1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
5 *
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
10 *
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
14 *
15 * Copyright IBM Corp. 2007
16 *
17 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18 */
19
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/kvm.h>
23 #include <linux/kvm_host.h>
24 #include <linux/highmem.h>
25
26 #include <asm/tlbflush.h>
27 #include <asm/mmu-44x.h>
28 #include <asm/kvm_ppc.h>
29 #include <asm/kvm_44x.h>
30 #include "timing.h"
31
32 #include "44x_tlb.h"
33
34 #ifndef PPC44x_TLBE_SIZE
35 #define PPC44x_TLBE_SIZE PPC44x_TLB_4K
36 #endif
37
38 #define PAGE_SIZE_4K (1<<12)
39 #define PAGE_MASK_4K (~(PAGE_SIZE_4K - 1))
40
41 #define PPC44x_TLB_UATTR_MASK \
42 (PPC44x_TLB_U0|PPC44x_TLB_U1|PPC44x_TLB_U2|PPC44x_TLB_U3)
43 #define PPC44x_TLB_USER_PERM_MASK (PPC44x_TLB_UX|PPC44x_TLB_UR|PPC44x_TLB_UW)
44 #define PPC44x_TLB_SUPER_PERM_MASK (PPC44x_TLB_SX|PPC44x_TLB_SR|PPC44x_TLB_SW)
45
46 #ifdef DEBUG
kvmppc_dump_tlbs(struct kvm_vcpu * vcpu)47 void kvmppc_dump_tlbs(struct kvm_vcpu *vcpu)
48 {
49 struct kvmppc_44x_tlbe *tlbe;
50 int i;
51
52 printk("vcpu %d TLB dump:\n", vcpu->vcpu_id);
53 printk("| %2s | %3s | %8s | %8s | %8s |\n",
54 "nr", "tid", "word0", "word1", "word2");
55
56 for (i = 0; i < ARRAY_SIZE(vcpu_44x->guest_tlb); i++) {
57 tlbe = &vcpu_44x->guest_tlb[i];
58 if (tlbe->word0 & PPC44x_TLB_VALID)
59 printk(" G%2d | %02X | %08X | %08X | %08X |\n",
60 i, tlbe->tid, tlbe->word0, tlbe->word1,
61 tlbe->word2);
62 }
63 }
64 #endif
65
kvmppc_44x_tlbie(unsigned int index)66 static inline void kvmppc_44x_tlbie(unsigned int index)
67 {
68 /* 0 <= index < 64, so the V bit is clear and we can use the index as
69 * word0. */
70 asm volatile(
71 "tlbwe %[index], %[index], 0\n"
72 :
73 : [index] "r"(index)
74 );
75 }
76
kvmppc_44x_tlbre(unsigned int index,struct kvmppc_44x_tlbe * tlbe)77 static inline void kvmppc_44x_tlbre(unsigned int index,
78 struct kvmppc_44x_tlbe *tlbe)
79 {
80 asm volatile(
81 "tlbre %[word0], %[index], 0\n"
82 "mfspr %[tid], %[sprn_mmucr]\n"
83 "andi. %[tid], %[tid], 0xff\n"
84 "tlbre %[word1], %[index], 1\n"
85 "tlbre %[word2], %[index], 2\n"
86 : [word0] "=r"(tlbe->word0),
87 [word1] "=r"(tlbe->word1),
88 [word2] "=r"(tlbe->word2),
89 [tid] "=r"(tlbe->tid)
90 : [index] "r"(index),
91 [sprn_mmucr] "i"(SPRN_MMUCR)
92 : "cc"
93 );
94 }
95
kvmppc_44x_tlbwe(unsigned int index,struct kvmppc_44x_tlbe * stlbe)96 static inline void kvmppc_44x_tlbwe(unsigned int index,
97 struct kvmppc_44x_tlbe *stlbe)
98 {
99 unsigned long tmp;
100
101 asm volatile(
102 "mfspr %[tmp], %[sprn_mmucr]\n"
103 "rlwimi %[tmp], %[tid], 0, 0xff\n"
104 "mtspr %[sprn_mmucr], %[tmp]\n"
105 "tlbwe %[word0], %[index], 0\n"
106 "tlbwe %[word1], %[index], 1\n"
107 "tlbwe %[word2], %[index], 2\n"
108 : [tmp] "=&r"(tmp)
109 : [word0] "r"(stlbe->word0),
110 [word1] "r"(stlbe->word1),
111 [word2] "r"(stlbe->word2),
112 [tid] "r"(stlbe->tid),
113 [index] "r"(index),
114 [sprn_mmucr] "i"(SPRN_MMUCR)
115 );
116 }
117
kvmppc_44x_tlb_shadow_attrib(u32 attrib,int usermode)118 static u32 kvmppc_44x_tlb_shadow_attrib(u32 attrib, int usermode)
119 {
120 /* We only care about the guest's permission and user bits. */
121 attrib &= PPC44x_TLB_PERM_MASK|PPC44x_TLB_UATTR_MASK;
122
123 if (!usermode) {
124 /* Guest is in supervisor mode, so we need to translate guest
125 * supervisor permissions into user permissions. */
126 attrib &= ~PPC44x_TLB_USER_PERM_MASK;
127 attrib |= (attrib & PPC44x_TLB_SUPER_PERM_MASK) << 3;
128 }
129
130 /* Make sure host can always access this memory. */
131 attrib |= PPC44x_TLB_SX|PPC44x_TLB_SR|PPC44x_TLB_SW;
132
133 /* WIMGE = 0b00100 */
134 attrib |= PPC44x_TLB_M;
135
136 return attrib;
137 }
138
139 /* Load shadow TLB back into hardware. */
kvmppc_44x_tlb_load(struct kvm_vcpu * vcpu)140 void kvmppc_44x_tlb_load(struct kvm_vcpu *vcpu)
141 {
142 struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
143 int i;
144
145 for (i = 0; i <= tlb_44x_hwater; i++) {
146 struct kvmppc_44x_tlbe *stlbe = &vcpu_44x->shadow_tlb[i];
147
148 if (get_tlb_v(stlbe) && get_tlb_ts(stlbe))
149 kvmppc_44x_tlbwe(i, stlbe);
150 }
151 }
152
kvmppc_44x_tlbe_set_modified(struct kvmppc_vcpu_44x * vcpu_44x,unsigned int i)153 static void kvmppc_44x_tlbe_set_modified(struct kvmppc_vcpu_44x *vcpu_44x,
154 unsigned int i)
155 {
156 vcpu_44x->shadow_tlb_mod[i] = 1;
157 }
158
159 /* Save hardware TLB to the vcpu, and invalidate all guest mappings. */
kvmppc_44x_tlb_put(struct kvm_vcpu * vcpu)160 void kvmppc_44x_tlb_put(struct kvm_vcpu *vcpu)
161 {
162 struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
163 int i;
164
165 for (i = 0; i <= tlb_44x_hwater; i++) {
166 struct kvmppc_44x_tlbe *stlbe = &vcpu_44x->shadow_tlb[i];
167
168 if (vcpu_44x->shadow_tlb_mod[i])
169 kvmppc_44x_tlbre(i, stlbe);
170
171 if (get_tlb_v(stlbe) && get_tlb_ts(stlbe))
172 kvmppc_44x_tlbie(i);
173 }
174 }
175
176
177 /* Search the guest TLB for a matching entry. */
kvmppc_44x_tlb_index(struct kvm_vcpu * vcpu,gva_t eaddr,unsigned int pid,unsigned int as)178 int kvmppc_44x_tlb_index(struct kvm_vcpu *vcpu, gva_t eaddr, unsigned int pid,
179 unsigned int as)
180 {
181 struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
182 int i;
183
184 /* XXX Replace loop with fancy data structures. */
185 for (i = 0; i < ARRAY_SIZE(vcpu_44x->guest_tlb); i++) {
186 struct kvmppc_44x_tlbe *tlbe = &vcpu_44x->guest_tlb[i];
187 unsigned int tid;
188
189 if (eaddr < get_tlb_eaddr(tlbe))
190 continue;
191
192 if (eaddr > get_tlb_end(tlbe))
193 continue;
194
195 tid = get_tlb_tid(tlbe);
196 if (tid && (tid != pid))
197 continue;
198
199 if (!get_tlb_v(tlbe))
200 continue;
201
202 if (get_tlb_ts(tlbe) != as)
203 continue;
204
205 return i;
206 }
207
208 return -1;
209 }
210
kvmppc_44x_itlb_index(struct kvm_vcpu * vcpu,gva_t eaddr)211 int kvmppc_44x_itlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
212 {
213 unsigned int as = !!(vcpu->arch.msr & MSR_IS);
214
215 return kvmppc_44x_tlb_index(vcpu, eaddr, vcpu->arch.pid, as);
216 }
217
kvmppc_44x_dtlb_index(struct kvm_vcpu * vcpu,gva_t eaddr)218 int kvmppc_44x_dtlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
219 {
220 unsigned int as = !!(vcpu->arch.msr & MSR_DS);
221
222 return kvmppc_44x_tlb_index(vcpu, eaddr, vcpu->arch.pid, as);
223 }
224
kvmppc_44x_shadow_release(struct kvmppc_vcpu_44x * vcpu_44x,unsigned int stlb_index)225 static void kvmppc_44x_shadow_release(struct kvmppc_vcpu_44x *vcpu_44x,
226 unsigned int stlb_index)
227 {
228 struct kvmppc_44x_shadow_ref *ref = &vcpu_44x->shadow_refs[stlb_index];
229
230 if (!ref->page)
231 return;
232
233 /* Discard from the TLB. */
234 /* Note: we could actually invalidate a host mapping, if the host overwrote
235 * this TLB entry since we inserted a guest mapping. */
236 kvmppc_44x_tlbie(stlb_index);
237
238 /* Now release the page. */
239 if (ref->writeable)
240 kvm_release_page_dirty(ref->page);
241 else
242 kvm_release_page_clean(ref->page);
243
244 ref->page = NULL;
245
246 /* XXX set tlb_44x_index to stlb_index? */
247
248 KVMTRACE_1D(STLB_INVAL, &vcpu_44x->vcpu, stlb_index, handler);
249 }
250
kvmppc_core_destroy_mmu(struct kvm_vcpu * vcpu)251 void kvmppc_core_destroy_mmu(struct kvm_vcpu *vcpu)
252 {
253 struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
254 int i;
255
256 for (i = 0; i <= tlb_44x_hwater; i++)
257 kvmppc_44x_shadow_release(vcpu_44x, i);
258 }
259
260 /**
261 * kvmppc_mmu_map -- create a host mapping for guest memory
262 *
263 * If the guest wanted a larger page than the host supports, only the first
264 * host page is mapped here and the rest are demand faulted.
265 *
266 * If the guest wanted a smaller page than the host page size, we map only the
267 * guest-size page (i.e. not a full host page mapping).
268 *
269 * Caller must ensure that the specified guest TLB entry is safe to insert into
270 * the shadow TLB.
271 */
kvmppc_mmu_map(struct kvm_vcpu * vcpu,u64 gvaddr,gpa_t gpaddr,u64 asid,u32 flags,u32 max_bytes,unsigned int gtlb_index)272 void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 gvaddr, gpa_t gpaddr, u64 asid,
273 u32 flags, u32 max_bytes, unsigned int gtlb_index)
274 {
275 struct kvmppc_44x_tlbe stlbe;
276 struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
277 struct kvmppc_44x_shadow_ref *ref;
278 struct page *new_page;
279 hpa_t hpaddr;
280 gfn_t gfn;
281 unsigned int victim;
282
283 /* Select TLB entry to clobber. Indirectly guard against races with the TLB
284 * miss handler by disabling interrupts. */
285 local_irq_disable();
286 victim = ++tlb_44x_index;
287 if (victim > tlb_44x_hwater)
288 victim = 0;
289 tlb_44x_index = victim;
290 local_irq_enable();
291
292 /* Get reference to new page. */
293 gfn = gpaddr >> PAGE_SHIFT;
294 new_page = gfn_to_page(vcpu->kvm, gfn);
295 if (is_error_page(new_page)) {
296 printk(KERN_ERR "Couldn't get guest page for gfn %lx!\n", gfn);
297 kvm_release_page_clean(new_page);
298 return;
299 }
300 hpaddr = page_to_phys(new_page);
301
302 /* Invalidate any previous shadow mappings. */
303 kvmppc_44x_shadow_release(vcpu_44x, victim);
304
305 /* XXX Make sure (va, size) doesn't overlap any other
306 * entries. 440x6 user manual says the result would be
307 * "undefined." */
308
309 /* XXX what about AS? */
310
311 /* Force TS=1 for all guest mappings. */
312 stlbe.word0 = PPC44x_TLB_VALID | PPC44x_TLB_TS;
313
314 if (max_bytes >= PAGE_SIZE) {
315 /* Guest mapping is larger than or equal to host page size. We can use
316 * a "native" host mapping. */
317 stlbe.word0 |= (gvaddr & PAGE_MASK) | PPC44x_TLBE_SIZE;
318 } else {
319 /* Guest mapping is smaller than host page size. We must restrict the
320 * size of the mapping to be at most the smaller of the two, but for
321 * simplicity we fall back to a 4K mapping (this is probably what the
322 * guest is using anyways). */
323 stlbe.word0 |= (gvaddr & PAGE_MASK_4K) | PPC44x_TLB_4K;
324
325 /* 'hpaddr' is a host page, which is larger than the mapping we're
326 * inserting here. To compensate, we must add the in-page offset to the
327 * sub-page. */
328 hpaddr |= gpaddr & (PAGE_MASK ^ PAGE_MASK_4K);
329 }
330
331 stlbe.word1 = (hpaddr & 0xfffffc00) | ((hpaddr >> 32) & 0xf);
332 stlbe.word2 = kvmppc_44x_tlb_shadow_attrib(flags,
333 vcpu->arch.msr & MSR_PR);
334 stlbe.tid = !(asid & 0xff);
335
336 /* Keep track of the reference so we can properly release it later. */
337 ref = &vcpu_44x->shadow_refs[victim];
338 ref->page = new_page;
339 ref->gtlb_index = gtlb_index;
340 ref->writeable = !!(stlbe.word2 & PPC44x_TLB_UW);
341 ref->tid = stlbe.tid;
342
343 /* Insert shadow mapping into hardware TLB. */
344 kvmppc_44x_tlbe_set_modified(vcpu_44x, victim);
345 kvmppc_44x_tlbwe(victim, &stlbe);
346 KVMTRACE_5D(STLB_WRITE, vcpu, victim, stlbe.tid, stlbe.word0, stlbe.word1,
347 stlbe.word2, handler);
348 }
349
350 /* For a particular guest TLB entry, invalidate the corresponding host TLB
351 * mappings and release the host pages. */
kvmppc_44x_invalidate(struct kvm_vcpu * vcpu,unsigned int gtlb_index)352 static void kvmppc_44x_invalidate(struct kvm_vcpu *vcpu,
353 unsigned int gtlb_index)
354 {
355 struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
356 int i;
357
358 for (i = 0; i < ARRAY_SIZE(vcpu_44x->shadow_refs); i++) {
359 struct kvmppc_44x_shadow_ref *ref = &vcpu_44x->shadow_refs[i];
360 if (ref->gtlb_index == gtlb_index)
361 kvmppc_44x_shadow_release(vcpu_44x, i);
362 }
363 }
364
kvmppc_mmu_priv_switch(struct kvm_vcpu * vcpu,int usermode)365 void kvmppc_mmu_priv_switch(struct kvm_vcpu *vcpu, int usermode)
366 {
367 vcpu->arch.shadow_pid = !usermode;
368 }
369
kvmppc_set_pid(struct kvm_vcpu * vcpu,u32 new_pid)370 void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 new_pid)
371 {
372 struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
373 int i;
374
375 if (unlikely(vcpu->arch.pid == new_pid))
376 return;
377
378 vcpu->arch.pid = new_pid;
379
380 /* Guest userspace runs with TID=0 mappings and PID=0, to make sure it
381 * can't access guest kernel mappings (TID=1). When we switch to a new
382 * guest PID, which will also use host PID=0, we must discard the old guest
383 * userspace mappings. */
384 for (i = 0; i < ARRAY_SIZE(vcpu_44x->shadow_refs); i++) {
385 struct kvmppc_44x_shadow_ref *ref = &vcpu_44x->shadow_refs[i];
386
387 if (ref->tid == 0)
388 kvmppc_44x_shadow_release(vcpu_44x, i);
389 }
390 }
391
tlbe_is_host_safe(const struct kvm_vcpu * vcpu,const struct kvmppc_44x_tlbe * tlbe)392 static int tlbe_is_host_safe(const struct kvm_vcpu *vcpu,
393 const struct kvmppc_44x_tlbe *tlbe)
394 {
395 gpa_t gpa;
396
397 if (!get_tlb_v(tlbe))
398 return 0;
399
400 /* Does it match current guest AS? */
401 /* XXX what about IS != DS? */
402 if (get_tlb_ts(tlbe) != !!(vcpu->arch.msr & MSR_IS))
403 return 0;
404
405 gpa = get_tlb_raddr(tlbe);
406 if (!gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT))
407 /* Mapping is not for RAM. */
408 return 0;
409
410 return 1;
411 }
412
kvmppc_44x_emul_tlbwe(struct kvm_vcpu * vcpu,u8 ra,u8 rs,u8 ws)413 int kvmppc_44x_emul_tlbwe(struct kvm_vcpu *vcpu, u8 ra, u8 rs, u8 ws)
414 {
415 struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
416 struct kvmppc_44x_tlbe *tlbe;
417 unsigned int gtlb_index;
418
419 gtlb_index = vcpu->arch.gpr[ra];
420 if (gtlb_index > KVM44x_GUEST_TLB_SIZE) {
421 printk("%s: index %d\n", __func__, gtlb_index);
422 kvmppc_dump_vcpu(vcpu);
423 return EMULATE_FAIL;
424 }
425
426 tlbe = &vcpu_44x->guest_tlb[gtlb_index];
427
428 /* Invalidate shadow mappings for the about-to-be-clobbered TLB entry. */
429 if (tlbe->word0 & PPC44x_TLB_VALID)
430 kvmppc_44x_invalidate(vcpu, gtlb_index);
431
432 switch (ws) {
433 case PPC44x_TLB_PAGEID:
434 tlbe->tid = get_mmucr_stid(vcpu);
435 tlbe->word0 = vcpu->arch.gpr[rs];
436 break;
437
438 case PPC44x_TLB_XLAT:
439 tlbe->word1 = vcpu->arch.gpr[rs];
440 break;
441
442 case PPC44x_TLB_ATTRIB:
443 tlbe->word2 = vcpu->arch.gpr[rs];
444 break;
445
446 default:
447 return EMULATE_FAIL;
448 }
449
450 if (tlbe_is_host_safe(vcpu, tlbe)) {
451 u64 asid;
452 gva_t eaddr;
453 gpa_t gpaddr;
454 u32 flags;
455 u32 bytes;
456
457 eaddr = get_tlb_eaddr(tlbe);
458 gpaddr = get_tlb_raddr(tlbe);
459
460 /* Use the advertised page size to mask effective and real addrs. */
461 bytes = get_tlb_bytes(tlbe);
462 eaddr &= ~(bytes - 1);
463 gpaddr &= ~(bytes - 1);
464
465 asid = (tlbe->word0 & PPC44x_TLB_TS) | tlbe->tid;
466 flags = tlbe->word2 & 0xffff;
467
468 kvmppc_mmu_map(vcpu, eaddr, gpaddr, asid, flags, bytes, gtlb_index);
469 }
470
471 KVMTRACE_5D(GTLB_WRITE, vcpu, gtlb_index, tlbe->tid, tlbe->word0,
472 tlbe->word1, tlbe->word2, handler);
473
474 kvmppc_set_exit_type(vcpu, EMULATED_TLBWE_EXITS);
475 return EMULATE_DONE;
476 }
477
kvmppc_44x_emul_tlbsx(struct kvm_vcpu * vcpu,u8 rt,u8 ra,u8 rb,u8 rc)478 int kvmppc_44x_emul_tlbsx(struct kvm_vcpu *vcpu, u8 rt, u8 ra, u8 rb, u8 rc)
479 {
480 u32 ea;
481 int gtlb_index;
482 unsigned int as = get_mmucr_sts(vcpu);
483 unsigned int pid = get_mmucr_stid(vcpu);
484
485 ea = vcpu->arch.gpr[rb];
486 if (ra)
487 ea += vcpu->arch.gpr[ra];
488
489 gtlb_index = kvmppc_44x_tlb_index(vcpu, ea, pid, as);
490 if (rc) {
491 if (gtlb_index < 0)
492 vcpu->arch.cr &= ~0x20000000;
493 else
494 vcpu->arch.cr |= 0x20000000;
495 }
496 vcpu->arch.gpr[rt] = gtlb_index;
497
498 kvmppc_set_exit_type(vcpu, EMULATED_TLBSX_EXITS);
499 return EMULATE_DONE;
500 }
501