1 /*
2 * The input core
3 *
4 * Copyright (c) 1999-2002 Vojtech Pavlik
5 */
6
7 /*
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
11 */
12
13 #include <linux/init.h>
14 #include <linux/input.h>
15 #include <linux/module.h>
16 #include <linux/random.h>
17 #include <linux/major.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/poll.h>
21 #include <linux/device.h>
22 #include <linux/mutex.h>
23 #include <linux/rcupdate.h>
24 #include <linux/smp_lock.h>
25
26 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
27 MODULE_DESCRIPTION("Input core");
28 MODULE_LICENSE("GPL");
29
30 #define INPUT_DEVICES 256
31
32 /*
33 * EV_ABS events which should not be cached are listed here.
34 */
35 static unsigned int input_abs_bypass_init_data[] __initdata = {
36 ABS_MT_SLOT,
37 ABS_MT_TOUCH_MAJOR,
38 ABS_MT_TOUCH_MINOR,
39 ABS_MT_WIDTH_MAJOR,
40 ABS_MT_WIDTH_MINOR,
41 ABS_MT_ORIENTATION,
42 ABS_MT_POSITION_X,
43 ABS_MT_POSITION_Y,
44 ABS_MT_TOOL_TYPE,
45 ABS_MT_BLOB_ID,
46 ABS_MT_TRACKING_ID,
47 ABS_MT_PRESSURE,
48 ABS_MT_DISTANCE,
49 0
50 };
51 static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)];
52
53 static LIST_HEAD(input_dev_list);
54 static LIST_HEAD(input_handler_list);
55
56 /*
57 * input_mutex protects access to both input_dev_list and input_handler_list.
58 * This also causes input_[un]register_device and input_[un]register_handler
59 * be mutually exclusive which simplifies locking in drivers implementing
60 * input handlers.
61 */
62 static DEFINE_MUTEX(input_mutex);
63
64 static struct input_handler *input_table[8];
65
is_event_supported(unsigned int code,unsigned long * bm,unsigned int max)66 static inline int is_event_supported(unsigned int code,
67 unsigned long *bm, unsigned int max)
68 {
69 return code <= max && test_bit(code, bm);
70 }
71
input_defuzz_abs_event(int value,int old_val,int fuzz)72 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
73 {
74 if (fuzz) {
75 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
76 return old_val;
77
78 if (value > old_val - fuzz && value < old_val + fuzz)
79 return (old_val * 3 + value) / 4;
80
81 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
82 return (old_val + value) / 2;
83 }
84
85 return value;
86 }
87
88 /*
89 * Pass event through all open handles. This function is called with
90 * dev->event_lock held and interrupts disabled.
91 */
input_pass_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)92 static void input_pass_event(struct input_dev *dev,
93 unsigned int type, unsigned int code, int value)
94 {
95 struct input_handle *handle;
96
97 rcu_read_lock();
98
99 handle = rcu_dereference(dev->grab);
100 if (handle)
101 handle->handler->event(handle, type, code, value);
102 else
103 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
104 if (handle->open)
105 handle->handler->event(handle,
106 type, code, value);
107 rcu_read_unlock();
108 }
109
110 /*
111 * Generate software autorepeat event. Note that we take
112 * dev->event_lock here to avoid racing with input_event
113 * which may cause keys get "stuck".
114 */
input_repeat_key(unsigned long data)115 static void input_repeat_key(unsigned long data)
116 {
117 struct input_dev *dev = (void *) data;
118 unsigned long flags;
119
120 spin_lock_irqsave(&dev->event_lock, flags);
121
122 if (test_bit(dev->repeat_key, dev->key) &&
123 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
124
125 input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
126
127 if (dev->sync) {
128 /*
129 * Only send SYN_REPORT if we are not in a middle
130 * of driver parsing a new hardware packet.
131 * Otherwise assume that the driver will send
132 * SYN_REPORT once it's done.
133 */
134 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
135 }
136
137 if (dev->rep[REP_PERIOD])
138 mod_timer(&dev->timer, jiffies +
139 msecs_to_jiffies(dev->rep[REP_PERIOD]));
140 }
141
142 spin_unlock_irqrestore(&dev->event_lock, flags);
143 }
144
input_start_autorepeat(struct input_dev * dev,int code)145 static void input_start_autorepeat(struct input_dev *dev, int code)
146 {
147 if (test_bit(EV_REP, dev->evbit) &&
148 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
149 dev->timer.data) {
150 dev->repeat_key = code;
151 mod_timer(&dev->timer,
152 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
153 }
154 }
155
156 #define INPUT_IGNORE_EVENT 0
157 #define INPUT_PASS_TO_HANDLERS 1
158 #define INPUT_PASS_TO_DEVICE 2
159 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
160
input_handle_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)161 static void input_handle_event(struct input_dev *dev,
162 unsigned int type, unsigned int code, int value)
163 {
164 int disposition = INPUT_IGNORE_EVENT;
165
166 switch (type) {
167
168 case EV_SYN:
169 switch (code) {
170 case SYN_CONFIG:
171 disposition = INPUT_PASS_TO_ALL;
172 break;
173
174 case SYN_REPORT:
175 if (!dev->sync) {
176 dev->sync = 1;
177 disposition = INPUT_PASS_TO_HANDLERS;
178 }
179 break;
180 case SYN_MT_REPORT:
181 dev->sync = 0;
182 disposition = INPUT_PASS_TO_HANDLERS;
183 break;
184 }
185 break;
186
187 case EV_KEY:
188 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
189 !!test_bit(code, dev->key) != value) {
190
191 if (value != 2) {
192 __change_bit(code, dev->key);
193 if (value)
194 input_start_autorepeat(dev, code);
195 }
196
197 disposition = INPUT_PASS_TO_HANDLERS;
198 }
199 break;
200
201 case EV_SW:
202 if (is_event_supported(code, dev->swbit, SW_MAX) &&
203 !!test_bit(code, dev->sw) != value) {
204
205 __change_bit(code, dev->sw);
206 disposition = INPUT_PASS_TO_HANDLERS;
207 }
208 break;
209
210 case EV_ABS:
211 if (is_event_supported(code, dev->absbit, ABS_MAX)) {
212
213 if (test_bit(code, input_abs_bypass)) {
214 disposition = INPUT_PASS_TO_HANDLERS;
215 break;
216 }
217
218 value = input_defuzz_abs_event(value,
219 dev->abs[code], dev->absfuzz[code]);
220
221 if (dev->abs[code] != value) {
222 dev->abs[code] = value;
223 disposition = INPUT_PASS_TO_HANDLERS;
224 }
225 }
226 break;
227
228 case EV_REL:
229 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
230 disposition = INPUT_PASS_TO_HANDLERS;
231
232 break;
233
234 case EV_MSC:
235 if (is_event_supported(code, dev->mscbit, MSC_MAX))
236 disposition = INPUT_PASS_TO_ALL;
237
238 break;
239
240 case EV_LED:
241 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
242 !!test_bit(code, dev->led) != value) {
243
244 __change_bit(code, dev->led);
245 disposition = INPUT_PASS_TO_ALL;
246 }
247 break;
248
249 case EV_SND:
250 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
251
252 if (!!test_bit(code, dev->snd) != !!value)
253 __change_bit(code, dev->snd);
254 disposition = INPUT_PASS_TO_ALL;
255 }
256 break;
257
258 case EV_REP:
259 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
260 dev->rep[code] = value;
261 disposition = INPUT_PASS_TO_ALL;
262 }
263 break;
264
265 case EV_FF:
266 if (value >= 0)
267 disposition = INPUT_PASS_TO_ALL;
268 break;
269
270 case EV_PWR:
271 disposition = INPUT_PASS_TO_ALL;
272 break;
273 }
274
275 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
276 dev->sync = 0;
277
278 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
279 dev->event(dev, type, code, value);
280
281 if (disposition & INPUT_PASS_TO_HANDLERS)
282 input_pass_event(dev, type, code, value);
283 }
284
285 /**
286 * input_event() - report new input event
287 * @dev: device that generated the event
288 * @type: type of the event
289 * @code: event code
290 * @value: value of the event
291 *
292 * This function should be used by drivers implementing various input
293 * devices. See also input_inject_event().
294 */
295
input_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)296 void input_event(struct input_dev *dev,
297 unsigned int type, unsigned int code, int value)
298 {
299 unsigned long flags;
300
301 if (is_event_supported(type, dev->evbit, EV_MAX)) {
302
303 spin_lock_irqsave(&dev->event_lock, flags);
304 add_input_randomness(type, code, value);
305 input_handle_event(dev, type, code, value);
306 spin_unlock_irqrestore(&dev->event_lock, flags);
307 }
308 }
309 EXPORT_SYMBOL(input_event);
310
311 /**
312 * input_inject_event() - send input event from input handler
313 * @handle: input handle to send event through
314 * @type: type of the event
315 * @code: event code
316 * @value: value of the event
317 *
318 * Similar to input_event() but will ignore event if device is
319 * "grabbed" and handle injecting event is not the one that owns
320 * the device.
321 */
input_inject_event(struct input_handle * handle,unsigned int type,unsigned int code,int value)322 void input_inject_event(struct input_handle *handle,
323 unsigned int type, unsigned int code, int value)
324 {
325 struct input_dev *dev = handle->dev;
326 struct input_handle *grab;
327 unsigned long flags;
328
329 if (is_event_supported(type, dev->evbit, EV_MAX)) {
330 spin_lock_irqsave(&dev->event_lock, flags);
331
332 rcu_read_lock();
333 grab = rcu_dereference(dev->grab);
334 if (!grab || grab == handle)
335 input_handle_event(dev, type, code, value);
336 rcu_read_unlock();
337
338 spin_unlock_irqrestore(&dev->event_lock, flags);
339 }
340 }
341 EXPORT_SYMBOL(input_inject_event);
342
343 /**
344 * input_grab_device - grabs device for exclusive use
345 * @handle: input handle that wants to own the device
346 *
347 * When a device is grabbed by an input handle all events generated by
348 * the device are delivered only to this handle. Also events injected
349 * by other input handles are ignored while device is grabbed.
350 */
input_grab_device(struct input_handle * handle)351 int input_grab_device(struct input_handle *handle)
352 {
353 struct input_dev *dev = handle->dev;
354 int retval;
355
356 retval = mutex_lock_interruptible(&dev->mutex);
357 if (retval)
358 return retval;
359
360 if (dev->grab) {
361 retval = -EBUSY;
362 goto out;
363 }
364
365 rcu_assign_pointer(dev->grab, handle);
366 synchronize_rcu();
367
368 out:
369 mutex_unlock(&dev->mutex);
370 return retval;
371 }
372 EXPORT_SYMBOL(input_grab_device);
373
__input_release_device(struct input_handle * handle)374 static void __input_release_device(struct input_handle *handle)
375 {
376 struct input_dev *dev = handle->dev;
377
378 if (dev->grab == handle) {
379 rcu_assign_pointer(dev->grab, NULL);
380 /* Make sure input_pass_event() notices that grab is gone */
381 synchronize_rcu();
382
383 list_for_each_entry(handle, &dev->h_list, d_node)
384 if (handle->open && handle->handler->start)
385 handle->handler->start(handle);
386 }
387 }
388
389 /**
390 * input_release_device - release previously grabbed device
391 * @handle: input handle that owns the device
392 *
393 * Releases previously grabbed device so that other input handles can
394 * start receiving input events. Upon release all handlers attached
395 * to the device have their start() method called so they have a change
396 * to synchronize device state with the rest of the system.
397 */
input_release_device(struct input_handle * handle)398 void input_release_device(struct input_handle *handle)
399 {
400 struct input_dev *dev = handle->dev;
401
402 mutex_lock(&dev->mutex);
403 __input_release_device(handle);
404 mutex_unlock(&dev->mutex);
405 }
406 EXPORT_SYMBOL(input_release_device);
407
408 /**
409 * input_open_device - open input device
410 * @handle: handle through which device is being accessed
411 *
412 * This function should be called by input handlers when they
413 * want to start receive events from given input device.
414 */
input_open_device(struct input_handle * handle)415 int input_open_device(struct input_handle *handle)
416 {
417 struct input_dev *dev = handle->dev;
418 int retval;
419
420 retval = mutex_lock_interruptible(&dev->mutex);
421 if (retval)
422 return retval;
423
424 if (dev->going_away) {
425 retval = -ENODEV;
426 goto out;
427 }
428
429 handle->open++;
430
431 if (!dev->users++ && dev->open)
432 retval = dev->open(dev);
433
434 if (retval) {
435 dev->users--;
436 if (!--handle->open) {
437 /*
438 * Make sure we are not delivering any more events
439 * through this handle
440 */
441 synchronize_rcu();
442 }
443 }
444
445 out:
446 mutex_unlock(&dev->mutex);
447 return retval;
448 }
449 EXPORT_SYMBOL(input_open_device);
450
input_flush_device(struct input_handle * handle,struct file * file)451 int input_flush_device(struct input_handle *handle, struct file *file)
452 {
453 struct input_dev *dev = handle->dev;
454 int retval;
455
456 retval = mutex_lock_interruptible(&dev->mutex);
457 if (retval)
458 return retval;
459
460 if (dev->flush)
461 retval = dev->flush(dev, file);
462
463 mutex_unlock(&dev->mutex);
464 return retval;
465 }
466 EXPORT_SYMBOL(input_flush_device);
467
468 /**
469 * input_close_device - close input device
470 * @handle: handle through which device is being accessed
471 *
472 * This function should be called by input handlers when they
473 * want to stop receive events from given input device.
474 */
input_close_device(struct input_handle * handle)475 void input_close_device(struct input_handle *handle)
476 {
477 struct input_dev *dev = handle->dev;
478
479 mutex_lock(&dev->mutex);
480
481 __input_release_device(handle);
482
483 if (!--dev->users && dev->close)
484 dev->close(dev);
485
486 if (!--handle->open) {
487 /*
488 * synchronize_rcu() makes sure that input_pass_event()
489 * completed and that no more input events are delivered
490 * through this handle
491 */
492 synchronize_rcu();
493 }
494
495 mutex_unlock(&dev->mutex);
496 }
497 EXPORT_SYMBOL(input_close_device);
498
499 /*
500 * Prepare device for unregistering
501 */
input_disconnect_device(struct input_dev * dev)502 static void input_disconnect_device(struct input_dev *dev)
503 {
504 struct input_handle *handle;
505 int code;
506
507 /*
508 * Mark device as going away. Note that we take dev->mutex here
509 * not to protect access to dev->going_away but rather to ensure
510 * that there are no threads in the middle of input_open_device()
511 */
512 mutex_lock(&dev->mutex);
513 dev->going_away = 1;
514 mutex_unlock(&dev->mutex);
515
516 spin_lock_irq(&dev->event_lock);
517
518 /*
519 * Simulate keyup events for all pressed keys so that handlers
520 * are not left with "stuck" keys. The driver may continue
521 * generate events even after we done here but they will not
522 * reach any handlers.
523 */
524 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
525 for (code = 0; code <= KEY_MAX; code++) {
526 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
527 __test_and_clear_bit(code, dev->key)) {
528 input_pass_event(dev, EV_KEY, code, 0);
529 }
530 }
531 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
532 }
533
534 list_for_each_entry(handle, &dev->h_list, d_node)
535 handle->open = 0;
536
537 spin_unlock_irq(&dev->event_lock);
538 }
539
input_fetch_keycode(struct input_dev * dev,int scancode)540 static int input_fetch_keycode(struct input_dev *dev, int scancode)
541 {
542 switch (dev->keycodesize) {
543 case 1:
544 return ((u8 *)dev->keycode)[scancode];
545
546 case 2:
547 return ((u16 *)dev->keycode)[scancode];
548
549 default:
550 return ((u32 *)dev->keycode)[scancode];
551 }
552 }
553
input_default_getkeycode(struct input_dev * dev,int scancode,int * keycode)554 static int input_default_getkeycode(struct input_dev *dev,
555 int scancode, int *keycode)
556 {
557 if (!dev->keycodesize)
558 return -EINVAL;
559
560 if (scancode >= dev->keycodemax)
561 return -EINVAL;
562
563 *keycode = input_fetch_keycode(dev, scancode);
564
565 return 0;
566 }
567
input_default_setkeycode(struct input_dev * dev,int scancode,int keycode)568 static int input_default_setkeycode(struct input_dev *dev,
569 int scancode, int keycode)
570 {
571 int old_keycode;
572 int i;
573
574 if (scancode >= dev->keycodemax)
575 return -EINVAL;
576
577 if (!dev->keycodesize)
578 return -EINVAL;
579
580 if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
581 return -EINVAL;
582
583 switch (dev->keycodesize) {
584 case 1: {
585 u8 *k = (u8 *)dev->keycode;
586 old_keycode = k[scancode];
587 k[scancode] = keycode;
588 break;
589 }
590 case 2: {
591 u16 *k = (u16 *)dev->keycode;
592 old_keycode = k[scancode];
593 k[scancode] = keycode;
594 break;
595 }
596 default: {
597 u32 *k = (u32 *)dev->keycode;
598 old_keycode = k[scancode];
599 k[scancode] = keycode;
600 break;
601 }
602 }
603
604 clear_bit(old_keycode, dev->keybit);
605 set_bit(keycode, dev->keybit);
606
607 for (i = 0; i < dev->keycodemax; i++) {
608 if (input_fetch_keycode(dev, i) == old_keycode) {
609 set_bit(old_keycode, dev->keybit);
610 break; /* Setting the bit twice is useless, so break */
611 }
612 }
613
614 return 0;
615 }
616
617 /**
618 * input_get_keycode - retrieve keycode currently mapped to a given scancode
619 * @dev: input device which keymap is being queried
620 * @scancode: scancode (or its equivalent for device in question) for which
621 * keycode is needed
622 * @keycode: result
623 *
624 * This function should be called by anyone interested in retrieving current
625 * keymap. Presently keyboard and evdev handlers use it.
626 */
input_get_keycode(struct input_dev * dev,int scancode,int * keycode)627 int input_get_keycode(struct input_dev *dev, int scancode, int *keycode)
628 {
629 if (scancode < 0)
630 return -EINVAL;
631
632 return dev->getkeycode(dev, scancode, keycode);
633 }
634 EXPORT_SYMBOL(input_get_keycode);
635
636 /**
637 * input_get_keycode - assign new keycode to a given scancode
638 * @dev: input device which keymap is being updated
639 * @scancode: scancode (or its equivalent for device in question)
640 * @keycode: new keycode to be assigned to the scancode
641 *
642 * This function should be called by anyone needing to update current
643 * keymap. Presently keyboard and evdev handlers use it.
644 */
input_set_keycode(struct input_dev * dev,int scancode,int keycode)645 int input_set_keycode(struct input_dev *dev, int scancode, int keycode)
646 {
647 unsigned long flags;
648 int old_keycode;
649 int retval;
650
651 if (scancode < 0)
652 return -EINVAL;
653
654 if (keycode < 0 || keycode > KEY_MAX)
655 return -EINVAL;
656
657 spin_lock_irqsave(&dev->event_lock, flags);
658
659 retval = dev->getkeycode(dev, scancode, &old_keycode);
660 if (retval)
661 goto out;
662
663 retval = dev->setkeycode(dev, scancode, keycode);
664 if (retval)
665 goto out;
666
667 /*
668 * Simulate keyup event if keycode is not present
669 * in the keymap anymore
670 */
671 if (test_bit(EV_KEY, dev->evbit) &&
672 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
673 __test_and_clear_bit(old_keycode, dev->key)) {
674
675 input_pass_event(dev, EV_KEY, old_keycode, 0);
676 if (dev->sync)
677 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
678 }
679
680 out:
681 spin_unlock_irqrestore(&dev->event_lock, flags);
682
683 return retval;
684 }
685 EXPORT_SYMBOL(input_set_keycode);
686
687 #define MATCH_BIT(bit, max) \
688 for (i = 0; i < BITS_TO_LONGS(max); i++) \
689 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
690 break; \
691 if (i != BITS_TO_LONGS(max)) \
692 continue;
693
input_match_device(const struct input_device_id * id,struct input_dev * dev)694 static const struct input_device_id *input_match_device(const struct input_device_id *id,
695 struct input_dev *dev)
696 {
697 int i;
698
699 for (; id->flags || id->driver_info; id++) {
700
701 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
702 if (id->bustype != dev->id.bustype)
703 continue;
704
705 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
706 if (id->vendor != dev->id.vendor)
707 continue;
708
709 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
710 if (id->product != dev->id.product)
711 continue;
712
713 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
714 if (id->version != dev->id.version)
715 continue;
716
717 MATCH_BIT(evbit, EV_MAX);
718 MATCH_BIT(keybit, KEY_MAX);
719 MATCH_BIT(relbit, REL_MAX);
720 MATCH_BIT(absbit, ABS_MAX);
721 MATCH_BIT(mscbit, MSC_MAX);
722 MATCH_BIT(ledbit, LED_MAX);
723 MATCH_BIT(sndbit, SND_MAX);
724 MATCH_BIT(ffbit, FF_MAX);
725 MATCH_BIT(swbit, SW_MAX);
726
727 return id;
728 }
729
730 return NULL;
731 }
732
input_attach_handler(struct input_dev * dev,struct input_handler * handler)733 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
734 {
735 const struct input_device_id *id;
736 int error;
737
738 if (handler->blacklist && input_match_device(handler->blacklist, dev))
739 return -ENODEV;
740
741 id = input_match_device(handler->id_table, dev);
742 if (!id)
743 return -ENODEV;
744
745 error = handler->connect(handler, dev, id);
746 if (error && error != -ENODEV)
747 printk(KERN_ERR
748 "input: failed to attach handler %s to device %s, "
749 "error: %d\n",
750 handler->name, kobject_name(&dev->dev.kobj), error);
751
752 return error;
753 }
754
755
756 #ifdef CONFIG_PROC_FS
757
758 static struct proc_dir_entry *proc_bus_input_dir;
759 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
760 static int input_devices_state;
761
input_wakeup_procfs_readers(void)762 static inline void input_wakeup_procfs_readers(void)
763 {
764 input_devices_state++;
765 wake_up(&input_devices_poll_wait);
766 }
767
input_proc_devices_poll(struct file * file,poll_table * wait)768 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
769 {
770 int state = input_devices_state;
771
772 poll_wait(file, &input_devices_poll_wait, wait);
773 if (state != input_devices_state)
774 return POLLIN | POLLRDNORM;
775
776 return 0;
777 }
778
input_devices_seq_start(struct seq_file * seq,loff_t * pos)779 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
780 {
781 if (mutex_lock_interruptible(&input_mutex))
782 return NULL;
783
784 return seq_list_start(&input_dev_list, *pos);
785 }
786
input_devices_seq_next(struct seq_file * seq,void * v,loff_t * pos)787 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
788 {
789 return seq_list_next(v, &input_dev_list, pos);
790 }
791
input_devices_seq_stop(struct seq_file * seq,void * v)792 static void input_devices_seq_stop(struct seq_file *seq, void *v)
793 {
794 mutex_unlock(&input_mutex);
795 }
796
input_seq_print_bitmap(struct seq_file * seq,const char * name,unsigned long * bitmap,int max)797 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
798 unsigned long *bitmap, int max)
799 {
800 int i;
801
802 for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
803 if (bitmap[i])
804 break;
805
806 seq_printf(seq, "B: %s=", name);
807 for (; i >= 0; i--)
808 seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : "");
809 seq_putc(seq, '\n');
810 }
811
input_devices_seq_show(struct seq_file * seq,void * v)812 static int input_devices_seq_show(struct seq_file *seq, void *v)
813 {
814 struct input_dev *dev = container_of(v, struct input_dev, node);
815 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
816 struct input_handle *handle;
817
818 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
819 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
820
821 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
822 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
823 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
824 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
825 seq_printf(seq, "H: Handlers=");
826
827 list_for_each_entry(handle, &dev->h_list, d_node)
828 seq_printf(seq, "%s ", handle->name);
829 seq_putc(seq, '\n');
830
831 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
832 if (test_bit(EV_KEY, dev->evbit))
833 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
834 if (test_bit(EV_REL, dev->evbit))
835 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
836 if (test_bit(EV_ABS, dev->evbit))
837 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
838 if (test_bit(EV_MSC, dev->evbit))
839 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
840 if (test_bit(EV_LED, dev->evbit))
841 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
842 if (test_bit(EV_SND, dev->evbit))
843 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
844 if (test_bit(EV_FF, dev->evbit))
845 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
846 if (test_bit(EV_SW, dev->evbit))
847 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
848
849 seq_putc(seq, '\n');
850
851 kfree(path);
852 return 0;
853 }
854
855 static const struct seq_operations input_devices_seq_ops = {
856 .start = input_devices_seq_start,
857 .next = input_devices_seq_next,
858 .stop = input_devices_seq_stop,
859 .show = input_devices_seq_show,
860 };
861
input_proc_devices_open(struct inode * inode,struct file * file)862 static int input_proc_devices_open(struct inode *inode, struct file *file)
863 {
864 return seq_open(file, &input_devices_seq_ops);
865 }
866
867 static const struct file_operations input_devices_fileops = {
868 .owner = THIS_MODULE,
869 .open = input_proc_devices_open,
870 .poll = input_proc_devices_poll,
871 .read = seq_read,
872 .llseek = seq_lseek,
873 .release = seq_release,
874 };
875
input_handlers_seq_start(struct seq_file * seq,loff_t * pos)876 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
877 {
878 if (mutex_lock_interruptible(&input_mutex))
879 return NULL;
880
881 seq->private = (void *)(unsigned long)*pos;
882 return seq_list_start(&input_handler_list, *pos);
883 }
884
input_handlers_seq_next(struct seq_file * seq,void * v,loff_t * pos)885 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
886 {
887 seq->private = (void *)(unsigned long)(*pos + 1);
888 return seq_list_next(v, &input_handler_list, pos);
889 }
890
input_handlers_seq_stop(struct seq_file * seq,void * v)891 static void input_handlers_seq_stop(struct seq_file *seq, void *v)
892 {
893 mutex_unlock(&input_mutex);
894 }
895
input_handlers_seq_show(struct seq_file * seq,void * v)896 static int input_handlers_seq_show(struct seq_file *seq, void *v)
897 {
898 struct input_handler *handler = container_of(v, struct input_handler, node);
899
900 seq_printf(seq, "N: Number=%ld Name=%s",
901 (unsigned long)seq->private, handler->name);
902 if (handler->fops)
903 seq_printf(seq, " Minor=%d", handler->minor);
904 seq_putc(seq, '\n');
905
906 return 0;
907 }
908 static const struct seq_operations input_handlers_seq_ops = {
909 .start = input_handlers_seq_start,
910 .next = input_handlers_seq_next,
911 .stop = input_handlers_seq_stop,
912 .show = input_handlers_seq_show,
913 };
914
input_proc_handlers_open(struct inode * inode,struct file * file)915 static int input_proc_handlers_open(struct inode *inode, struct file *file)
916 {
917 return seq_open(file, &input_handlers_seq_ops);
918 }
919
920 static const struct file_operations input_handlers_fileops = {
921 .owner = THIS_MODULE,
922 .open = input_proc_handlers_open,
923 .read = seq_read,
924 .llseek = seq_lseek,
925 .release = seq_release,
926 };
927
input_proc_init(void)928 static int __init input_proc_init(void)
929 {
930 struct proc_dir_entry *entry;
931
932 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
933 if (!proc_bus_input_dir)
934 return -ENOMEM;
935
936 proc_bus_input_dir->owner = THIS_MODULE;
937
938 entry = proc_create("devices", 0, proc_bus_input_dir,
939 &input_devices_fileops);
940 if (!entry)
941 goto fail1;
942
943 entry = proc_create("handlers", 0, proc_bus_input_dir,
944 &input_handlers_fileops);
945 if (!entry)
946 goto fail2;
947
948 return 0;
949
950 fail2: remove_proc_entry("devices", proc_bus_input_dir);
951 fail1: remove_proc_entry("bus/input", NULL);
952 return -ENOMEM;
953 }
954
input_proc_exit(void)955 static void input_proc_exit(void)
956 {
957 remove_proc_entry("devices", proc_bus_input_dir);
958 remove_proc_entry("handlers", proc_bus_input_dir);
959 remove_proc_entry("bus/input", NULL);
960 }
961
962 #else /* !CONFIG_PROC_FS */
input_wakeup_procfs_readers(void)963 static inline void input_wakeup_procfs_readers(void) { }
input_proc_init(void)964 static inline int input_proc_init(void) { return 0; }
input_proc_exit(void)965 static inline void input_proc_exit(void) { }
966 #endif
967
968 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
969 static ssize_t input_dev_show_##name(struct device *dev, \
970 struct device_attribute *attr, \
971 char *buf) \
972 { \
973 struct input_dev *input_dev = to_input_dev(dev); \
974 \
975 return scnprintf(buf, PAGE_SIZE, "%s\n", \
976 input_dev->name ? input_dev->name : ""); \
977 } \
978 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
979
980 INPUT_DEV_STRING_ATTR_SHOW(name);
981 INPUT_DEV_STRING_ATTR_SHOW(phys);
982 INPUT_DEV_STRING_ATTR_SHOW(uniq);
983
input_print_modalias_bits(char * buf,int size,char name,unsigned long * bm,unsigned int min_bit,unsigned int max_bit)984 static int input_print_modalias_bits(char *buf, int size,
985 char name, unsigned long *bm,
986 unsigned int min_bit, unsigned int max_bit)
987 {
988 int len = 0, i;
989
990 len += snprintf(buf, max(size, 0), "%c", name);
991 for (i = min_bit; i < max_bit; i++)
992 if (bm[BIT_WORD(i)] & BIT_MASK(i))
993 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
994 return len;
995 }
996
input_print_modalias(char * buf,int size,struct input_dev * id,int add_cr)997 static int input_print_modalias(char *buf, int size, struct input_dev *id,
998 int add_cr)
999 {
1000 int len;
1001
1002 len = snprintf(buf, max(size, 0),
1003 "input:b%04Xv%04Xp%04Xe%04X-",
1004 id->id.bustype, id->id.vendor,
1005 id->id.product, id->id.version);
1006
1007 len += input_print_modalias_bits(buf + len, size - len,
1008 'e', id->evbit, 0, EV_MAX);
1009 len += input_print_modalias_bits(buf + len, size - len,
1010 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1011 len += input_print_modalias_bits(buf + len, size - len,
1012 'r', id->relbit, 0, REL_MAX);
1013 len += input_print_modalias_bits(buf + len, size - len,
1014 'a', id->absbit, 0, ABS_MAX);
1015 len += input_print_modalias_bits(buf + len, size - len,
1016 'm', id->mscbit, 0, MSC_MAX);
1017 len += input_print_modalias_bits(buf + len, size - len,
1018 'l', id->ledbit, 0, LED_MAX);
1019 len += input_print_modalias_bits(buf + len, size - len,
1020 's', id->sndbit, 0, SND_MAX);
1021 len += input_print_modalias_bits(buf + len, size - len,
1022 'f', id->ffbit, 0, FF_MAX);
1023 len += input_print_modalias_bits(buf + len, size - len,
1024 'w', id->swbit, 0, SW_MAX);
1025
1026 if (add_cr)
1027 len += snprintf(buf + len, max(size - len, 0), "\n");
1028
1029 return len;
1030 }
1031
input_dev_show_modalias(struct device * dev,struct device_attribute * attr,char * buf)1032 static ssize_t input_dev_show_modalias(struct device *dev,
1033 struct device_attribute *attr,
1034 char *buf)
1035 {
1036 struct input_dev *id = to_input_dev(dev);
1037 ssize_t len;
1038
1039 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1040
1041 return min_t(int, len, PAGE_SIZE);
1042 }
1043 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1044
1045 static struct attribute *input_dev_attrs[] = {
1046 &dev_attr_name.attr,
1047 &dev_attr_phys.attr,
1048 &dev_attr_uniq.attr,
1049 &dev_attr_modalias.attr,
1050 NULL
1051 };
1052
1053 static struct attribute_group input_dev_attr_group = {
1054 .attrs = input_dev_attrs,
1055 };
1056
1057 #define INPUT_DEV_ID_ATTR(name) \
1058 static ssize_t input_dev_show_id_##name(struct device *dev, \
1059 struct device_attribute *attr, \
1060 char *buf) \
1061 { \
1062 struct input_dev *input_dev = to_input_dev(dev); \
1063 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1064 } \
1065 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1066
1067 INPUT_DEV_ID_ATTR(bustype);
1068 INPUT_DEV_ID_ATTR(vendor);
1069 INPUT_DEV_ID_ATTR(product);
1070 INPUT_DEV_ID_ATTR(version);
1071
1072 static struct attribute *input_dev_id_attrs[] = {
1073 &dev_attr_bustype.attr,
1074 &dev_attr_vendor.attr,
1075 &dev_attr_product.attr,
1076 &dev_attr_version.attr,
1077 NULL
1078 };
1079
1080 static struct attribute_group input_dev_id_attr_group = {
1081 .name = "id",
1082 .attrs = input_dev_id_attrs,
1083 };
1084
input_print_bitmap(char * buf,int buf_size,unsigned long * bitmap,int max,int add_cr)1085 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1086 int max, int add_cr)
1087 {
1088 int i;
1089 int len = 0;
1090
1091 for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
1092 if (bitmap[i])
1093 break;
1094
1095 for (; i >= 0; i--)
1096 len += snprintf(buf + len, max(buf_size - len, 0),
1097 "%lx%s", bitmap[i], i > 0 ? " " : "");
1098
1099 if (add_cr)
1100 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1101
1102 return len;
1103 }
1104
1105 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1106 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1107 struct device_attribute *attr, \
1108 char *buf) \
1109 { \
1110 struct input_dev *input_dev = to_input_dev(dev); \
1111 int len = input_print_bitmap(buf, PAGE_SIZE, \
1112 input_dev->bm##bit, ev##_MAX, 1); \
1113 return min_t(int, len, PAGE_SIZE); \
1114 } \
1115 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1116
1117 INPUT_DEV_CAP_ATTR(EV, ev);
1118 INPUT_DEV_CAP_ATTR(KEY, key);
1119 INPUT_DEV_CAP_ATTR(REL, rel);
1120 INPUT_DEV_CAP_ATTR(ABS, abs);
1121 INPUT_DEV_CAP_ATTR(MSC, msc);
1122 INPUT_DEV_CAP_ATTR(LED, led);
1123 INPUT_DEV_CAP_ATTR(SND, snd);
1124 INPUT_DEV_CAP_ATTR(FF, ff);
1125 INPUT_DEV_CAP_ATTR(SW, sw);
1126
1127 static struct attribute *input_dev_caps_attrs[] = {
1128 &dev_attr_ev.attr,
1129 &dev_attr_key.attr,
1130 &dev_attr_rel.attr,
1131 &dev_attr_abs.attr,
1132 &dev_attr_msc.attr,
1133 &dev_attr_led.attr,
1134 &dev_attr_snd.attr,
1135 &dev_attr_ff.attr,
1136 &dev_attr_sw.attr,
1137 NULL
1138 };
1139
1140 static struct attribute_group input_dev_caps_attr_group = {
1141 .name = "capabilities",
1142 .attrs = input_dev_caps_attrs,
1143 };
1144
1145 static struct attribute_group *input_dev_attr_groups[] = {
1146 &input_dev_attr_group,
1147 &input_dev_id_attr_group,
1148 &input_dev_caps_attr_group,
1149 NULL
1150 };
1151
input_dev_release(struct device * device)1152 static void input_dev_release(struct device *device)
1153 {
1154 struct input_dev *dev = to_input_dev(device);
1155
1156 input_ff_destroy(dev);
1157 kfree(dev);
1158
1159 module_put(THIS_MODULE);
1160 }
1161
1162 /*
1163 * Input uevent interface - loading event handlers based on
1164 * device bitfields.
1165 */
input_add_uevent_bm_var(struct kobj_uevent_env * env,const char * name,unsigned long * bitmap,int max)1166 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1167 const char *name, unsigned long *bitmap, int max)
1168 {
1169 int len;
1170
1171 if (add_uevent_var(env, "%s=", name))
1172 return -ENOMEM;
1173
1174 len = input_print_bitmap(&env->buf[env->buflen - 1],
1175 sizeof(env->buf) - env->buflen,
1176 bitmap, max, 0);
1177 if (len >= (sizeof(env->buf) - env->buflen))
1178 return -ENOMEM;
1179
1180 env->buflen += len;
1181 return 0;
1182 }
1183
input_add_uevent_modalias_var(struct kobj_uevent_env * env,struct input_dev * dev)1184 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1185 struct input_dev *dev)
1186 {
1187 int len;
1188
1189 if (add_uevent_var(env, "MODALIAS="))
1190 return -ENOMEM;
1191
1192 len = input_print_modalias(&env->buf[env->buflen - 1],
1193 sizeof(env->buf) - env->buflen,
1194 dev, 0);
1195 if (len >= (sizeof(env->buf) - env->buflen))
1196 return -ENOMEM;
1197
1198 env->buflen += len;
1199 return 0;
1200 }
1201
1202 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1203 do { \
1204 int err = add_uevent_var(env, fmt, val); \
1205 if (err) \
1206 return err; \
1207 } while (0)
1208
1209 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1210 do { \
1211 int err = input_add_uevent_bm_var(env, name, bm, max); \
1212 if (err) \
1213 return err; \
1214 } while (0)
1215
1216 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1217 do { \
1218 int err = input_add_uevent_modalias_var(env, dev); \
1219 if (err) \
1220 return err; \
1221 } while (0)
1222
input_dev_uevent(struct device * device,struct kobj_uevent_env * env)1223 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1224 {
1225 struct input_dev *dev = to_input_dev(device);
1226
1227 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1228 dev->id.bustype, dev->id.vendor,
1229 dev->id.product, dev->id.version);
1230 if (dev->name)
1231 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1232 if (dev->phys)
1233 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1234 if (dev->uniq)
1235 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1236
1237 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1238 if (test_bit(EV_KEY, dev->evbit))
1239 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1240 if (test_bit(EV_REL, dev->evbit))
1241 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1242 if (test_bit(EV_ABS, dev->evbit))
1243 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1244 if (test_bit(EV_MSC, dev->evbit))
1245 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1246 if (test_bit(EV_LED, dev->evbit))
1247 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1248 if (test_bit(EV_SND, dev->evbit))
1249 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1250 if (test_bit(EV_FF, dev->evbit))
1251 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1252 if (test_bit(EV_SW, dev->evbit))
1253 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1254
1255 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1256
1257 return 0;
1258 }
1259
1260 static struct device_type input_dev_type = {
1261 .groups = input_dev_attr_groups,
1262 .release = input_dev_release,
1263 .uevent = input_dev_uevent,
1264 };
1265
1266 struct class input_class = {
1267 .name = "input",
1268 };
1269 EXPORT_SYMBOL_GPL(input_class);
1270
1271 /**
1272 * input_allocate_device - allocate memory for new input device
1273 *
1274 * Returns prepared struct input_dev or NULL.
1275 *
1276 * NOTE: Use input_free_device() to free devices that have not been
1277 * registered; input_unregister_device() should be used for already
1278 * registered devices.
1279 */
input_allocate_device(void)1280 struct input_dev *input_allocate_device(void)
1281 {
1282 struct input_dev *dev;
1283
1284 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1285 if (dev) {
1286 dev->dev.type = &input_dev_type;
1287 dev->dev.class = &input_class;
1288 device_initialize(&dev->dev);
1289 mutex_init(&dev->mutex);
1290 spin_lock_init(&dev->event_lock);
1291 INIT_LIST_HEAD(&dev->h_list);
1292 INIT_LIST_HEAD(&dev->node);
1293
1294 __module_get(THIS_MODULE);
1295 }
1296
1297 return dev;
1298 }
1299 EXPORT_SYMBOL(input_allocate_device);
1300
1301 /**
1302 * input_free_device - free memory occupied by input_dev structure
1303 * @dev: input device to free
1304 *
1305 * This function should only be used if input_register_device()
1306 * was not called yet or if it failed. Once device was registered
1307 * use input_unregister_device() and memory will be freed once last
1308 * reference to the device is dropped.
1309 *
1310 * Device should be allocated by input_allocate_device().
1311 *
1312 * NOTE: If there are references to the input device then memory
1313 * will not be freed until last reference is dropped.
1314 */
input_free_device(struct input_dev * dev)1315 void input_free_device(struct input_dev *dev)
1316 {
1317 if (dev)
1318 input_put_device(dev);
1319 }
1320 EXPORT_SYMBOL(input_free_device);
1321
1322 /**
1323 * input_set_capability - mark device as capable of a certain event
1324 * @dev: device that is capable of emitting or accepting event
1325 * @type: type of the event (EV_KEY, EV_REL, etc...)
1326 * @code: event code
1327 *
1328 * In addition to setting up corresponding bit in appropriate capability
1329 * bitmap the function also adjusts dev->evbit.
1330 */
input_set_capability(struct input_dev * dev,unsigned int type,unsigned int code)1331 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1332 {
1333 switch (type) {
1334 case EV_KEY:
1335 __set_bit(code, dev->keybit);
1336 break;
1337
1338 case EV_REL:
1339 __set_bit(code, dev->relbit);
1340 break;
1341
1342 case EV_ABS:
1343 __set_bit(code, dev->absbit);
1344 break;
1345
1346 case EV_MSC:
1347 __set_bit(code, dev->mscbit);
1348 break;
1349
1350 case EV_SW:
1351 __set_bit(code, dev->swbit);
1352 break;
1353
1354 case EV_LED:
1355 __set_bit(code, dev->ledbit);
1356 break;
1357
1358 case EV_SND:
1359 __set_bit(code, dev->sndbit);
1360 break;
1361
1362 case EV_FF:
1363 __set_bit(code, dev->ffbit);
1364 break;
1365
1366 case EV_PWR:
1367 /* do nothing */
1368 break;
1369
1370 default:
1371 printk(KERN_ERR
1372 "input_set_capability: unknown type %u (code %u)\n",
1373 type, code);
1374 dump_stack();
1375 return;
1376 }
1377
1378 __set_bit(type, dev->evbit);
1379 }
1380 EXPORT_SYMBOL(input_set_capability);
1381
1382 /**
1383 * input_register_device - register device with input core
1384 * @dev: device to be registered
1385 *
1386 * This function registers device with input core. The device must be
1387 * allocated with input_allocate_device() and all it's capabilities
1388 * set up before registering.
1389 * If function fails the device must be freed with input_free_device().
1390 * Once device has been successfully registered it can be unregistered
1391 * with input_unregister_device(); input_free_device() should not be
1392 * called in this case.
1393 */
input_register_device(struct input_dev * dev)1394 int input_register_device(struct input_dev *dev)
1395 {
1396 static atomic_t input_no = ATOMIC_INIT(0);
1397 struct input_handler *handler;
1398 const char *path;
1399 int error;
1400
1401 __set_bit(EV_SYN, dev->evbit);
1402
1403 /*
1404 * If delay and period are pre-set by the driver, then autorepeating
1405 * is handled by the driver itself and we don't do it in input.c.
1406 */
1407
1408 init_timer(&dev->timer);
1409 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1410 dev->timer.data = (long) dev;
1411 dev->timer.function = input_repeat_key;
1412 dev->rep[REP_DELAY] = 250;
1413 dev->rep[REP_PERIOD] = 33;
1414 }
1415
1416 if (!dev->getkeycode)
1417 dev->getkeycode = input_default_getkeycode;
1418
1419 if (!dev->setkeycode)
1420 dev->setkeycode = input_default_setkeycode;
1421
1422 dev_set_name(&dev->dev, "input%ld",
1423 (unsigned long) atomic_inc_return(&input_no) - 1);
1424
1425 error = device_add(&dev->dev);
1426 if (error)
1427 return error;
1428
1429 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1430 printk(KERN_INFO "input: %s as %s\n",
1431 dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
1432 kfree(path);
1433
1434 error = mutex_lock_interruptible(&input_mutex);
1435 if (error) {
1436 device_del(&dev->dev);
1437 return error;
1438 }
1439
1440 list_add_tail(&dev->node, &input_dev_list);
1441
1442 list_for_each_entry(handler, &input_handler_list, node)
1443 input_attach_handler(dev, handler);
1444
1445 input_wakeup_procfs_readers();
1446
1447 mutex_unlock(&input_mutex);
1448
1449 return 0;
1450 }
1451 EXPORT_SYMBOL(input_register_device);
1452
1453 /**
1454 * input_unregister_device - unregister previously registered device
1455 * @dev: device to be unregistered
1456 *
1457 * This function unregisters an input device. Once device is unregistered
1458 * the caller should not try to access it as it may get freed at any moment.
1459 */
input_unregister_device(struct input_dev * dev)1460 void input_unregister_device(struct input_dev *dev)
1461 {
1462 struct input_handle *handle, *next;
1463
1464 input_disconnect_device(dev);
1465
1466 mutex_lock(&input_mutex);
1467
1468 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1469 handle->handler->disconnect(handle);
1470 WARN_ON(!list_empty(&dev->h_list));
1471
1472 del_timer_sync(&dev->timer);
1473 list_del_init(&dev->node);
1474
1475 input_wakeup_procfs_readers();
1476
1477 mutex_unlock(&input_mutex);
1478
1479 device_unregister(&dev->dev);
1480 }
1481 EXPORT_SYMBOL(input_unregister_device);
1482
1483 /**
1484 * input_register_handler - register a new input handler
1485 * @handler: handler to be registered
1486 *
1487 * This function registers a new input handler (interface) for input
1488 * devices in the system and attaches it to all input devices that
1489 * are compatible with the handler.
1490 */
input_register_handler(struct input_handler * handler)1491 int input_register_handler(struct input_handler *handler)
1492 {
1493 struct input_dev *dev;
1494 int retval;
1495
1496 retval = mutex_lock_interruptible(&input_mutex);
1497 if (retval)
1498 return retval;
1499
1500 INIT_LIST_HEAD(&handler->h_list);
1501
1502 if (handler->fops != NULL) {
1503 if (input_table[handler->minor >> 5]) {
1504 retval = -EBUSY;
1505 goto out;
1506 }
1507 input_table[handler->minor >> 5] = handler;
1508 }
1509
1510 list_add_tail(&handler->node, &input_handler_list);
1511
1512 list_for_each_entry(dev, &input_dev_list, node)
1513 input_attach_handler(dev, handler);
1514
1515 input_wakeup_procfs_readers();
1516
1517 out:
1518 mutex_unlock(&input_mutex);
1519 return retval;
1520 }
1521 EXPORT_SYMBOL(input_register_handler);
1522
1523 /**
1524 * input_unregister_handler - unregisters an input handler
1525 * @handler: handler to be unregistered
1526 *
1527 * This function disconnects a handler from its input devices and
1528 * removes it from lists of known handlers.
1529 */
input_unregister_handler(struct input_handler * handler)1530 void input_unregister_handler(struct input_handler *handler)
1531 {
1532 struct input_handle *handle, *next;
1533
1534 mutex_lock(&input_mutex);
1535
1536 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1537 handler->disconnect(handle);
1538 WARN_ON(!list_empty(&handler->h_list));
1539
1540 list_del_init(&handler->node);
1541
1542 if (handler->fops != NULL)
1543 input_table[handler->minor >> 5] = NULL;
1544
1545 input_wakeup_procfs_readers();
1546
1547 mutex_unlock(&input_mutex);
1548 }
1549 EXPORT_SYMBOL(input_unregister_handler);
1550
1551 /**
1552 * input_register_handle - register a new input handle
1553 * @handle: handle to register
1554 *
1555 * This function puts a new input handle onto device's
1556 * and handler's lists so that events can flow through
1557 * it once it is opened using input_open_device().
1558 *
1559 * This function is supposed to be called from handler's
1560 * connect() method.
1561 */
input_register_handle(struct input_handle * handle)1562 int input_register_handle(struct input_handle *handle)
1563 {
1564 struct input_handler *handler = handle->handler;
1565 struct input_dev *dev = handle->dev;
1566 int error;
1567
1568 /*
1569 * We take dev->mutex here to prevent race with
1570 * input_release_device().
1571 */
1572 error = mutex_lock_interruptible(&dev->mutex);
1573 if (error)
1574 return error;
1575 list_add_tail_rcu(&handle->d_node, &dev->h_list);
1576 mutex_unlock(&dev->mutex);
1577 synchronize_rcu();
1578
1579 /*
1580 * Since we are supposed to be called from ->connect()
1581 * which is mutually exclusive with ->disconnect()
1582 * we can't be racing with input_unregister_handle()
1583 * and so separate lock is not needed here.
1584 */
1585 list_add_tail(&handle->h_node, &handler->h_list);
1586
1587 if (handler->start)
1588 handler->start(handle);
1589
1590 return 0;
1591 }
1592 EXPORT_SYMBOL(input_register_handle);
1593
1594 /**
1595 * input_unregister_handle - unregister an input handle
1596 * @handle: handle to unregister
1597 *
1598 * This function removes input handle from device's
1599 * and handler's lists.
1600 *
1601 * This function is supposed to be called from handler's
1602 * disconnect() method.
1603 */
input_unregister_handle(struct input_handle * handle)1604 void input_unregister_handle(struct input_handle *handle)
1605 {
1606 struct input_dev *dev = handle->dev;
1607
1608 list_del_init(&handle->h_node);
1609
1610 /*
1611 * Take dev->mutex to prevent race with input_release_device().
1612 */
1613 mutex_lock(&dev->mutex);
1614 list_del_rcu(&handle->d_node);
1615 mutex_unlock(&dev->mutex);
1616 synchronize_rcu();
1617 }
1618 EXPORT_SYMBOL(input_unregister_handle);
1619
input_open_file(struct inode * inode,struct file * file)1620 static int input_open_file(struct inode *inode, struct file *file)
1621 {
1622 struct input_handler *handler;
1623 const struct file_operations *old_fops, *new_fops = NULL;
1624 int err;
1625
1626 lock_kernel();
1627 /* No load-on-demand here? */
1628 handler = input_table[iminor(inode) >> 5];
1629 if (!handler || !(new_fops = fops_get(handler->fops))) {
1630 err = -ENODEV;
1631 goto out;
1632 }
1633
1634 /*
1635 * That's _really_ odd. Usually NULL ->open means "nothing special",
1636 * not "no device". Oh, well...
1637 */
1638 if (!new_fops->open) {
1639 fops_put(new_fops);
1640 err = -ENODEV;
1641 goto out;
1642 }
1643 old_fops = file->f_op;
1644 file->f_op = new_fops;
1645
1646 err = new_fops->open(inode, file);
1647
1648 if (err) {
1649 fops_put(file->f_op);
1650 file->f_op = fops_get(old_fops);
1651 }
1652 fops_put(old_fops);
1653 out:
1654 unlock_kernel();
1655 return err;
1656 }
1657
1658 static const struct file_operations input_fops = {
1659 .owner = THIS_MODULE,
1660 .open = input_open_file,
1661 };
1662
input_init_abs_bypass(void)1663 static void __init input_init_abs_bypass(void)
1664 {
1665 const unsigned int *p;
1666
1667 for (p = input_abs_bypass_init_data; *p; p++)
1668 input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p);
1669 }
1670
input_init(void)1671 static int __init input_init(void)
1672 {
1673 int err;
1674
1675 input_init_abs_bypass();
1676
1677 err = class_register(&input_class);
1678 if (err) {
1679 printk(KERN_ERR "input: unable to register input_dev class\n");
1680 return err;
1681 }
1682
1683 err = input_proc_init();
1684 if (err)
1685 goto fail1;
1686
1687 err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
1688 if (err) {
1689 printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
1690 goto fail2;
1691 }
1692
1693 return 0;
1694
1695 fail2: input_proc_exit();
1696 fail1: class_unregister(&input_class);
1697 return err;
1698 }
1699
input_exit(void)1700 static void __exit input_exit(void)
1701 {
1702 input_proc_exit();
1703 unregister_chrdev(INPUT_MAJOR, "input");
1704 class_unregister(&input_class);
1705 }
1706
1707 subsys_initcall(input_init);
1708 module_exit(input_exit);
1709