• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) output module.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Donald Becker, <becker@super.org>
11  *		Alan Cox, <Alan.Cox@linux.org>
12  *		Richard Underwood
13  *		Stefan Becker, <stefanb@yello.ping.de>
14  *		Jorge Cwik, <jorge@laser.satlink.net>
15  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16  *		Hirokazu Takahashi, <taka@valinux.co.jp>
17  *
18  *	See ip_input.c for original log
19  *
20  *	Fixes:
21  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
22  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
23  *		Bradford Johnson:	Fix faulty handling of some frames when
24  *					no route is found.
25  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
26  *					(in case if packet not accepted by
27  *					output firewall rules)
28  *		Mike McLagan	:	Routing by source
29  *		Alexey Kuznetsov:	use new route cache
30  *		Andi Kleen:		Fix broken PMTU recovery and remove
31  *					some redundant tests.
32  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
33  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
34  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
35  *					for decreased register pressure on x86
36  *					and more readibility.
37  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
38  *					silently drop skb instead of failing with -EPERM.
39  *		Detlev Wengorz	:	Copy protocol for fragments.
40  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
41  *					datagrams.
42  *		Hirokazu Takahashi:	sendfile() on UDP works now.
43  */
44 
45 #include <asm/uaccess.h>
46 #include <asm/system.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/mm.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
64 
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <linux/igmp.h>
77 #include <linux/netfilter_ipv4.h>
78 #include <linux/netfilter_bridge.h>
79 #include <linux/mroute.h>
80 #include <linux/netlink.h>
81 #include <linux/tcp.h>
82 
83 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
84 
85 /* Generate a checksum for an outgoing IP datagram. */
ip_send_check(struct iphdr * iph)86 __inline__ void ip_send_check(struct iphdr *iph)
87 {
88 	iph->check = 0;
89 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
90 }
91 
__ip_local_out(struct sk_buff * skb)92 int __ip_local_out(struct sk_buff *skb)
93 {
94 	struct iphdr *iph = ip_hdr(skb);
95 
96 	iph->tot_len = htons(skb->len);
97 	ip_send_check(iph);
98 	return nf_hook(PF_INET, NF_INET_LOCAL_OUT, skb, NULL, skb->dst->dev,
99 		       dst_output);
100 }
101 
ip_local_out(struct sk_buff * skb)102 int ip_local_out(struct sk_buff *skb)
103 {
104 	int err;
105 
106 	err = __ip_local_out(skb);
107 	if (likely(err == 1))
108 		err = dst_output(skb);
109 
110 	return err;
111 }
112 EXPORT_SYMBOL_GPL(ip_local_out);
113 
114 /* dev_loopback_xmit for use with netfilter. */
ip_dev_loopback_xmit(struct sk_buff * newskb)115 static int ip_dev_loopback_xmit(struct sk_buff *newskb)
116 {
117 	skb_reset_mac_header(newskb);
118 	__skb_pull(newskb, skb_network_offset(newskb));
119 	newskb->pkt_type = PACKET_LOOPBACK;
120 	newskb->ip_summed = CHECKSUM_UNNECESSARY;
121 	WARN_ON(!newskb->dst);
122 	netif_rx(newskb);
123 	return 0;
124 }
125 
ip_select_ttl(struct inet_sock * inet,struct dst_entry * dst)126 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
127 {
128 	int ttl = inet->uc_ttl;
129 
130 	if (ttl < 0)
131 		ttl = dst_metric(dst, RTAX_HOPLIMIT);
132 	return ttl;
133 }
134 
135 /*
136  *		Add an ip header to a skbuff and send it out.
137  *
138  */
ip_build_and_send_pkt(struct sk_buff * skb,struct sock * sk,__be32 saddr,__be32 daddr,struct ip_options * opt)139 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
140 			  __be32 saddr, __be32 daddr, struct ip_options *opt)
141 {
142 	struct inet_sock *inet = inet_sk(sk);
143 	struct rtable *rt = skb->rtable;
144 	struct iphdr *iph;
145 
146 	/* Build the IP header. */
147 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
148 	skb_reset_network_header(skb);
149 	iph = ip_hdr(skb);
150 	iph->version  = 4;
151 	iph->ihl      = 5;
152 	iph->tos      = inet->tos;
153 	if (ip_dont_fragment(sk, &rt->u.dst))
154 		iph->frag_off = htons(IP_DF);
155 	else
156 		iph->frag_off = 0;
157 	iph->ttl      = ip_select_ttl(inet, &rt->u.dst);
158 	iph->daddr    = rt->rt_dst;
159 	iph->saddr    = rt->rt_src;
160 	iph->protocol = sk->sk_protocol;
161 	ip_select_ident(iph, &rt->u.dst, sk);
162 
163 	if (opt && opt->optlen) {
164 		iph->ihl += opt->optlen>>2;
165 		ip_options_build(skb, opt, daddr, rt, 0);
166 	}
167 
168 	skb->priority = sk->sk_priority;
169 	skb->mark = sk->sk_mark;
170 
171 	/* Send it out. */
172 	return ip_local_out(skb);
173 }
174 
175 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
176 
ip_finish_output2(struct sk_buff * skb)177 static inline int ip_finish_output2(struct sk_buff *skb)
178 {
179 	struct dst_entry *dst = skb->dst;
180 	struct rtable *rt = (struct rtable *)dst;
181 	struct net_device *dev = dst->dev;
182 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
183 
184 	if (rt->rt_type == RTN_MULTICAST)
185 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_OUTMCASTPKTS);
186 	else if (rt->rt_type == RTN_BROADCAST)
187 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_OUTBCASTPKTS);
188 
189 	/* Be paranoid, rather than too clever. */
190 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
191 		struct sk_buff *skb2;
192 
193 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
194 		if (skb2 == NULL) {
195 			kfree_skb(skb);
196 			return -ENOMEM;
197 		}
198 		if (skb->sk)
199 			skb_set_owner_w(skb2, skb->sk);
200 		kfree_skb(skb);
201 		skb = skb2;
202 	}
203 
204 	if (dst->hh)
205 		return neigh_hh_output(dst->hh, skb);
206 	else if (dst->neighbour)
207 		return dst->neighbour->output(skb);
208 
209 	if (net_ratelimit())
210 		printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
211 	kfree_skb(skb);
212 	return -EINVAL;
213 }
214 
ip_skb_dst_mtu(struct sk_buff * skb)215 static inline int ip_skb_dst_mtu(struct sk_buff *skb)
216 {
217 	struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
218 
219 	return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
220 	       skb->dst->dev->mtu : dst_mtu(skb->dst);
221 }
222 
ip_finish_output(struct sk_buff * skb)223 static int ip_finish_output(struct sk_buff *skb)
224 {
225 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
226 	/* Policy lookup after SNAT yielded a new policy */
227 	if (skb->dst->xfrm != NULL) {
228 		IPCB(skb)->flags |= IPSKB_REROUTED;
229 		return dst_output(skb);
230 	}
231 #endif
232 	if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
233 		return ip_fragment(skb, ip_finish_output2);
234 	else
235 		return ip_finish_output2(skb);
236 }
237 
ip_mc_output(struct sk_buff * skb)238 int ip_mc_output(struct sk_buff *skb)
239 {
240 	struct sock *sk = skb->sk;
241 	struct rtable *rt = skb->rtable;
242 	struct net_device *dev = rt->u.dst.dev;
243 
244 	/*
245 	 *	If the indicated interface is up and running, send the packet.
246 	 */
247 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_OUTREQUESTS);
248 
249 	skb->dev = dev;
250 	skb->protocol = htons(ETH_P_IP);
251 
252 	/*
253 	 *	Multicasts are looped back for other local users
254 	 */
255 
256 	if (rt->rt_flags&RTCF_MULTICAST) {
257 		if ((!sk || inet_sk(sk)->mc_loop)
258 #ifdef CONFIG_IP_MROUTE
259 		/* Small optimization: do not loopback not local frames,
260 		   which returned after forwarding; they will be  dropped
261 		   by ip_mr_input in any case.
262 		   Note, that local frames are looped back to be delivered
263 		   to local recipients.
264 
265 		   This check is duplicated in ip_mr_input at the moment.
266 		 */
267 		    && ((rt->rt_flags&RTCF_LOCAL) || !(IPCB(skb)->flags&IPSKB_FORWARDED))
268 #endif
269 		) {
270 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
271 			if (newskb)
272 				NF_HOOK(PF_INET, NF_INET_POST_ROUTING, newskb,
273 					NULL, newskb->dev,
274 					ip_dev_loopback_xmit);
275 		}
276 
277 		/* Multicasts with ttl 0 must not go beyond the host */
278 
279 		if (ip_hdr(skb)->ttl == 0) {
280 			kfree_skb(skb);
281 			return 0;
282 		}
283 	}
284 
285 	if (rt->rt_flags&RTCF_BROADCAST) {
286 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
287 		if (newskb)
288 			NF_HOOK(PF_INET, NF_INET_POST_ROUTING, newskb, NULL,
289 				newskb->dev, ip_dev_loopback_xmit);
290 	}
291 
292 	return NF_HOOK_COND(PF_INET, NF_INET_POST_ROUTING, skb, NULL, skb->dev,
293 			    ip_finish_output,
294 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
295 }
296 
ip_output(struct sk_buff * skb)297 int ip_output(struct sk_buff *skb)
298 {
299 	struct net_device *dev = skb->dst->dev;
300 
301 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_OUTREQUESTS);
302 
303 	skb->dev = dev;
304 	skb->protocol = htons(ETH_P_IP);
305 
306 	return NF_HOOK_COND(PF_INET, NF_INET_POST_ROUTING, skb, NULL, dev,
307 			    ip_finish_output,
308 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
309 }
310 
ip_queue_xmit(struct sk_buff * skb,int ipfragok)311 int ip_queue_xmit(struct sk_buff *skb, int ipfragok)
312 {
313 	struct sock *sk = skb->sk;
314 	struct inet_sock *inet = inet_sk(sk);
315 	struct ip_options *opt = inet->opt;
316 	struct rtable *rt;
317 	struct iphdr *iph;
318 
319 	/* Skip all of this if the packet is already routed,
320 	 * f.e. by something like SCTP.
321 	 */
322 	rt = skb->rtable;
323 	if (rt != NULL)
324 		goto packet_routed;
325 
326 	/* Make sure we can route this packet. */
327 	rt = (struct rtable *)__sk_dst_check(sk, 0);
328 	if (rt == NULL) {
329 		__be32 daddr;
330 
331 		/* Use correct destination address if we have options. */
332 		daddr = inet->daddr;
333 		if(opt && opt->srr)
334 			daddr = opt->faddr;
335 
336 		{
337 			struct flowi fl = { .oif = sk->sk_bound_dev_if,
338 					    .nl_u = { .ip4_u =
339 						      { .daddr = daddr,
340 							.saddr = inet->saddr,
341 							.tos = RT_CONN_FLAGS(sk) } },
342 					    .proto = sk->sk_protocol,
343 					    .flags = inet_sk_flowi_flags(sk),
344 					    .uli_u = { .ports =
345 						       { .sport = inet->sport,
346 							 .dport = inet->dport } } };
347 
348 			/* If this fails, retransmit mechanism of transport layer will
349 			 * keep trying until route appears or the connection times
350 			 * itself out.
351 			 */
352 			security_sk_classify_flow(sk, &fl);
353 			if (ip_route_output_flow(sock_net(sk), &rt, &fl, sk, 0))
354 				goto no_route;
355 		}
356 		sk_setup_caps(sk, &rt->u.dst);
357 	}
358 	skb->dst = dst_clone(&rt->u.dst);
359 
360 packet_routed:
361 	if (opt && opt->is_strictroute && rt->rt_dst != rt->rt_gateway)
362 		goto no_route;
363 
364 	/* OK, we know where to send it, allocate and build IP header. */
365 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
366 	skb_reset_network_header(skb);
367 	iph = ip_hdr(skb);
368 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
369 	if (ip_dont_fragment(sk, &rt->u.dst) && !ipfragok)
370 		iph->frag_off = htons(IP_DF);
371 	else
372 		iph->frag_off = 0;
373 	iph->ttl      = ip_select_ttl(inet, &rt->u.dst);
374 	iph->protocol = sk->sk_protocol;
375 	iph->saddr    = rt->rt_src;
376 	iph->daddr    = rt->rt_dst;
377 	/* Transport layer set skb->h.foo itself. */
378 
379 	if (opt && opt->optlen) {
380 		iph->ihl += opt->optlen >> 2;
381 		ip_options_build(skb, opt, inet->daddr, rt, 0);
382 	}
383 
384 	ip_select_ident_more(iph, &rt->u.dst, sk,
385 			     (skb_shinfo(skb)->gso_segs ?: 1) - 1);
386 
387 	skb->priority = sk->sk_priority;
388 	skb->mark = sk->sk_mark;
389 
390 	return ip_local_out(skb);
391 
392 no_route:
393 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
394 	kfree_skb(skb);
395 	return -EHOSTUNREACH;
396 }
397 
398 
ip_copy_metadata(struct sk_buff * to,struct sk_buff * from)399 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
400 {
401 	to->pkt_type = from->pkt_type;
402 	to->priority = from->priority;
403 	to->protocol = from->protocol;
404 	dst_release(to->dst);
405 	to->dst = dst_clone(from->dst);
406 	to->dev = from->dev;
407 	to->mark = from->mark;
408 
409 	/* Copy the flags to each fragment. */
410 	IPCB(to)->flags = IPCB(from)->flags;
411 
412 #ifdef CONFIG_NET_SCHED
413 	to->tc_index = from->tc_index;
414 #endif
415 	nf_copy(to, from);
416 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
417     defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
418 	to->nf_trace = from->nf_trace;
419 #endif
420 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
421 	to->ipvs_property = from->ipvs_property;
422 #endif
423 	skb_copy_secmark(to, from);
424 }
425 
426 /*
427  *	This IP datagram is too large to be sent in one piece.  Break it up into
428  *	smaller pieces (each of size equal to IP header plus
429  *	a block of the data of the original IP data part) that will yet fit in a
430  *	single device frame, and queue such a frame for sending.
431  */
432 
ip_fragment(struct sk_buff * skb,int (* output)(struct sk_buff *))433 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
434 {
435 	struct iphdr *iph;
436 	int raw = 0;
437 	int ptr;
438 	struct net_device *dev;
439 	struct sk_buff *skb2;
440 	unsigned int mtu, hlen, left, len, ll_rs, pad;
441 	int offset;
442 	__be16 not_last_frag;
443 	struct rtable *rt = skb->rtable;
444 	int err = 0;
445 
446 	dev = rt->u.dst.dev;
447 
448 	/*
449 	 *	Point into the IP datagram header.
450 	 */
451 
452 	iph = ip_hdr(skb);
453 
454 	if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
455 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
456 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
457 			  htonl(ip_skb_dst_mtu(skb)));
458 		kfree_skb(skb);
459 		return -EMSGSIZE;
460 	}
461 
462 	/*
463 	 *	Setup starting values.
464 	 */
465 
466 	hlen = iph->ihl * 4;
467 	mtu = dst_mtu(&rt->u.dst) - hlen;	/* Size of data space */
468 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
469 
470 	/* When frag_list is given, use it. First, check its validity:
471 	 * some transformers could create wrong frag_list or break existing
472 	 * one, it is not prohibited. In this case fall back to copying.
473 	 *
474 	 * LATER: this step can be merged to real generation of fragments,
475 	 * we can switch to copy when see the first bad fragment.
476 	 */
477 	if (skb_shinfo(skb)->frag_list) {
478 		struct sk_buff *frag;
479 		int first_len = skb_pagelen(skb);
480 		int truesizes = 0;
481 
482 		if (first_len - hlen > mtu ||
483 		    ((first_len - hlen) & 7) ||
484 		    (iph->frag_off & htons(IP_MF|IP_OFFSET)) ||
485 		    skb_cloned(skb))
486 			goto slow_path;
487 
488 		for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) {
489 			/* Correct geometry. */
490 			if (frag->len > mtu ||
491 			    ((frag->len & 7) && frag->next) ||
492 			    skb_headroom(frag) < hlen)
493 			    goto slow_path;
494 
495 			/* Partially cloned skb? */
496 			if (skb_shared(frag))
497 				goto slow_path;
498 
499 			BUG_ON(frag->sk);
500 			if (skb->sk) {
501 				sock_hold(skb->sk);
502 				frag->sk = skb->sk;
503 				frag->destructor = sock_wfree;
504 				truesizes += frag->truesize;
505 			}
506 		}
507 
508 		/* Everything is OK. Generate! */
509 
510 		err = 0;
511 		offset = 0;
512 		frag = skb_shinfo(skb)->frag_list;
513 		skb_shinfo(skb)->frag_list = NULL;
514 		skb->data_len = first_len - skb_headlen(skb);
515 		skb->truesize -= truesizes;
516 		skb->len = first_len;
517 		iph->tot_len = htons(first_len);
518 		iph->frag_off = htons(IP_MF);
519 		ip_send_check(iph);
520 
521 		for (;;) {
522 			/* Prepare header of the next frame,
523 			 * before previous one went down. */
524 			if (frag) {
525 				frag->ip_summed = CHECKSUM_NONE;
526 				skb_reset_transport_header(frag);
527 				__skb_push(frag, hlen);
528 				skb_reset_network_header(frag);
529 				memcpy(skb_network_header(frag), iph, hlen);
530 				iph = ip_hdr(frag);
531 				iph->tot_len = htons(frag->len);
532 				ip_copy_metadata(frag, skb);
533 				if (offset == 0)
534 					ip_options_fragment(frag);
535 				offset += skb->len - hlen;
536 				iph->frag_off = htons(offset>>3);
537 				if (frag->next != NULL)
538 					iph->frag_off |= htons(IP_MF);
539 				/* Ready, complete checksum */
540 				ip_send_check(iph);
541 			}
542 
543 			err = output(skb);
544 
545 			if (!err)
546 				IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
547 			if (err || !frag)
548 				break;
549 
550 			skb = frag;
551 			frag = skb->next;
552 			skb->next = NULL;
553 		}
554 
555 		if (err == 0) {
556 			IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
557 			return 0;
558 		}
559 
560 		while (frag) {
561 			skb = frag->next;
562 			kfree_skb(frag);
563 			frag = skb;
564 		}
565 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
566 		return err;
567 	}
568 
569 slow_path:
570 	left = skb->len - hlen;		/* Space per frame */
571 	ptr = raw + hlen;		/* Where to start from */
572 
573 	/* for bridged IP traffic encapsulated inside f.e. a vlan header,
574 	 * we need to make room for the encapsulating header
575 	 */
576 	pad = nf_bridge_pad(skb);
577 	ll_rs = LL_RESERVED_SPACE_EXTRA(rt->u.dst.dev, pad);
578 	mtu -= pad;
579 
580 	/*
581 	 *	Fragment the datagram.
582 	 */
583 
584 	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
585 	not_last_frag = iph->frag_off & htons(IP_MF);
586 
587 	/*
588 	 *	Keep copying data until we run out.
589 	 */
590 
591 	while (left > 0) {
592 		len = left;
593 		/* IF: it doesn't fit, use 'mtu' - the data space left */
594 		if (len > mtu)
595 			len = mtu;
596 		/* IF: we are not sending upto and including the packet end
597 		   then align the next start on an eight byte boundary */
598 		if (len < left)	{
599 			len &= ~7;
600 		}
601 		/*
602 		 *	Allocate buffer.
603 		 */
604 
605 		if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
606 			NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
607 			err = -ENOMEM;
608 			goto fail;
609 		}
610 
611 		/*
612 		 *	Set up data on packet
613 		 */
614 
615 		ip_copy_metadata(skb2, skb);
616 		skb_reserve(skb2, ll_rs);
617 		skb_put(skb2, len + hlen);
618 		skb_reset_network_header(skb2);
619 		skb2->transport_header = skb2->network_header + hlen;
620 
621 		/*
622 		 *	Charge the memory for the fragment to any owner
623 		 *	it might possess
624 		 */
625 
626 		if (skb->sk)
627 			skb_set_owner_w(skb2, skb->sk);
628 
629 		/*
630 		 *	Copy the packet header into the new buffer.
631 		 */
632 
633 		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
634 
635 		/*
636 		 *	Copy a block of the IP datagram.
637 		 */
638 		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
639 			BUG();
640 		left -= len;
641 
642 		/*
643 		 *	Fill in the new header fields.
644 		 */
645 		iph = ip_hdr(skb2);
646 		iph->frag_off = htons((offset >> 3));
647 
648 		/* ANK: dirty, but effective trick. Upgrade options only if
649 		 * the segment to be fragmented was THE FIRST (otherwise,
650 		 * options are already fixed) and make it ONCE
651 		 * on the initial skb, so that all the following fragments
652 		 * will inherit fixed options.
653 		 */
654 		if (offset == 0)
655 			ip_options_fragment(skb);
656 
657 		/*
658 		 *	Added AC : If we are fragmenting a fragment that's not the
659 		 *		   last fragment then keep MF on each bit
660 		 */
661 		if (left > 0 || not_last_frag)
662 			iph->frag_off |= htons(IP_MF);
663 		ptr += len;
664 		offset += len;
665 
666 		/*
667 		 *	Put this fragment into the sending queue.
668 		 */
669 		iph->tot_len = htons(len + hlen);
670 
671 		ip_send_check(iph);
672 
673 		err = output(skb2);
674 		if (err)
675 			goto fail;
676 
677 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
678 	}
679 	kfree_skb(skb);
680 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
681 	return err;
682 
683 fail:
684 	kfree_skb(skb);
685 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
686 	return err;
687 }
688 
689 EXPORT_SYMBOL(ip_fragment);
690 
691 int
ip_generic_getfrag(void * from,char * to,int offset,int len,int odd,struct sk_buff * skb)692 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
693 {
694 	struct iovec *iov = from;
695 
696 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
697 		if (memcpy_fromiovecend(to, iov, offset, len) < 0)
698 			return -EFAULT;
699 	} else {
700 		__wsum csum = 0;
701 		if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
702 			return -EFAULT;
703 		skb->csum = csum_block_add(skb->csum, csum, odd);
704 	}
705 	return 0;
706 }
707 
708 static inline __wsum
csum_page(struct page * page,int offset,int copy)709 csum_page(struct page *page, int offset, int copy)
710 {
711 	char *kaddr;
712 	__wsum csum;
713 	kaddr = kmap(page);
714 	csum = csum_partial(kaddr + offset, copy, 0);
715 	kunmap(page);
716 	return csum;
717 }
718 
ip_ufo_append_data(struct sock * sk,int getfrag (void * from,char * to,int offset,int len,int odd,struct sk_buff * skb),void * from,int length,int hh_len,int fragheaderlen,int transhdrlen,int mtu,unsigned int flags)719 static inline int ip_ufo_append_data(struct sock *sk,
720 			int getfrag(void *from, char *to, int offset, int len,
721 			       int odd, struct sk_buff *skb),
722 			void *from, int length, int hh_len, int fragheaderlen,
723 			int transhdrlen, int mtu, unsigned int flags)
724 {
725 	struct sk_buff *skb;
726 	int err;
727 
728 	/* There is support for UDP fragmentation offload by network
729 	 * device, so create one single skb packet containing complete
730 	 * udp datagram
731 	 */
732 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL) {
733 		skb = sock_alloc_send_skb(sk,
734 			hh_len + fragheaderlen + transhdrlen + 20,
735 			(flags & MSG_DONTWAIT), &err);
736 
737 		if (skb == NULL)
738 			return err;
739 
740 		/* reserve space for Hardware header */
741 		skb_reserve(skb, hh_len);
742 
743 		/* create space for UDP/IP header */
744 		skb_put(skb, fragheaderlen + transhdrlen);
745 
746 		/* initialize network header pointer */
747 		skb_reset_network_header(skb);
748 
749 		/* initialize protocol header pointer */
750 		skb->transport_header = skb->network_header + fragheaderlen;
751 
752 		skb->ip_summed = CHECKSUM_PARTIAL;
753 		skb->csum = 0;
754 		sk->sk_sndmsg_off = 0;
755 
756 		/* specify the length of each IP datagram fragment */
757 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
758 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
759 		__skb_queue_tail(&sk->sk_write_queue, skb);
760 	}
761 
762 	return skb_append_datato_frags(sk, skb, getfrag, from,
763 				       (length - transhdrlen));
764 }
765 
766 /*
767  *	ip_append_data() and ip_append_page() can make one large IP datagram
768  *	from many pieces of data. Each pieces will be holded on the socket
769  *	until ip_push_pending_frames() is called. Each piece can be a page
770  *	or non-page data.
771  *
772  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
773  *	this interface potentially.
774  *
775  *	LATER: length must be adjusted by pad at tail, when it is required.
776  */
ip_append_data(struct sock * sk,int getfrag (void * from,char * to,int offset,int len,int odd,struct sk_buff * skb),void * from,int length,int transhdrlen,struct ipcm_cookie * ipc,struct rtable ** rtp,unsigned int flags)777 int ip_append_data(struct sock *sk,
778 		   int getfrag(void *from, char *to, int offset, int len,
779 			       int odd, struct sk_buff *skb),
780 		   void *from, int length, int transhdrlen,
781 		   struct ipcm_cookie *ipc, struct rtable **rtp,
782 		   unsigned int flags)
783 {
784 	struct inet_sock *inet = inet_sk(sk);
785 	struct sk_buff *skb;
786 
787 	struct ip_options *opt = NULL;
788 	int hh_len;
789 	int exthdrlen;
790 	int mtu;
791 	int copy;
792 	int err;
793 	int offset = 0;
794 	unsigned int maxfraglen, fragheaderlen;
795 	int csummode = CHECKSUM_NONE;
796 	struct rtable *rt;
797 
798 	if (flags&MSG_PROBE)
799 		return 0;
800 
801 	if (skb_queue_empty(&sk->sk_write_queue)) {
802 		/*
803 		 * setup for corking.
804 		 */
805 		opt = ipc->opt;
806 		if (opt) {
807 			if (inet->cork.opt == NULL) {
808 				inet->cork.opt = kmalloc(sizeof(struct ip_options) + 40, sk->sk_allocation);
809 				if (unlikely(inet->cork.opt == NULL))
810 					return -ENOBUFS;
811 			}
812 			memcpy(inet->cork.opt, opt, sizeof(struct ip_options)+opt->optlen);
813 			inet->cork.flags |= IPCORK_OPT;
814 			inet->cork.addr = ipc->addr;
815 		}
816 		rt = *rtp;
817 		/*
818 		 * We steal reference to this route, caller should not release it
819 		 */
820 		*rtp = NULL;
821 		inet->cork.fragsize = mtu = inet->pmtudisc == IP_PMTUDISC_PROBE ?
822 					    rt->u.dst.dev->mtu :
823 					    dst_mtu(rt->u.dst.path);
824 		inet->cork.dst = &rt->u.dst;
825 		inet->cork.length = 0;
826 		sk->sk_sndmsg_page = NULL;
827 		sk->sk_sndmsg_off = 0;
828 		if ((exthdrlen = rt->u.dst.header_len) != 0) {
829 			length += exthdrlen;
830 			transhdrlen += exthdrlen;
831 		}
832 	} else {
833 		rt = (struct rtable *)inet->cork.dst;
834 		if (inet->cork.flags & IPCORK_OPT)
835 			opt = inet->cork.opt;
836 
837 		transhdrlen = 0;
838 		exthdrlen = 0;
839 		mtu = inet->cork.fragsize;
840 	}
841 	hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
842 
843 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
844 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
845 
846 	if (inet->cork.length + length > 0xFFFF - fragheaderlen) {
847 		ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu-exthdrlen);
848 		return -EMSGSIZE;
849 	}
850 
851 	/*
852 	 * transhdrlen > 0 means that this is the first fragment and we wish
853 	 * it won't be fragmented in the future.
854 	 */
855 	if (transhdrlen &&
856 	    length + fragheaderlen <= mtu &&
857 	    rt->u.dst.dev->features & NETIF_F_V4_CSUM &&
858 	    !exthdrlen)
859 		csummode = CHECKSUM_PARTIAL;
860 
861 	inet->cork.length += length;
862 	if (((length> mtu) || !skb_queue_empty(&sk->sk_write_queue)) &&
863 	    (sk->sk_protocol == IPPROTO_UDP) &&
864 	    (rt->u.dst.dev->features & NETIF_F_UFO)) {
865 		err = ip_ufo_append_data(sk, getfrag, from, length, hh_len,
866 					 fragheaderlen, transhdrlen, mtu,
867 					 flags);
868 		if (err)
869 			goto error;
870 		return 0;
871 	}
872 
873 	/* So, what's going on in the loop below?
874 	 *
875 	 * We use calculated fragment length to generate chained skb,
876 	 * each of segments is IP fragment ready for sending to network after
877 	 * adding appropriate IP header.
878 	 */
879 
880 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
881 		goto alloc_new_skb;
882 
883 	while (length > 0) {
884 		/* Check if the remaining data fits into current packet. */
885 		copy = mtu - skb->len;
886 		if (copy < length)
887 			copy = maxfraglen - skb->len;
888 		if (copy <= 0) {
889 			char *data;
890 			unsigned int datalen;
891 			unsigned int fraglen;
892 			unsigned int fraggap;
893 			unsigned int alloclen;
894 			struct sk_buff *skb_prev;
895 alloc_new_skb:
896 			skb_prev = skb;
897 			if (skb_prev)
898 				fraggap = skb_prev->len - maxfraglen;
899 			else
900 				fraggap = 0;
901 
902 			/*
903 			 * If remaining data exceeds the mtu,
904 			 * we know we need more fragment(s).
905 			 */
906 			datalen = length + fraggap;
907 			if (datalen > mtu - fragheaderlen)
908 				datalen = maxfraglen - fragheaderlen;
909 			fraglen = datalen + fragheaderlen;
910 
911 			if ((flags & MSG_MORE) &&
912 			    !(rt->u.dst.dev->features&NETIF_F_SG))
913 				alloclen = mtu;
914 			else
915 				alloclen = datalen + fragheaderlen;
916 
917 			/* The last fragment gets additional space at tail.
918 			 * Note, with MSG_MORE we overallocate on fragments,
919 			 * because we have no idea what fragment will be
920 			 * the last.
921 			 */
922 			if (datalen == length + fraggap)
923 				alloclen += rt->u.dst.trailer_len;
924 
925 			if (transhdrlen) {
926 				skb = sock_alloc_send_skb(sk,
927 						alloclen + hh_len + 15,
928 						(flags & MSG_DONTWAIT), &err);
929 			} else {
930 				skb = NULL;
931 				if (atomic_read(&sk->sk_wmem_alloc) <=
932 				    2 * sk->sk_sndbuf)
933 					skb = sock_wmalloc(sk,
934 							   alloclen + hh_len + 15, 1,
935 							   sk->sk_allocation);
936 				if (unlikely(skb == NULL))
937 					err = -ENOBUFS;
938 			}
939 			if (skb == NULL)
940 				goto error;
941 
942 			/*
943 			 *	Fill in the control structures
944 			 */
945 			skb->ip_summed = csummode;
946 			skb->csum = 0;
947 			skb_reserve(skb, hh_len);
948 
949 			/*
950 			 *	Find where to start putting bytes.
951 			 */
952 			data = skb_put(skb, fraglen);
953 			skb_set_network_header(skb, exthdrlen);
954 			skb->transport_header = (skb->network_header +
955 						 fragheaderlen);
956 			data += fragheaderlen;
957 
958 			if (fraggap) {
959 				skb->csum = skb_copy_and_csum_bits(
960 					skb_prev, maxfraglen,
961 					data + transhdrlen, fraggap, 0);
962 				skb_prev->csum = csum_sub(skb_prev->csum,
963 							  skb->csum);
964 				data += fraggap;
965 				pskb_trim_unique(skb_prev, maxfraglen);
966 			}
967 
968 			copy = datalen - transhdrlen - fraggap;
969 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
970 				err = -EFAULT;
971 				kfree_skb(skb);
972 				goto error;
973 			}
974 
975 			offset += copy;
976 			length -= datalen - fraggap;
977 			transhdrlen = 0;
978 			exthdrlen = 0;
979 			csummode = CHECKSUM_NONE;
980 
981 			/*
982 			 * Put the packet on the pending queue.
983 			 */
984 			__skb_queue_tail(&sk->sk_write_queue, skb);
985 			continue;
986 		}
987 
988 		if (copy > length)
989 			copy = length;
990 
991 		if (!(rt->u.dst.dev->features&NETIF_F_SG)) {
992 			unsigned int off;
993 
994 			off = skb->len;
995 			if (getfrag(from, skb_put(skb, copy),
996 					offset, copy, off, skb) < 0) {
997 				__skb_trim(skb, off);
998 				err = -EFAULT;
999 				goto error;
1000 			}
1001 		} else {
1002 			int i = skb_shinfo(skb)->nr_frags;
1003 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
1004 			struct page *page = sk->sk_sndmsg_page;
1005 			int off = sk->sk_sndmsg_off;
1006 			unsigned int left;
1007 
1008 			if (page && (left = PAGE_SIZE - off) > 0) {
1009 				if (copy >= left)
1010 					copy = left;
1011 				if (page != frag->page) {
1012 					if (i == MAX_SKB_FRAGS) {
1013 						err = -EMSGSIZE;
1014 						goto error;
1015 					}
1016 					get_page(page);
1017 					skb_fill_page_desc(skb, i, page, sk->sk_sndmsg_off, 0);
1018 					frag = &skb_shinfo(skb)->frags[i];
1019 				}
1020 			} else if (i < MAX_SKB_FRAGS) {
1021 				if (copy > PAGE_SIZE)
1022 					copy = PAGE_SIZE;
1023 				page = alloc_pages(sk->sk_allocation, 0);
1024 				if (page == NULL)  {
1025 					err = -ENOMEM;
1026 					goto error;
1027 				}
1028 				sk->sk_sndmsg_page = page;
1029 				sk->sk_sndmsg_off = 0;
1030 
1031 				skb_fill_page_desc(skb, i, page, 0, 0);
1032 				frag = &skb_shinfo(skb)->frags[i];
1033 			} else {
1034 				err = -EMSGSIZE;
1035 				goto error;
1036 			}
1037 			if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
1038 				err = -EFAULT;
1039 				goto error;
1040 			}
1041 			sk->sk_sndmsg_off += copy;
1042 			frag->size += copy;
1043 			skb->len += copy;
1044 			skb->data_len += copy;
1045 			skb->truesize += copy;
1046 			atomic_add(copy, &sk->sk_wmem_alloc);
1047 		}
1048 		offset += copy;
1049 		length -= copy;
1050 	}
1051 
1052 	return 0;
1053 
1054 error:
1055 	inet->cork.length -= length;
1056 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1057 	return err;
1058 }
1059 
ip_append_page(struct sock * sk,struct page * page,int offset,size_t size,int flags)1060 ssize_t	ip_append_page(struct sock *sk, struct page *page,
1061 		       int offset, size_t size, int flags)
1062 {
1063 	struct inet_sock *inet = inet_sk(sk);
1064 	struct sk_buff *skb;
1065 	struct rtable *rt;
1066 	struct ip_options *opt = NULL;
1067 	int hh_len;
1068 	int mtu;
1069 	int len;
1070 	int err;
1071 	unsigned int maxfraglen, fragheaderlen, fraggap;
1072 
1073 	if (inet->hdrincl)
1074 		return -EPERM;
1075 
1076 	if (flags&MSG_PROBE)
1077 		return 0;
1078 
1079 	if (skb_queue_empty(&sk->sk_write_queue))
1080 		return -EINVAL;
1081 
1082 	rt = (struct rtable *)inet->cork.dst;
1083 	if (inet->cork.flags & IPCORK_OPT)
1084 		opt = inet->cork.opt;
1085 
1086 	if (!(rt->u.dst.dev->features&NETIF_F_SG))
1087 		return -EOPNOTSUPP;
1088 
1089 	hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
1090 	mtu = inet->cork.fragsize;
1091 
1092 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1093 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1094 
1095 	if (inet->cork.length + size > 0xFFFF - fragheaderlen) {
1096 		ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu);
1097 		return -EMSGSIZE;
1098 	}
1099 
1100 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1101 		return -EINVAL;
1102 
1103 	inet->cork.length += size;
1104 	if ((sk->sk_protocol == IPPROTO_UDP) &&
1105 	    (rt->u.dst.dev->features & NETIF_F_UFO)) {
1106 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1107 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1108 	}
1109 
1110 
1111 	while (size > 0) {
1112 		int i;
1113 
1114 		if (skb_is_gso(skb))
1115 			len = size;
1116 		else {
1117 
1118 			/* Check if the remaining data fits into current packet. */
1119 			len = mtu - skb->len;
1120 			if (len < size)
1121 				len = maxfraglen - skb->len;
1122 		}
1123 		if (len <= 0) {
1124 			struct sk_buff *skb_prev;
1125 			int alloclen;
1126 
1127 			skb_prev = skb;
1128 			fraggap = skb_prev->len - maxfraglen;
1129 
1130 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1131 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1132 			if (unlikely(!skb)) {
1133 				err = -ENOBUFS;
1134 				goto error;
1135 			}
1136 
1137 			/*
1138 			 *	Fill in the control structures
1139 			 */
1140 			skb->ip_summed = CHECKSUM_NONE;
1141 			skb->csum = 0;
1142 			skb_reserve(skb, hh_len);
1143 
1144 			/*
1145 			 *	Find where to start putting bytes.
1146 			 */
1147 			skb_put(skb, fragheaderlen + fraggap);
1148 			skb_reset_network_header(skb);
1149 			skb->transport_header = (skb->network_header +
1150 						 fragheaderlen);
1151 			if (fraggap) {
1152 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1153 								   maxfraglen,
1154 						    skb_transport_header(skb),
1155 								   fraggap, 0);
1156 				skb_prev->csum = csum_sub(skb_prev->csum,
1157 							  skb->csum);
1158 				pskb_trim_unique(skb_prev, maxfraglen);
1159 			}
1160 
1161 			/*
1162 			 * Put the packet on the pending queue.
1163 			 */
1164 			__skb_queue_tail(&sk->sk_write_queue, skb);
1165 			continue;
1166 		}
1167 
1168 		i = skb_shinfo(skb)->nr_frags;
1169 		if (len > size)
1170 			len = size;
1171 		if (skb_can_coalesce(skb, i, page, offset)) {
1172 			skb_shinfo(skb)->frags[i-1].size += len;
1173 		} else if (i < MAX_SKB_FRAGS) {
1174 			get_page(page);
1175 			skb_fill_page_desc(skb, i, page, offset, len);
1176 		} else {
1177 			err = -EMSGSIZE;
1178 			goto error;
1179 		}
1180 
1181 		if (skb->ip_summed == CHECKSUM_NONE) {
1182 			__wsum csum;
1183 			csum = csum_page(page, offset, len);
1184 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1185 		}
1186 
1187 		skb->len += len;
1188 		skb->data_len += len;
1189 		skb->truesize += len;
1190 		atomic_add(len, &sk->sk_wmem_alloc);
1191 		offset += len;
1192 		size -= len;
1193 	}
1194 	return 0;
1195 
1196 error:
1197 	inet->cork.length -= size;
1198 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1199 	return err;
1200 }
1201 
ip_cork_release(struct inet_sock * inet)1202 static void ip_cork_release(struct inet_sock *inet)
1203 {
1204 	inet->cork.flags &= ~IPCORK_OPT;
1205 	kfree(inet->cork.opt);
1206 	inet->cork.opt = NULL;
1207 	dst_release(inet->cork.dst);
1208 	inet->cork.dst = NULL;
1209 }
1210 
1211 /*
1212  *	Combined all pending IP fragments on the socket as one IP datagram
1213  *	and push them out.
1214  */
ip_push_pending_frames(struct sock * sk)1215 int ip_push_pending_frames(struct sock *sk)
1216 {
1217 	struct sk_buff *skb, *tmp_skb;
1218 	struct sk_buff **tail_skb;
1219 	struct inet_sock *inet = inet_sk(sk);
1220 	struct net *net = sock_net(sk);
1221 	struct ip_options *opt = NULL;
1222 	struct rtable *rt = (struct rtable *)inet->cork.dst;
1223 	struct iphdr *iph;
1224 	__be16 df = 0;
1225 	__u8 ttl;
1226 	int err = 0;
1227 
1228 	if ((skb = __skb_dequeue(&sk->sk_write_queue)) == NULL)
1229 		goto out;
1230 	tail_skb = &(skb_shinfo(skb)->frag_list);
1231 
1232 	/* move skb->data to ip header from ext header */
1233 	if (skb->data < skb_network_header(skb))
1234 		__skb_pull(skb, skb_network_offset(skb));
1235 	while ((tmp_skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
1236 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1237 		*tail_skb = tmp_skb;
1238 		tail_skb = &(tmp_skb->next);
1239 		skb->len += tmp_skb->len;
1240 		skb->data_len += tmp_skb->len;
1241 		skb->truesize += tmp_skb->truesize;
1242 		__sock_put(tmp_skb->sk);
1243 		tmp_skb->destructor = NULL;
1244 		tmp_skb->sk = NULL;
1245 	}
1246 
1247 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1248 	 * to fragment the frame generated here. No matter, what transforms
1249 	 * how transforms change size of the packet, it will come out.
1250 	 */
1251 	if (inet->pmtudisc < IP_PMTUDISC_DO)
1252 		skb->local_df = 1;
1253 
1254 	/* DF bit is set when we want to see DF on outgoing frames.
1255 	 * If local_df is set too, we still allow to fragment this frame
1256 	 * locally. */
1257 	if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1258 	    (skb->len <= dst_mtu(&rt->u.dst) &&
1259 	     ip_dont_fragment(sk, &rt->u.dst)))
1260 		df = htons(IP_DF);
1261 
1262 	if (inet->cork.flags & IPCORK_OPT)
1263 		opt = inet->cork.opt;
1264 
1265 	if (rt->rt_type == RTN_MULTICAST)
1266 		ttl = inet->mc_ttl;
1267 	else
1268 		ttl = ip_select_ttl(inet, &rt->u.dst);
1269 
1270 	iph = (struct iphdr *)skb->data;
1271 	iph->version = 4;
1272 	iph->ihl = 5;
1273 	if (opt) {
1274 		iph->ihl += opt->optlen>>2;
1275 		ip_options_build(skb, opt, inet->cork.addr, rt, 0);
1276 	}
1277 	iph->tos = inet->tos;
1278 	iph->frag_off = df;
1279 	ip_select_ident(iph, &rt->u.dst, sk);
1280 	iph->ttl = ttl;
1281 	iph->protocol = sk->sk_protocol;
1282 	iph->saddr = rt->rt_src;
1283 	iph->daddr = rt->rt_dst;
1284 
1285 	skb->priority = sk->sk_priority;
1286 	skb->mark = sk->sk_mark;
1287 	/*
1288 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1289 	 * on dst refcount
1290 	 */
1291 	inet->cork.dst = NULL;
1292 	skb->dst = &rt->u.dst;
1293 
1294 	if (iph->protocol == IPPROTO_ICMP)
1295 		icmp_out_count(net, ((struct icmphdr *)
1296 			skb_transport_header(skb))->type);
1297 
1298 	/* Netfilter gets whole the not fragmented skb. */
1299 	err = ip_local_out(skb);
1300 	if (err) {
1301 		if (err > 0)
1302 			err = inet->recverr ? net_xmit_errno(err) : 0;
1303 		if (err)
1304 			goto error;
1305 	}
1306 
1307 out:
1308 	ip_cork_release(inet);
1309 	return err;
1310 
1311 error:
1312 	IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1313 	goto out;
1314 }
1315 
1316 /*
1317  *	Throw away all pending data on the socket.
1318  */
ip_flush_pending_frames(struct sock * sk)1319 void ip_flush_pending_frames(struct sock *sk)
1320 {
1321 	struct sk_buff *skb;
1322 
1323 	while ((skb = __skb_dequeue_tail(&sk->sk_write_queue)) != NULL)
1324 		kfree_skb(skb);
1325 
1326 	ip_cork_release(inet_sk(sk));
1327 }
1328 
1329 
1330 /*
1331  *	Fetch data from kernel space and fill in checksum if needed.
1332  */
ip_reply_glue_bits(void * dptr,char * to,int offset,int len,int odd,struct sk_buff * skb)1333 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1334 			      int len, int odd, struct sk_buff *skb)
1335 {
1336 	__wsum csum;
1337 
1338 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1339 	skb->csum = csum_block_add(skb->csum, csum, odd);
1340 	return 0;
1341 }
1342 
1343 /*
1344  *	Generic function to send a packet as reply to another packet.
1345  *	Used to send TCP resets so far. ICMP should use this function too.
1346  *
1347  *	Should run single threaded per socket because it uses the sock
1348  *     	structure to pass arguments.
1349  */
ip_send_reply(struct sock * sk,struct sk_buff * skb,struct ip_reply_arg * arg,unsigned int len)1350 void ip_send_reply(struct sock *sk, struct sk_buff *skb, struct ip_reply_arg *arg,
1351 		   unsigned int len)
1352 {
1353 	struct inet_sock *inet = inet_sk(sk);
1354 	struct {
1355 		struct ip_options	opt;
1356 		char			data[40];
1357 	} replyopts;
1358 	struct ipcm_cookie ipc;
1359 	__be32 daddr;
1360 	struct rtable *rt = skb->rtable;
1361 
1362 	if (ip_options_echo(&replyopts.opt, skb))
1363 		return;
1364 
1365 	daddr = ipc.addr = rt->rt_src;
1366 	ipc.opt = NULL;
1367 
1368 	if (replyopts.opt.optlen) {
1369 		ipc.opt = &replyopts.opt;
1370 
1371 		if (ipc.opt->srr)
1372 			daddr = replyopts.opt.faddr;
1373 	}
1374 
1375 	{
1376 		struct flowi fl = { .oif = arg->bound_dev_if,
1377 				    .nl_u = { .ip4_u =
1378 					      { .daddr = daddr,
1379 						.saddr = rt->rt_spec_dst,
1380 						.tos = RT_TOS(ip_hdr(skb)->tos) } },
1381 				    /* Not quite clean, but right. */
1382 				    .uli_u = { .ports =
1383 					       { .sport = tcp_hdr(skb)->dest,
1384 						 .dport = tcp_hdr(skb)->source } },
1385 				    .proto = sk->sk_protocol,
1386 				    .flags = ip_reply_arg_flowi_flags(arg) };
1387 		security_skb_classify_flow(skb, &fl);
1388 		if (ip_route_output_key(sock_net(sk), &rt, &fl))
1389 			return;
1390 	}
1391 
1392 	/* And let IP do all the hard work.
1393 
1394 	   This chunk is not reenterable, hence spinlock.
1395 	   Note that it uses the fact, that this function is called
1396 	   with locally disabled BH and that sk cannot be already spinlocked.
1397 	 */
1398 	bh_lock_sock(sk);
1399 	inet->tos = ip_hdr(skb)->tos;
1400 	sk->sk_priority = skb->priority;
1401 	sk->sk_protocol = ip_hdr(skb)->protocol;
1402 	sk->sk_bound_dev_if = arg->bound_dev_if;
1403 	ip_append_data(sk, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1404 		       &ipc, &rt, MSG_DONTWAIT);
1405 	if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1406 		if (arg->csumoffset >= 0)
1407 			*((__sum16 *)skb_transport_header(skb) +
1408 			  arg->csumoffset) = csum_fold(csum_add(skb->csum,
1409 								arg->csum));
1410 		skb->ip_summed = CHECKSUM_NONE;
1411 		ip_push_pending_frames(sk);
1412 	}
1413 
1414 	bh_unlock_sock(sk);
1415 
1416 	ip_rt_put(rt);
1417 }
1418 
ip_init(void)1419 void __init ip_init(void)
1420 {
1421 	ip_rt_init();
1422 	inet_initpeers();
1423 
1424 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1425 	igmp_mc_proc_init();
1426 #endif
1427 }
1428 
1429 EXPORT_SYMBOL(ip_generic_getfrag);
1430 EXPORT_SYMBOL(ip_queue_xmit);
1431 EXPORT_SYMBOL(ip_send_check);
1432