• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * File:         arch/blackfin/mm/sram-alloc.c
3  * Based on:
4  * Author:
5  *
6  * Created:
7  * Description:  SRAM allocator for Blackfin L1 and L2 memory
8  *
9  * Modified:
10  *               Copyright 2004-2008 Analog Devices Inc.
11  *
12  * Bugs:         Enter bugs at http://blackfin.uclinux.org/
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License as published by
16  * the Free Software Foundation; either version 2 of the License, or
17  * (at your option) any later version.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with this program; if not, see the file COPYING, or write
26  * to the Free Software Foundation, Inc.,
27  * 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
28  */
29 
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/types.h>
33 #include <linux/miscdevice.h>
34 #include <linux/ioport.h>
35 #include <linux/fcntl.h>
36 #include <linux/init.h>
37 #include <linux/poll.h>
38 #include <linux/proc_fs.h>
39 #include <linux/spinlock.h>
40 #include <linux/rtc.h>
41 #include <asm/blackfin.h>
42 #include <asm/mem_map.h>
43 #include "blackfin_sram.h"
44 
45 static DEFINE_PER_CPU(spinlock_t, l1sram_lock) ____cacheline_aligned_in_smp;
46 static DEFINE_PER_CPU(spinlock_t, l1_data_sram_lock) ____cacheline_aligned_in_smp;
47 static DEFINE_PER_CPU(spinlock_t, l1_inst_sram_lock) ____cacheline_aligned_in_smp;
48 static spinlock_t l2_sram_lock ____cacheline_aligned_in_smp;
49 
50 /* the data structure for L1 scratchpad and DATA SRAM */
51 struct sram_piece {
52 	void *paddr;
53 	int size;
54 	pid_t pid;
55 	struct sram_piece *next;
56 };
57 
58 static DEFINE_PER_CPU(struct sram_piece, free_l1_ssram_head);
59 static DEFINE_PER_CPU(struct sram_piece, used_l1_ssram_head);
60 
61 #if L1_DATA_A_LENGTH != 0
62 static DEFINE_PER_CPU(struct sram_piece, free_l1_data_A_sram_head);
63 static DEFINE_PER_CPU(struct sram_piece, used_l1_data_A_sram_head);
64 #endif
65 
66 #if L1_DATA_B_LENGTH != 0
67 static DEFINE_PER_CPU(struct sram_piece, free_l1_data_B_sram_head);
68 static DEFINE_PER_CPU(struct sram_piece, used_l1_data_B_sram_head);
69 #endif
70 
71 #if L1_CODE_LENGTH != 0
72 static DEFINE_PER_CPU(struct sram_piece, free_l1_inst_sram_head);
73 static DEFINE_PER_CPU(struct sram_piece, used_l1_inst_sram_head);
74 #endif
75 
76 #if L2_LENGTH != 0
77 static struct sram_piece free_l2_sram_head, used_l2_sram_head;
78 #endif
79 
80 static struct kmem_cache *sram_piece_cache;
81 
82 /* L1 Scratchpad SRAM initialization function */
l1sram_init(void)83 static void __init l1sram_init(void)
84 {
85 	unsigned int cpu;
86 	for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
87 		per_cpu(free_l1_ssram_head, cpu).next =
88 			kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
89 		if (!per_cpu(free_l1_ssram_head, cpu).next) {
90 			printk(KERN_INFO "Fail to initialize Scratchpad data SRAM.\n");
91 			return;
92 		}
93 
94 		per_cpu(free_l1_ssram_head, cpu).next->paddr = (void *)get_l1_scratch_start_cpu(cpu);
95 		per_cpu(free_l1_ssram_head, cpu).next->size = L1_SCRATCH_LENGTH;
96 		per_cpu(free_l1_ssram_head, cpu).next->pid = 0;
97 		per_cpu(free_l1_ssram_head, cpu).next->next = NULL;
98 
99 		per_cpu(used_l1_ssram_head, cpu).next = NULL;
100 
101 		/* mutex initialize */
102 		spin_lock_init(&per_cpu(l1sram_lock, cpu));
103 		printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n",
104 			L1_SCRATCH_LENGTH >> 10);
105 	}
106 }
107 
l1_data_sram_init(void)108 static void __init l1_data_sram_init(void)
109 {
110 #if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
111 	unsigned int cpu;
112 #endif
113 #if L1_DATA_A_LENGTH != 0
114 	for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
115 		per_cpu(free_l1_data_A_sram_head, cpu).next =
116 			kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
117 		if (!per_cpu(free_l1_data_A_sram_head, cpu).next) {
118 			printk(KERN_INFO "Fail to initialize L1 Data A SRAM.\n");
119 			return;
120 		}
121 
122 		per_cpu(free_l1_data_A_sram_head, cpu).next->paddr =
123 			(void *)get_l1_data_a_start_cpu(cpu) + (_ebss_l1 - _sdata_l1);
124 		per_cpu(free_l1_data_A_sram_head, cpu).next->size =
125 			L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1);
126 		per_cpu(free_l1_data_A_sram_head, cpu).next->pid = 0;
127 		per_cpu(free_l1_data_A_sram_head, cpu).next->next = NULL;
128 
129 		per_cpu(used_l1_data_A_sram_head, cpu).next = NULL;
130 
131 		printk(KERN_INFO "Blackfin L1 Data A SRAM: %d KB (%d KB free)\n",
132 			L1_DATA_A_LENGTH >> 10,
133 			per_cpu(free_l1_data_A_sram_head, cpu).next->size >> 10);
134 	}
135 #endif
136 #if L1_DATA_B_LENGTH != 0
137 	for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
138 		per_cpu(free_l1_data_B_sram_head, cpu).next =
139 			kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
140 		if (!per_cpu(free_l1_data_B_sram_head, cpu).next) {
141 			printk(KERN_INFO "Fail to initialize L1 Data B SRAM.\n");
142 			return;
143 		}
144 
145 		per_cpu(free_l1_data_B_sram_head, cpu).next->paddr =
146 			(void *)get_l1_data_b_start_cpu(cpu) + (_ebss_b_l1 - _sdata_b_l1);
147 		per_cpu(free_l1_data_B_sram_head, cpu).next->size =
148 			L1_DATA_B_LENGTH - (_ebss_b_l1 - _sdata_b_l1);
149 		per_cpu(free_l1_data_B_sram_head, cpu).next->pid = 0;
150 		per_cpu(free_l1_data_B_sram_head, cpu).next->next = NULL;
151 
152 		per_cpu(used_l1_data_B_sram_head, cpu).next = NULL;
153 
154 		printk(KERN_INFO "Blackfin L1 Data B SRAM: %d KB (%d KB free)\n",
155 			L1_DATA_B_LENGTH >> 10,
156 			per_cpu(free_l1_data_B_sram_head, cpu).next->size >> 10);
157 		/* mutex initialize */
158 	}
159 #endif
160 
161 #if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
162 	for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
163 		spin_lock_init(&per_cpu(l1_data_sram_lock, cpu));
164 #endif
165 }
166 
l1_inst_sram_init(void)167 static void __init l1_inst_sram_init(void)
168 {
169 #if L1_CODE_LENGTH != 0
170 	unsigned int cpu;
171 	for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
172 		per_cpu(free_l1_inst_sram_head, cpu).next =
173 			kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
174 		if (!per_cpu(free_l1_inst_sram_head, cpu).next) {
175 			printk(KERN_INFO "Failed to initialize L1 Instruction SRAM\n");
176 			return;
177 		}
178 
179 		per_cpu(free_l1_inst_sram_head, cpu).next->paddr =
180 			(void *)get_l1_code_start_cpu(cpu) + (_etext_l1 - _stext_l1);
181 		per_cpu(free_l1_inst_sram_head, cpu).next->size =
182 			L1_CODE_LENGTH - (_etext_l1 - _stext_l1);
183 		per_cpu(free_l1_inst_sram_head, cpu).next->pid = 0;
184 		per_cpu(free_l1_inst_sram_head, cpu).next->next = NULL;
185 
186 		per_cpu(used_l1_inst_sram_head, cpu).next = NULL;
187 
188 		printk(KERN_INFO "Blackfin L1 Instruction SRAM: %d KB (%d KB free)\n",
189 			L1_CODE_LENGTH >> 10,
190 			per_cpu(free_l1_inst_sram_head, cpu).next->size >> 10);
191 
192 		/* mutex initialize */
193 		spin_lock_init(&per_cpu(l1_inst_sram_lock, cpu));
194 	}
195 #endif
196 }
197 
l2_sram_init(void)198 static void __init l2_sram_init(void)
199 {
200 #if L2_LENGTH != 0
201 	free_l2_sram_head.next =
202 		kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
203 	if (!free_l2_sram_head.next) {
204 		printk(KERN_INFO "Fail to initialize L2 SRAM.\n");
205 		return;
206 	}
207 
208 	free_l2_sram_head.next->paddr =
209 		(void *)L2_START + (_ebss_l2 - _stext_l2);
210 	free_l2_sram_head.next->size =
211 		L2_LENGTH - (_ebss_l2 - _stext_l2);
212 	free_l2_sram_head.next->pid = 0;
213 	free_l2_sram_head.next->next = NULL;
214 
215 	used_l2_sram_head.next = NULL;
216 
217 	printk(KERN_INFO "Blackfin L2 SRAM: %d KB (%d KB free)\n",
218 		L2_LENGTH >> 10,
219 		free_l2_sram_head.next->size >> 10);
220 #endif
221 
222 	/* mutex initialize */
223 	spin_lock_init(&l2_sram_lock);
224 }
225 
bfin_sram_init(void)226 void __init bfin_sram_init(void)
227 {
228 	sram_piece_cache = kmem_cache_create("sram_piece_cache",
229 				sizeof(struct sram_piece),
230 				0, SLAB_PANIC, NULL);
231 
232 	l1sram_init();
233 	l1_data_sram_init();
234 	l1_inst_sram_init();
235 	l2_sram_init();
236 }
237 
238 /* SRAM allocate function */
_sram_alloc(size_t size,struct sram_piece * pfree_head,struct sram_piece * pused_head)239 static void *_sram_alloc(size_t size, struct sram_piece *pfree_head,
240 		struct sram_piece *pused_head)
241 {
242 	struct sram_piece *pslot, *plast, *pavail;
243 
244 	if (size <= 0 || !pfree_head || !pused_head)
245 		return NULL;
246 
247 	/* Align the size */
248 	size = (size + 3) & ~3;
249 
250 	pslot = pfree_head->next;
251 	plast = pfree_head;
252 
253 	/* search an available piece slot */
254 	while (pslot != NULL && size > pslot->size) {
255 		plast = pslot;
256 		pslot = pslot->next;
257 	}
258 
259 	if (!pslot)
260 		return NULL;
261 
262 	if (pslot->size == size) {
263 		plast->next = pslot->next;
264 		pavail = pslot;
265 	} else {
266 		pavail = kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
267 
268 		if (!pavail)
269 			return NULL;
270 
271 		pavail->paddr = pslot->paddr;
272 		pavail->size = size;
273 		pslot->paddr += size;
274 		pslot->size -= size;
275 	}
276 
277 	pavail->pid = current->pid;
278 
279 	pslot = pused_head->next;
280 	plast = pused_head;
281 
282 	/* insert new piece into used piece list !!! */
283 	while (pslot != NULL && pavail->paddr < pslot->paddr) {
284 		plast = pslot;
285 		pslot = pslot->next;
286 	}
287 
288 	pavail->next = pslot;
289 	plast->next = pavail;
290 
291 	return pavail->paddr;
292 }
293 
294 /* Allocate the largest available block.  */
_sram_alloc_max(struct sram_piece * pfree_head,struct sram_piece * pused_head,unsigned long * psize)295 static void *_sram_alloc_max(struct sram_piece *pfree_head,
296 				struct sram_piece *pused_head,
297 				unsigned long *psize)
298 {
299 	struct sram_piece *pslot, *pmax;
300 
301 	if (!pfree_head || !pused_head)
302 		return NULL;
303 
304 	pmax = pslot = pfree_head->next;
305 
306 	/* search an available piece slot */
307 	while (pslot != NULL) {
308 		if (pslot->size > pmax->size)
309 			pmax = pslot;
310 		pslot = pslot->next;
311 	}
312 
313 	if (!pmax)
314 		return NULL;
315 
316 	*psize = pmax->size;
317 
318 	return _sram_alloc(*psize, pfree_head, pused_head);
319 }
320 
321 /* SRAM free function */
_sram_free(const void * addr,struct sram_piece * pfree_head,struct sram_piece * pused_head)322 static int _sram_free(const void *addr,
323 			struct sram_piece *pfree_head,
324 			struct sram_piece *pused_head)
325 {
326 	struct sram_piece *pslot, *plast, *pavail;
327 
328 	if (!pfree_head || !pused_head)
329 		return -1;
330 
331 	/* search the relevant memory slot */
332 	pslot = pused_head->next;
333 	plast = pused_head;
334 
335 	/* search an available piece slot */
336 	while (pslot != NULL && pslot->paddr != addr) {
337 		plast = pslot;
338 		pslot = pslot->next;
339 	}
340 
341 	if (!pslot)
342 		return -1;
343 
344 	plast->next = pslot->next;
345 	pavail = pslot;
346 	pavail->pid = 0;
347 
348 	/* insert free pieces back to the free list */
349 	pslot = pfree_head->next;
350 	plast = pfree_head;
351 
352 	while (pslot != NULL && addr > pslot->paddr) {
353 		plast = pslot;
354 		pslot = pslot->next;
355 	}
356 
357 	if (plast != pfree_head && plast->paddr + plast->size == pavail->paddr) {
358 		plast->size += pavail->size;
359 		kmem_cache_free(sram_piece_cache, pavail);
360 	} else {
361 		pavail->next = plast->next;
362 		plast->next = pavail;
363 		plast = pavail;
364 	}
365 
366 	if (pslot && plast->paddr + plast->size == pslot->paddr) {
367 		plast->size += pslot->size;
368 		plast->next = pslot->next;
369 		kmem_cache_free(sram_piece_cache, pslot);
370 	}
371 
372 	return 0;
373 }
374 
sram_free(const void * addr)375 int sram_free(const void *addr)
376 {
377 
378 #if L1_CODE_LENGTH != 0
379 	if (addr >= (void *)get_l1_code_start()
380 		 && addr < (void *)(get_l1_code_start() + L1_CODE_LENGTH))
381 		return l1_inst_sram_free(addr);
382 	else
383 #endif
384 #if L1_DATA_A_LENGTH != 0
385 	if (addr >= (void *)get_l1_data_a_start()
386 		 && addr < (void *)(get_l1_data_a_start() + L1_DATA_A_LENGTH))
387 		return l1_data_A_sram_free(addr);
388 	else
389 #endif
390 #if L1_DATA_B_LENGTH != 0
391 	if (addr >= (void *)get_l1_data_b_start()
392 		 && addr < (void *)(get_l1_data_b_start() + L1_DATA_B_LENGTH))
393 		return l1_data_B_sram_free(addr);
394 	else
395 #endif
396 #if L2_LENGTH != 0
397 	if (addr >= (void *)L2_START
398 		 && addr < (void *)(L2_START + L2_LENGTH))
399 		return l2_sram_free(addr);
400 	else
401 #endif
402 		return -1;
403 }
404 EXPORT_SYMBOL(sram_free);
405 
l1_data_A_sram_alloc(size_t size)406 void *l1_data_A_sram_alloc(size_t size)
407 {
408 	unsigned long flags;
409 	void *addr = NULL;
410 	unsigned int cpu;
411 
412 	cpu = get_cpu();
413 	/* add mutex operation */
414 	spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
415 
416 #if L1_DATA_A_LENGTH != 0
417 	addr = _sram_alloc(size, &per_cpu(free_l1_data_A_sram_head, cpu),
418 			&per_cpu(used_l1_data_A_sram_head, cpu));
419 #endif
420 
421 	/* add mutex operation */
422 	spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
423 	put_cpu();
424 
425 	pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n",
426 		 (long unsigned int)addr, size);
427 
428 	return addr;
429 }
430 EXPORT_SYMBOL(l1_data_A_sram_alloc);
431 
l1_data_A_sram_free(const void * addr)432 int l1_data_A_sram_free(const void *addr)
433 {
434 	unsigned long flags;
435 	int ret;
436 	unsigned int cpu;
437 
438 	cpu = get_cpu();
439 	/* add mutex operation */
440 	spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
441 
442 #if L1_DATA_A_LENGTH != 0
443 	ret = _sram_free(addr, &per_cpu(free_l1_data_A_sram_head, cpu),
444 			&per_cpu(used_l1_data_A_sram_head, cpu));
445 #else
446 	ret = -1;
447 #endif
448 
449 	/* add mutex operation */
450 	spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
451 	put_cpu();
452 
453 	return ret;
454 }
455 EXPORT_SYMBOL(l1_data_A_sram_free);
456 
l1_data_B_sram_alloc(size_t size)457 void *l1_data_B_sram_alloc(size_t size)
458 {
459 #if L1_DATA_B_LENGTH != 0
460 	unsigned long flags;
461 	void *addr;
462 	unsigned int cpu;
463 
464 	cpu = get_cpu();
465 	/* add mutex operation */
466 	spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
467 
468 	addr = _sram_alloc(size, &per_cpu(free_l1_data_B_sram_head, cpu),
469 			&per_cpu(used_l1_data_B_sram_head, cpu));
470 
471 	/* add mutex operation */
472 	spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
473 	put_cpu();
474 
475 	pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n",
476 		 (long unsigned int)addr, size);
477 
478 	return addr;
479 #else
480 	return NULL;
481 #endif
482 }
483 EXPORT_SYMBOL(l1_data_B_sram_alloc);
484 
l1_data_B_sram_free(const void * addr)485 int l1_data_B_sram_free(const void *addr)
486 {
487 #if L1_DATA_B_LENGTH != 0
488 	unsigned long flags;
489 	int ret;
490 	unsigned int cpu;
491 
492 	cpu = get_cpu();
493 	/* add mutex operation */
494 	spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
495 
496 	ret = _sram_free(addr, &per_cpu(free_l1_data_B_sram_head, cpu),
497 			&per_cpu(used_l1_data_B_sram_head, cpu));
498 
499 	/* add mutex operation */
500 	spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
501 	put_cpu();
502 
503 	return ret;
504 #else
505 	return -1;
506 #endif
507 }
508 EXPORT_SYMBOL(l1_data_B_sram_free);
509 
l1_data_sram_alloc(size_t size)510 void *l1_data_sram_alloc(size_t size)
511 {
512 	void *addr = l1_data_A_sram_alloc(size);
513 
514 	if (!addr)
515 		addr = l1_data_B_sram_alloc(size);
516 
517 	return addr;
518 }
519 EXPORT_SYMBOL(l1_data_sram_alloc);
520 
l1_data_sram_zalloc(size_t size)521 void *l1_data_sram_zalloc(size_t size)
522 {
523 	void *addr = l1_data_sram_alloc(size);
524 
525 	if (addr)
526 		memset(addr, 0x00, size);
527 
528 	return addr;
529 }
530 EXPORT_SYMBOL(l1_data_sram_zalloc);
531 
l1_data_sram_free(const void * addr)532 int l1_data_sram_free(const void *addr)
533 {
534 	int ret;
535 	ret = l1_data_A_sram_free(addr);
536 	if (ret == -1)
537 		ret = l1_data_B_sram_free(addr);
538 	return ret;
539 }
540 EXPORT_SYMBOL(l1_data_sram_free);
541 
l1_inst_sram_alloc(size_t size)542 void *l1_inst_sram_alloc(size_t size)
543 {
544 #if L1_CODE_LENGTH != 0
545 	unsigned long flags;
546 	void *addr;
547 	unsigned int cpu;
548 
549 	cpu = get_cpu();
550 	/* add mutex operation */
551 	spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
552 
553 	addr = _sram_alloc(size, &per_cpu(free_l1_inst_sram_head, cpu),
554 			&per_cpu(used_l1_inst_sram_head, cpu));
555 
556 	/* add mutex operation */
557 	spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
558 	put_cpu();
559 
560 	pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n",
561 		 (long unsigned int)addr, size);
562 
563 	return addr;
564 #else
565 	return NULL;
566 #endif
567 }
568 EXPORT_SYMBOL(l1_inst_sram_alloc);
569 
l1_inst_sram_free(const void * addr)570 int l1_inst_sram_free(const void *addr)
571 {
572 #if L1_CODE_LENGTH != 0
573 	unsigned long flags;
574 	int ret;
575 	unsigned int cpu;
576 
577 	cpu = get_cpu();
578 	/* add mutex operation */
579 	spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
580 
581 	ret = _sram_free(addr, &per_cpu(free_l1_inst_sram_head, cpu),
582 			&per_cpu(used_l1_inst_sram_head, cpu));
583 
584 	/* add mutex operation */
585 	spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
586 	put_cpu();
587 
588 	return ret;
589 #else
590 	return -1;
591 #endif
592 }
593 EXPORT_SYMBOL(l1_inst_sram_free);
594 
595 /* L1 Scratchpad memory allocate function */
l1sram_alloc(size_t size)596 void *l1sram_alloc(size_t size)
597 {
598 	unsigned long flags;
599 	void *addr;
600 	unsigned int cpu;
601 
602 	cpu = get_cpu();
603 	/* add mutex operation */
604 	spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
605 
606 	addr = _sram_alloc(size, &per_cpu(free_l1_ssram_head, cpu),
607 			&per_cpu(used_l1_ssram_head, cpu));
608 
609 	/* add mutex operation */
610 	spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
611 	put_cpu();
612 
613 	return addr;
614 }
615 
616 /* L1 Scratchpad memory allocate function */
l1sram_alloc_max(size_t * psize)617 void *l1sram_alloc_max(size_t *psize)
618 {
619 	unsigned long flags;
620 	void *addr;
621 	unsigned int cpu;
622 
623 	cpu = get_cpu();
624 	/* add mutex operation */
625 	spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
626 
627 	addr = _sram_alloc_max(&per_cpu(free_l1_ssram_head, cpu),
628 			&per_cpu(used_l1_ssram_head, cpu), psize);
629 
630 	/* add mutex operation */
631 	spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
632 	put_cpu();
633 
634 	return addr;
635 }
636 
637 /* L1 Scratchpad memory free function */
l1sram_free(const void * addr)638 int l1sram_free(const void *addr)
639 {
640 	unsigned long flags;
641 	int ret;
642 	unsigned int cpu;
643 
644 	cpu = get_cpu();
645 	/* add mutex operation */
646 	spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
647 
648 	ret = _sram_free(addr, &per_cpu(free_l1_ssram_head, cpu),
649 			&per_cpu(used_l1_ssram_head, cpu));
650 
651 	/* add mutex operation */
652 	spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
653 	put_cpu();
654 
655 	return ret;
656 }
657 
l2_sram_alloc(size_t size)658 void *l2_sram_alloc(size_t size)
659 {
660 #if L2_LENGTH != 0
661 	unsigned long flags;
662 	void *addr;
663 
664 	/* add mutex operation */
665 	spin_lock_irqsave(&l2_sram_lock, flags);
666 
667 	addr = _sram_alloc(size, &free_l2_sram_head,
668 			&used_l2_sram_head);
669 
670 	/* add mutex operation */
671 	spin_unlock_irqrestore(&l2_sram_lock, flags);
672 
673 	pr_debug("Allocated address in l2_sram_alloc is 0x%lx+0x%lx\n",
674 		 (long unsigned int)addr, size);
675 
676 	return addr;
677 #else
678 	return NULL;
679 #endif
680 }
681 EXPORT_SYMBOL(l2_sram_alloc);
682 
l2_sram_zalloc(size_t size)683 void *l2_sram_zalloc(size_t size)
684 {
685 	void *addr = l2_sram_alloc(size);
686 
687 	if (addr)
688 		memset(addr, 0x00, size);
689 
690 	return addr;
691 }
692 EXPORT_SYMBOL(l2_sram_zalloc);
693 
l2_sram_free(const void * addr)694 int l2_sram_free(const void *addr)
695 {
696 #if L2_LENGTH != 0
697 	unsigned long flags;
698 	int ret;
699 
700 	/* add mutex operation */
701 	spin_lock_irqsave(&l2_sram_lock, flags);
702 
703 	ret = _sram_free(addr, &free_l2_sram_head,
704 			&used_l2_sram_head);
705 
706 	/* add mutex operation */
707 	spin_unlock_irqrestore(&l2_sram_lock, flags);
708 
709 	return ret;
710 #else
711 	return -1;
712 #endif
713 }
714 EXPORT_SYMBOL(l2_sram_free);
715 
sram_free_with_lsl(const void * addr)716 int sram_free_with_lsl(const void *addr)
717 {
718 	struct sram_list_struct *lsl, **tmp;
719 	struct mm_struct *mm = current->mm;
720 
721 	for (tmp = &mm->context.sram_list; *tmp; tmp = &(*tmp)->next)
722 		if ((*tmp)->addr == addr)
723 			goto found;
724 	return -1;
725 found:
726 	lsl = *tmp;
727 	sram_free(addr);
728 	*tmp = lsl->next;
729 	kfree(lsl);
730 
731 	return 0;
732 }
733 EXPORT_SYMBOL(sram_free_with_lsl);
734 
sram_alloc_with_lsl(size_t size,unsigned long flags)735 void *sram_alloc_with_lsl(size_t size, unsigned long flags)
736 {
737 	void *addr = NULL;
738 	struct sram_list_struct *lsl = NULL;
739 	struct mm_struct *mm = current->mm;
740 
741 	lsl = kzalloc(sizeof(struct sram_list_struct), GFP_KERNEL);
742 	if (!lsl)
743 		return NULL;
744 
745 	if (flags & L1_INST_SRAM)
746 		addr = l1_inst_sram_alloc(size);
747 
748 	if (addr == NULL && (flags & L1_DATA_A_SRAM))
749 		addr = l1_data_A_sram_alloc(size);
750 
751 	if (addr == NULL && (flags & L1_DATA_B_SRAM))
752 		addr = l1_data_B_sram_alloc(size);
753 
754 	if (addr == NULL && (flags & L2_SRAM))
755 		addr = l2_sram_alloc(size);
756 
757 	if (addr == NULL) {
758 		kfree(lsl);
759 		return NULL;
760 	}
761 	lsl->addr = addr;
762 	lsl->length = size;
763 	lsl->next = mm->context.sram_list;
764 	mm->context.sram_list = lsl;
765 	return addr;
766 }
767 EXPORT_SYMBOL(sram_alloc_with_lsl);
768 
769 #ifdef CONFIG_PROC_FS
770 /* Once we get a real allocator, we'll throw all of this away.
771  * Until then, we need some sort of visibility into the L1 alloc.
772  */
773 /* Need to keep line of output the same.  Currently, that is 44 bytes
774  * (including newline).
775  */
_sram_proc_read(char * buf,int * len,int count,const char * desc,struct sram_piece * pfree_head,struct sram_piece * pused_head)776 static int _sram_proc_read(char *buf, int *len, int count, const char *desc,
777 		struct sram_piece *pfree_head,
778 		struct sram_piece *pused_head)
779 {
780 	struct sram_piece *pslot;
781 
782 	if (!pfree_head || !pused_head)
783 		return -1;
784 
785 	*len += sprintf(&buf[*len], "--- SRAM %-14s Size   PID State     \n", desc);
786 
787 	/* search the relevant memory slot */
788 	pslot = pused_head->next;
789 
790 	while (pslot != NULL) {
791 		*len += sprintf(&buf[*len], "%p-%p %10i %5i %-10s\n",
792 			pslot->paddr, pslot->paddr + pslot->size,
793 			pslot->size, pslot->pid, "ALLOCATED");
794 
795 		pslot = pslot->next;
796 	}
797 
798 	pslot = pfree_head->next;
799 
800 	while (pslot != NULL) {
801 		*len += sprintf(&buf[*len], "%p-%p %10i %5i %-10s\n",
802 			pslot->paddr, pslot->paddr + pslot->size,
803 			pslot->size, pslot->pid, "FREE");
804 
805 		pslot = pslot->next;
806 	}
807 
808 	return 0;
809 }
sram_proc_read(char * buf,char ** start,off_t offset,int count,int * eof,void * data)810 static int sram_proc_read(char *buf, char **start, off_t offset, int count,
811 		int *eof, void *data)
812 {
813 	int len = 0;
814 	unsigned int cpu;
815 
816 	for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
817 		if (_sram_proc_read(buf, &len, count, "Scratchpad",
818 			&per_cpu(free_l1_ssram_head, cpu), &per_cpu(used_l1_ssram_head, cpu)))
819 			goto not_done;
820 #if L1_DATA_A_LENGTH != 0
821 		if (_sram_proc_read(buf, &len, count, "L1 Data A",
822 			&per_cpu(free_l1_data_A_sram_head, cpu),
823 			&per_cpu(used_l1_data_A_sram_head, cpu)))
824 			goto not_done;
825 #endif
826 #if L1_DATA_B_LENGTH != 0
827 		if (_sram_proc_read(buf, &len, count, "L1 Data B",
828 			&per_cpu(free_l1_data_B_sram_head, cpu),
829 			&per_cpu(used_l1_data_B_sram_head, cpu)))
830 			goto not_done;
831 #endif
832 #if L1_CODE_LENGTH != 0
833 		if (_sram_proc_read(buf, &len, count, "L1 Instruction",
834 			&per_cpu(free_l1_inst_sram_head, cpu),
835 			&per_cpu(used_l1_inst_sram_head, cpu)))
836 			goto not_done;
837 #endif
838 	}
839 #if L2_LENGTH != 0
840 	if (_sram_proc_read(buf, &len, count, "L2", &free_l2_sram_head,
841 		&used_l2_sram_head))
842 		goto not_done;
843 #endif
844 	*eof = 1;
845  not_done:
846 	return len;
847 }
848 
sram_proc_init(void)849 static int __init sram_proc_init(void)
850 {
851 	struct proc_dir_entry *ptr;
852 	ptr = create_proc_entry("sram", S_IFREG | S_IRUGO, NULL);
853 	if (!ptr) {
854 		printk(KERN_WARNING "unable to create /proc/sram\n");
855 		return -1;
856 	}
857 	ptr->owner = THIS_MODULE;
858 	ptr->read_proc = sram_proc_read;
859 	return 0;
860 }
861 late_initcall(sram_proc_init);
862 #endif
863