• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * KVM paravirt_ops implementation
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  *
18  * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
19  * Copyright IBM Corporation, 2007
20  *   Authors: Anthony Liguori <aliguori@us.ibm.com>
21  */
22 
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/kvm_para.h>
26 #include <linux/cpu.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/hardirq.h>
30 
31 #define MMU_QUEUE_SIZE 1024
32 
33 struct kvm_para_state {
34 	u8 mmu_queue[MMU_QUEUE_SIZE];
35 	int mmu_queue_len;
36 	enum paravirt_lazy_mode mode;
37 };
38 
39 static DEFINE_PER_CPU(struct kvm_para_state, para_state);
40 
kvm_para_state(void)41 static struct kvm_para_state *kvm_para_state(void)
42 {
43 	return &per_cpu(para_state, raw_smp_processor_id());
44 }
45 
46 /*
47  * No need for any "IO delay" on KVM
48  */
kvm_io_delay(void)49 static void kvm_io_delay(void)
50 {
51 }
52 
kvm_mmu_op(void * buffer,unsigned len)53 static void kvm_mmu_op(void *buffer, unsigned len)
54 {
55 	int r;
56 	unsigned long a1, a2;
57 
58 	do {
59 		a1 = __pa(buffer);
60 		a2 = 0;   /* on i386 __pa() always returns <4G */
61 		r = kvm_hypercall3(KVM_HC_MMU_OP, len, a1, a2);
62 		buffer += r;
63 		len -= r;
64 	} while (len);
65 }
66 
mmu_queue_flush(struct kvm_para_state * state)67 static void mmu_queue_flush(struct kvm_para_state *state)
68 {
69 	if (state->mmu_queue_len) {
70 		kvm_mmu_op(state->mmu_queue, state->mmu_queue_len);
71 		state->mmu_queue_len = 0;
72 	}
73 }
74 
kvm_deferred_mmu_op(void * buffer,int len)75 static void kvm_deferred_mmu_op(void *buffer, int len)
76 {
77 	struct kvm_para_state *state = kvm_para_state();
78 
79 	if (state->mode != PARAVIRT_LAZY_MMU) {
80 		kvm_mmu_op(buffer, len);
81 		return;
82 	}
83 	if (state->mmu_queue_len + len > sizeof state->mmu_queue)
84 		mmu_queue_flush(state);
85 	memcpy(state->mmu_queue + state->mmu_queue_len, buffer, len);
86 	state->mmu_queue_len += len;
87 }
88 
kvm_mmu_write(void * dest,u64 val)89 static void kvm_mmu_write(void *dest, u64 val)
90 {
91 	__u64 pte_phys;
92 	struct kvm_mmu_op_write_pte wpte;
93 
94 #ifdef CONFIG_HIGHPTE
95 	struct page *page;
96 	unsigned long dst = (unsigned long) dest;
97 
98 	page = kmap_atomic_to_page(dest);
99 	pte_phys = page_to_pfn(page);
100 	pte_phys <<= PAGE_SHIFT;
101 	pte_phys += (dst & ~(PAGE_MASK));
102 #else
103 	pte_phys = (unsigned long)__pa(dest);
104 #endif
105 	wpte.header.op = KVM_MMU_OP_WRITE_PTE;
106 	wpte.pte_val = val;
107 	wpte.pte_phys = pte_phys;
108 
109 	kvm_deferred_mmu_op(&wpte, sizeof wpte);
110 }
111 
112 /*
113  * We only need to hook operations that are MMU writes.  We hook these so that
114  * we can use lazy MMU mode to batch these operations.  We could probably
115  * improve the performance of the host code if we used some of the information
116  * here to simplify processing of batched writes.
117  */
kvm_set_pte(pte_t * ptep,pte_t pte)118 static void kvm_set_pte(pte_t *ptep, pte_t pte)
119 {
120 	kvm_mmu_write(ptep, pte_val(pte));
121 }
122 
kvm_set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)123 static void kvm_set_pte_at(struct mm_struct *mm, unsigned long addr,
124 			   pte_t *ptep, pte_t pte)
125 {
126 	kvm_mmu_write(ptep, pte_val(pte));
127 }
128 
kvm_set_pmd(pmd_t * pmdp,pmd_t pmd)129 static void kvm_set_pmd(pmd_t *pmdp, pmd_t pmd)
130 {
131 	kvm_mmu_write(pmdp, pmd_val(pmd));
132 }
133 
134 #if PAGETABLE_LEVELS >= 3
135 #ifdef CONFIG_X86_PAE
kvm_set_pte_atomic(pte_t * ptep,pte_t pte)136 static void kvm_set_pte_atomic(pte_t *ptep, pte_t pte)
137 {
138 	kvm_mmu_write(ptep, pte_val(pte));
139 }
140 
kvm_set_pte_present(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)141 static void kvm_set_pte_present(struct mm_struct *mm, unsigned long addr,
142 				pte_t *ptep, pte_t pte)
143 {
144 	kvm_mmu_write(ptep, pte_val(pte));
145 }
146 
kvm_pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)147 static void kvm_pte_clear(struct mm_struct *mm,
148 			  unsigned long addr, pte_t *ptep)
149 {
150 	kvm_mmu_write(ptep, 0);
151 }
152 
kvm_pmd_clear(pmd_t * pmdp)153 static void kvm_pmd_clear(pmd_t *pmdp)
154 {
155 	kvm_mmu_write(pmdp, 0);
156 }
157 #endif
158 
kvm_set_pud(pud_t * pudp,pud_t pud)159 static void kvm_set_pud(pud_t *pudp, pud_t pud)
160 {
161 	kvm_mmu_write(pudp, pud_val(pud));
162 }
163 
164 #if PAGETABLE_LEVELS == 4
kvm_set_pgd(pgd_t * pgdp,pgd_t pgd)165 static void kvm_set_pgd(pgd_t *pgdp, pgd_t pgd)
166 {
167 	kvm_mmu_write(pgdp, pgd_val(pgd));
168 }
169 #endif
170 #endif /* PAGETABLE_LEVELS >= 3 */
171 
kvm_flush_tlb(void)172 static void kvm_flush_tlb(void)
173 {
174 	struct kvm_mmu_op_flush_tlb ftlb = {
175 		.header.op = KVM_MMU_OP_FLUSH_TLB,
176 	};
177 
178 	kvm_deferred_mmu_op(&ftlb, sizeof ftlb);
179 }
180 
kvm_release_pt(unsigned long pfn)181 static void kvm_release_pt(unsigned long pfn)
182 {
183 	struct kvm_mmu_op_release_pt rpt = {
184 		.header.op = KVM_MMU_OP_RELEASE_PT,
185 		.pt_phys = (u64)pfn << PAGE_SHIFT,
186 	};
187 
188 	kvm_mmu_op(&rpt, sizeof rpt);
189 }
190 
kvm_enter_lazy_mmu(void)191 static void kvm_enter_lazy_mmu(void)
192 {
193 	struct kvm_para_state *state = kvm_para_state();
194 
195 	paravirt_enter_lazy_mmu();
196 	state->mode = paravirt_get_lazy_mode();
197 }
198 
kvm_leave_lazy_mmu(void)199 static void kvm_leave_lazy_mmu(void)
200 {
201 	struct kvm_para_state *state = kvm_para_state();
202 
203 	mmu_queue_flush(state);
204 	paravirt_leave_lazy(paravirt_get_lazy_mode());
205 	state->mode = paravirt_get_lazy_mode();
206 }
207 
paravirt_ops_setup(void)208 static void paravirt_ops_setup(void)
209 {
210 	pv_info.name = "KVM";
211 	pv_info.paravirt_enabled = 1;
212 
213 	if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
214 		pv_cpu_ops.io_delay = kvm_io_delay;
215 
216 	if (kvm_para_has_feature(KVM_FEATURE_MMU_OP)) {
217 		pv_mmu_ops.set_pte = kvm_set_pte;
218 		pv_mmu_ops.set_pte_at = kvm_set_pte_at;
219 		pv_mmu_ops.set_pmd = kvm_set_pmd;
220 #if PAGETABLE_LEVELS >= 3
221 #ifdef CONFIG_X86_PAE
222 		pv_mmu_ops.set_pte_atomic = kvm_set_pte_atomic;
223 		pv_mmu_ops.set_pte_present = kvm_set_pte_present;
224 		pv_mmu_ops.pte_clear = kvm_pte_clear;
225 		pv_mmu_ops.pmd_clear = kvm_pmd_clear;
226 #endif
227 		pv_mmu_ops.set_pud = kvm_set_pud;
228 #if PAGETABLE_LEVELS == 4
229 		pv_mmu_ops.set_pgd = kvm_set_pgd;
230 #endif
231 #endif
232 		pv_mmu_ops.flush_tlb_user = kvm_flush_tlb;
233 		pv_mmu_ops.release_pte = kvm_release_pt;
234 		pv_mmu_ops.release_pmd = kvm_release_pt;
235 		pv_mmu_ops.release_pud = kvm_release_pt;
236 
237 		pv_mmu_ops.lazy_mode.enter = kvm_enter_lazy_mmu;
238 		pv_mmu_ops.lazy_mode.leave = kvm_leave_lazy_mmu;
239 	}
240 }
241 
kvm_guest_init(void)242 void __init kvm_guest_init(void)
243 {
244 	if (!kvm_para_available())
245 		return;
246 
247 	paravirt_ops_setup();
248 }
249