1 /*
2 * Parisc performance counters
3 * Copyright (C) 2001 Randolph Chung <tausq@debian.org>
4 *
5 * This code is derived, with permission, from HP/UX sources.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2, or (at your option)
10 * any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22 /*
23 * Edited comment from original sources:
24 *
25 * This driver programs the PCX-U/PCX-W performance counters
26 * on the PA-RISC 2.0 chips. The driver keeps all images now
27 * internally to the kernel to hopefully eliminate the possiblity
28 * of a bad image halting the CPU. Also, there are different
29 * images for the PCX-W and later chips vs the PCX-U chips.
30 *
31 * Only 1 process is allowed to access the driver at any time,
32 * so the only protection that is needed is at open and close.
33 * A variable "perf_enabled" is used to hold the state of the
34 * driver. The spinlock "perf_lock" is used to protect the
35 * modification of the state during open/close operations so
36 * multiple processes don't get into the driver simultaneously.
37 *
38 * This driver accesses the processor directly vs going through
39 * the PDC INTRIGUE calls. This is done to eliminate bugs introduced
40 * in various PDC revisions. The code is much more maintainable
41 * and reliable this way vs having to debug on every version of PDC
42 * on every box.
43 */
44
45 #include <linux/capability.h>
46 #include <linux/init.h>
47 #include <linux/proc_fs.h>
48 #include <linux/miscdevice.h>
49 #include <linux/smp_lock.h>
50 #include <linux/spinlock.h>
51
52 #include <asm/uaccess.h>
53 #include <asm/perf.h>
54 #include <asm/parisc-device.h>
55 #include <asm/processor.h>
56 #include <asm/runway.h>
57 #include <asm/io.h> /* for __raw_read() */
58
59 #include "perf_images.h"
60
61 #define MAX_RDR_WORDS 24
62 #define PERF_VERSION 2 /* derived from hpux's PI v2 interface */
63
64 /* definition of RDR regs */
65 struct rdr_tbl_ent {
66 uint16_t width;
67 uint8_t num_words;
68 uint8_t write_control;
69 };
70
71 static int perf_processor_interface __read_mostly = UNKNOWN_INTF;
72 static int perf_enabled __read_mostly;
73 static spinlock_t perf_lock;
74 struct parisc_device *cpu_device __read_mostly;
75
76 /* RDRs to write for PCX-W */
77 static const int perf_rdrs_W[] =
78 { 0, 1, 4, 5, 6, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
79
80 /* RDRs to write for PCX-U */
81 static const int perf_rdrs_U[] =
82 { 0, 1, 4, 5, 6, 7, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
83
84 /* RDR register descriptions for PCX-W */
85 static const struct rdr_tbl_ent perf_rdr_tbl_W[] = {
86 { 19, 1, 8 }, /* RDR 0 */
87 { 16, 1, 16 }, /* RDR 1 */
88 { 72, 2, 0 }, /* RDR 2 */
89 { 81, 2, 0 }, /* RDR 3 */
90 { 328, 6, 0 }, /* RDR 4 */
91 { 160, 3, 0 }, /* RDR 5 */
92 { 336, 6, 0 }, /* RDR 6 */
93 { 164, 3, 0 }, /* RDR 7 */
94 { 0, 0, 0 }, /* RDR 8 */
95 { 35, 1, 0 }, /* RDR 9 */
96 { 6, 1, 0 }, /* RDR 10 */
97 { 18, 1, 0 }, /* RDR 11 */
98 { 13, 1, 0 }, /* RDR 12 */
99 { 8, 1, 0 }, /* RDR 13 */
100 { 8, 1, 0 }, /* RDR 14 */
101 { 8, 1, 0 }, /* RDR 15 */
102 { 1530, 24, 0 }, /* RDR 16 */
103 { 16, 1, 0 }, /* RDR 17 */
104 { 4, 1, 0 }, /* RDR 18 */
105 { 0, 0, 0 }, /* RDR 19 */
106 { 152, 3, 24 }, /* RDR 20 */
107 { 152, 3, 24 }, /* RDR 21 */
108 { 233, 4, 48 }, /* RDR 22 */
109 { 233, 4, 48 }, /* RDR 23 */
110 { 71, 2, 0 }, /* RDR 24 */
111 { 71, 2, 0 }, /* RDR 25 */
112 { 11, 1, 0 }, /* RDR 26 */
113 { 18, 1, 0 }, /* RDR 27 */
114 { 128, 2, 0 }, /* RDR 28 */
115 { 0, 0, 0 }, /* RDR 29 */
116 { 16, 1, 0 }, /* RDR 30 */
117 { 16, 1, 0 }, /* RDR 31 */
118 };
119
120 /* RDR register descriptions for PCX-U */
121 static const struct rdr_tbl_ent perf_rdr_tbl_U[] = {
122 { 19, 1, 8 }, /* RDR 0 */
123 { 32, 1, 16 }, /* RDR 1 */
124 { 20, 1, 0 }, /* RDR 2 */
125 { 0, 0, 0 }, /* RDR 3 */
126 { 344, 6, 0 }, /* RDR 4 */
127 { 176, 3, 0 }, /* RDR 5 */
128 { 336, 6, 0 }, /* RDR 6 */
129 { 0, 0, 0 }, /* RDR 7 */
130 { 0, 0, 0 }, /* RDR 8 */
131 { 0, 0, 0 }, /* RDR 9 */
132 { 28, 1, 0 }, /* RDR 10 */
133 { 33, 1, 0 }, /* RDR 11 */
134 { 0, 0, 0 }, /* RDR 12 */
135 { 230, 4, 0 }, /* RDR 13 */
136 { 32, 1, 0 }, /* RDR 14 */
137 { 128, 2, 0 }, /* RDR 15 */
138 { 1494, 24, 0 }, /* RDR 16 */
139 { 18, 1, 0 }, /* RDR 17 */
140 { 4, 1, 0 }, /* RDR 18 */
141 { 0, 0, 0 }, /* RDR 19 */
142 { 158, 3, 24 }, /* RDR 20 */
143 { 158, 3, 24 }, /* RDR 21 */
144 { 194, 4, 48 }, /* RDR 22 */
145 { 194, 4, 48 }, /* RDR 23 */
146 { 71, 2, 0 }, /* RDR 24 */
147 { 71, 2, 0 }, /* RDR 25 */
148 { 28, 1, 0 }, /* RDR 26 */
149 { 33, 1, 0 }, /* RDR 27 */
150 { 88, 2, 0 }, /* RDR 28 */
151 { 32, 1, 0 }, /* RDR 29 */
152 { 24, 1, 0 }, /* RDR 30 */
153 { 16, 1, 0 }, /* RDR 31 */
154 };
155
156 /*
157 * A non-zero write_control in the above tables is a byte offset into
158 * this array.
159 */
160 static const uint64_t perf_bitmasks[] = {
161 0x0000000000000000ul, /* first dbl word must be zero */
162 0xfdffe00000000000ul, /* RDR0 bitmask */
163 0x003f000000000000ul, /* RDR1 bitmask */
164 0x00fffffffffffffful, /* RDR20-RDR21 bitmask (152 bits) */
165 0xfffffffffffffffful,
166 0xfffffffc00000000ul,
167 0xfffffffffffffffful, /* RDR22-RDR23 bitmask (233 bits) */
168 0xfffffffffffffffful,
169 0xfffffffffffffffcul,
170 0xff00000000000000ul
171 };
172
173 /*
174 * Write control bitmasks for Pa-8700 processor given
175 * some things have changed slightly.
176 */
177 static const uint64_t perf_bitmasks_piranha[] = {
178 0x0000000000000000ul, /* first dbl word must be zero */
179 0xfdffe00000000000ul, /* RDR0 bitmask */
180 0x003f000000000000ul, /* RDR1 bitmask */
181 0x00fffffffffffffful, /* RDR20-RDR21 bitmask (158 bits) */
182 0xfffffffffffffffful,
183 0xfffffffc00000000ul,
184 0xfffffffffffffffful, /* RDR22-RDR23 bitmask (210 bits) */
185 0xfffffffffffffffful,
186 0xfffffffffffffffful,
187 0xfffc000000000000ul
188 };
189
190 static const uint64_t *bitmask_array; /* array of bitmasks to use */
191
192 /******************************************************************************
193 * Function Prototypes
194 *****************************************************************************/
195 static int perf_config(uint32_t *image_ptr);
196 static int perf_release(struct inode *inode, struct file *file);
197 static int perf_open(struct inode *inode, struct file *file);
198 static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos);
199 static ssize_t perf_write(struct file *file, const char __user *buf, size_t count,
200 loff_t *ppos);
201 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
202 static void perf_start_counters(void);
203 static int perf_stop_counters(uint32_t *raddr);
204 static const struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num);
205 static int perf_rdr_read_ubuf(uint32_t rdr_num, uint64_t *buffer);
206 static int perf_rdr_clear(uint32_t rdr_num);
207 static int perf_write_image(uint64_t *memaddr);
208 static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer);
209
210 /* External Assembly Routines */
211 extern uint64_t perf_rdr_shift_in_W (uint32_t rdr_num, uint16_t width);
212 extern uint64_t perf_rdr_shift_in_U (uint32_t rdr_num, uint16_t width);
213 extern void perf_rdr_shift_out_W (uint32_t rdr_num, uint64_t buffer);
214 extern void perf_rdr_shift_out_U (uint32_t rdr_num, uint64_t buffer);
215 extern void perf_intrigue_enable_perf_counters (void);
216 extern void perf_intrigue_disable_perf_counters (void);
217
218 /******************************************************************************
219 * Function Definitions
220 *****************************************************************************/
221
222
223 /*
224 * configure:
225 *
226 * Configure the cpu with a given data image. First turn off the counters,
227 * then download the image, then turn the counters back on.
228 */
perf_config(uint32_t * image_ptr)229 static int perf_config(uint32_t *image_ptr)
230 {
231 long error;
232 uint32_t raddr[4];
233
234 /* Stop the counters*/
235 error = perf_stop_counters(raddr);
236 if (error != 0) {
237 printk("perf_config: perf_stop_counters = %ld\n", error);
238 return -EINVAL;
239 }
240
241 printk("Preparing to write image\n");
242 /* Write the image to the chip */
243 error = perf_write_image((uint64_t *)image_ptr);
244 if (error != 0) {
245 printk("perf_config: DOWNLOAD = %ld\n", error);
246 return -EINVAL;
247 }
248
249 printk("Preparing to start counters\n");
250
251 /* Start the counters */
252 perf_start_counters();
253
254 return sizeof(uint32_t);
255 }
256
257 /*
258 * Open the device and initialize all of its memory. The device is only
259 * opened once, but can be "queried" by multiple processes that know its
260 * file descriptor.
261 */
perf_open(struct inode * inode,struct file * file)262 static int perf_open(struct inode *inode, struct file *file)
263 {
264 lock_kernel();
265 spin_lock(&perf_lock);
266 if (perf_enabled) {
267 spin_unlock(&perf_lock);
268 unlock_kernel();
269 return -EBUSY;
270 }
271 perf_enabled = 1;
272 spin_unlock(&perf_lock);
273 unlock_kernel();
274
275 return 0;
276 }
277
278 /*
279 * Close the device.
280 */
perf_release(struct inode * inode,struct file * file)281 static int perf_release(struct inode *inode, struct file *file)
282 {
283 spin_lock(&perf_lock);
284 perf_enabled = 0;
285 spin_unlock(&perf_lock);
286
287 return 0;
288 }
289
290 /*
291 * Read does nothing for this driver
292 */
perf_read(struct file * file,char __user * buf,size_t cnt,loff_t * ppos)293 static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos)
294 {
295 return 0;
296 }
297
298 /*
299 * write:
300 *
301 * This routine downloads the image to the chip. It must be
302 * called on the processor that the download should happen
303 * on.
304 */
perf_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)305 static ssize_t perf_write(struct file *file, const char __user *buf, size_t count,
306 loff_t *ppos)
307 {
308 int err;
309 size_t image_size;
310 uint32_t image_type;
311 uint32_t interface_type;
312 uint32_t test;
313
314 if (perf_processor_interface == ONYX_INTF)
315 image_size = PCXU_IMAGE_SIZE;
316 else if (perf_processor_interface == CUDA_INTF)
317 image_size = PCXW_IMAGE_SIZE;
318 else
319 return -EFAULT;
320
321 if (!capable(CAP_SYS_ADMIN))
322 return -EACCES;
323
324 if (count != sizeof(uint32_t))
325 return -EIO;
326
327 if ((err = copy_from_user(&image_type, buf, sizeof(uint32_t))) != 0)
328 return err;
329
330 /* Get the interface type and test type */
331 interface_type = (image_type >> 16) & 0xffff;
332 test = (image_type & 0xffff);
333
334 /* Make sure everything makes sense */
335
336 /* First check the machine type is correct for
337 the requested image */
338 if (((perf_processor_interface == CUDA_INTF) &&
339 (interface_type != CUDA_INTF)) ||
340 ((perf_processor_interface == ONYX_INTF) &&
341 (interface_type != ONYX_INTF)))
342 return -EINVAL;
343
344 /* Next check to make sure the requested image
345 is valid */
346 if (((interface_type == CUDA_INTF) &&
347 (test >= MAX_CUDA_IMAGES)) ||
348 ((interface_type == ONYX_INTF) &&
349 (test >= MAX_ONYX_IMAGES)))
350 return -EINVAL;
351
352 /* Copy the image into the processor */
353 if (interface_type == CUDA_INTF)
354 return perf_config(cuda_images[test]);
355 else
356 return perf_config(onyx_images[test]);
357
358 return count;
359 }
360
361 /*
362 * Patch the images that need to know the IVA addresses.
363 */
perf_patch_images(void)364 static void perf_patch_images(void)
365 {
366 #if 0 /* FIXME!! */
367 /*
368 * NOTE: this routine is VERY specific to the current TLB image.
369 * If the image is changed, this routine might also need to be changed.
370 */
371 extern void $i_itlb_miss_2_0();
372 extern void $i_dtlb_miss_2_0();
373 extern void PA2_0_iva();
374
375 /*
376 * We can only use the lower 32-bits, the upper 32-bits should be 0
377 * anyway given this is in the kernel
378 */
379 uint32_t itlb_addr = (uint32_t)&($i_itlb_miss_2_0);
380 uint32_t dtlb_addr = (uint32_t)&($i_dtlb_miss_2_0);
381 uint32_t IVAaddress = (uint32_t)&PA2_0_iva;
382
383 if (perf_processor_interface == ONYX_INTF) {
384 /* clear last 2 bytes */
385 onyx_images[TLBMISS][15] &= 0xffffff00;
386 /* set 2 bytes */
387 onyx_images[TLBMISS][15] |= (0x000000ff&((dtlb_addr) >> 24));
388 onyx_images[TLBMISS][16] = (dtlb_addr << 8)&0xffffff00;
389 onyx_images[TLBMISS][17] = itlb_addr;
390
391 /* clear last 2 bytes */
392 onyx_images[TLBHANDMISS][15] &= 0xffffff00;
393 /* set 2 bytes */
394 onyx_images[TLBHANDMISS][15] |= (0x000000ff&((dtlb_addr) >> 24));
395 onyx_images[TLBHANDMISS][16] = (dtlb_addr << 8)&0xffffff00;
396 onyx_images[TLBHANDMISS][17] = itlb_addr;
397
398 /* clear last 2 bytes */
399 onyx_images[BIG_CPI][15] &= 0xffffff00;
400 /* set 2 bytes */
401 onyx_images[BIG_CPI][15] |= (0x000000ff&((dtlb_addr) >> 24));
402 onyx_images[BIG_CPI][16] = (dtlb_addr << 8)&0xffffff00;
403 onyx_images[BIG_CPI][17] = itlb_addr;
404
405 onyx_images[PANIC][15] &= 0xffffff00; /* clear last 2 bytes */
406 onyx_images[PANIC][15] |= (0x000000ff&((IVAaddress) >> 24)); /* set 2 bytes */
407 onyx_images[PANIC][16] = (IVAaddress << 8)&0xffffff00;
408
409
410 } else if (perf_processor_interface == CUDA_INTF) {
411 /* Cuda interface */
412 cuda_images[TLBMISS][16] =
413 (cuda_images[TLBMISS][16]&0xffff0000) |
414 ((dtlb_addr >> 8)&0x0000ffff);
415 cuda_images[TLBMISS][17] =
416 ((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
417 cuda_images[TLBMISS][18] = (itlb_addr << 16)&0xffff0000;
418
419 cuda_images[TLBHANDMISS][16] =
420 (cuda_images[TLBHANDMISS][16]&0xffff0000) |
421 ((dtlb_addr >> 8)&0x0000ffff);
422 cuda_images[TLBHANDMISS][17] =
423 ((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
424 cuda_images[TLBHANDMISS][18] = (itlb_addr << 16)&0xffff0000;
425
426 cuda_images[BIG_CPI][16] =
427 (cuda_images[BIG_CPI][16]&0xffff0000) |
428 ((dtlb_addr >> 8)&0x0000ffff);
429 cuda_images[BIG_CPI][17] =
430 ((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
431 cuda_images[BIG_CPI][18] = (itlb_addr << 16)&0xffff0000;
432 } else {
433 /* Unknown type */
434 }
435 #endif
436 }
437
438
439 /*
440 * ioctl routine
441 * All routines effect the processor that they are executed on. Thus you
442 * must be running on the processor that you wish to change.
443 */
444
perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)445 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
446 {
447 long error_start;
448 uint32_t raddr[4];
449 int error = 0;
450
451 switch (cmd) {
452
453 case PA_PERF_ON:
454 /* Start the counters */
455 perf_start_counters();
456 break;
457
458 case PA_PERF_OFF:
459 error_start = perf_stop_counters(raddr);
460 if (error_start != 0) {
461 printk(KERN_ERR "perf_off: perf_stop_counters = %ld\n", error_start);
462 error = -EFAULT;
463 break;
464 }
465
466 /* copy out the Counters */
467 if (copy_to_user((void __user *)arg, raddr,
468 sizeof (raddr)) != 0) {
469 error = -EFAULT;
470 break;
471 }
472 break;
473
474 case PA_PERF_VERSION:
475 /* Return the version # */
476 error = put_user(PERF_VERSION, (int *)arg);
477 break;
478
479 default:
480 error = -ENOTTY;
481 }
482
483 return error;
484 }
485
486 static const struct file_operations perf_fops = {
487 .llseek = no_llseek,
488 .read = perf_read,
489 .write = perf_write,
490 .unlocked_ioctl = perf_ioctl,
491 .compat_ioctl = perf_ioctl,
492 .open = perf_open,
493 .release = perf_release
494 };
495
496 static struct miscdevice perf_dev = {
497 MISC_DYNAMIC_MINOR,
498 PA_PERF_DEV,
499 &perf_fops
500 };
501
502 /*
503 * Initialize the module
504 */
perf_init(void)505 static int __init perf_init(void)
506 {
507 int ret;
508
509 /* Determine correct processor interface to use */
510 bitmask_array = perf_bitmasks;
511
512 if (boot_cpu_data.cpu_type == pcxu ||
513 boot_cpu_data.cpu_type == pcxu_) {
514 perf_processor_interface = ONYX_INTF;
515 } else if (boot_cpu_data.cpu_type == pcxw ||
516 boot_cpu_data.cpu_type == pcxw_ ||
517 boot_cpu_data.cpu_type == pcxw2 ||
518 boot_cpu_data.cpu_type == mako ||
519 boot_cpu_data.cpu_type == mako2) {
520 perf_processor_interface = CUDA_INTF;
521 if (boot_cpu_data.cpu_type == pcxw2 ||
522 boot_cpu_data.cpu_type == mako ||
523 boot_cpu_data.cpu_type == mako2)
524 bitmask_array = perf_bitmasks_piranha;
525 } else {
526 perf_processor_interface = UNKNOWN_INTF;
527 printk("Performance monitoring counters not supported on this processor\n");
528 return -ENODEV;
529 }
530
531 ret = misc_register(&perf_dev);
532 if (ret) {
533 printk(KERN_ERR "Performance monitoring counters: "
534 "cannot register misc device.\n");
535 return ret;
536 }
537
538 /* Patch the images to match the system */
539 perf_patch_images();
540
541 spin_lock_init(&perf_lock);
542
543 /* TODO: this only lets us access the first cpu.. what to do for SMP? */
544 cpu_device = per_cpu(cpu_data, 0).dev;
545 printk("Performance monitoring counters enabled for %s\n",
546 per_cpu(cpu_data, 0).dev->name);
547
548 return 0;
549 }
550
551 /*
552 * perf_start_counters(void)
553 *
554 * Start the counters.
555 */
perf_start_counters(void)556 static void perf_start_counters(void)
557 {
558 /* Enable performance monitor counters */
559 perf_intrigue_enable_perf_counters();
560 }
561
562 /*
563 * perf_stop_counters
564 *
565 * Stop the performance counters and save counts
566 * in a per_processor array.
567 */
perf_stop_counters(uint32_t * raddr)568 static int perf_stop_counters(uint32_t *raddr)
569 {
570 uint64_t userbuf[MAX_RDR_WORDS];
571
572 /* Disable performance counters */
573 perf_intrigue_disable_perf_counters();
574
575 if (perf_processor_interface == ONYX_INTF) {
576 uint64_t tmp64;
577 /*
578 * Read the counters
579 */
580 if (!perf_rdr_read_ubuf(16, userbuf))
581 return -13;
582
583 /* Counter0 is bits 1398 to 1429 */
584 tmp64 = (userbuf[21] << 22) & 0x00000000ffc00000;
585 tmp64 |= (userbuf[22] >> 42) & 0x00000000003fffff;
586 /* OR sticky0 (bit 1430) to counter0 bit 32 */
587 tmp64 |= (userbuf[22] >> 10) & 0x0000000080000000;
588 raddr[0] = (uint32_t)tmp64;
589
590 /* Counter1 is bits 1431 to 1462 */
591 tmp64 = (userbuf[22] >> 9) & 0x00000000ffffffff;
592 /* OR sticky1 (bit 1463) to counter1 bit 32 */
593 tmp64 |= (userbuf[22] << 23) & 0x0000000080000000;
594 raddr[1] = (uint32_t)tmp64;
595
596 /* Counter2 is bits 1464 to 1495 */
597 tmp64 = (userbuf[22] << 24) & 0x00000000ff000000;
598 tmp64 |= (userbuf[23] >> 40) & 0x0000000000ffffff;
599 /* OR sticky2 (bit 1496) to counter2 bit 32 */
600 tmp64 |= (userbuf[23] >> 8) & 0x0000000080000000;
601 raddr[2] = (uint32_t)tmp64;
602
603 /* Counter3 is bits 1497 to 1528 */
604 tmp64 = (userbuf[23] >> 7) & 0x00000000ffffffff;
605 /* OR sticky3 (bit 1529) to counter3 bit 32 */
606 tmp64 |= (userbuf[23] << 25) & 0x0000000080000000;
607 raddr[3] = (uint32_t)tmp64;
608
609 /*
610 * Zero out the counters
611 */
612
613 /*
614 * The counters and sticky-bits comprise the last 132 bits
615 * (1398 - 1529) of RDR16 on a U chip. We'll zero these
616 * out the easy way: zero out last 10 bits of dword 21,
617 * all of dword 22 and 58 bits (plus 6 don't care bits) of
618 * dword 23.
619 */
620 userbuf[21] &= 0xfffffffffffffc00ul; /* 0 to last 10 bits */
621 userbuf[22] = 0;
622 userbuf[23] = 0;
623
624 /*
625 * Write back the zeroed bytes + the image given
626 * the read was destructive.
627 */
628 perf_rdr_write(16, userbuf);
629 } else {
630
631 /*
632 * Read RDR-15 which contains the counters and sticky bits
633 */
634 if (!perf_rdr_read_ubuf(15, userbuf)) {
635 return -13;
636 }
637
638 /*
639 * Clear out the counters
640 */
641 perf_rdr_clear(15);
642
643 /*
644 * Copy the counters
645 */
646 raddr[0] = (uint32_t)((userbuf[0] >> 32) & 0x00000000ffffffffUL);
647 raddr[1] = (uint32_t)(userbuf[0] & 0x00000000ffffffffUL);
648 raddr[2] = (uint32_t)((userbuf[1] >> 32) & 0x00000000ffffffffUL);
649 raddr[3] = (uint32_t)(userbuf[1] & 0x00000000ffffffffUL);
650 }
651
652 return 0;
653 }
654
655 /*
656 * perf_rdr_get_entry
657 *
658 * Retrieve a pointer to the description of what this
659 * RDR contains.
660 */
perf_rdr_get_entry(uint32_t rdr_num)661 static const struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num)
662 {
663 if (perf_processor_interface == ONYX_INTF) {
664 return &perf_rdr_tbl_U[rdr_num];
665 } else {
666 return &perf_rdr_tbl_W[rdr_num];
667 }
668 }
669
670 /*
671 * perf_rdr_read_ubuf
672 *
673 * Read the RDR value into the buffer specified.
674 */
perf_rdr_read_ubuf(uint32_t rdr_num,uint64_t * buffer)675 static int perf_rdr_read_ubuf(uint32_t rdr_num, uint64_t *buffer)
676 {
677 uint64_t data, data_mask = 0;
678 uint32_t width, xbits, i;
679 const struct rdr_tbl_ent *tentry;
680
681 tentry = perf_rdr_get_entry(rdr_num);
682 if ((width = tentry->width) == 0)
683 return 0;
684
685 /* Clear out buffer */
686 i = tentry->num_words;
687 while (i--) {
688 buffer[i] = 0;
689 }
690
691 /* Check for bits an even number of 64 */
692 if ((xbits = width & 0x03f) != 0) {
693 data_mask = 1;
694 data_mask <<= (64 - xbits);
695 data_mask--;
696 }
697
698 /* Grab all of the data */
699 i = tentry->num_words;
700 while (i--) {
701
702 if (perf_processor_interface == ONYX_INTF) {
703 data = perf_rdr_shift_in_U(rdr_num, width);
704 } else {
705 data = perf_rdr_shift_in_W(rdr_num, width);
706 }
707 if (xbits) {
708 buffer[i] |= (data << (64 - xbits));
709 if (i) {
710 buffer[i-1] |= ((data >> xbits) & data_mask);
711 }
712 } else {
713 buffer[i] = data;
714 }
715 }
716
717 return 1;
718 }
719
720 /*
721 * perf_rdr_clear
722 *
723 * Zero out the given RDR register
724 */
perf_rdr_clear(uint32_t rdr_num)725 static int perf_rdr_clear(uint32_t rdr_num)
726 {
727 const struct rdr_tbl_ent *tentry;
728 int32_t i;
729
730 tentry = perf_rdr_get_entry(rdr_num);
731
732 if (tentry->width == 0) {
733 return -1;
734 }
735
736 i = tentry->num_words;
737 while (i--) {
738 if (perf_processor_interface == ONYX_INTF) {
739 perf_rdr_shift_out_U(rdr_num, 0UL);
740 } else {
741 perf_rdr_shift_out_W(rdr_num, 0UL);
742 }
743 }
744
745 return 0;
746 }
747
748
749 /*
750 * perf_write_image
751 *
752 * Write the given image out to the processor
753 */
perf_write_image(uint64_t * memaddr)754 static int perf_write_image(uint64_t *memaddr)
755 {
756 uint64_t buffer[MAX_RDR_WORDS];
757 uint64_t *bptr;
758 uint32_t dwords;
759 const uint32_t *intrigue_rdr;
760 const uint64_t *intrigue_bitmask;
761 uint64_t tmp64;
762 void __iomem *runway;
763 const struct rdr_tbl_ent *tentry;
764 int i;
765
766 /* Clear out counters */
767 if (perf_processor_interface == ONYX_INTF) {
768
769 perf_rdr_clear(16);
770
771 /* Toggle performance monitor */
772 perf_intrigue_enable_perf_counters();
773 perf_intrigue_disable_perf_counters();
774
775 intrigue_rdr = perf_rdrs_U;
776 } else {
777 perf_rdr_clear(15);
778 intrigue_rdr = perf_rdrs_W;
779 }
780
781 /* Write all RDRs */
782 while (*intrigue_rdr != -1) {
783 tentry = perf_rdr_get_entry(*intrigue_rdr);
784 perf_rdr_read_ubuf(*intrigue_rdr, buffer);
785 bptr = &buffer[0];
786 dwords = tentry->num_words;
787 if (tentry->write_control) {
788 intrigue_bitmask = &bitmask_array[tentry->write_control >> 3];
789 while (dwords--) {
790 tmp64 = *intrigue_bitmask & *memaddr++;
791 tmp64 |= (~(*intrigue_bitmask++)) & *bptr;
792 *bptr++ = tmp64;
793 }
794 } else {
795 while (dwords--) {
796 *bptr++ = *memaddr++;
797 }
798 }
799
800 perf_rdr_write(*intrigue_rdr, buffer);
801 intrigue_rdr++;
802 }
803
804 /*
805 * Now copy out the Runway stuff which is not in RDRs
806 */
807
808 if (cpu_device == NULL)
809 {
810 printk(KERN_ERR "write_image: cpu_device not yet initialized!\n");
811 return -1;
812 }
813
814 runway = ioremap_nocache(cpu_device->hpa.start, 4096);
815
816 /* Merge intrigue bits into Runway STATUS 0 */
817 tmp64 = __raw_readq(runway + RUNWAY_STATUS) & 0xffecfffffffffffful;
818 __raw_writeq(tmp64 | (*memaddr++ & 0x0013000000000000ul),
819 runway + RUNWAY_STATUS);
820
821 /* Write RUNWAY DEBUG registers */
822 for (i = 0; i < 8; i++) {
823 __raw_writeq(*memaddr++, runway + RUNWAY_DEBUG);
824 }
825
826 return 0;
827 }
828
829 /*
830 * perf_rdr_write
831 *
832 * Write the given RDR register with the contents
833 * of the given buffer.
834 */
perf_rdr_write(uint32_t rdr_num,uint64_t * buffer)835 static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer)
836 {
837 const struct rdr_tbl_ent *tentry;
838 int32_t i;
839
840 printk("perf_rdr_write\n");
841 tentry = perf_rdr_get_entry(rdr_num);
842 if (tentry->width == 0) { return; }
843
844 i = tentry->num_words;
845 while (i--) {
846 if (perf_processor_interface == ONYX_INTF) {
847 perf_rdr_shift_out_U(rdr_num, buffer[i]);
848 } else {
849 perf_rdr_shift_out_W(rdr_num, buffer[i]);
850 }
851 }
852 printk("perf_rdr_write done\n");
853 }
854
855 module_init(perf_init);
856