat = tp_ops->read_status(hwif);
496 
497 	if (stat & ATA_BUSY) {
498 		local_save_flags(flags);
499 		local_irq_enable_in_hardirq();
500 		timeout += jiffies;
501 		while ((stat = tp_ops->read_status(hwif)) & ATA_BUSY) {
502 			if (time_after(jiffies, timeout)) {
503 				/*
504 				 * One last read after the timeout in case
505 				 * heavy interrupt load made us not make any
506 				 * progress during the timeout..
507 				 */
508 				stat = tp_ops->read_status(hwif);
509 				if ((stat & ATA_BUSY) == 0)
510 					break;
511 
512 				local_irq_restore(flags);
513 				*rstat = stat;
514 				return -EBUSY;
515 			}
516 		}
517 		local_irq_restore(flags);
518 	}
519 	/*
520 	 * Allow status to settle, then read it again.
521 	 * A few rare drives vastly violate the 400ns spec here,
522 	 * so we'll wait up to 10usec for a "good" status
523 	 * rather than expensively fail things immediately.
524 	 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
525 	 */
526 	for (i = 0; i < 10; i++) {
527 		udelay(1);
528 		stat = tp_ops->read_status(hwif);
529 
530 		if (OK_STAT(stat, good, bad)) {
531 			*rstat = stat;
532 			return 0;
533 		}
534 	}
535 	*rstat = stat;
536 	return -EFAULT;
537 }
538 
539 /*
540  * In case of error returns error value after doing "*startstop = ide_error()".
541  * The caller should return the updated value of "startstop" in this case,
542  * "startstop" is unchanged when the function returns 0.
543  */
ide_wait_stat(ide_startstop_t * startstop,ide_drive_t * drive,u8 good,u8 bad,unsigned long timeout)544 int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
545 {
546 	int err;
547 	u8 stat;
548 
549 	/* bail early if we've exceeded max_failures */
550 	if (drive->max_failures && (drive->failures > drive->max_failures)) {
551 		*startstop = ide_stopped;
552 		return 1;
553 	}
554 
555 	err = __ide_wait_stat(drive, good, bad, timeout, &stat);
556 
557 	if (err) {
558 		char *s = (err == -EBUSY) ? "status timeout" : "status error";
559 		*startstop = ide_error(drive, s, stat);
560 	}
561 
562 	return err;
563 }
564 
565 EXPORT_SYMBOL(ide_wait_stat);
566 
567 /**
568  *	ide_in_drive_list	-	look for drive in black/white list
569  *	@id: drive identifier
570  *	@table: list to inspect
571  *
572  *	Look for a drive in the blacklist and the whitelist tables
573  *	Returns 1 if the drive is found in the table.
574  */
575 
ide_in_drive_list(u16 * id,const struct drive_list_entry * table)576 int ide_in_drive_list(u16 *id, const struct drive_list_entry *table)
577 {
578 	for ( ; table->id_model; table++)
579 		if ((!strcmp(table->id_model, (char *)&id[ATA_ID_PROD])) &&
580 		    (!table->id_firmware ||
581 		     strstr((char *)&id[ATA_ID_FW_REV], table->id_firmware)))
582 			return 1;
583 	return 0;
584 }
585 
586 EXPORT_SYMBOL_GPL(ide_in_drive_list);
587 
588 /*
589  * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
590  * We list them here and depend on the device side cable detection for them.
591  *
592  * Some optical devices with the buggy firmwares have the same problem.
593  */
594 static const struct drive_list_entry ivb_list[] = {
595 	{ "QUANTUM FIREBALLlct10 05"	, "A03.0900"	},
596 	{ "TSSTcorp CDDVDW SH-S202J"	, "SB00"	},
597 	{ "TSSTcorp CDDVDW SH-S202J"	, "SB01"	},
598 	{ "TSSTcorp CDDVDW SH-S202N"	, "SB00"	},
599 	{ "TSSTcorp CDDVDW SH-S202N"	, "SB01"	},
600 	{ "TSSTcorp CDDVDW SH-S202H"	, "SB00"	},
601 	{ "TSSTcorp CDDVDW SH-S202H"	, "SB01"	},
602 	{ "SAMSUNG SP0822N"		, "WA100-10"	},
603 	{ NULL				, NULL		}
604 };
605 
606 /*
607  *  All hosts that use the 80c ribbon must use!
608  *  The name is derived from upper byte of word 93 and the 80c ribbon.
609  */
eighty_ninty_three(ide_drive_t * drive)610 u8 eighty_ninty_three (ide_drive_t *drive)
611 {
612 	ide_hwif_t *hwif = drive->hwif;
613 	u16 *id = drive->id;
614 	int ivb = ide_in_drive_list(id, ivb_list);
615 
616 	if (hwif->cbl == ATA_CBL_PATA40_SHORT)
617 		return 1;
618 
619 	if (ivb)
620 		printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
621 				  drive->name);
622 
623 	if (ata_id_is_sata(id) && !ivb)
624 		return 1;
625 
626 	if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
627 		goto no_80w;
628 
629 	/*
630 	 * FIXME:
631 	 * - change master/slave IDENTIFY order
632 	 * - force bit13 (80c cable present) check also for !ivb devices
633 	 *   (unless the slave device is pre-ATA3)
634 	 */
635 	if ((id[ATA_ID_HW_CONFIG] & 0x4000) ||
636 	    (ivb && (id[ATA_ID_HW_CONFIG] & 0x2000)))
637 		return 1;
638 
639 no_80w:
640 	if (drive->dev_flags & IDE_DFLAG_UDMA33_WARNED)
641 		return 0;
642 
643 	printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
644 			    "limiting max speed to UDMA33\n",
645 			    drive->name,
646 			    hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
647 
648 	drive->dev_flags |= IDE_DFLAG_UDMA33_WARNED;
649 
650 	return 0;
651 }
652 
ide_driveid_update(ide_drive_t * drive)653 int ide_driveid_update(ide_drive_t *drive)
654 {
655 	ide_hwif_t *hwif = drive->hwif;
656 	const struct ide_tp_ops *tp_ops = hwif->tp_ops;
657 	u16 *id;
658 	unsigned long flags;
659 	u8 stat;
660 
661 	/*
662 	 * Re-read drive->id for possible DMA mode
663 	 * change (copied from ide-probe.c)
664 	 */
665 
666 	SELECT_MASK(drive, 1);
667 	tp_ops->set_irq(hwif, 0);
668 	msleep(50);
669 	tp_ops->exec_command(hwif, ATA_CMD_ID_ATA);
670 
671 	if (ide_busy_sleep(hwif, WAIT_WORSTCASE, 1)) {
672 		SELECT_MASK(drive, 0);
673 		return 0;
674 	}
675 
676 	msleep(50);	/* wait for IRQ and ATA_DRQ */
677 	stat = tp_ops->read_status(hwif);
678 
679 	if (!OK_STAT(stat, ATA_DRQ, BAD_R_STAT)) {
680 		SELECT_MASK(drive, 0);
681 		printk("%s: CHECK for good STATUS\n", drive->name);
682 		return 0;
683 	}
684 	local_irq_save(flags);
685 	SELECT_MASK(drive, 0);
686 	id = kmalloc(SECTOR_SIZE, GFP_ATOMIC);
687 	if (!id) {
688 		local_irq_restore(flags);
689 		return 0;
690 	}
691 	tp_ops->input_data(drive, NULL, id, SECTOR_SIZE);
692 	(void)tp_ops->read_status(hwif);	/* clear drive IRQ */
693 	local_irq_enable();
694 	local_irq_restore(flags);
695 	ide_fix_driveid(id);
696 
697 	drive->id[ATA_ID_UDMA_MODES]  = id[ATA_ID_UDMA_MODES];
698 	drive->id[ATA_ID_MWDMA_MODES] = id[ATA_ID_MWDMA_MODES];
699 	drive->id[ATA_ID_SWDMA_MODES] = id[ATA_ID_SWDMA_MODES];
700 	/* anything more ? */
701 
702 	kfree(id);
703 
704 	if ((drive->dev_flags & IDE_DFLAG_USING_DMA) && ide_id_dma_bug(drive))
705 		ide_dma_off(drive);
706 
707 	return 1;
708 }
709 
ide_config_drive_speed(ide_drive_t * drive,u8 speed)710 int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
711 {
712 	ide_hwif_t *hwif = drive->hwif;
713 	const struct ide_tp_ops *tp_ops = hwif->tp_ops;
714 	u16 *id = drive->id, i;
715 	int error = 0;
716 	u8 stat;
717 	ide_task_t task;
718 
719 #ifdef CONFIG_BLK_DEV_IDEDMA
720 	if (hwif->dma_ops)	/* check if host supports DMA */
721 		hwif->dma_ops->dma_host_set(drive, 0);
722 #endif
723 
724 	/* Skip setting PIO flow-control modes on pre-EIDE drives */
725 	if ((speed & 0xf8) == XFER_PIO_0 && ata_id_has_iordy(drive->id) == 0)
726 		goto skip;
727 
728 	/*
729 	 * Don't use ide_wait_cmd here - it will
730 	 * attempt to set_geometry and recalibrate,
731 	 * but for some reason these don't work at
732 	 * this point (lost interrupt).
733 	 */
734         /*
735          * Select the drive, and issue the SETFEATURES command
736          */
737 	disable_irq_nosync(hwif->irq);
738 
739 	/*
740 	 *	FIXME: we race against the running IRQ here if
741 	 *	this is called from non IRQ context. If we use
742 	 *	disable_irq() we hang on the error path. Work
743 	 *	is needed.
744 	 */
745 
746 	udelay(1);
747 	SELECT_DRIVE(drive);
748 	SELECT_MASK(drive, 1);
749 	udelay(1);
750 	tp_ops->set_irq(hwif, 0);
751 
752 	memset(&task, 0, sizeof(task));
753 	task.tf_flags = IDE_TFLAG_OUT_FEATURE | IDE_TFLAG_OUT_NSECT;
754 	task.tf.feature = SETFEATURES_XFER;
755 	task.tf.nsect   = speed;
756 
757 	tp_ops->tf_load(drive, &task);
758 
759 	tp_ops->exec_command(hwif, ATA_CMD_SET_FEATURES);
760 
761 	if (drive->quirk_list == 2)
762 		tp_ops->set_irq(hwif, 1);
763 
764 	error = __ide_wait_stat(drive, drive->ready_stat,
765 				ATA_BUSY | ATA_DRQ | ATA_ERR,
766 				WAIT_CMD, &stat);
767 
768 	SELECT_MASK(drive, 0);
769 
770 	enable_irq(hwif->irq);
771 
772 	if (error) {
773 		(void) ide_dump_status(drive, "set_drive_speed_status", stat);
774 		return error;
775 	}
776 
777 	id[ATA_ID_UDMA_MODES]  &= ~0xFF00;
778 	id[ATA_ID_MWDMA_MODES] &= ~0x0F00;
779 	id[ATA_ID_SWDMA_MODES] &= ~0x0F00;
780 
781  skip:
782 #ifdef CONFIG_BLK_DEV_IDEDMA
783 	if (speed >= XFER_SW_DMA_0 && (drive->dev_flags & IDE_DFLAG_USING_DMA))
784 		hwif->dma_ops->dma_host_set(drive, 1);
785 	else if (hwif->dma_ops)	/* check if host supports DMA */
786 		ide_dma_off_quietly(drive);
787 #endif
788 
789 	if (speed >= XFER_UDMA_0) {
790 		i = 1 << (speed - XFER_UDMA_0);
791 		id[ATA_ID_UDMA_MODES] |= (i << 8 | i);
792 	} else if (speed >= XFER_MW_DMA_0) {
793 		i = 1 << (speed - XFER_MW_DMA_0);
794 		id[ATA_ID_MWDMA_MODES] |= (i << 8 | i);
795 	} else if (speed >= XFER_SW_DMA_0) {
796 		i = 1 << (speed - XFER_SW_DMA_0);
797 		id[ATA_ID_SWDMA_MODES] |= (i << 8 | i);
798 	}
799 
800 	if (!drive->init_speed)
801 		drive->init_speed = speed;
802 	drive->current_speed = speed;
803 	return error;
804 }
805 
806 /*
807  * This should get invoked any time we exit the driver to
808  * wait for an interrupt response from a drive.  handler() points
809  * at the appropriate code to handle the next interrupt, and a
810  * timer is started to prevent us from waiting forever in case
811  * something goes wrong (see the ide_timer_expiry() handler later on).
812  *
813  * See also ide_execute_command
814  */
__ide_set_handler(ide_drive_t * drive,ide_handler_t * handler,unsigned int timeout,ide_expiry_t * expiry)815 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
816 		      unsigned int timeout, ide_expiry_t *expiry)
817 {
818 	ide_hwif_t *hwif = drive->hwif;
819 
820 	BUG_ON(hwif->handler);
821 	hwif->handler		= handler;
822 	hwif->expiry		= expiry;
823 	hwif->timer.expires	= jiffies + timeout;
824 	hwif->req_gen_timer	= hwif->req_gen;
825 	add_timer(&hwif->timer);
826 }
827 
ide_set_handler(ide_drive_t * drive,ide_handler_t * handler,unsigned int timeout,ide_expiry_t * expiry)828 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
829 		      unsigned int timeout, ide_expiry_t *expiry)
830 {
831 	ide_hwif_t *hwif = drive->hwif;
832 	unsigned long flags;
833 
834 	spin_lock_irqsave(&hwif->lock, flags);
835 	__ide_set_handler(drive, handler, timeout, expiry);
836 	spin_unlock_irqrestore(&hwif->lock, flags);
837 }
838 
839 EXPORT_SYMBOL(ide_set_handler);
840 
841 /**
842  *	ide_execute_command	-	execute an IDE command
843  *	@drive: IDE drive to issue the command against
844  *	@command: command byte to write
845  *	@handler: handler for next phase
846  *	@timeout: timeout for command
847  *	@expiry:  handler to run on timeout
848  *
849  *	Helper function to issue an IDE command. This handles the
850  *	atomicity requirements, command timing and ensures that the
851  *	handler and IRQ setup do not race. All IDE command kick off
852  *	should go via this function or do equivalent locking.
853  */
854 
ide_execute_command(ide_drive_t * drive,u8 cmd,ide_handler_t * handler,unsigned timeout,ide_expiry_t * expiry)855 void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
856 			 unsigned timeout, ide_expiry_t *expiry)
857 {
858 	ide_hwif_t *hwif = drive->hwif;
859 	unsigned long flags;
860 
861 	spin_lock_irqsave(&hwif->lock, flags);
862 	__ide_set_handler(drive, handler, timeout, expiry);
863 	hwif->tp_ops->exec_command(hwif, cmd);
864 	/*
865 	 * Drive takes 400nS to respond, we must avoid the IRQ being
866 	 * serviced before that.
867 	 *
868 	 * FIXME: we could skip this delay with care on non shared devices
869 	 */
870 	ndelay(400);
871 	spin_unlock_irqrestore(&hwif->lock, flags);
872 }
873 EXPORT_SYMBOL(ide_execute_command);
874 
ide_execute_pkt_cmd(ide_drive_t * drive)875 void ide_execute_pkt_cmd(ide_drive_t *drive)
876 {
877 	ide_hwif_t *hwif = drive->hwif;
878 	unsigned long flags;
879 
880 	spin_lock_irqsave(&hwif->lock, flags);
881 	hwif->tp_ops->exec_command(hwif, ATA_CMD_PACKET);
882 	ndelay(400);
883 	spin_unlock_irqrestore(&hwif->lock, flags);
884 }
885 EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd);
886 
ide_complete_drive_reset(ide_drive_t * drive,int err)887 static inline void ide_complete_drive_reset(ide_drive_t *drive, int err)
888 {
889 	struct request *rq = drive->hwif->rq;
890 
891 	if (rq && blk_special_request(rq) && rq->cmd[0] == REQ_DRIVE_RESET)
892 		ide_end_request(drive, err ? err : 1, 0);
893 }
894 
895 /* needed below */
896 static ide_startstop_t do_reset1 (ide_drive_t *, int);
897 
898 /*
899  * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
900  * during an atapi drive reset operation. If the drive has not yet responded,
901  * and we have not yet hit our maximum waiting time, then the timer is restarted
902  * for another 50ms.
903  */
atapi_reset_pollfunc(ide_drive_t * drive)904 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
905 {
906 	ide_hwif_t *hwif = drive->hwif;
907 	u8 stat;
908 
909 	SELECT_DRIVE(drive);
910 	udelay (10);
911 	stat = hwif->tp_ops->read_status(hwif);
912 
913 	if (OK_STAT(stat, 0, ATA_BUSY))
914 		printk("%s: ATAPI reset complete\n", drive->name);
915 	else {
916 		if (time_before(jiffies, hwif->poll_timeout)) {
917 			ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
918 			/* continue polling */
919 			return ide_started;
920 		}
921 		/* end of polling */
922 		hwif->polling = 0;
923 		printk("%s: ATAPI reset timed-out, status=0x%02x\n",
924 				drive->name, stat);
925 		/* do it the old fashioned way */
926 		return do_reset1(drive, 1);
927 	}
928 	/* done polling */
929 	hwif->polling = 0;
930 	ide_complete_drive_reset(drive, 0);
931 	return ide_stopped;
932 }
933 
ide_reset_report_error(ide_hwif_t * hwif,u8 err)934 static void ide_reset_report_error(ide_hwif_t *hwif, u8 err)
935 {
936 	static const char *err_master_vals[] =
937 		{ NULL, "passed", "formatter device error",
938 		  "sector buffer error", "ECC circuitry error",
939 		  "controlling MPU error" };
940 
941 	u8 err_master = err & 0x7f;
942 
943 	printk(KERN_ERR "%s: reset: master: ", hwif->name);
944 	if (err_master && err_master < 6)
945 		printk(KERN_CONT "%s", err_master_vals[err_master]);
946 	else
947 		printk(KERN_CONT "error (0x%02x?)", err);
948 	if (err & 0x80)
949 		printk(KERN_CONT "; slave: failed");
950 	printk(KERN_CONT "\n");
951 }
952 
953 /*
954  * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
955  * during an ide reset operation. If the drives have not yet responded,
956  * and we have not yet hit our maximum waiting time, then the timer is restarted
957  * for another 50ms.
958  */
reset_pollfunc(ide_drive_t * drive)959 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
960 {
961 	ide_hwif_t *hwif = drive->hwif;
962 	const struct ide_port_ops *port_ops = hwif->port_ops;
963 	u8 tmp;
964 	int err = 0;
965 
966 	if (port_ops && port_ops->reset_poll) {
967 		err = port_ops->reset_poll(drive);
968 		if (err) {
969 			printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
970 				hwif->name, drive->name);
971 			goto out;
972 		}
973 	}
974 
975 	tmp = hwif->tp_ops->read_status(hwif);
976 
977 	if (!OK_STAT(tmp, 0, ATA_BUSY)) {
978 		if (time_before(jiffies, hwif->poll_timeout)) {
979 			ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
980 			/* continue polling */
981 			return ide_started;
982 		}
983 		printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
984 		drive->failures++;
985 		err = -EIO;
986 	} else  {
987 		tmp = ide_read_error(drive);
988 
989 		if (tmp == 1) {
990 			printk(KERN_INFO "%s: reset: success\n", hwif->name);
991 			drive->failures = 0;
992 		} else {
993 			ide_reset_report_error(hwif, tmp);
994 			drive->failures++;
995 			err = -EIO;
996 		}
997 	}
998 out:
999 	hwif->polling = 0;	/* done polling */
1000 	ide_complete_drive_reset(drive, err);
1001 	return ide_stopped;
1002 }
1003 
ide_disk_pre_reset(ide_drive_t * drive)1004 static void ide_disk_pre_reset(ide_drive_t *drive)
1005 {
1006 	int legacy = (drive->id[ATA_ID_CFS_ENABLE_2] & 0x0400) ? 0 : 1;
1007 
1008 	drive->special.all = 0;
1009 	drive->special.b.set_geometry = legacy;
1010 	drive->special.b.recalibrate  = legacy;
1011 
1012 	drive->mult_count = 0;
1013 	drive->dev_flags &= ~IDE_DFLAG_PARKED;
1014 
1015 	if ((drive->dev_flags & IDE_DFLAG_KEEP_SETTINGS) == 0 &&
1016 	    (drive->dev_flags & IDE_DFLAG_USING_DMA) == 0)
1017 		drive->mult_req = 0;
1018 
1019 	if (drive->mult_req != drive->mult_count)
1020 		drive->special.b.set_multmode = 1;
1021 }
1022 
pre_reset(ide_drive_t * drive)1023 static void pre_reset(ide_drive_t *drive)
1024 {
1025 	const struct ide_port_ops *port_ops = drive->hwif->port_ops;
1026 
1027 	if (drive->media == ide_disk)
1028 		ide_disk_pre_reset(drive);
1029 	else
1030 		drive->dev_flags |= IDE_DFLAG_POST_RESET;
1031 
1032 	if (drive->dev_flags & IDE_DFLAG_USING_DMA) {
1033 		if (drive->crc_count)
1034 			ide_check_dma_crc(drive);
1035 		else
1036 			ide_dma_off(drive);
1037 	}
1038 
1039 	if ((drive->dev_flags & IDE_DFLAG_KEEP_SETTINGS) == 0) {
1040 		if ((drive->dev_flags & IDE_DFLAG_USING_DMA) == 0) {
1041 			drive->dev_flags &= ~IDE_DFLAG_UNMASK;
1042 			drive->io_32bit = 0;
1043 		}
1044 		return;
1045 	}
1046 
1047 	if (port_ops && port_ops->pre_reset)
1048 		port_ops->pre_reset(drive);
1049 
1050 	if (drive->current_speed != 0xff)
1051 		drive->desired_speed = drive->current_speed;
1052 	drive->current_speed = 0xff;
1053 }
1054 
1055 /*
1056  * do_reset1() attempts to recover a confused drive by resetting it.
1057  * Unfortunately, resetting a disk drive actually resets all devices on
1058  * the same interface, so it can really be thought of as resetting the
1059  * interface rather than resetting the drive.
1060  *
1061  * ATAPI devices have their own reset mechanism which allows them to be
1062  * individually reset without clobbering other devices on the same interface.
1063  *
1064  * Unfortunately, the IDE interface does not generate an interrupt to let
1065  * us know when the reset operation has finished, so we must poll for this.
1066  * Equally poor, though, is the fact that this may a very long time to complete,
1067  * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1068  * we set a timer to poll at 50ms intervals.
1069  */
do_reset1(ide_drive_t * drive,int do_not_try_atapi)1070 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1071 {
1072 	ide_hwif_t *hwif = drive->hwif;
1073 	struct ide_io_ports *io_ports = &hwif->io_ports;
1074 	const struct ide_tp_ops *tp_ops = hwif->tp_ops;
1075 	const struct ide_port_ops *port_ops;
1076 	ide_drive_t *tdrive;
1077 	unsigned long flags, timeout;
1078 	int i;
1079 	DEFINE_WAIT(wait);
1080 
1081 	spin_lock_irqsave(&hwif->lock, flags);
1082 
1083 	/* We must not reset with running handlers */
1084 	BUG_ON(hwif->handler != NULL);
1085 
1086 	/* For an ATAPI device, first try an ATAPI SRST. */
1087 	if (drive->media != ide_disk && !do_not_try_atapi) {
1088 		pre_reset(drive);
1089 		SELECT_DRIVE(drive);
1090 		udelay (20);
1091 		tp_ops->exec_command(hwif, ATA_CMD_DEV_RESET);
1092 		ndelay(400);
1093 		hwif->poll_timeout = jiffies + WAIT_WORSTCASE;
1094 		hwif->polling = 1;
1095 		__ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1096 		spin_unlock_irqrestore(&hwif->lock, flags);
1097 		return ide_started;
1098 	}
1099 
1100 	/* We must not disturb devices in the IDE_DFLAG_PARKED state. */
1101 	do {
1102 		unsigned long now;
1103 
1104 		prepare_to_wait(&ide_park_wq, &wait, TASK_UNINTERRUPTIBLE);
1105 		timeout = jiffies;
1106 		ide_port_for_each_dev(i, tdrive, hwif) {
1107 			if (tdrive->dev_flags & IDE_DFLAG_PRESENT &&
1108 			    tdrive->dev_flags & IDE_DFLAG_PARKED &&
1109 			    time_after(tdrive->sleep, timeout))
1110 				timeout = tdrive->sleep;
1111 		}
1112 
1113 		now = jiffies;
1114 		if (time_before_eq(timeout, now))
1115 			break;
1116 
1117 		spin_unlock_irqrestore(&hwif->lock, flags);
1118 		timeout = schedule_timeout_uninterruptible(timeout - now);
1119 		spin_lock_irqsave(&hwif->lock, flags);
1120 	} while (timeout);
1121 	finish_wait(&ide_park_wq, &wait);
1122 
1123 	/*
1124 	 * First, reset any device state data we were maintaining
1125 	 * for any of the drives on this interface.
1126 	 */
1127 	ide_port_for_each_dev(i, tdrive, hwif)
1128 		pre_reset(tdrive);
1129 
1130 	if (io_ports->ctl_addr == 0) {
1131 		spin_unlock_irqrestore(&hwif->lock, flags);
1132 		ide_complete_drive_reset(drive, -ENXIO);
1133 		return ide_stopped;
1134 	}
1135 
1136 	/*
1137 	 * Note that we also set nIEN while resetting the device,
1138 	 * to mask unwanted interrupts from the interface during the reset.
1139 	 * However, due to the design of PC hardware, this will cause an
1140 	 * immediate interrupt due to the edge transition it produces.
1141 	 * This single interrupt gives us a "fast poll" for drives that
1142 	 * recover from reset very quickly, saving us the first 50ms wait time.
1143 	 *
1144 	 * TODO: add ->softreset method and stop abusing ->set_irq
1145 	 */
1146 	/* set SRST and nIEN */
1147 	tp_ops->set_irq(hwif, 4);
1148 	/* more than enough time */
1149 	udelay(10);
1150 	/* clear SRST, leave nIEN (unless device is on the quirk list) */
1151 	tp_ops->set_irq(hwif, drive->quirk_list == 2);
1152 	/* more than enough time */
1153 	udelay(10);
1154 	hwif->poll_timeout = jiffies + WAIT_WORSTCASE;
1155 	hwif->polling = 1;
1156 	__ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1157 
1158 	/*
1159 	 * Some weird controller like resetting themselves to a strange
1160 	 * state when the disks are reset this way. At least, the Winbond
1161 	 * 553 documentation says that
1162 	 */
1163 	port_ops = hwif->port_ops;
1164 	if (port_ops && port_ops->resetproc)
1165 		port_ops->resetproc(drive);
1166 
1167 	spin_unlock_irqrestore(&hwif->lock, flags);
1168 	return ide_started;
1169 }
1170 
1171 /*
1172  * ide_do_reset() is the entry point to the drive/interface reset code.
1173  */
1174 
ide_do_reset(ide_drive_t * drive)1175 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1176 {
1177 	return do_reset1(drive, 0);
1178 }
1179 
1180 EXPORT_SYMBOL(ide_do_reset);
1181 
1182 /*
1183  * ide_wait_not_busy() waits for the currently selected device on the hwif
1184  * to report a non-busy status, see comments in ide_probe_port().
1185  */
ide_wait_not_busy(ide_hwif_t * hwif,unsigned long timeout)1186 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1187 {
1188 	u8 stat = 0;
1189 
1190 	while(timeout--) {
1191 		/*
1192 		 * Turn this into a schedule() sleep once I'm sure
1193 		 * about locking issues (2.5 work ?).
1194 		 */
1195 		mdelay(1);
1196 		stat = hwif->tp_ops->read_status(hwif);
1197 		if ((stat & ATA_BUSY) == 0)
1198 			return 0;
1199 		/*
1200 		 * Assume a value of 0xff means nothing is connected to
1201 		 * the interface and it doesn't implement the pull-down
1202 		 * resistor on D7.
1203 		 */
1204 		if (stat == 0xff)
1205 			return -ENODEV;
1206 		touch_softlockup_watchdog();
1207 		touch_nmi_watchdog();
1208 	}
1209 	return -EBUSY;
1210 }
1211