1 /* irq.c: UltraSparc IRQ handling/init/registry.
2 *
3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
5 * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz)
6 */
7
8 #include <linux/module.h>
9 #include <linux/sched.h>
10 #include <linux/linkage.h>
11 #include <linux/ptrace.h>
12 #include <linux/errno.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/signal.h>
15 #include <linux/mm.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/random.h>
19 #include <linux/init.h>
20 #include <linux/delay.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/bootmem.h>
24 #include <linux/irq.h>
25
26 #include <asm/ptrace.h>
27 #include <asm/processor.h>
28 #include <asm/atomic.h>
29 #include <asm/system.h>
30 #include <asm/irq.h>
31 #include <asm/io.h>
32 #include <asm/iommu.h>
33 #include <asm/upa.h>
34 #include <asm/oplib.h>
35 #include <asm/prom.h>
36 #include <asm/timer.h>
37 #include <asm/smp.h>
38 #include <asm/starfire.h>
39 #include <asm/uaccess.h>
40 #include <asm/cache.h>
41 #include <asm/cpudata.h>
42 #include <asm/auxio.h>
43 #include <asm/head.h>
44 #include <asm/hypervisor.h>
45 #include <asm/cacheflush.h>
46
47 #include "entry.h"
48
49 #define NUM_IVECS (IMAP_INR + 1)
50
51 struct ino_bucket *ivector_table;
52 unsigned long ivector_table_pa;
53
54 /* On several sun4u processors, it is illegal to mix bypass and
55 * non-bypass accesses. Therefore we access all INO buckets
56 * using bypass accesses only.
57 */
bucket_get_chain_pa(unsigned long bucket_pa)58 static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
59 {
60 unsigned long ret;
61
62 __asm__ __volatile__("ldxa [%1] %2, %0"
63 : "=&r" (ret)
64 : "r" (bucket_pa +
65 offsetof(struct ino_bucket,
66 __irq_chain_pa)),
67 "i" (ASI_PHYS_USE_EC));
68
69 return ret;
70 }
71
bucket_clear_chain_pa(unsigned long bucket_pa)72 static void bucket_clear_chain_pa(unsigned long bucket_pa)
73 {
74 __asm__ __volatile__("stxa %%g0, [%0] %1"
75 : /* no outputs */
76 : "r" (bucket_pa +
77 offsetof(struct ino_bucket,
78 __irq_chain_pa)),
79 "i" (ASI_PHYS_USE_EC));
80 }
81
bucket_get_virt_irq(unsigned long bucket_pa)82 static unsigned int bucket_get_virt_irq(unsigned long bucket_pa)
83 {
84 unsigned int ret;
85
86 __asm__ __volatile__("lduwa [%1] %2, %0"
87 : "=&r" (ret)
88 : "r" (bucket_pa +
89 offsetof(struct ino_bucket,
90 __virt_irq)),
91 "i" (ASI_PHYS_USE_EC));
92
93 return ret;
94 }
95
bucket_set_virt_irq(unsigned long bucket_pa,unsigned int virt_irq)96 static void bucket_set_virt_irq(unsigned long bucket_pa,
97 unsigned int virt_irq)
98 {
99 __asm__ __volatile__("stwa %0, [%1] %2"
100 : /* no outputs */
101 : "r" (virt_irq),
102 "r" (bucket_pa +
103 offsetof(struct ino_bucket,
104 __virt_irq)),
105 "i" (ASI_PHYS_USE_EC));
106 }
107
108 #define irq_work_pa(__cpu) &(trap_block[(__cpu)].irq_worklist_pa)
109
110 static struct {
111 unsigned int dev_handle;
112 unsigned int dev_ino;
113 unsigned int in_use;
114 } virt_irq_table[NR_IRQS];
115 static DEFINE_SPINLOCK(virt_irq_alloc_lock);
116
virt_irq_alloc(unsigned int dev_handle,unsigned int dev_ino)117 unsigned char virt_irq_alloc(unsigned int dev_handle,
118 unsigned int dev_ino)
119 {
120 unsigned long flags;
121 unsigned char ent;
122
123 BUILD_BUG_ON(NR_IRQS >= 256);
124
125 spin_lock_irqsave(&virt_irq_alloc_lock, flags);
126
127 for (ent = 1; ent < NR_IRQS; ent++) {
128 if (!virt_irq_table[ent].in_use)
129 break;
130 }
131 if (ent >= NR_IRQS) {
132 printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
133 ent = 0;
134 } else {
135 virt_irq_table[ent].dev_handle = dev_handle;
136 virt_irq_table[ent].dev_ino = dev_ino;
137 virt_irq_table[ent].in_use = 1;
138 }
139
140 spin_unlock_irqrestore(&virt_irq_alloc_lock, flags);
141
142 return ent;
143 }
144
145 #ifdef CONFIG_PCI_MSI
virt_irq_free(unsigned int virt_irq)146 void virt_irq_free(unsigned int virt_irq)
147 {
148 unsigned long flags;
149
150 if (virt_irq >= NR_IRQS)
151 return;
152
153 spin_lock_irqsave(&virt_irq_alloc_lock, flags);
154
155 virt_irq_table[virt_irq].in_use = 0;
156
157 spin_unlock_irqrestore(&virt_irq_alloc_lock, flags);
158 }
159 #endif
160
161 /*
162 * /proc/interrupts printing:
163 */
164
show_interrupts(struct seq_file * p,void * v)165 int show_interrupts(struct seq_file *p, void *v)
166 {
167 int i = *(loff_t *) v, j;
168 struct irqaction * action;
169 unsigned long flags;
170
171 if (i == 0) {
172 seq_printf(p, " ");
173 for_each_online_cpu(j)
174 seq_printf(p, "CPU%d ",j);
175 seq_putc(p, '\n');
176 }
177
178 if (i < NR_IRQS) {
179 spin_lock_irqsave(&irq_desc[i].lock, flags);
180 action = irq_desc[i].action;
181 if (!action)
182 goto skip;
183 seq_printf(p, "%3d: ",i);
184 #ifndef CONFIG_SMP
185 seq_printf(p, "%10u ", kstat_irqs(i));
186 #else
187 for_each_online_cpu(j)
188 seq_printf(p, "%10u ", kstat_cpu(j).irqs[i]);
189 #endif
190 seq_printf(p, " %9s", irq_desc[i].chip->typename);
191 seq_printf(p, " %s", action->name);
192
193 for (action=action->next; action; action = action->next)
194 seq_printf(p, ", %s", action->name);
195
196 seq_putc(p, '\n');
197 skip:
198 spin_unlock_irqrestore(&irq_desc[i].lock, flags);
199 } else if (i == NR_IRQS) {
200 seq_printf(p, "NMI: ");
201 for_each_online_cpu(j)
202 seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
203 seq_printf(p, " Non-maskable interrupts\n");
204 }
205 return 0;
206 }
207
sun4u_compute_tid(unsigned long imap,unsigned long cpuid)208 static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
209 {
210 unsigned int tid;
211
212 if (this_is_starfire) {
213 tid = starfire_translate(imap, cpuid);
214 tid <<= IMAP_TID_SHIFT;
215 tid &= IMAP_TID_UPA;
216 } else {
217 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
218 unsigned long ver;
219
220 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
221 if ((ver >> 32UL) == __JALAPENO_ID ||
222 (ver >> 32UL) == __SERRANO_ID) {
223 tid = cpuid << IMAP_TID_SHIFT;
224 tid &= IMAP_TID_JBUS;
225 } else {
226 unsigned int a = cpuid & 0x1f;
227 unsigned int n = (cpuid >> 5) & 0x1f;
228
229 tid = ((a << IMAP_AID_SHIFT) |
230 (n << IMAP_NID_SHIFT));
231 tid &= (IMAP_AID_SAFARI |
232 IMAP_NID_SAFARI);;
233 }
234 } else {
235 tid = cpuid << IMAP_TID_SHIFT;
236 tid &= IMAP_TID_UPA;
237 }
238 }
239
240 return tid;
241 }
242
243 struct irq_handler_data {
244 unsigned long iclr;
245 unsigned long imap;
246
247 void (*pre_handler)(unsigned int, void *, void *);
248 void *arg1;
249 void *arg2;
250 };
251
252 #ifdef CONFIG_SMP
irq_choose_cpu(unsigned int virt_irq)253 static int irq_choose_cpu(unsigned int virt_irq)
254 {
255 cpumask_t mask = irq_desc[virt_irq].affinity;
256 int cpuid;
257
258 if (cpus_equal(mask, CPU_MASK_ALL)) {
259 static int irq_rover;
260 static DEFINE_SPINLOCK(irq_rover_lock);
261 unsigned long flags;
262
263 /* Round-robin distribution... */
264 do_round_robin:
265 spin_lock_irqsave(&irq_rover_lock, flags);
266
267 while (!cpu_online(irq_rover)) {
268 if (++irq_rover >= NR_CPUS)
269 irq_rover = 0;
270 }
271 cpuid = irq_rover;
272 do {
273 if (++irq_rover >= NR_CPUS)
274 irq_rover = 0;
275 } while (!cpu_online(irq_rover));
276
277 spin_unlock_irqrestore(&irq_rover_lock, flags);
278 } else {
279 cpumask_t tmp;
280
281 cpus_and(tmp, cpu_online_map, mask);
282
283 if (cpus_empty(tmp))
284 goto do_round_robin;
285
286 cpuid = first_cpu(tmp);
287 }
288
289 return cpuid;
290 }
291 #else
irq_choose_cpu(unsigned int virt_irq)292 static int irq_choose_cpu(unsigned int virt_irq)
293 {
294 return real_hard_smp_processor_id();
295 }
296 #endif
297
sun4u_irq_enable(unsigned int virt_irq)298 static void sun4u_irq_enable(unsigned int virt_irq)
299 {
300 struct irq_handler_data *data = get_irq_chip_data(virt_irq);
301
302 if (likely(data)) {
303 unsigned long cpuid, imap, val;
304 unsigned int tid;
305
306 cpuid = irq_choose_cpu(virt_irq);
307 imap = data->imap;
308
309 tid = sun4u_compute_tid(imap, cpuid);
310
311 val = upa_readq(imap);
312 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
313 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
314 val |= tid | IMAP_VALID;
315 upa_writeq(val, imap);
316 upa_writeq(ICLR_IDLE, data->iclr);
317 }
318 }
319
sun4u_set_affinity(unsigned int virt_irq,const struct cpumask * mask)320 static void sun4u_set_affinity(unsigned int virt_irq,
321 const struct cpumask *mask)
322 {
323 sun4u_irq_enable(virt_irq);
324 }
325
326 /* Don't do anything. The desc->status check for IRQ_DISABLED in
327 * handler_irq() will skip the handler call and that will leave the
328 * interrupt in the sent state. The next ->enable() call will hit the
329 * ICLR register to reset the state machine.
330 *
331 * This scheme is necessary, instead of clearing the Valid bit in the
332 * IMAP register, to handle the case of IMAP registers being shared by
333 * multiple INOs (and thus ICLR registers). Since we use a different
334 * virtual IRQ for each shared IMAP instance, the generic code thinks
335 * there is only one user so it prematurely calls ->disable() on
336 * free_irq().
337 *
338 * We have to provide an explicit ->disable() method instead of using
339 * NULL to get the default. The reason is that if the generic code
340 * sees that, it also hooks up a default ->shutdown method which
341 * invokes ->mask() which we do not want. See irq_chip_set_defaults().
342 */
sun4u_irq_disable(unsigned int virt_irq)343 static void sun4u_irq_disable(unsigned int virt_irq)
344 {
345 }
346
sun4u_irq_eoi(unsigned int virt_irq)347 static void sun4u_irq_eoi(unsigned int virt_irq)
348 {
349 struct irq_handler_data *data = get_irq_chip_data(virt_irq);
350 struct irq_desc *desc = irq_desc + virt_irq;
351
352 if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
353 return;
354
355 if (likely(data))
356 upa_writeq(ICLR_IDLE, data->iclr);
357 }
358
sun4v_irq_enable(unsigned int virt_irq)359 static void sun4v_irq_enable(unsigned int virt_irq)
360 {
361 unsigned int ino = virt_irq_table[virt_irq].dev_ino;
362 unsigned long cpuid = irq_choose_cpu(virt_irq);
363 int err;
364
365 err = sun4v_intr_settarget(ino, cpuid);
366 if (err != HV_EOK)
367 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
368 "err(%d)\n", ino, cpuid, err);
369 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
370 if (err != HV_EOK)
371 printk(KERN_ERR "sun4v_intr_setstate(%x): "
372 "err(%d)\n", ino, err);
373 err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
374 if (err != HV_EOK)
375 printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
376 ino, err);
377 }
378
sun4v_set_affinity(unsigned int virt_irq,const struct cpumask * mask)379 static void sun4v_set_affinity(unsigned int virt_irq,
380 const struct cpumask *mask)
381 {
382 unsigned int ino = virt_irq_table[virt_irq].dev_ino;
383 unsigned long cpuid = irq_choose_cpu(virt_irq);
384 int err;
385
386 err = sun4v_intr_settarget(ino, cpuid);
387 if (err != HV_EOK)
388 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
389 "err(%d)\n", ino, cpuid, err);
390 }
391
sun4v_irq_disable(unsigned int virt_irq)392 static void sun4v_irq_disable(unsigned int virt_irq)
393 {
394 unsigned int ino = virt_irq_table[virt_irq].dev_ino;
395 int err;
396
397 err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
398 if (err != HV_EOK)
399 printk(KERN_ERR "sun4v_intr_setenabled(%x): "
400 "err(%d)\n", ino, err);
401 }
402
sun4v_irq_eoi(unsigned int virt_irq)403 static void sun4v_irq_eoi(unsigned int virt_irq)
404 {
405 unsigned int ino = virt_irq_table[virt_irq].dev_ino;
406 struct irq_desc *desc = irq_desc + virt_irq;
407 int err;
408
409 if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
410 return;
411
412 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
413 if (err != HV_EOK)
414 printk(KERN_ERR "sun4v_intr_setstate(%x): "
415 "err(%d)\n", ino, err);
416 }
417
sun4v_virq_enable(unsigned int virt_irq)418 static void sun4v_virq_enable(unsigned int virt_irq)
419 {
420 unsigned long cpuid, dev_handle, dev_ino;
421 int err;
422
423 cpuid = irq_choose_cpu(virt_irq);
424
425 dev_handle = virt_irq_table[virt_irq].dev_handle;
426 dev_ino = virt_irq_table[virt_irq].dev_ino;
427
428 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
429 if (err != HV_EOK)
430 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
431 "err(%d)\n",
432 dev_handle, dev_ino, cpuid, err);
433 err = sun4v_vintr_set_state(dev_handle, dev_ino,
434 HV_INTR_STATE_IDLE);
435 if (err != HV_EOK)
436 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
437 "HV_INTR_STATE_IDLE): err(%d)\n",
438 dev_handle, dev_ino, err);
439 err = sun4v_vintr_set_valid(dev_handle, dev_ino,
440 HV_INTR_ENABLED);
441 if (err != HV_EOK)
442 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
443 "HV_INTR_ENABLED): err(%d)\n",
444 dev_handle, dev_ino, err);
445 }
446
sun4v_virt_set_affinity(unsigned int virt_irq,const struct cpumask * mask)447 static void sun4v_virt_set_affinity(unsigned int virt_irq,
448 const struct cpumask *mask)
449 {
450 unsigned long cpuid, dev_handle, dev_ino;
451 int err;
452
453 cpuid = irq_choose_cpu(virt_irq);
454
455 dev_handle = virt_irq_table[virt_irq].dev_handle;
456 dev_ino = virt_irq_table[virt_irq].dev_ino;
457
458 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
459 if (err != HV_EOK)
460 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
461 "err(%d)\n",
462 dev_handle, dev_ino, cpuid, err);
463 }
464
sun4v_virq_disable(unsigned int virt_irq)465 static void sun4v_virq_disable(unsigned int virt_irq)
466 {
467 unsigned long dev_handle, dev_ino;
468 int err;
469
470 dev_handle = virt_irq_table[virt_irq].dev_handle;
471 dev_ino = virt_irq_table[virt_irq].dev_ino;
472
473 err = sun4v_vintr_set_valid(dev_handle, dev_ino,
474 HV_INTR_DISABLED);
475 if (err != HV_EOK)
476 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
477 "HV_INTR_DISABLED): err(%d)\n",
478 dev_handle, dev_ino, err);
479 }
480
sun4v_virq_eoi(unsigned int virt_irq)481 static void sun4v_virq_eoi(unsigned int virt_irq)
482 {
483 struct irq_desc *desc = irq_desc + virt_irq;
484 unsigned long dev_handle, dev_ino;
485 int err;
486
487 if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
488 return;
489
490 dev_handle = virt_irq_table[virt_irq].dev_handle;
491 dev_ino = virt_irq_table[virt_irq].dev_ino;
492
493 err = sun4v_vintr_set_state(dev_handle, dev_ino,
494 HV_INTR_STATE_IDLE);
495 if (err != HV_EOK)
496 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
497 "HV_INTR_STATE_IDLE): err(%d)\n",
498 dev_handle, dev_ino, err);
499 }
500
501 static struct irq_chip sun4u_irq = {
502 .typename = "sun4u",
503 .enable = sun4u_irq_enable,
504 .disable = sun4u_irq_disable,
505 .eoi = sun4u_irq_eoi,
506 .set_affinity = sun4u_set_affinity,
507 };
508
509 static struct irq_chip sun4v_irq = {
510 .typename = "sun4v",
511 .enable = sun4v_irq_enable,
512 .disable = sun4v_irq_disable,
513 .eoi = sun4v_irq_eoi,
514 .set_affinity = sun4v_set_affinity,
515 };
516
517 static struct irq_chip sun4v_virq = {
518 .typename = "vsun4v",
519 .enable = sun4v_virq_enable,
520 .disable = sun4v_virq_disable,
521 .eoi = sun4v_virq_eoi,
522 .set_affinity = sun4v_virt_set_affinity,
523 };
524
pre_flow_handler(unsigned int virt_irq,struct irq_desc * desc)525 static void pre_flow_handler(unsigned int virt_irq,
526 struct irq_desc *desc)
527 {
528 struct irq_handler_data *data = get_irq_chip_data(virt_irq);
529 unsigned int ino = virt_irq_table[virt_irq].dev_ino;
530
531 data->pre_handler(ino, data->arg1, data->arg2);
532
533 handle_fasteoi_irq(virt_irq, desc);
534 }
535
irq_install_pre_handler(int virt_irq,void (* func)(unsigned int,void *,void *),void * arg1,void * arg2)536 void irq_install_pre_handler(int virt_irq,
537 void (*func)(unsigned int, void *, void *),
538 void *arg1, void *arg2)
539 {
540 struct irq_handler_data *data = get_irq_chip_data(virt_irq);
541 struct irq_desc *desc = irq_desc + virt_irq;
542
543 data->pre_handler = func;
544 data->arg1 = arg1;
545 data->arg2 = arg2;
546
547 desc->handle_irq = pre_flow_handler;
548 }
549
build_irq(int inofixup,unsigned long iclr,unsigned long imap)550 unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
551 {
552 struct ino_bucket *bucket;
553 struct irq_handler_data *data;
554 unsigned int virt_irq;
555 int ino;
556
557 BUG_ON(tlb_type == hypervisor);
558
559 ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
560 bucket = &ivector_table[ino];
561 virt_irq = bucket_get_virt_irq(__pa(bucket));
562 if (!virt_irq) {
563 virt_irq = virt_irq_alloc(0, ino);
564 bucket_set_virt_irq(__pa(bucket), virt_irq);
565 set_irq_chip_and_handler_name(virt_irq,
566 &sun4u_irq,
567 handle_fasteoi_irq,
568 "IVEC");
569 }
570
571 data = get_irq_chip_data(virt_irq);
572 if (unlikely(data))
573 goto out;
574
575 data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
576 if (unlikely(!data)) {
577 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
578 prom_halt();
579 }
580 set_irq_chip_data(virt_irq, data);
581
582 data->imap = imap;
583 data->iclr = iclr;
584
585 out:
586 return virt_irq;
587 }
588
sun4v_build_common(unsigned long sysino,struct irq_chip * chip)589 static unsigned int sun4v_build_common(unsigned long sysino,
590 struct irq_chip *chip)
591 {
592 struct ino_bucket *bucket;
593 struct irq_handler_data *data;
594 unsigned int virt_irq;
595
596 BUG_ON(tlb_type != hypervisor);
597
598 bucket = &ivector_table[sysino];
599 virt_irq = bucket_get_virt_irq(__pa(bucket));
600 if (!virt_irq) {
601 virt_irq = virt_irq_alloc(0, sysino);
602 bucket_set_virt_irq(__pa(bucket), virt_irq);
603 set_irq_chip_and_handler_name(virt_irq, chip,
604 handle_fasteoi_irq,
605 "IVEC");
606 }
607
608 data = get_irq_chip_data(virt_irq);
609 if (unlikely(data))
610 goto out;
611
612 data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
613 if (unlikely(!data)) {
614 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
615 prom_halt();
616 }
617 set_irq_chip_data(virt_irq, data);
618
619 /* Catch accidental accesses to these things. IMAP/ICLR handling
620 * is done by hypervisor calls on sun4v platforms, not by direct
621 * register accesses.
622 */
623 data->imap = ~0UL;
624 data->iclr = ~0UL;
625
626 out:
627 return virt_irq;
628 }
629
sun4v_build_irq(u32 devhandle,unsigned int devino)630 unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
631 {
632 unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
633
634 return sun4v_build_common(sysino, &sun4v_irq);
635 }
636
sun4v_build_virq(u32 devhandle,unsigned int devino)637 unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
638 {
639 struct irq_handler_data *data;
640 unsigned long hv_err, cookie;
641 struct ino_bucket *bucket;
642 struct irq_desc *desc;
643 unsigned int virt_irq;
644
645 bucket = kzalloc(sizeof(struct ino_bucket), GFP_ATOMIC);
646 if (unlikely(!bucket))
647 return 0;
648 __flush_dcache_range((unsigned long) bucket,
649 ((unsigned long) bucket +
650 sizeof(struct ino_bucket)));
651
652 virt_irq = virt_irq_alloc(devhandle, devino);
653 bucket_set_virt_irq(__pa(bucket), virt_irq);
654
655 set_irq_chip_and_handler_name(virt_irq, &sun4v_virq,
656 handle_fasteoi_irq,
657 "IVEC");
658
659 data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
660 if (unlikely(!data))
661 return 0;
662
663 /* In order to make the LDC channel startup sequence easier,
664 * especially wrt. locking, we do not let request_irq() enable
665 * the interrupt.
666 */
667 desc = irq_desc + virt_irq;
668 desc->status |= IRQ_NOAUTOEN;
669
670 set_irq_chip_data(virt_irq, data);
671
672 /* Catch accidental accesses to these things. IMAP/ICLR handling
673 * is done by hypervisor calls on sun4v platforms, not by direct
674 * register accesses.
675 */
676 data->imap = ~0UL;
677 data->iclr = ~0UL;
678
679 cookie = ~__pa(bucket);
680 hv_err = sun4v_vintr_set_cookie(devhandle, devino, cookie);
681 if (hv_err) {
682 prom_printf("IRQ: Fatal, cannot set cookie for [%x:%x] "
683 "err=%lu\n", devhandle, devino, hv_err);
684 prom_halt();
685 }
686
687 return virt_irq;
688 }
689
ack_bad_irq(unsigned int virt_irq)690 void ack_bad_irq(unsigned int virt_irq)
691 {
692 unsigned int ino = virt_irq_table[virt_irq].dev_ino;
693
694 if (!ino)
695 ino = 0xdeadbeef;
696
697 printk(KERN_CRIT "Unexpected IRQ from ino[%x] virt_irq[%u]\n",
698 ino, virt_irq);
699 }
700
701 void *hardirq_stack[NR_CPUS];
702 void *softirq_stack[NR_CPUS];
703
set_hardirq_stack(void)704 static __attribute__((always_inline)) void *set_hardirq_stack(void)
705 {
706 void *orig_sp, *sp = hardirq_stack[smp_processor_id()];
707
708 __asm__ __volatile__("mov %%sp, %0" : "=r" (orig_sp));
709 if (orig_sp < sp ||
710 orig_sp > (sp + THREAD_SIZE)) {
711 sp += THREAD_SIZE - 192 - STACK_BIAS;
712 __asm__ __volatile__("mov %0, %%sp" : : "r" (sp));
713 }
714
715 return orig_sp;
716 }
restore_hardirq_stack(void * orig_sp)717 static __attribute__((always_inline)) void restore_hardirq_stack(void *orig_sp)
718 {
719 __asm__ __volatile__("mov %0, %%sp" : : "r" (orig_sp));
720 }
721
handler_irq(int irq,struct pt_regs * regs)722 void handler_irq(int irq, struct pt_regs *regs)
723 {
724 unsigned long pstate, bucket_pa;
725 struct pt_regs *old_regs;
726 void *orig_sp;
727
728 clear_softint(1 << irq);
729
730 old_regs = set_irq_regs(regs);
731 irq_enter();
732
733 /* Grab an atomic snapshot of the pending IVECs. */
734 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
735 "wrpr %0, %3, %%pstate\n\t"
736 "ldx [%2], %1\n\t"
737 "stx %%g0, [%2]\n\t"
738 "wrpr %0, 0x0, %%pstate\n\t"
739 : "=&r" (pstate), "=&r" (bucket_pa)
740 : "r" (irq_work_pa(smp_processor_id())),
741 "i" (PSTATE_IE)
742 : "memory");
743
744 orig_sp = set_hardirq_stack();
745
746 while (bucket_pa) {
747 struct irq_desc *desc;
748 unsigned long next_pa;
749 unsigned int virt_irq;
750
751 next_pa = bucket_get_chain_pa(bucket_pa);
752 virt_irq = bucket_get_virt_irq(bucket_pa);
753 bucket_clear_chain_pa(bucket_pa);
754
755 desc = irq_desc + virt_irq;
756
757 if (!(desc->status & IRQ_DISABLED))
758 desc->handle_irq(virt_irq, desc);
759
760 bucket_pa = next_pa;
761 }
762
763 restore_hardirq_stack(orig_sp);
764
765 irq_exit();
766 set_irq_regs(old_regs);
767 }
768
do_softirq(void)769 void do_softirq(void)
770 {
771 unsigned long flags;
772
773 if (in_interrupt())
774 return;
775
776 local_irq_save(flags);
777
778 if (local_softirq_pending()) {
779 void *orig_sp, *sp = softirq_stack[smp_processor_id()];
780
781 sp += THREAD_SIZE - 192 - STACK_BIAS;
782
783 __asm__ __volatile__("mov %%sp, %0\n\t"
784 "mov %1, %%sp"
785 : "=&r" (orig_sp)
786 : "r" (sp));
787 __do_softirq();
788 __asm__ __volatile__("mov %0, %%sp"
789 : : "r" (orig_sp));
790 }
791
792 local_irq_restore(flags);
793 }
794
795 #ifdef CONFIG_HOTPLUG_CPU
fixup_irqs(void)796 void fixup_irqs(void)
797 {
798 unsigned int irq;
799
800 for (irq = 0; irq < NR_IRQS; irq++) {
801 unsigned long flags;
802
803 spin_lock_irqsave(&irq_desc[irq].lock, flags);
804 if (irq_desc[irq].action &&
805 !(irq_desc[irq].status & IRQ_PER_CPU)) {
806 if (irq_desc[irq].chip->set_affinity)
807 irq_desc[irq].chip->set_affinity(irq,
808 &irq_desc[irq].affinity);
809 }
810 spin_unlock_irqrestore(&irq_desc[irq].lock, flags);
811 }
812
813 tick_ops->disable_irq();
814 }
815 #endif
816
817 struct sun5_timer {
818 u64 count0;
819 u64 limit0;
820 u64 count1;
821 u64 limit1;
822 };
823
824 static struct sun5_timer *prom_timers;
825 static u64 prom_limit0, prom_limit1;
826
map_prom_timers(void)827 static void map_prom_timers(void)
828 {
829 struct device_node *dp;
830 const unsigned int *addr;
831
832 /* PROM timer node hangs out in the top level of device siblings... */
833 dp = of_find_node_by_path("/");
834 dp = dp->child;
835 while (dp) {
836 if (!strcmp(dp->name, "counter-timer"))
837 break;
838 dp = dp->sibling;
839 }
840
841 /* Assume if node is not present, PROM uses different tick mechanism
842 * which we should not care about.
843 */
844 if (!dp) {
845 prom_timers = (struct sun5_timer *) 0;
846 return;
847 }
848
849 /* If PROM is really using this, it must be mapped by him. */
850 addr = of_get_property(dp, "address", NULL);
851 if (!addr) {
852 prom_printf("PROM does not have timer mapped, trying to continue.\n");
853 prom_timers = (struct sun5_timer *) 0;
854 return;
855 }
856 prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
857 }
858
kill_prom_timer(void)859 static void kill_prom_timer(void)
860 {
861 if (!prom_timers)
862 return;
863
864 /* Save them away for later. */
865 prom_limit0 = prom_timers->limit0;
866 prom_limit1 = prom_timers->limit1;
867
868 /* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14.
869 * We turn both off here just to be paranoid.
870 */
871 prom_timers->limit0 = 0;
872 prom_timers->limit1 = 0;
873
874 /* Wheee, eat the interrupt packet too... */
875 __asm__ __volatile__(
876 " mov 0x40, %%g2\n"
877 " ldxa [%%g0] %0, %%g1\n"
878 " ldxa [%%g2] %1, %%g1\n"
879 " stxa %%g0, [%%g0] %0\n"
880 " membar #Sync\n"
881 : /* no outputs */
882 : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
883 : "g1", "g2");
884 }
885
init_irqwork_curcpu(void)886 void notrace init_irqwork_curcpu(void)
887 {
888 int cpu = hard_smp_processor_id();
889
890 trap_block[cpu].irq_worklist_pa = 0UL;
891 }
892
893 /* Please be very careful with register_one_mondo() and
894 * sun4v_register_mondo_queues().
895 *
896 * On SMP this gets invoked from the CPU trampoline before
897 * the cpu has fully taken over the trap table from OBP,
898 * and it's kernel stack + %g6 thread register state is
899 * not fully cooked yet.
900 *
901 * Therefore you cannot make any OBP calls, not even prom_printf,
902 * from these two routines.
903 */
register_one_mondo(unsigned long paddr,unsigned long type,unsigned long qmask)904 static void __cpuinit register_one_mondo(unsigned long paddr, unsigned long type, unsigned long qmask)
905 {
906 unsigned long num_entries = (qmask + 1) / 64;
907 unsigned long status;
908
909 status = sun4v_cpu_qconf(type, paddr, num_entries);
910 if (status != HV_EOK) {
911 prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
912 "err %lu\n", type, paddr, num_entries, status);
913 prom_halt();
914 }
915 }
916
sun4v_register_mondo_queues(int this_cpu)917 void __cpuinit notrace sun4v_register_mondo_queues(int this_cpu)
918 {
919 struct trap_per_cpu *tb = &trap_block[this_cpu];
920
921 register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
922 tb->cpu_mondo_qmask);
923 register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
924 tb->dev_mondo_qmask);
925 register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
926 tb->resum_qmask);
927 register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
928 tb->nonresum_qmask);
929 }
930
alloc_one_mondo(unsigned long * pa_ptr,unsigned long qmask)931 static void __init alloc_one_mondo(unsigned long *pa_ptr, unsigned long qmask)
932 {
933 unsigned long size = PAGE_ALIGN(qmask + 1);
934 void *p = __alloc_bootmem(size, size, 0);
935 if (!p) {
936 prom_printf("SUN4V: Error, cannot allocate mondo queue.\n");
937 prom_halt();
938 }
939
940 *pa_ptr = __pa(p);
941 }
942
alloc_one_kbuf(unsigned long * pa_ptr,unsigned long qmask)943 static void __init alloc_one_kbuf(unsigned long *pa_ptr, unsigned long qmask)
944 {
945 unsigned long size = PAGE_ALIGN(qmask + 1);
946 void *p = __alloc_bootmem(size, size, 0);
947
948 if (!p) {
949 prom_printf("SUN4V: Error, cannot allocate kbuf page.\n");
950 prom_halt();
951 }
952
953 *pa_ptr = __pa(p);
954 }
955
init_cpu_send_mondo_info(struct trap_per_cpu * tb)956 static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
957 {
958 #ifdef CONFIG_SMP
959 void *page;
960
961 BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
962
963 page = alloc_bootmem_pages(PAGE_SIZE);
964 if (!page) {
965 prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
966 prom_halt();
967 }
968
969 tb->cpu_mondo_block_pa = __pa(page);
970 tb->cpu_list_pa = __pa(page + 64);
971 #endif
972 }
973
974 /* Allocate mondo and error queues for all possible cpus. */
sun4v_init_mondo_queues(void)975 static void __init sun4v_init_mondo_queues(void)
976 {
977 int cpu;
978
979 for_each_possible_cpu(cpu) {
980 struct trap_per_cpu *tb = &trap_block[cpu];
981
982 alloc_one_mondo(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
983 alloc_one_mondo(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
984 alloc_one_mondo(&tb->resum_mondo_pa, tb->resum_qmask);
985 alloc_one_kbuf(&tb->resum_kernel_buf_pa, tb->resum_qmask);
986 alloc_one_mondo(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
987 alloc_one_kbuf(&tb->nonresum_kernel_buf_pa,
988 tb->nonresum_qmask);
989 }
990 }
991
init_send_mondo_info(void)992 static void __init init_send_mondo_info(void)
993 {
994 int cpu;
995
996 for_each_possible_cpu(cpu) {
997 struct trap_per_cpu *tb = &trap_block[cpu];
998
999 init_cpu_send_mondo_info(tb);
1000 }
1001 }
1002
1003 static struct irqaction timer_irq_action = {
1004 .name = "timer",
1005 };
1006
1007 /* Only invoked on boot processor. */
init_IRQ(void)1008 void __init init_IRQ(void)
1009 {
1010 unsigned long size;
1011
1012 map_prom_timers();
1013 kill_prom_timer();
1014
1015 size = sizeof(struct ino_bucket) * NUM_IVECS;
1016 ivector_table = alloc_bootmem(size);
1017 if (!ivector_table) {
1018 prom_printf("Fatal error, cannot allocate ivector_table\n");
1019 prom_halt();
1020 }
1021 __flush_dcache_range((unsigned long) ivector_table,
1022 ((unsigned long) ivector_table) + size);
1023
1024 ivector_table_pa = __pa(ivector_table);
1025
1026 if (tlb_type == hypervisor)
1027 sun4v_init_mondo_queues();
1028
1029 init_send_mondo_info();
1030
1031 if (tlb_type == hypervisor) {
1032 /* Load up the boot cpu's entries. */
1033 sun4v_register_mondo_queues(hard_smp_processor_id());
1034 }
1035
1036 /* We need to clear any IRQ's pending in the soft interrupt
1037 * registers, a spurious one could be left around from the
1038 * PROM timer which we just disabled.
1039 */
1040 clear_softint(get_softint());
1041
1042 /* Now that ivector table is initialized, it is safe
1043 * to receive IRQ vector traps. We will normally take
1044 * one or two right now, in case some device PROM used
1045 * to boot us wants to speak to us. We just ignore them.
1046 */
1047 __asm__ __volatile__("rdpr %%pstate, %%g1\n\t"
1048 "or %%g1, %0, %%g1\n\t"
1049 "wrpr %%g1, 0x0, %%pstate"
1050 : /* No outputs */
1051 : "i" (PSTATE_IE)
1052 : "g1");
1053
1054 irq_desc[0].action = &timer_irq_action;
1055 }
1056