• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*********************************************************************
2  *
3  * Filename:      irttp.c
4  * Version:       1.2
5  * Description:   Tiny Transport Protocol (TTP) implementation
6  * Status:        Stable
7  * Author:        Dag Brattli <dagb@cs.uit.no>
8  * Created at:    Sun Aug 31 20:14:31 1997
9  * Modified at:   Wed Jan  5 11:31:27 2000
10  * Modified by:   Dag Brattli <dagb@cs.uit.no>
11  *
12  *     Copyright (c) 1998-2000 Dag Brattli <dagb@cs.uit.no>,
13  *     All Rights Reserved.
14  *     Copyright (c) 2000-2003 Jean Tourrilhes <jt@hpl.hp.com>
15  *
16  *     This program is free software; you can redistribute it and/or
17  *     modify it under the terms of the GNU General Public License as
18  *     published by the Free Software Foundation; either version 2 of
19  *     the License, or (at your option) any later version.
20  *
21  *     Neither Dag Brattli nor University of Tromsø admit liability nor
22  *     provide warranty for any of this software. This material is
23  *     provided "AS-IS" and at no charge.
24  *
25  ********************************************************************/
26 
27 #include <linux/skbuff.h>
28 #include <linux/init.h>
29 #include <linux/fs.h>
30 #include <linux/seq_file.h>
31 
32 #include <asm/byteorder.h>
33 #include <asm/unaligned.h>
34 
35 #include <net/irda/irda.h>
36 #include <net/irda/irlap.h>
37 #include <net/irda/irlmp.h>
38 #include <net/irda/parameters.h>
39 #include <net/irda/irttp.h>
40 
41 static struct irttp_cb *irttp;
42 
43 static void __irttp_close_tsap(struct tsap_cb *self);
44 
45 static int irttp_data_indication(void *instance, void *sap,
46 				 struct sk_buff *skb);
47 static int irttp_udata_indication(void *instance, void *sap,
48 				  struct sk_buff *skb);
49 static void irttp_disconnect_indication(void *instance, void *sap,
50 					LM_REASON reason, struct sk_buff *);
51 static void irttp_connect_indication(void *instance, void *sap,
52 				     struct qos_info *qos, __u32 max_sdu_size,
53 				     __u8 header_size, struct sk_buff *skb);
54 static void irttp_connect_confirm(void *instance, void *sap,
55 				  struct qos_info *qos, __u32 max_sdu_size,
56 				  __u8 header_size, struct sk_buff *skb);
57 static void irttp_run_tx_queue(struct tsap_cb *self);
58 static void irttp_run_rx_queue(struct tsap_cb *self);
59 
60 static void irttp_flush_queues(struct tsap_cb *self);
61 static void irttp_fragment_skb(struct tsap_cb *self, struct sk_buff *skb);
62 static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self);
63 static void irttp_todo_expired(unsigned long data);
64 static int irttp_param_max_sdu_size(void *instance, irda_param_t *param,
65 				    int get);
66 
67 static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow);
68 static void irttp_status_indication(void *instance,
69 				    LINK_STATUS link, LOCK_STATUS lock);
70 
71 /* Information for parsing parameters in IrTTP */
72 static pi_minor_info_t pi_minor_call_table[] = {
73 	{ NULL, 0 },                                             /* 0x00 */
74 	{ irttp_param_max_sdu_size, PV_INTEGER | PV_BIG_ENDIAN } /* 0x01 */
75 };
76 static pi_major_info_t pi_major_call_table[] = {{ pi_minor_call_table, 2 }};
77 static pi_param_info_t param_info = { pi_major_call_table, 1, 0x0f, 4 };
78 
79 /************************ GLOBAL PROCEDURES ************************/
80 
81 /*
82  * Function irttp_init (void)
83  *
84  *    Initialize the IrTTP layer. Called by module initialization code
85  *
86  */
irttp_init(void)87 int __init irttp_init(void)
88 {
89 	irttp = kzalloc(sizeof(struct irttp_cb), GFP_KERNEL);
90 	if (irttp == NULL)
91 		return -ENOMEM;
92 
93 	irttp->magic = TTP_MAGIC;
94 
95 	irttp->tsaps = hashbin_new(HB_LOCK);
96 	if (!irttp->tsaps) {
97 		IRDA_ERROR("%s: can't allocate IrTTP hashbin!\n",
98 			   __func__);
99 		kfree(irttp);
100 		return -ENOMEM;
101 	}
102 
103 	return 0;
104 }
105 
106 /*
107  * Function irttp_cleanup (void)
108  *
109  *    Called by module destruction/cleanup code
110  *
111  */
irttp_cleanup(void)112 void irttp_cleanup(void)
113 {
114 	/* Check for main structure */
115 	IRDA_ASSERT(irttp->magic == TTP_MAGIC, return;);
116 
117 	/*
118 	 *  Delete hashbin and close all TSAP instances in it
119 	 */
120 	hashbin_delete(irttp->tsaps, (FREE_FUNC) __irttp_close_tsap);
121 
122 	irttp->magic = 0;
123 
124 	/* De-allocate main structure */
125 	kfree(irttp);
126 
127 	irttp = NULL;
128 }
129 
130 /*************************** SUBROUTINES ***************************/
131 
132 /*
133  * Function irttp_start_todo_timer (self, timeout)
134  *
135  *    Start todo timer.
136  *
137  * Made it more effient and unsensitive to race conditions - Jean II
138  */
irttp_start_todo_timer(struct tsap_cb * self,int timeout)139 static inline void irttp_start_todo_timer(struct tsap_cb *self, int timeout)
140 {
141 	/* Set new value for timer */
142 	mod_timer(&self->todo_timer, jiffies + timeout);
143 }
144 
145 /*
146  * Function irttp_todo_expired (data)
147  *
148  *    Todo timer has expired!
149  *
150  * One of the restriction of the timer is that it is run only on the timer
151  * interrupt which run every 10ms. This mean that even if you set the timer
152  * with a delay of 0, it may take up to 10ms before it's run.
153  * So, to minimise latency and keep cache fresh, we try to avoid using
154  * it as much as possible.
155  * Note : we can't use tasklets, because they can't be asynchronously
156  * killed (need user context), and we can't guarantee that here...
157  * Jean II
158  */
irttp_todo_expired(unsigned long data)159 static void irttp_todo_expired(unsigned long data)
160 {
161 	struct tsap_cb *self = (struct tsap_cb *) data;
162 
163 	/* Check that we still exist */
164 	if (!self || self->magic != TTP_TSAP_MAGIC)
165 		return;
166 
167 	IRDA_DEBUG(4, "%s(instance=%p)\n", __func__, self);
168 
169 	/* Try to make some progress, especially on Tx side - Jean II */
170 	irttp_run_rx_queue(self);
171 	irttp_run_tx_queue(self);
172 
173 	/* Check if time for disconnect */
174 	if (test_bit(0, &self->disconnect_pend)) {
175 		/* Check if it's possible to disconnect yet */
176 		if (skb_queue_empty(&self->tx_queue)) {
177 			/* Make sure disconnect is not pending anymore */
178 			clear_bit(0, &self->disconnect_pend);	/* FALSE */
179 
180 			/* Note : self->disconnect_skb may be NULL */
181 			irttp_disconnect_request(self, self->disconnect_skb,
182 						 P_NORMAL);
183 			self->disconnect_skb = NULL;
184 		} else {
185 			/* Try again later */
186 			irttp_start_todo_timer(self, HZ/10);
187 
188 			/* No reason to try and close now */
189 			return;
190 		}
191 	}
192 
193 	/* Check if it's closing time */
194 	if (self->close_pend)
195 		/* Finish cleanup */
196 		irttp_close_tsap(self);
197 }
198 
199 /*
200  * Function irttp_flush_queues (self)
201  *
202  *     Flushes (removes all frames) in transitt-buffer (tx_list)
203  */
irttp_flush_queues(struct tsap_cb * self)204 static void irttp_flush_queues(struct tsap_cb *self)
205 {
206 	struct sk_buff* skb;
207 
208 	IRDA_DEBUG(4, "%s()\n", __func__);
209 
210 	IRDA_ASSERT(self != NULL, return;);
211 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
212 
213 	/* Deallocate frames waiting to be sent */
214 	while ((skb = skb_dequeue(&self->tx_queue)) != NULL)
215 		dev_kfree_skb(skb);
216 
217 	/* Deallocate received frames */
218 	while ((skb = skb_dequeue(&self->rx_queue)) != NULL)
219 		dev_kfree_skb(skb);
220 
221 	/* Deallocate received fragments */
222 	while ((skb = skb_dequeue(&self->rx_fragments)) != NULL)
223 		dev_kfree_skb(skb);
224 }
225 
226 /*
227  * Function irttp_reassemble (self)
228  *
229  *    Makes a new (continuous) skb of all the fragments in the fragment
230  *    queue
231  *
232  */
irttp_reassemble_skb(struct tsap_cb * self)233 static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self)
234 {
235 	struct sk_buff *skb, *frag;
236 	int n = 0;  /* Fragment index */
237 
238 	IRDA_ASSERT(self != NULL, return NULL;);
239 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return NULL;);
240 
241 	IRDA_DEBUG(2, "%s(), self->rx_sdu_size=%d\n", __func__,
242 		   self->rx_sdu_size);
243 
244 	skb = dev_alloc_skb(TTP_HEADER + self->rx_sdu_size);
245 	if (!skb)
246 		return NULL;
247 
248 	/*
249 	 * Need to reserve space for TTP header in case this skb needs to
250 	 * be requeued in case delivery failes
251 	 */
252 	skb_reserve(skb, TTP_HEADER);
253 	skb_put(skb, self->rx_sdu_size);
254 
255 	/*
256 	 *  Copy all fragments to a new buffer
257 	 */
258 	while ((frag = skb_dequeue(&self->rx_fragments)) != NULL) {
259 		skb_copy_to_linear_data_offset(skb, n, frag->data, frag->len);
260 		n += frag->len;
261 
262 		dev_kfree_skb(frag);
263 	}
264 
265 	IRDA_DEBUG(2,
266 		   "%s(), frame len=%d, rx_sdu_size=%d, rx_max_sdu_size=%d\n",
267 		   __func__, n, self->rx_sdu_size, self->rx_max_sdu_size);
268 	/* Note : irttp_run_rx_queue() calculate self->rx_sdu_size
269 	 * by summing the size of all fragments, so we should always
270 	 * have n == self->rx_sdu_size, except in cases where we
271 	 * droped the last fragment (when self->rx_sdu_size exceed
272 	 * self->rx_max_sdu_size), where n < self->rx_sdu_size.
273 	 * Jean II */
274 	IRDA_ASSERT(n <= self->rx_sdu_size, n = self->rx_sdu_size;);
275 
276 	/* Set the new length */
277 	skb_trim(skb, n);
278 
279 	self->rx_sdu_size = 0;
280 
281 	return skb;
282 }
283 
284 /*
285  * Function irttp_fragment_skb (skb)
286  *
287  *    Fragments a frame and queues all the fragments for transmission
288  *
289  */
irttp_fragment_skb(struct tsap_cb * self,struct sk_buff * skb)290 static inline void irttp_fragment_skb(struct tsap_cb *self,
291 				      struct sk_buff *skb)
292 {
293 	struct sk_buff *frag;
294 	__u8 *frame;
295 
296 	IRDA_DEBUG(2, "%s()\n", __func__);
297 
298 	IRDA_ASSERT(self != NULL, return;);
299 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
300 	IRDA_ASSERT(skb != NULL, return;);
301 
302 	/*
303 	 *  Split frame into a number of segments
304 	 */
305 	while (skb->len > self->max_seg_size) {
306 		IRDA_DEBUG(2, "%s(), fragmenting ...\n", __func__);
307 
308 		/* Make new segment */
309 		frag = alloc_skb(self->max_seg_size+self->max_header_size,
310 				 GFP_ATOMIC);
311 		if (!frag)
312 			return;
313 
314 		skb_reserve(frag, self->max_header_size);
315 
316 		/* Copy data from the original skb into this fragment. */
317 		skb_copy_from_linear_data(skb, skb_put(frag, self->max_seg_size),
318 			      self->max_seg_size);
319 
320 		/* Insert TTP header, with the more bit set */
321 		frame = skb_push(frag, TTP_HEADER);
322 		frame[0] = TTP_MORE;
323 
324 		/* Hide the copied data from the original skb */
325 		skb_pull(skb, self->max_seg_size);
326 
327 		/* Queue fragment */
328 		skb_queue_tail(&self->tx_queue, frag);
329 	}
330 	/* Queue what is left of the original skb */
331 	IRDA_DEBUG(2, "%s(), queuing last segment\n", __func__);
332 
333 	frame = skb_push(skb, TTP_HEADER);
334 	frame[0] = 0x00; /* Clear more bit */
335 
336 	/* Queue fragment */
337 	skb_queue_tail(&self->tx_queue, skb);
338 }
339 
340 /*
341  * Function irttp_param_max_sdu_size (self, param)
342  *
343  *    Handle the MaxSduSize parameter in the connect frames, this function
344  *    will be called both when this parameter needs to be inserted into, and
345  *    extracted from the connect frames
346  */
irttp_param_max_sdu_size(void * instance,irda_param_t * param,int get)347 static int irttp_param_max_sdu_size(void *instance, irda_param_t *param,
348 				    int get)
349 {
350 	struct tsap_cb *self;
351 
352 	self = (struct tsap_cb *) instance;
353 
354 	IRDA_ASSERT(self != NULL, return -1;);
355 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
356 
357 	if (get)
358 		param->pv.i = self->tx_max_sdu_size;
359 	else
360 		self->tx_max_sdu_size = param->pv.i;
361 
362 	IRDA_DEBUG(1, "%s(), MaxSduSize=%d\n", __func__, param->pv.i);
363 
364 	return 0;
365 }
366 
367 /*************************** CLIENT CALLS ***************************/
368 /************************** LMP CALLBACKS **************************/
369 /* Everything is happily mixed up. Waiting for next clean up - Jean II */
370 
371 /*
372  * Initialization, that has to be done on new tsap
373  * instance allocation and on duplication
374  */
irttp_init_tsap(struct tsap_cb * tsap)375 static void irttp_init_tsap(struct tsap_cb *tsap)
376 {
377 	spin_lock_init(&tsap->lock);
378 	init_timer(&tsap->todo_timer);
379 
380 	skb_queue_head_init(&tsap->rx_queue);
381 	skb_queue_head_init(&tsap->tx_queue);
382 	skb_queue_head_init(&tsap->rx_fragments);
383 }
384 
385 /*
386  * Function irttp_open_tsap (stsap, notify)
387  *
388  *    Create TSAP connection endpoint,
389  */
irttp_open_tsap(__u8 stsap_sel,int credit,notify_t * notify)390 struct tsap_cb *irttp_open_tsap(__u8 stsap_sel, int credit, notify_t *notify)
391 {
392 	struct tsap_cb *self;
393 	struct lsap_cb *lsap;
394 	notify_t ttp_notify;
395 
396 	IRDA_ASSERT(irttp->magic == TTP_MAGIC, return NULL;);
397 
398 	/* The IrLMP spec (IrLMP 1.1 p10) says that we have the right to
399 	 * use only 0x01-0x6F. Of course, we can use LSAP_ANY as well.
400 	 * JeanII */
401 	if((stsap_sel != LSAP_ANY) &&
402 	   ((stsap_sel < 0x01) || (stsap_sel >= 0x70))) {
403 		IRDA_DEBUG(0, "%s(), invalid tsap!\n", __func__);
404 		return NULL;
405 	}
406 
407 	self = kzalloc(sizeof(struct tsap_cb), GFP_ATOMIC);
408 	if (self == NULL) {
409 		IRDA_DEBUG(0, "%s(), unable to kmalloc!\n", __func__);
410 		return NULL;
411 	}
412 
413 	/* Initialize internal objects */
414 	irttp_init_tsap(self);
415 
416 	/* Initialise todo timer */
417 	self->todo_timer.data     = (unsigned long) self;
418 	self->todo_timer.function = &irttp_todo_expired;
419 
420 	/* Initialize callbacks for IrLMP to use */
421 	irda_notify_init(&ttp_notify);
422 	ttp_notify.connect_confirm = irttp_connect_confirm;
423 	ttp_notify.connect_indication = irttp_connect_indication;
424 	ttp_notify.disconnect_indication = irttp_disconnect_indication;
425 	ttp_notify.data_indication = irttp_data_indication;
426 	ttp_notify.udata_indication = irttp_udata_indication;
427 	ttp_notify.flow_indication = irttp_flow_indication;
428 	if(notify->status_indication != NULL)
429 		ttp_notify.status_indication = irttp_status_indication;
430 	ttp_notify.instance = self;
431 	strncpy(ttp_notify.name, notify->name, NOTIFY_MAX_NAME);
432 
433 	self->magic = TTP_TSAP_MAGIC;
434 	self->connected = FALSE;
435 
436 	/*
437 	 *  Create LSAP at IrLMP layer
438 	 */
439 	lsap = irlmp_open_lsap(stsap_sel, &ttp_notify, 0);
440 	if (lsap == NULL) {
441 		IRDA_WARNING("%s: unable to allocate LSAP!!\n", __func__);
442 		return NULL;
443 	}
444 
445 	/*
446 	 *  If user specified LSAP_ANY as source TSAP selector, then IrLMP
447 	 *  will replace it with whatever source selector which is free, so
448 	 *  the stsap_sel we have might not be valid anymore
449 	 */
450 	self->stsap_sel = lsap->slsap_sel;
451 	IRDA_DEBUG(4, "%s(), stsap_sel=%02x\n", __func__, self->stsap_sel);
452 
453 	self->notify = *notify;
454 	self->lsap = lsap;
455 
456 	hashbin_insert(irttp->tsaps, (irda_queue_t *) self, (long) self, NULL);
457 
458 	if (credit > TTP_RX_MAX_CREDIT)
459 		self->initial_credit = TTP_RX_MAX_CREDIT;
460 	else
461 		self->initial_credit = credit;
462 
463 	return self;
464 }
465 EXPORT_SYMBOL(irttp_open_tsap);
466 
467 /*
468  * Function irttp_close (handle)
469  *
470  *    Remove an instance of a TSAP. This function should only deal with the
471  *    deallocation of the TSAP, and resetting of the TSAPs values;
472  *
473  */
__irttp_close_tsap(struct tsap_cb * self)474 static void __irttp_close_tsap(struct tsap_cb *self)
475 {
476 	/* First make sure we're connected. */
477 	IRDA_ASSERT(self != NULL, return;);
478 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
479 
480 	irttp_flush_queues(self);
481 
482 	del_timer(&self->todo_timer);
483 
484 	/* This one won't be cleaned up if we are disconnect_pend + close_pend
485 	 * and we receive a disconnect_indication */
486 	if (self->disconnect_skb)
487 		dev_kfree_skb(self->disconnect_skb);
488 
489 	self->connected = FALSE;
490 	self->magic = ~TTP_TSAP_MAGIC;
491 
492 	kfree(self);
493 }
494 
495 /*
496  * Function irttp_close (self)
497  *
498  *    Remove TSAP from list of all TSAPs and then deallocate all resources
499  *    associated with this TSAP
500  *
501  * Note : because we *free* the tsap structure, it is the responsibility
502  * of the caller to make sure we are called only once and to deal with
503  * possible race conditions. - Jean II
504  */
irttp_close_tsap(struct tsap_cb * self)505 int irttp_close_tsap(struct tsap_cb *self)
506 {
507 	struct tsap_cb *tsap;
508 
509 	IRDA_DEBUG(4, "%s()\n", __func__);
510 
511 	IRDA_ASSERT(self != NULL, return -1;);
512 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
513 
514 	/* Make sure tsap has been disconnected */
515 	if (self->connected) {
516 		/* Check if disconnect is not pending */
517 		if (!test_bit(0, &self->disconnect_pend)) {
518 			IRDA_WARNING("%s: TSAP still connected!\n",
519 				     __func__);
520 			irttp_disconnect_request(self, NULL, P_NORMAL);
521 		}
522 		self->close_pend = TRUE;
523 		irttp_start_todo_timer(self, HZ/10);
524 
525 		return 0; /* Will be back! */
526 	}
527 
528 	tsap = hashbin_remove(irttp->tsaps, (long) self, NULL);
529 
530 	IRDA_ASSERT(tsap == self, return -1;);
531 
532 	/* Close corresponding LSAP */
533 	if (self->lsap) {
534 		irlmp_close_lsap(self->lsap);
535 		self->lsap = NULL;
536 	}
537 
538 	__irttp_close_tsap(self);
539 
540 	return 0;
541 }
542 EXPORT_SYMBOL(irttp_close_tsap);
543 
544 /*
545  * Function irttp_udata_request (self, skb)
546  *
547  *    Send unreliable data on this TSAP
548  *
549  */
irttp_udata_request(struct tsap_cb * self,struct sk_buff * skb)550 int irttp_udata_request(struct tsap_cb *self, struct sk_buff *skb)
551 {
552 	IRDA_ASSERT(self != NULL, return -1;);
553 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
554 	IRDA_ASSERT(skb != NULL, return -1;);
555 
556 	IRDA_DEBUG(4, "%s()\n", __func__);
557 
558 	/* Check that nothing bad happens */
559 	if ((skb->len == 0) || (!self->connected)) {
560 		IRDA_DEBUG(1, "%s(), No data, or not connected\n",
561 			   __func__);
562 		goto err;
563 	}
564 
565 	if (skb->len > self->max_seg_size) {
566 		IRDA_DEBUG(1, "%s(), UData is too large for IrLAP!\n",
567 			   __func__);
568 		goto err;
569 	}
570 
571 	irlmp_udata_request(self->lsap, skb);
572 	self->stats.tx_packets++;
573 
574 	return 0;
575 
576 err:
577 	dev_kfree_skb(skb);
578 	return -1;
579 }
580 EXPORT_SYMBOL(irttp_udata_request);
581 
582 
583 /*
584  * Function irttp_data_request (handle, skb)
585  *
586  *    Queue frame for transmission. If SAR is enabled, fragement the frame
587  *    and queue the fragments for transmission
588  */
irttp_data_request(struct tsap_cb * self,struct sk_buff * skb)589 int irttp_data_request(struct tsap_cb *self, struct sk_buff *skb)
590 {
591 	__u8 *frame;
592 	int ret;
593 
594 	IRDA_ASSERT(self != NULL, return -1;);
595 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
596 	IRDA_ASSERT(skb != NULL, return -1;);
597 
598 	IRDA_DEBUG(2, "%s() : queue len = %d\n", __func__,
599 		   skb_queue_len(&self->tx_queue));
600 
601 	/* Check that nothing bad happens */
602 	if ((skb->len == 0) || (!self->connected)) {
603 		IRDA_WARNING("%s: No data, or not connected\n", __func__);
604 		ret = -ENOTCONN;
605 		goto err;
606 	}
607 
608 	/*
609 	 *  Check if SAR is disabled, and the frame is larger than what fits
610 	 *  inside an IrLAP frame
611 	 */
612 	if ((self->tx_max_sdu_size == 0) && (skb->len > self->max_seg_size)) {
613 		IRDA_ERROR("%s: SAR disabled, and data is too large for IrLAP!\n",
614 			   __func__);
615 		ret = -EMSGSIZE;
616 		goto err;
617 	}
618 
619 	/*
620 	 *  Check if SAR is enabled, and the frame is larger than the
621 	 *  TxMaxSduSize
622 	 */
623 	if ((self->tx_max_sdu_size != 0) &&
624 	    (self->tx_max_sdu_size != TTP_SAR_UNBOUND) &&
625 	    (skb->len > self->tx_max_sdu_size))
626 	{
627 		IRDA_ERROR("%s: SAR enabled, but data is larger than TxMaxSduSize!\n",
628 			   __func__);
629 		ret = -EMSGSIZE;
630 		goto err;
631 	}
632 	/*
633 	 *  Check if transmit queue is full
634 	 */
635 	if (skb_queue_len(&self->tx_queue) >= TTP_TX_MAX_QUEUE) {
636 		/*
637 		 *  Give it a chance to empty itself
638 		 */
639 		irttp_run_tx_queue(self);
640 
641 		/* Drop packet. This error code should trigger the caller
642 		 * to resend the data in the client code - Jean II */
643 		ret = -ENOBUFS;
644 		goto err;
645 	}
646 
647 	/* Queue frame, or queue frame segments */
648 	if ((self->tx_max_sdu_size == 0) || (skb->len < self->max_seg_size)) {
649 		/* Queue frame */
650 		IRDA_ASSERT(skb_headroom(skb) >= TTP_HEADER, return -1;);
651 		frame = skb_push(skb, TTP_HEADER);
652 		frame[0] = 0x00; /* Clear more bit */
653 
654 		skb_queue_tail(&self->tx_queue, skb);
655 	} else {
656 		/*
657 		 *  Fragment the frame, this function will also queue the
658 		 *  fragments, we don't care about the fact the transmit
659 		 *  queue may be overfilled by all the segments for a little
660 		 *  while
661 		 */
662 		irttp_fragment_skb(self, skb);
663 	}
664 
665 	/* Check if we can accept more data from client */
666 	if ((!self->tx_sdu_busy) &&
667 	    (skb_queue_len(&self->tx_queue) > TTP_TX_HIGH_THRESHOLD)) {
668 		/* Tx queue filling up, so stop client. */
669 		if (self->notify.flow_indication) {
670 			self->notify.flow_indication(self->notify.instance,
671 						     self, FLOW_STOP);
672 		}
673 		/* self->tx_sdu_busy is the state of the client.
674 		 * Update state after notifying client to avoid
675 		 * race condition with irttp_flow_indication().
676 		 * If the queue empty itself after our test but before
677 		 * we set the flag, we will fix ourselves below in
678 		 * irttp_run_tx_queue().
679 		 * Jean II */
680 		self->tx_sdu_busy = TRUE;
681 	}
682 
683 	/* Try to make some progress */
684 	irttp_run_tx_queue(self);
685 
686 	return 0;
687 
688 err:
689 	dev_kfree_skb(skb);
690 	return ret;
691 }
692 EXPORT_SYMBOL(irttp_data_request);
693 
694 /*
695  * Function irttp_run_tx_queue (self)
696  *
697  *    Transmit packets queued for transmission (if possible)
698  *
699  */
irttp_run_tx_queue(struct tsap_cb * self)700 static void irttp_run_tx_queue(struct tsap_cb *self)
701 {
702 	struct sk_buff *skb;
703 	unsigned long flags;
704 	int n;
705 
706 	IRDA_DEBUG(2, "%s() : send_credit = %d, queue_len = %d\n",
707 		   __func__,
708 		   self->send_credit, skb_queue_len(&self->tx_queue));
709 
710 	/* Get exclusive access to the tx queue, otherwise don't touch it */
711 	if (irda_lock(&self->tx_queue_lock) == FALSE)
712 		return;
713 
714 	/* Try to send out frames as long as we have credits
715 	 * and as long as LAP is not full. If LAP is full, it will
716 	 * poll us through irttp_flow_indication() - Jean II */
717 	while ((self->send_credit > 0) &&
718 	       (!irlmp_lap_tx_queue_full(self->lsap)) &&
719 	       (skb = skb_dequeue(&self->tx_queue)))
720 	{
721 		/*
722 		 *  Since we can transmit and receive frames concurrently,
723 		 *  the code below is a critical region and we must assure that
724 		 *  nobody messes with the credits while we update them.
725 		 */
726 		spin_lock_irqsave(&self->lock, flags);
727 
728 		n = self->avail_credit;
729 		self->avail_credit = 0;
730 
731 		/* Only room for 127 credits in frame */
732 		if (n > 127) {
733 			self->avail_credit = n-127;
734 			n = 127;
735 		}
736 		self->remote_credit += n;
737 		self->send_credit--;
738 
739 		spin_unlock_irqrestore(&self->lock, flags);
740 
741 		/*
742 		 *  More bit must be set by the data_request() or fragment()
743 		 *  functions
744 		 */
745 		skb->data[0] |= (n & 0x7f);
746 
747 		/* Detach from socket.
748 		 * The current skb has a reference to the socket that sent
749 		 * it (skb->sk). When we pass it to IrLMP, the skb will be
750 		 * stored in in IrLAP (self->wx_list). When we are within
751 		 * IrLAP, we lose the notion of socket, so we should not
752 		 * have a reference to a socket. So, we drop it here.
753 		 *
754 		 * Why does it matter ?
755 		 * When the skb is freed (kfree_skb), if it is associated
756 		 * with a socket, it release buffer space on the socket
757 		 * (through sock_wfree() and sock_def_write_space()).
758 		 * If the socket no longer exist, we may crash. Hard.
759 		 * When we close a socket, we make sure that associated packets
760 		 * in IrTTP are freed. However, we have no way to cancel
761 		 * the packet that we have passed to IrLAP. So, if a packet
762 		 * remains in IrLAP (retry on the link or else) after we
763 		 * close the socket, we are dead !
764 		 * Jean II */
765 		if (skb->sk != NULL) {
766 			/* IrSOCK application, IrOBEX, ... */
767 			skb_orphan(skb);
768 		}
769 			/* IrCOMM over IrTTP, IrLAN, ... */
770 
771 		/* Pass the skb to IrLMP - done */
772 		irlmp_data_request(self->lsap, skb);
773 		self->stats.tx_packets++;
774 	}
775 
776 	/* Check if we can accept more frames from client.
777 	 * We don't want to wait until the todo timer to do that, and we
778 	 * can't use tasklets (grr...), so we are obliged to give control
779 	 * to client. That's ok, this test will be true not too often
780 	 * (max once per LAP window) and we are called from places
781 	 * where we can spend a bit of time doing stuff. - Jean II */
782 	if ((self->tx_sdu_busy) &&
783 	    (skb_queue_len(&self->tx_queue) < TTP_TX_LOW_THRESHOLD) &&
784 	    (!self->close_pend))
785 	{
786 		if (self->notify.flow_indication)
787 			self->notify.flow_indication(self->notify.instance,
788 						     self, FLOW_START);
789 
790 		/* self->tx_sdu_busy is the state of the client.
791 		 * We don't really have a race here, but it's always safer
792 		 * to update our state after the client - Jean II */
793 		self->tx_sdu_busy = FALSE;
794 	}
795 
796 	/* Reset lock */
797 	self->tx_queue_lock = 0;
798 }
799 
800 /*
801  * Function irttp_give_credit (self)
802  *
803  *    Send a dataless flowdata TTP-PDU and give available credit to peer
804  *    TSAP
805  */
irttp_give_credit(struct tsap_cb * self)806 static inline void irttp_give_credit(struct tsap_cb *self)
807 {
808 	struct sk_buff *tx_skb = NULL;
809 	unsigned long flags;
810 	int n;
811 
812 	IRDA_ASSERT(self != NULL, return;);
813 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
814 
815 	IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n",
816 		   __func__,
817 		   self->send_credit, self->avail_credit, self->remote_credit);
818 
819 	/* Give credit to peer */
820 	tx_skb = alloc_skb(TTP_MAX_HEADER, GFP_ATOMIC);
821 	if (!tx_skb)
822 		return;
823 
824 	/* Reserve space for LMP, and LAP header */
825 	skb_reserve(tx_skb, LMP_MAX_HEADER);
826 
827 	/*
828 	 *  Since we can transmit and receive frames concurrently,
829 	 *  the code below is a critical region and we must assure that
830 	 *  nobody messes with the credits while we update them.
831 	 */
832 	spin_lock_irqsave(&self->lock, flags);
833 
834 	n = self->avail_credit;
835 	self->avail_credit = 0;
836 
837 	/* Only space for 127 credits in frame */
838 	if (n > 127) {
839 		self->avail_credit = n - 127;
840 		n = 127;
841 	}
842 	self->remote_credit += n;
843 
844 	spin_unlock_irqrestore(&self->lock, flags);
845 
846 	skb_put(tx_skb, 1);
847 	tx_skb->data[0] = (__u8) (n & 0x7f);
848 
849 	irlmp_data_request(self->lsap, tx_skb);
850 	self->stats.tx_packets++;
851 }
852 
853 /*
854  * Function irttp_udata_indication (instance, sap, skb)
855  *
856  *    Received some unit-data (unreliable)
857  *
858  */
irttp_udata_indication(void * instance,void * sap,struct sk_buff * skb)859 static int irttp_udata_indication(void *instance, void *sap,
860 				  struct sk_buff *skb)
861 {
862 	struct tsap_cb *self;
863 	int err;
864 
865 	IRDA_DEBUG(4, "%s()\n", __func__);
866 
867 	self = (struct tsap_cb *) instance;
868 
869 	IRDA_ASSERT(self != NULL, return -1;);
870 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
871 	IRDA_ASSERT(skb != NULL, return -1;);
872 
873 	self->stats.rx_packets++;
874 
875 	/* Just pass data to layer above */
876 	if (self->notify.udata_indication) {
877 		err = self->notify.udata_indication(self->notify.instance,
878 						    self,skb);
879 		/* Same comment as in irttp_do_data_indication() */
880 		if (!err)
881 			return 0;
882 	}
883 	/* Either no handler, or handler returns an error */
884 	dev_kfree_skb(skb);
885 
886 	return 0;
887 }
888 
889 /*
890  * Function irttp_data_indication (instance, sap, skb)
891  *
892  *    Receive segment from IrLMP.
893  *
894  */
irttp_data_indication(void * instance,void * sap,struct sk_buff * skb)895 static int irttp_data_indication(void *instance, void *sap,
896 				 struct sk_buff *skb)
897 {
898 	struct tsap_cb *self;
899 	unsigned long flags;
900 	int n;
901 
902 	self = (struct tsap_cb *) instance;
903 
904 	n = skb->data[0] & 0x7f;     /* Extract the credits */
905 
906 	self->stats.rx_packets++;
907 
908 	/*  Deal with inbound credit
909 	 *  Since we can transmit and receive frames concurrently,
910 	 *  the code below is a critical region and we must assure that
911 	 *  nobody messes with the credits while we update them.
912 	 */
913 	spin_lock_irqsave(&self->lock, flags);
914 	self->send_credit += n;
915 	if (skb->len > 1)
916 		self->remote_credit--;
917 	spin_unlock_irqrestore(&self->lock, flags);
918 
919 	/*
920 	 *  Data or dataless packet? Dataless frames contains only the
921 	 *  TTP_HEADER.
922 	 */
923 	if (skb->len > 1) {
924 		/*
925 		 *  We don't remove the TTP header, since we must preserve the
926 		 *  more bit, so the defragment routing knows what to do
927 		 */
928 		skb_queue_tail(&self->rx_queue, skb);
929 	} else {
930 		/* Dataless flowdata TTP-PDU */
931 		dev_kfree_skb(skb);
932 	}
933 
934 
935 	/* Push data to the higher layer.
936 	 * We do it synchronously because running the todo timer for each
937 	 * receive packet would be too much overhead and latency.
938 	 * By passing control to the higher layer, we run the risk that
939 	 * it may take time or grab a lock. Most often, the higher layer
940 	 * will only put packet in a queue.
941 	 * Anyway, packets are only dripping through the IrDA, so we can
942 	 * have time before the next packet.
943 	 * Further, we are run from NET_BH, so the worse that can happen is
944 	 * us missing the optimal time to send back the PF bit in LAP.
945 	 * Jean II */
946 	irttp_run_rx_queue(self);
947 
948 	/* We now give credits to peer in irttp_run_rx_queue().
949 	 * We need to send credit *NOW*, otherwise we are going
950 	 * to miss the next Tx window. The todo timer may take
951 	 * a while before it's run... - Jean II */
952 
953 	/*
954 	 * If the peer device has given us some credits and we didn't have
955 	 * anyone from before, then we need to shedule the tx queue.
956 	 * We need to do that because our Tx have stopped (so we may not
957 	 * get any LAP flow indication) and the user may be stopped as
958 	 * well. - Jean II
959 	 */
960 	if (self->send_credit == n) {
961 		/* Restart pushing stuff to LAP */
962 		irttp_run_tx_queue(self);
963 		/* Note : we don't want to schedule the todo timer
964 		 * because it has horrible latency. No tasklets
965 		 * because the tasklet API is broken. - Jean II */
966 	}
967 
968 	return 0;
969 }
970 
971 /*
972  * Function irttp_status_indication (self, reason)
973  *
974  *    Status_indication, just pass to the higher layer...
975  *
976  */
irttp_status_indication(void * instance,LINK_STATUS link,LOCK_STATUS lock)977 static void irttp_status_indication(void *instance,
978 				    LINK_STATUS link, LOCK_STATUS lock)
979 {
980 	struct tsap_cb *self;
981 
982 	IRDA_DEBUG(4, "%s()\n", __func__);
983 
984 	self = (struct tsap_cb *) instance;
985 
986 	IRDA_ASSERT(self != NULL, return;);
987 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
988 
989 	/* Check if client has already closed the TSAP and gone away */
990 	if (self->close_pend)
991 		return;
992 
993 	/*
994 	 *  Inform service user if he has requested it
995 	 */
996 	if (self->notify.status_indication != NULL)
997 		self->notify.status_indication(self->notify.instance,
998 					       link, lock);
999 	else
1000 		IRDA_DEBUG(2, "%s(), no handler\n", __func__);
1001 }
1002 
1003 /*
1004  * Function irttp_flow_indication (self, reason)
1005  *
1006  *    Flow_indication : IrLAP tells us to send more data.
1007  *
1008  */
irttp_flow_indication(void * instance,void * sap,LOCAL_FLOW flow)1009 static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow)
1010 {
1011 	struct tsap_cb *self;
1012 
1013 	self = (struct tsap_cb *) instance;
1014 
1015 	IRDA_ASSERT(self != NULL, return;);
1016 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1017 
1018 	IRDA_DEBUG(4, "%s(instance=%p)\n", __func__, self);
1019 
1020 	/* We are "polled" directly from LAP, and the LAP want to fill
1021 	 * its Tx window. We want to do our best to send it data, so that
1022 	 * we maximise the window. On the other hand, we want to limit the
1023 	 * amount of work here so that LAP doesn't hang forever waiting
1024 	 * for packets. - Jean II */
1025 
1026 	/* Try to send some packets. Currently, LAP calls us every time
1027 	 * there is one free slot, so we will send only one packet.
1028 	 * This allow the scheduler to do its round robin - Jean II */
1029 	irttp_run_tx_queue(self);
1030 
1031 	/* Note regarding the interraction with higher layer.
1032 	 * irttp_run_tx_queue() may call the client when its queue
1033 	 * start to empty, via notify.flow_indication(). Initially.
1034 	 * I wanted this to happen in a tasklet, to avoid client
1035 	 * grabbing the CPU, but we can't use tasklets safely. And timer
1036 	 * is definitely too slow.
1037 	 * This will happen only once per LAP window, and usually at
1038 	 * the third packet (unless window is smaller). LAP is still
1039 	 * doing mtt and sending first packet so it's sort of OK
1040 	 * to do that. Jean II */
1041 
1042 	/* If we need to send disconnect. try to do it now */
1043 	if(self->disconnect_pend)
1044 		irttp_start_todo_timer(self, 0);
1045 }
1046 
1047 /*
1048  * Function irttp_flow_request (self, command)
1049  *
1050  *    This function could be used by the upper layers to tell IrTTP to stop
1051  *    delivering frames if the receive queues are starting to get full, or
1052  *    to tell IrTTP to start delivering frames again.
1053  */
irttp_flow_request(struct tsap_cb * self,LOCAL_FLOW flow)1054 void irttp_flow_request(struct tsap_cb *self, LOCAL_FLOW flow)
1055 {
1056 	IRDA_DEBUG(1, "%s()\n", __func__);
1057 
1058 	IRDA_ASSERT(self != NULL, return;);
1059 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1060 
1061 	switch (flow) {
1062 	case FLOW_STOP:
1063 		IRDA_DEBUG(1, "%s(), flow stop\n", __func__);
1064 		self->rx_sdu_busy = TRUE;
1065 		break;
1066 	case FLOW_START:
1067 		IRDA_DEBUG(1, "%s(), flow start\n", __func__);
1068 		self->rx_sdu_busy = FALSE;
1069 
1070 		/* Client say he can accept more data, try to free our
1071 		 * queues ASAP - Jean II */
1072 		irttp_run_rx_queue(self);
1073 
1074 		break;
1075 	default:
1076 		IRDA_DEBUG(1, "%s(), Unknown flow command!\n", __func__);
1077 	}
1078 }
1079 EXPORT_SYMBOL(irttp_flow_request);
1080 
1081 /*
1082  * Function irttp_connect_request (self, dtsap_sel, daddr, qos)
1083  *
1084  *    Try to connect to remote destination TSAP selector
1085  *
1086  */
irttp_connect_request(struct tsap_cb * self,__u8 dtsap_sel,__u32 saddr,__u32 daddr,struct qos_info * qos,__u32 max_sdu_size,struct sk_buff * userdata)1087 int irttp_connect_request(struct tsap_cb *self, __u8 dtsap_sel,
1088 			  __u32 saddr, __u32 daddr,
1089 			  struct qos_info *qos, __u32 max_sdu_size,
1090 			  struct sk_buff *userdata)
1091 {
1092 	struct sk_buff *tx_skb;
1093 	__u8 *frame;
1094 	__u8 n;
1095 
1096 	IRDA_DEBUG(4, "%s(), max_sdu_size=%d\n", __func__, max_sdu_size);
1097 
1098 	IRDA_ASSERT(self != NULL, return -EBADR;);
1099 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -EBADR;);
1100 
1101 	if (self->connected) {
1102 		if(userdata)
1103 			dev_kfree_skb(userdata);
1104 		return -EISCONN;
1105 	}
1106 
1107 	/* Any userdata supplied? */
1108 	if (userdata == NULL) {
1109 		tx_skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER,
1110 				   GFP_ATOMIC);
1111 		if (!tx_skb)
1112 			return -ENOMEM;
1113 
1114 		/* Reserve space for MUX_CONTROL and LAP header */
1115 		skb_reserve(tx_skb, TTP_MAX_HEADER + TTP_SAR_HEADER);
1116 	} else {
1117 		tx_skb = userdata;
1118 		/*
1119 		 *  Check that the client has reserved enough space for
1120 		 *  headers
1121 		 */
1122 		IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER,
1123 			{ dev_kfree_skb(userdata); return -1; } );
1124 	}
1125 
1126 	/* Initialize connection parameters */
1127 	self->connected = FALSE;
1128 	self->avail_credit = 0;
1129 	self->rx_max_sdu_size = max_sdu_size;
1130 	self->rx_sdu_size = 0;
1131 	self->rx_sdu_busy = FALSE;
1132 	self->dtsap_sel = dtsap_sel;
1133 
1134 	n = self->initial_credit;
1135 
1136 	self->remote_credit = 0;
1137 	self->send_credit = 0;
1138 
1139 	/*
1140 	 *  Give away max 127 credits for now
1141 	 */
1142 	if (n > 127) {
1143 		self->avail_credit=n-127;
1144 		n = 127;
1145 	}
1146 
1147 	self->remote_credit = n;
1148 
1149 	/* SAR enabled? */
1150 	if (max_sdu_size > 0) {
1151 		IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER),
1152 			{ dev_kfree_skb(tx_skb); return -1; } );
1153 
1154 		/* Insert SAR parameters */
1155 		frame = skb_push(tx_skb, TTP_HEADER+TTP_SAR_HEADER);
1156 
1157 		frame[0] = TTP_PARAMETERS | n;
1158 		frame[1] = 0x04; /* Length */
1159 		frame[2] = 0x01; /* MaxSduSize */
1160 		frame[3] = 0x02; /* Value length */
1161 
1162 		put_unaligned(cpu_to_be16((__u16) max_sdu_size),
1163 			      (__be16 *)(frame+4));
1164 	} else {
1165 		/* Insert plain TTP header */
1166 		frame = skb_push(tx_skb, TTP_HEADER);
1167 
1168 		/* Insert initial credit in frame */
1169 		frame[0] = n & 0x7f;
1170 	}
1171 
1172 	/* Connect with IrLMP. No QoS parameters for now */
1173 	return irlmp_connect_request(self->lsap, dtsap_sel, saddr, daddr, qos,
1174 				     tx_skb);
1175 }
1176 EXPORT_SYMBOL(irttp_connect_request);
1177 
1178 /*
1179  * Function irttp_connect_confirm (handle, qos, skb)
1180  *
1181  *    Sevice user confirms TSAP connection with peer.
1182  *
1183  */
irttp_connect_confirm(void * instance,void * sap,struct qos_info * qos,__u32 max_seg_size,__u8 max_header_size,struct sk_buff * skb)1184 static void irttp_connect_confirm(void *instance, void *sap,
1185 				  struct qos_info *qos, __u32 max_seg_size,
1186 				  __u8 max_header_size, struct sk_buff *skb)
1187 {
1188 	struct tsap_cb *self;
1189 	int parameters;
1190 	int ret;
1191 	__u8 plen;
1192 	__u8 n;
1193 
1194 	IRDA_DEBUG(4, "%s()\n", __func__);
1195 
1196 	self = (struct tsap_cb *) instance;
1197 
1198 	IRDA_ASSERT(self != NULL, return;);
1199 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1200 	IRDA_ASSERT(skb != NULL, return;);
1201 
1202 	self->max_seg_size = max_seg_size - TTP_HEADER;
1203 	self->max_header_size = max_header_size + TTP_HEADER;
1204 
1205 	/*
1206 	 *  Check if we have got some QoS parameters back! This should be the
1207 	 *  negotiated QoS for the link.
1208 	 */
1209 	if (qos) {
1210 		IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %02x\n",
1211 		       qos->baud_rate.bits);
1212 		IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %d bps.\n",
1213 		       qos->baud_rate.value);
1214 	}
1215 
1216 	n = skb->data[0] & 0x7f;
1217 
1218 	IRDA_DEBUG(4, "%s(), Initial send_credit=%d\n", __func__, n);
1219 
1220 	self->send_credit = n;
1221 	self->tx_max_sdu_size = 0;
1222 	self->connected = TRUE;
1223 
1224 	parameters = skb->data[0] & 0x80;
1225 
1226 	IRDA_ASSERT(skb->len >= TTP_HEADER, return;);
1227 	skb_pull(skb, TTP_HEADER);
1228 
1229 	if (parameters) {
1230 		plen = skb->data[0];
1231 
1232 		ret = irda_param_extract_all(self, skb->data+1,
1233 					     IRDA_MIN(skb->len-1, plen),
1234 					     &param_info);
1235 
1236 		/* Any errors in the parameter list? */
1237 		if (ret < 0) {
1238 			IRDA_WARNING("%s: error extracting parameters\n",
1239 				     __func__);
1240 			dev_kfree_skb(skb);
1241 
1242 			/* Do not accept this connection attempt */
1243 			return;
1244 		}
1245 		/* Remove parameters */
1246 		skb_pull(skb, IRDA_MIN(skb->len, plen+1));
1247 	}
1248 
1249 	IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n", __func__,
1250 	      self->send_credit, self->avail_credit, self->remote_credit);
1251 
1252 	IRDA_DEBUG(2, "%s(), MaxSduSize=%d\n", __func__,
1253 		   self->tx_max_sdu_size);
1254 
1255 	if (self->notify.connect_confirm) {
1256 		self->notify.connect_confirm(self->notify.instance, self, qos,
1257 					     self->tx_max_sdu_size,
1258 					     self->max_header_size, skb);
1259 	} else
1260 		dev_kfree_skb(skb);
1261 }
1262 
1263 /*
1264  * Function irttp_connect_indication (handle, skb)
1265  *
1266  *    Some other device is connecting to this TSAP
1267  *
1268  */
irttp_connect_indication(void * instance,void * sap,struct qos_info * qos,__u32 max_seg_size,__u8 max_header_size,struct sk_buff * skb)1269 static void irttp_connect_indication(void *instance, void *sap,
1270 		struct qos_info *qos, __u32 max_seg_size, __u8 max_header_size,
1271 		struct sk_buff *skb)
1272 {
1273 	struct tsap_cb *self;
1274 	struct lsap_cb *lsap;
1275 	int parameters;
1276 	int ret;
1277 	__u8 plen;
1278 	__u8 n;
1279 
1280 	self = (struct tsap_cb *) instance;
1281 
1282 	IRDA_ASSERT(self != NULL, return;);
1283 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1284 	IRDA_ASSERT(skb != NULL, return;);
1285 
1286 	lsap = (struct lsap_cb *) sap;
1287 
1288 	self->max_seg_size = max_seg_size - TTP_HEADER;
1289 	self->max_header_size = max_header_size+TTP_HEADER;
1290 
1291 	IRDA_DEBUG(4, "%s(), TSAP sel=%02x\n", __func__, self->stsap_sel);
1292 
1293 	/* Need to update dtsap_sel if its equal to LSAP_ANY */
1294 	self->dtsap_sel = lsap->dlsap_sel;
1295 
1296 	n = skb->data[0] & 0x7f;
1297 
1298 	self->send_credit = n;
1299 	self->tx_max_sdu_size = 0;
1300 
1301 	parameters = skb->data[0] & 0x80;
1302 
1303 	IRDA_ASSERT(skb->len >= TTP_HEADER, return;);
1304 	skb_pull(skb, TTP_HEADER);
1305 
1306 	if (parameters) {
1307 		plen = skb->data[0];
1308 
1309 		ret = irda_param_extract_all(self, skb->data+1,
1310 					     IRDA_MIN(skb->len-1, plen),
1311 					     &param_info);
1312 
1313 		/* Any errors in the parameter list? */
1314 		if (ret < 0) {
1315 			IRDA_WARNING("%s: error extracting parameters\n",
1316 				     __func__);
1317 			dev_kfree_skb(skb);
1318 
1319 			/* Do not accept this connection attempt */
1320 			return;
1321 		}
1322 
1323 		/* Remove parameters */
1324 		skb_pull(skb, IRDA_MIN(skb->len, plen+1));
1325 	}
1326 
1327 	if (self->notify.connect_indication) {
1328 		self->notify.connect_indication(self->notify.instance, self,
1329 						qos, self->tx_max_sdu_size,
1330 						self->max_header_size, skb);
1331 	} else
1332 		dev_kfree_skb(skb);
1333 }
1334 
1335 /*
1336  * Function irttp_connect_response (handle, userdata)
1337  *
1338  *    Service user is accepting the connection, just pass it down to
1339  *    IrLMP!
1340  *
1341  */
irttp_connect_response(struct tsap_cb * self,__u32 max_sdu_size,struct sk_buff * userdata)1342 int irttp_connect_response(struct tsap_cb *self, __u32 max_sdu_size,
1343 			   struct sk_buff *userdata)
1344 {
1345 	struct sk_buff *tx_skb;
1346 	__u8 *frame;
1347 	int ret;
1348 	__u8 n;
1349 
1350 	IRDA_ASSERT(self != NULL, return -1;);
1351 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
1352 
1353 	IRDA_DEBUG(4, "%s(), Source TSAP selector=%02x\n", __func__,
1354 		   self->stsap_sel);
1355 
1356 	/* Any userdata supplied? */
1357 	if (userdata == NULL) {
1358 		tx_skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER,
1359 				   GFP_ATOMIC);
1360 		if (!tx_skb)
1361 			return -ENOMEM;
1362 
1363 		/* Reserve space for MUX_CONTROL and LAP header */
1364 		skb_reserve(tx_skb, TTP_MAX_HEADER + TTP_SAR_HEADER);
1365 	} else {
1366 		tx_skb = userdata;
1367 		/*
1368 		 *  Check that the client has reserved enough space for
1369 		 *  headers
1370 		 */
1371 		IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER,
1372 			{ dev_kfree_skb(userdata); return -1; } );
1373 	}
1374 
1375 	self->avail_credit = 0;
1376 	self->remote_credit = 0;
1377 	self->rx_max_sdu_size = max_sdu_size;
1378 	self->rx_sdu_size = 0;
1379 	self->rx_sdu_busy = FALSE;
1380 
1381 	n = self->initial_credit;
1382 
1383 	/* Frame has only space for max 127 credits (7 bits) */
1384 	if (n > 127) {
1385 		self->avail_credit = n - 127;
1386 		n = 127;
1387 	}
1388 
1389 	self->remote_credit = n;
1390 	self->connected = TRUE;
1391 
1392 	/* SAR enabled? */
1393 	if (max_sdu_size > 0) {
1394 		IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER),
1395 			{ dev_kfree_skb(tx_skb); return -1; } );
1396 
1397 		/* Insert TTP header with SAR parameters */
1398 		frame = skb_push(tx_skb, TTP_HEADER+TTP_SAR_HEADER);
1399 
1400 		frame[0] = TTP_PARAMETERS | n;
1401 		frame[1] = 0x04; /* Length */
1402 
1403 		/* irda_param_insert(self, IRTTP_MAX_SDU_SIZE, frame+1,  */
1404 /*				  TTP_SAR_HEADER, &param_info) */
1405 
1406 		frame[2] = 0x01; /* MaxSduSize */
1407 		frame[3] = 0x02; /* Value length */
1408 
1409 		put_unaligned(cpu_to_be16((__u16) max_sdu_size),
1410 			      (__be16 *)(frame+4));
1411 	} else {
1412 		/* Insert TTP header */
1413 		frame = skb_push(tx_skb, TTP_HEADER);
1414 
1415 		frame[0] = n & 0x7f;
1416 	}
1417 
1418 	ret = irlmp_connect_response(self->lsap, tx_skb);
1419 
1420 	return ret;
1421 }
1422 EXPORT_SYMBOL(irttp_connect_response);
1423 
1424 /*
1425  * Function irttp_dup (self, instance)
1426  *
1427  *    Duplicate TSAP, can be used by servers to confirm a connection on a
1428  *    new TSAP so it can keep listening on the old one.
1429  */
irttp_dup(struct tsap_cb * orig,void * instance)1430 struct tsap_cb *irttp_dup(struct tsap_cb *orig, void *instance)
1431 {
1432 	struct tsap_cb *new;
1433 	unsigned long flags;
1434 
1435 	IRDA_DEBUG(1, "%s()\n", __func__);
1436 
1437 	/* Protect our access to the old tsap instance */
1438 	spin_lock_irqsave(&irttp->tsaps->hb_spinlock, flags);
1439 
1440 	/* Find the old instance */
1441 	if (!hashbin_find(irttp->tsaps, (long) orig, NULL)) {
1442 		IRDA_DEBUG(0, "%s(), unable to find TSAP\n", __func__);
1443 		spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
1444 		return NULL;
1445 	}
1446 
1447 	/* Allocate a new instance */
1448 	new = kmalloc(sizeof(struct tsap_cb), GFP_ATOMIC);
1449 	if (!new) {
1450 		IRDA_DEBUG(0, "%s(), unable to kmalloc\n", __func__);
1451 		spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
1452 		return NULL;
1453 	}
1454 	/* Dup */
1455 	memcpy(new, orig, sizeof(struct tsap_cb));
1456 
1457 	/* We don't need the old instance any more */
1458 	spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
1459 
1460 	/* Try to dup the LSAP (may fail if we were too slow) */
1461 	new->lsap = irlmp_dup(orig->lsap, new);
1462 	if (!new->lsap) {
1463 		IRDA_DEBUG(0, "%s(), dup failed!\n", __func__);
1464 		kfree(new);
1465 		return NULL;
1466 	}
1467 
1468 	/* Not everything should be copied */
1469 	new->notify.instance = instance;
1470 
1471 	/* Initialize internal objects */
1472 	irttp_init_tsap(new);
1473 
1474 	/* This is locked */
1475 	hashbin_insert(irttp->tsaps, (irda_queue_t *) new, (long) new, NULL);
1476 
1477 	return new;
1478 }
1479 EXPORT_SYMBOL(irttp_dup);
1480 
1481 /*
1482  * Function irttp_disconnect_request (self)
1483  *
1484  *    Close this connection please! If priority is high, the queued data
1485  *    segments, if any, will be deallocated first
1486  *
1487  */
irttp_disconnect_request(struct tsap_cb * self,struct sk_buff * userdata,int priority)1488 int irttp_disconnect_request(struct tsap_cb *self, struct sk_buff *userdata,
1489 			     int priority)
1490 {
1491 	int ret;
1492 
1493 	IRDA_ASSERT(self != NULL, return -1;);
1494 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
1495 
1496 	/* Already disconnected? */
1497 	if (!self->connected) {
1498 		IRDA_DEBUG(4, "%s(), already disconnected!\n", __func__);
1499 		if (userdata)
1500 			dev_kfree_skb(userdata);
1501 		return -1;
1502 	}
1503 
1504 	/* Disconnect already pending ?
1505 	 * We need to use an atomic operation to prevent reentry. This
1506 	 * function may be called from various context, like user, timer
1507 	 * for following a disconnect_indication() (i.e. net_bh).
1508 	 * Jean II */
1509 	if(test_and_set_bit(0, &self->disconnect_pend)) {
1510 		IRDA_DEBUG(0, "%s(), disconnect already pending\n",
1511 			   __func__);
1512 		if (userdata)
1513 			dev_kfree_skb(userdata);
1514 
1515 		/* Try to make some progress */
1516 		irttp_run_tx_queue(self);
1517 		return -1;
1518 	}
1519 
1520 	/*
1521 	 *  Check if there is still data segments in the transmit queue
1522 	 */
1523 	if (!skb_queue_empty(&self->tx_queue)) {
1524 		if (priority == P_HIGH) {
1525 			/*
1526 			 *  No need to send the queued data, if we are
1527 			 *  disconnecting right now since the data will
1528 			 *  not have any usable connection to be sent on
1529 			 */
1530 			IRDA_DEBUG(1, "%s(): High priority!!()\n", __func__);
1531 			irttp_flush_queues(self);
1532 		} else if (priority == P_NORMAL) {
1533 			/*
1534 			 *  Must delay disconnect until after all data segments
1535 			 *  have been sent and the tx_queue is empty
1536 			 */
1537 			/* We'll reuse this one later for the disconnect */
1538 			self->disconnect_skb = userdata;  /* May be NULL */
1539 
1540 			irttp_run_tx_queue(self);
1541 
1542 			irttp_start_todo_timer(self, HZ/10);
1543 			return -1;
1544 		}
1545 	}
1546 	/* Note : we don't need to check if self->rx_queue is full and the
1547 	 * state of self->rx_sdu_busy because the disconnect response will
1548 	 * be sent at the LMP level (so even if the peer has its Tx queue
1549 	 * full of data). - Jean II */
1550 
1551 	IRDA_DEBUG(1, "%s(), Disconnecting ...\n", __func__);
1552 	self->connected = FALSE;
1553 
1554 	if (!userdata) {
1555 		struct sk_buff *tx_skb;
1556 		tx_skb = alloc_skb(LMP_MAX_HEADER, GFP_ATOMIC);
1557 		if (!tx_skb)
1558 			return -ENOMEM;
1559 
1560 		/*
1561 		 *  Reserve space for MUX and LAP header
1562 		 */
1563 		skb_reserve(tx_skb, LMP_MAX_HEADER);
1564 
1565 		userdata = tx_skb;
1566 	}
1567 	ret = irlmp_disconnect_request(self->lsap, userdata);
1568 
1569 	/* The disconnect is no longer pending */
1570 	clear_bit(0, &self->disconnect_pend);	/* FALSE */
1571 
1572 	return ret;
1573 }
1574 EXPORT_SYMBOL(irttp_disconnect_request);
1575 
1576 /*
1577  * Function irttp_disconnect_indication (self, reason)
1578  *
1579  *    Disconnect indication, TSAP disconnected by peer?
1580  *
1581  */
irttp_disconnect_indication(void * instance,void * sap,LM_REASON reason,struct sk_buff * skb)1582 static void irttp_disconnect_indication(void *instance, void *sap,
1583 		LM_REASON reason, struct sk_buff *skb)
1584 {
1585 	struct tsap_cb *self;
1586 
1587 	IRDA_DEBUG(4, "%s()\n", __func__);
1588 
1589 	self = (struct tsap_cb *) instance;
1590 
1591 	IRDA_ASSERT(self != NULL, return;);
1592 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1593 
1594 	/* Prevent higher layer to send more data */
1595 	self->connected = FALSE;
1596 
1597 	/* Check if client has already tried to close the TSAP */
1598 	if (self->close_pend) {
1599 		/* In this case, the higher layer is probably gone. Don't
1600 		 * bother it and clean up the remains - Jean II */
1601 		if (skb)
1602 			dev_kfree_skb(skb);
1603 		irttp_close_tsap(self);
1604 		return;
1605 	}
1606 
1607 	/* If we are here, we assume that is the higher layer is still
1608 	 * waiting for the disconnect notification and able to process it,
1609 	 * even if he tried to disconnect. Otherwise, it would have already
1610 	 * attempted to close the tsap and self->close_pend would be TRUE.
1611 	 * Jean II */
1612 
1613 	/* No need to notify the client if has already tried to disconnect */
1614 	if(self->notify.disconnect_indication)
1615 		self->notify.disconnect_indication(self->notify.instance, self,
1616 						   reason, skb);
1617 	else
1618 		if (skb)
1619 			dev_kfree_skb(skb);
1620 }
1621 
1622 /*
1623  * Function irttp_do_data_indication (self, skb)
1624  *
1625  *    Try to deliver reassembled skb to layer above, and requeue it if that
1626  *    for some reason should fail. We mark rx sdu as busy to apply back
1627  *    pressure is necessary.
1628  */
irttp_do_data_indication(struct tsap_cb * self,struct sk_buff * skb)1629 static void irttp_do_data_indication(struct tsap_cb *self, struct sk_buff *skb)
1630 {
1631 	int err;
1632 
1633 	/* Check if client has already closed the TSAP and gone away */
1634 	if (self->close_pend) {
1635 		dev_kfree_skb(skb);
1636 		return;
1637 	}
1638 
1639 	err = self->notify.data_indication(self->notify.instance, self, skb);
1640 
1641 	/* Usually the layer above will notify that it's input queue is
1642 	 * starting to get filled by using the flow request, but this may
1643 	 * be difficult, so it can instead just refuse to eat it and just
1644 	 * give an error back
1645 	 */
1646 	if (err) {
1647 		IRDA_DEBUG(0, "%s() requeueing skb!\n", __func__);
1648 
1649 		/* Make sure we take a break */
1650 		self->rx_sdu_busy = TRUE;
1651 
1652 		/* Need to push the header in again */
1653 		skb_push(skb, TTP_HEADER);
1654 		skb->data[0] = 0x00; /* Make sure MORE bit is cleared */
1655 
1656 		/* Put skb back on queue */
1657 		skb_queue_head(&self->rx_queue, skb);
1658 	}
1659 }
1660 
1661 /*
1662  * Function irttp_run_rx_queue (self)
1663  *
1664  *     Check if we have any frames to be transmitted, or if we have any
1665  *     available credit to give away.
1666  */
irttp_run_rx_queue(struct tsap_cb * self)1667 static void irttp_run_rx_queue(struct tsap_cb *self)
1668 {
1669 	struct sk_buff *skb;
1670 	int more = 0;
1671 
1672 	IRDA_DEBUG(2, "%s() send=%d,avail=%d,remote=%d\n", __func__,
1673 		   self->send_credit, self->avail_credit, self->remote_credit);
1674 
1675 	/* Get exclusive access to the rx queue, otherwise don't touch it */
1676 	if (irda_lock(&self->rx_queue_lock) == FALSE)
1677 		return;
1678 
1679 	/*
1680 	 *  Reassemble all frames in receive queue and deliver them
1681 	 */
1682 	while (!self->rx_sdu_busy && (skb = skb_dequeue(&self->rx_queue))) {
1683 		/* This bit will tell us if it's the last fragment or not */
1684 		more = skb->data[0] & 0x80;
1685 
1686 		/* Remove TTP header */
1687 		skb_pull(skb, TTP_HEADER);
1688 
1689 		/* Add the length of the remaining data */
1690 		self->rx_sdu_size += skb->len;
1691 
1692 		/*
1693 		 * If SAR is disabled, or user has requested no reassembly
1694 		 * of received fragments then we just deliver them
1695 		 * immediately. This can be requested by clients that
1696 		 * implements byte streams without any message boundaries
1697 		 */
1698 		if (self->rx_max_sdu_size == TTP_SAR_DISABLE) {
1699 			irttp_do_data_indication(self, skb);
1700 			self->rx_sdu_size = 0;
1701 
1702 			continue;
1703 		}
1704 
1705 		/* Check if this is a fragment, and not the last fragment */
1706 		if (more) {
1707 			/*
1708 			 *  Queue the fragment if we still are within the
1709 			 *  limits of the maximum size of the rx_sdu
1710 			 */
1711 			if (self->rx_sdu_size <= self->rx_max_sdu_size) {
1712 				IRDA_DEBUG(4, "%s(), queueing frag\n",
1713 					   __func__);
1714 				skb_queue_tail(&self->rx_fragments, skb);
1715 			} else {
1716 				/* Free the part of the SDU that is too big */
1717 				dev_kfree_skb(skb);
1718 			}
1719 			continue;
1720 		}
1721 		/*
1722 		 *  This is the last fragment, so time to reassemble!
1723 		 */
1724 		if ((self->rx_sdu_size <= self->rx_max_sdu_size) ||
1725 		    (self->rx_max_sdu_size == TTP_SAR_UNBOUND))
1726 		{
1727 			/*
1728 			 * A little optimizing. Only queue the fragment if
1729 			 * there are other fragments. Since if this is the
1730 			 * last and only fragment, there is no need to
1731 			 * reassemble :-)
1732 			 */
1733 			if (!skb_queue_empty(&self->rx_fragments)) {
1734 				skb_queue_tail(&self->rx_fragments,
1735 					       skb);
1736 
1737 				skb = irttp_reassemble_skb(self);
1738 			}
1739 
1740 			/* Now we can deliver the reassembled skb */
1741 			irttp_do_data_indication(self, skb);
1742 		} else {
1743 			IRDA_DEBUG(1, "%s(), Truncated frame\n", __func__);
1744 
1745 			/* Free the part of the SDU that is too big */
1746 			dev_kfree_skb(skb);
1747 
1748 			/* Deliver only the valid but truncated part of SDU */
1749 			skb = irttp_reassemble_skb(self);
1750 
1751 			irttp_do_data_indication(self, skb);
1752 		}
1753 		self->rx_sdu_size = 0;
1754 	}
1755 
1756 	/*
1757 	 * It's not trivial to keep track of how many credits are available
1758 	 * by incrementing at each packet, because delivery may fail
1759 	 * (irttp_do_data_indication() may requeue the frame) and because
1760 	 * we need to take care of fragmentation.
1761 	 * We want the other side to send up to initial_credit packets.
1762 	 * We have some frames in our queues, and we have already allowed it
1763 	 * to send remote_credit.
1764 	 * No need to spinlock, write is atomic and self correcting...
1765 	 * Jean II
1766 	 */
1767 	self->avail_credit = (self->initial_credit -
1768 			      (self->remote_credit +
1769 			       skb_queue_len(&self->rx_queue) +
1770 			       skb_queue_len(&self->rx_fragments)));
1771 
1772 	/* Do we have too much credits to send to peer ? */
1773 	if ((self->remote_credit <= TTP_RX_MIN_CREDIT) &&
1774 	    (self->avail_credit > 0)) {
1775 		/* Send explicit credit frame */
1776 		irttp_give_credit(self);
1777 		/* Note : do *NOT* check if tx_queue is non-empty, that
1778 		 * will produce deadlocks. I repeat : send a credit frame
1779 		 * even if we have something to send in our Tx queue.
1780 		 * If we have credits, it means that our Tx queue is blocked.
1781 		 *
1782 		 * Let's suppose the peer can't keep up with our Tx. He will
1783 		 * flow control us by not sending us any credits, and we
1784 		 * will stop Tx and start accumulating credits here.
1785 		 * Up to the point where the peer will stop its Tx queue,
1786 		 * for lack of credits.
1787 		 * Let's assume the peer application is single threaded.
1788 		 * It will block on Tx and never consume any Rx buffer.
1789 		 * Deadlock. Guaranteed. - Jean II
1790 		 */
1791 	}
1792 
1793 	/* Reset lock */
1794 	self->rx_queue_lock = 0;
1795 }
1796 
1797 #ifdef CONFIG_PROC_FS
1798 struct irttp_iter_state {
1799 	int id;
1800 };
1801 
irttp_seq_start(struct seq_file * seq,loff_t * pos)1802 static void *irttp_seq_start(struct seq_file *seq, loff_t *pos)
1803 {
1804 	struct irttp_iter_state *iter = seq->private;
1805 	struct tsap_cb *self;
1806 
1807 	/* Protect our access to the tsap list */
1808 	spin_lock_irq(&irttp->tsaps->hb_spinlock);
1809 	iter->id = 0;
1810 
1811 	for (self = (struct tsap_cb *) hashbin_get_first(irttp->tsaps);
1812 	     self != NULL;
1813 	     self = (struct tsap_cb *) hashbin_get_next(irttp->tsaps)) {
1814 		if (iter->id == *pos)
1815 			break;
1816 		++iter->id;
1817 	}
1818 
1819 	return self;
1820 }
1821 
irttp_seq_next(struct seq_file * seq,void * v,loff_t * pos)1822 static void *irttp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1823 {
1824 	struct irttp_iter_state *iter = seq->private;
1825 
1826 	++*pos;
1827 	++iter->id;
1828 	return (void *) hashbin_get_next(irttp->tsaps);
1829 }
1830 
irttp_seq_stop(struct seq_file * seq,void * v)1831 static void irttp_seq_stop(struct seq_file *seq, void *v)
1832 {
1833 	spin_unlock_irq(&irttp->tsaps->hb_spinlock);
1834 }
1835 
irttp_seq_show(struct seq_file * seq,void * v)1836 static int irttp_seq_show(struct seq_file *seq, void *v)
1837 {
1838 	const struct irttp_iter_state *iter = seq->private;
1839 	const struct tsap_cb *self = v;
1840 
1841 	seq_printf(seq, "TSAP %d, ", iter->id);
1842 	seq_printf(seq, "stsap_sel: %02x, ",
1843 		   self->stsap_sel);
1844 	seq_printf(seq, "dtsap_sel: %02x\n",
1845 		   self->dtsap_sel);
1846 	seq_printf(seq, "  connected: %s, ",
1847 		   self->connected? "TRUE":"FALSE");
1848 	seq_printf(seq, "avail credit: %d, ",
1849 		   self->avail_credit);
1850 	seq_printf(seq, "remote credit: %d, ",
1851 		   self->remote_credit);
1852 	seq_printf(seq, "send credit: %d\n",
1853 		   self->send_credit);
1854 	seq_printf(seq, "  tx packets: %ld, ",
1855 		   self->stats.tx_packets);
1856 	seq_printf(seq, "rx packets: %ld, ",
1857 		   self->stats.rx_packets);
1858 	seq_printf(seq, "tx_queue len: %d ",
1859 		   skb_queue_len(&self->tx_queue));
1860 	seq_printf(seq, "rx_queue len: %d\n",
1861 		   skb_queue_len(&self->rx_queue));
1862 	seq_printf(seq, "  tx_sdu_busy: %s, ",
1863 		   self->tx_sdu_busy? "TRUE":"FALSE");
1864 	seq_printf(seq, "rx_sdu_busy: %s\n",
1865 		   self->rx_sdu_busy? "TRUE":"FALSE");
1866 	seq_printf(seq, "  max_seg_size: %d, ",
1867 		   self->max_seg_size);
1868 	seq_printf(seq, "tx_max_sdu_size: %d, ",
1869 		   self->tx_max_sdu_size);
1870 	seq_printf(seq, "rx_max_sdu_size: %d\n",
1871 		   self->rx_max_sdu_size);
1872 
1873 	seq_printf(seq, "  Used by (%s)\n\n",
1874 		   self->notify.name);
1875 	return 0;
1876 }
1877 
1878 static const struct seq_operations irttp_seq_ops = {
1879 	.start  = irttp_seq_start,
1880 	.next   = irttp_seq_next,
1881 	.stop   = irttp_seq_stop,
1882 	.show   = irttp_seq_show,
1883 };
1884 
irttp_seq_open(struct inode * inode,struct file * file)1885 static int irttp_seq_open(struct inode *inode, struct file *file)
1886 {
1887 	return seq_open_private(file, &irttp_seq_ops,
1888 			sizeof(struct irttp_iter_state));
1889 }
1890 
1891 const struct file_operations irttp_seq_fops = {
1892 	.owner		= THIS_MODULE,
1893 	.open           = irttp_seq_open,
1894 	.read           = seq_read,
1895 	.llseek         = seq_lseek,
1896 	.release	= seq_release_private,
1897 };
1898 
1899 #endif /* PROC_FS */
1900