1 /*
2 * File: arch/blackfin/mm/sram-alloc.c
3 * Based on:
4 * Author:
5 *
6 * Created:
7 * Description: SRAM allocator for Blackfin L1 and L2 memory
8 *
9 * Modified:
10 * Copyright 2004-2008 Analog Devices Inc.
11 *
12 * Bugs: Enter bugs at http://blackfin.uclinux.org/
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with this program; if not, see the file COPYING, or write
26 * to the Free Software Foundation, Inc.,
27 * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
28 */
29
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/types.h>
33 #include <linux/miscdevice.h>
34 #include <linux/ioport.h>
35 #include <linux/fcntl.h>
36 #include <linux/init.h>
37 #include <linux/poll.h>
38 #include <linux/proc_fs.h>
39 #include <linux/spinlock.h>
40 #include <linux/rtc.h>
41 #include <asm/blackfin.h>
42 #include <asm/mem_map.h>
43 #include "blackfin_sram.h"
44
45 static DEFINE_PER_CPU(spinlock_t, l1sram_lock) ____cacheline_aligned_in_smp;
46 static DEFINE_PER_CPU(spinlock_t, l1_data_sram_lock) ____cacheline_aligned_in_smp;
47 static DEFINE_PER_CPU(spinlock_t, l1_inst_sram_lock) ____cacheline_aligned_in_smp;
48 static spinlock_t l2_sram_lock ____cacheline_aligned_in_smp;
49
50 /* the data structure for L1 scratchpad and DATA SRAM */
51 struct sram_piece {
52 void *paddr;
53 int size;
54 pid_t pid;
55 struct sram_piece *next;
56 };
57
58 static DEFINE_PER_CPU(struct sram_piece, free_l1_ssram_head);
59 static DEFINE_PER_CPU(struct sram_piece, used_l1_ssram_head);
60
61 #if L1_DATA_A_LENGTH != 0
62 static DEFINE_PER_CPU(struct sram_piece, free_l1_data_A_sram_head);
63 static DEFINE_PER_CPU(struct sram_piece, used_l1_data_A_sram_head);
64 #endif
65
66 #if L1_DATA_B_LENGTH != 0
67 static DEFINE_PER_CPU(struct sram_piece, free_l1_data_B_sram_head);
68 static DEFINE_PER_CPU(struct sram_piece, used_l1_data_B_sram_head);
69 #endif
70
71 #if L1_CODE_LENGTH != 0
72 static DEFINE_PER_CPU(struct sram_piece, free_l1_inst_sram_head);
73 static DEFINE_PER_CPU(struct sram_piece, used_l1_inst_sram_head);
74 #endif
75
76 #if L2_LENGTH != 0
77 static struct sram_piece free_l2_sram_head, used_l2_sram_head;
78 #endif
79
80 static struct kmem_cache *sram_piece_cache;
81
82 /* L1 Scratchpad SRAM initialization function */
l1sram_init(void)83 static void __init l1sram_init(void)
84 {
85 unsigned int cpu;
86 for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
87 per_cpu(free_l1_ssram_head, cpu).next =
88 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
89 if (!per_cpu(free_l1_ssram_head, cpu).next) {
90 printk(KERN_INFO "Fail to initialize Scratchpad data SRAM.\n");
91 return;
92 }
93
94 per_cpu(free_l1_ssram_head, cpu).next->paddr = (void *)get_l1_scratch_start_cpu(cpu);
95 per_cpu(free_l1_ssram_head, cpu).next->size = L1_SCRATCH_LENGTH;
96 per_cpu(free_l1_ssram_head, cpu).next->pid = 0;
97 per_cpu(free_l1_ssram_head, cpu).next->next = NULL;
98
99 per_cpu(used_l1_ssram_head, cpu).next = NULL;
100
101 /* mutex initialize */
102 spin_lock_init(&per_cpu(l1sram_lock, cpu));
103 printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n",
104 L1_SCRATCH_LENGTH >> 10);
105 }
106 }
107
l1_data_sram_init(void)108 static void __init l1_data_sram_init(void)
109 {
110 #if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
111 unsigned int cpu;
112 #endif
113 #if L1_DATA_A_LENGTH != 0
114 for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
115 per_cpu(free_l1_data_A_sram_head, cpu).next =
116 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
117 if (!per_cpu(free_l1_data_A_sram_head, cpu).next) {
118 printk(KERN_INFO "Fail to initialize L1 Data A SRAM.\n");
119 return;
120 }
121
122 per_cpu(free_l1_data_A_sram_head, cpu).next->paddr =
123 (void *)get_l1_data_a_start_cpu(cpu) + (_ebss_l1 - _sdata_l1);
124 per_cpu(free_l1_data_A_sram_head, cpu).next->size =
125 L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1);
126 per_cpu(free_l1_data_A_sram_head, cpu).next->pid = 0;
127 per_cpu(free_l1_data_A_sram_head, cpu).next->next = NULL;
128
129 per_cpu(used_l1_data_A_sram_head, cpu).next = NULL;
130
131 printk(KERN_INFO "Blackfin L1 Data A SRAM: %d KB (%d KB free)\n",
132 L1_DATA_A_LENGTH >> 10,
133 per_cpu(free_l1_data_A_sram_head, cpu).next->size >> 10);
134 }
135 #endif
136 #if L1_DATA_B_LENGTH != 0
137 for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
138 per_cpu(free_l1_data_B_sram_head, cpu).next =
139 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
140 if (!per_cpu(free_l1_data_B_sram_head, cpu).next) {
141 printk(KERN_INFO "Fail to initialize L1 Data B SRAM.\n");
142 return;
143 }
144
145 per_cpu(free_l1_data_B_sram_head, cpu).next->paddr =
146 (void *)get_l1_data_b_start_cpu(cpu) + (_ebss_b_l1 - _sdata_b_l1);
147 per_cpu(free_l1_data_B_sram_head, cpu).next->size =
148 L1_DATA_B_LENGTH - (_ebss_b_l1 - _sdata_b_l1);
149 per_cpu(free_l1_data_B_sram_head, cpu).next->pid = 0;
150 per_cpu(free_l1_data_B_sram_head, cpu).next->next = NULL;
151
152 per_cpu(used_l1_data_B_sram_head, cpu).next = NULL;
153
154 printk(KERN_INFO "Blackfin L1 Data B SRAM: %d KB (%d KB free)\n",
155 L1_DATA_B_LENGTH >> 10,
156 per_cpu(free_l1_data_B_sram_head, cpu).next->size >> 10);
157 /* mutex initialize */
158 }
159 #endif
160
161 #if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
162 for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
163 spin_lock_init(&per_cpu(l1_data_sram_lock, cpu));
164 #endif
165 }
166
l1_inst_sram_init(void)167 static void __init l1_inst_sram_init(void)
168 {
169 #if L1_CODE_LENGTH != 0
170 unsigned int cpu;
171 for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
172 per_cpu(free_l1_inst_sram_head, cpu).next =
173 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
174 if (!per_cpu(free_l1_inst_sram_head, cpu).next) {
175 printk(KERN_INFO "Failed to initialize L1 Instruction SRAM\n");
176 return;
177 }
178
179 per_cpu(free_l1_inst_sram_head, cpu).next->paddr =
180 (void *)get_l1_code_start_cpu(cpu) + (_etext_l1 - _stext_l1);
181 per_cpu(free_l1_inst_sram_head, cpu).next->size =
182 L1_CODE_LENGTH - (_etext_l1 - _stext_l1);
183 per_cpu(free_l1_inst_sram_head, cpu).next->pid = 0;
184 per_cpu(free_l1_inst_sram_head, cpu).next->next = NULL;
185
186 per_cpu(used_l1_inst_sram_head, cpu).next = NULL;
187
188 printk(KERN_INFO "Blackfin L1 Instruction SRAM: %d KB (%d KB free)\n",
189 L1_CODE_LENGTH >> 10,
190 per_cpu(free_l1_inst_sram_head, cpu).next->size >> 10);
191
192 /* mutex initialize */
193 spin_lock_init(&per_cpu(l1_inst_sram_lock, cpu));
194 }
195 #endif
196 }
197
l2_sram_init(void)198 static void __init l2_sram_init(void)
199 {
200 #if L2_LENGTH != 0
201 free_l2_sram_head.next =
202 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
203 if (!free_l2_sram_head.next) {
204 printk(KERN_INFO "Fail to initialize L2 SRAM.\n");
205 return;
206 }
207
208 free_l2_sram_head.next->paddr =
209 (void *)L2_START + (_ebss_l2 - _stext_l2);
210 free_l2_sram_head.next->size =
211 L2_LENGTH - (_ebss_l2 - _stext_l2);
212 free_l2_sram_head.next->pid = 0;
213 free_l2_sram_head.next->next = NULL;
214
215 used_l2_sram_head.next = NULL;
216
217 printk(KERN_INFO "Blackfin L2 SRAM: %d KB (%d KB free)\n",
218 L2_LENGTH >> 10,
219 free_l2_sram_head.next->size >> 10);
220 #endif
221
222 /* mutex initialize */
223 spin_lock_init(&l2_sram_lock);
224 }
225
bfin_sram_init(void)226 void __init bfin_sram_init(void)
227 {
228 sram_piece_cache = kmem_cache_create("sram_piece_cache",
229 sizeof(struct sram_piece),
230 0, SLAB_PANIC, NULL);
231
232 l1sram_init();
233 l1_data_sram_init();
234 l1_inst_sram_init();
235 l2_sram_init();
236 }
237
238 /* SRAM allocate function */
_sram_alloc(size_t size,struct sram_piece * pfree_head,struct sram_piece * pused_head)239 static void *_sram_alloc(size_t size, struct sram_piece *pfree_head,
240 struct sram_piece *pused_head)
241 {
242 struct sram_piece *pslot, *plast, *pavail;
243
244 if (size <= 0 || !pfree_head || !pused_head)
245 return NULL;
246
247 /* Align the size */
248 size = (size + 3) & ~3;
249
250 pslot = pfree_head->next;
251 plast = pfree_head;
252
253 /* search an available piece slot */
254 while (pslot != NULL && size > pslot->size) {
255 plast = pslot;
256 pslot = pslot->next;
257 }
258
259 if (!pslot)
260 return NULL;
261
262 if (pslot->size == size) {
263 plast->next = pslot->next;
264 pavail = pslot;
265 } else {
266 pavail = kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
267
268 if (!pavail)
269 return NULL;
270
271 pavail->paddr = pslot->paddr;
272 pavail->size = size;
273 pslot->paddr += size;
274 pslot->size -= size;
275 }
276
277 pavail->pid = current->pid;
278
279 pslot = pused_head->next;
280 plast = pused_head;
281
282 /* insert new piece into used piece list !!! */
283 while (pslot != NULL && pavail->paddr < pslot->paddr) {
284 plast = pslot;
285 pslot = pslot->next;
286 }
287
288 pavail->next = pslot;
289 plast->next = pavail;
290
291 return pavail->paddr;
292 }
293
294 /* Allocate the largest available block. */
_sram_alloc_max(struct sram_piece * pfree_head,struct sram_piece * pused_head,unsigned long * psize)295 static void *_sram_alloc_max(struct sram_piece *pfree_head,
296 struct sram_piece *pused_head,
297 unsigned long *psize)
298 {
299 struct sram_piece *pslot, *pmax;
300
301 if (!pfree_head || !pused_head)
302 return NULL;
303
304 pmax = pslot = pfree_head->next;
305
306 /* search an available piece slot */
307 while (pslot != NULL) {
308 if (pslot->size > pmax->size)
309 pmax = pslot;
310 pslot = pslot->next;
311 }
312
313 if (!pmax)
314 return NULL;
315
316 *psize = pmax->size;
317
318 return _sram_alloc(*psize, pfree_head, pused_head);
319 }
320
321 /* SRAM free function */
_sram_free(const void * addr,struct sram_piece * pfree_head,struct sram_piece * pused_head)322 static int _sram_free(const void *addr,
323 struct sram_piece *pfree_head,
324 struct sram_piece *pused_head)
325 {
326 struct sram_piece *pslot, *plast, *pavail;
327
328 if (!pfree_head || !pused_head)
329 return -1;
330
331 /* search the relevant memory slot */
332 pslot = pused_head->next;
333 plast = pused_head;
334
335 /* search an available piece slot */
336 while (pslot != NULL && pslot->paddr != addr) {
337 plast = pslot;
338 pslot = pslot->next;
339 }
340
341 if (!pslot)
342 return -1;
343
344 plast->next = pslot->next;
345 pavail = pslot;
346 pavail->pid = 0;
347
348 /* insert free pieces back to the free list */
349 pslot = pfree_head->next;
350 plast = pfree_head;
351
352 while (pslot != NULL && addr > pslot->paddr) {
353 plast = pslot;
354 pslot = pslot->next;
355 }
356
357 if (plast != pfree_head && plast->paddr + plast->size == pavail->paddr) {
358 plast->size += pavail->size;
359 kmem_cache_free(sram_piece_cache, pavail);
360 } else {
361 pavail->next = plast->next;
362 plast->next = pavail;
363 plast = pavail;
364 }
365
366 if (pslot && plast->paddr + plast->size == pslot->paddr) {
367 plast->size += pslot->size;
368 plast->next = pslot->next;
369 kmem_cache_free(sram_piece_cache, pslot);
370 }
371
372 return 0;
373 }
374
sram_free(const void * addr)375 int sram_free(const void *addr)
376 {
377
378 #if L1_CODE_LENGTH != 0
379 if (addr >= (void *)get_l1_code_start()
380 && addr < (void *)(get_l1_code_start() + L1_CODE_LENGTH))
381 return l1_inst_sram_free(addr);
382 else
383 #endif
384 #if L1_DATA_A_LENGTH != 0
385 if (addr >= (void *)get_l1_data_a_start()
386 && addr < (void *)(get_l1_data_a_start() + L1_DATA_A_LENGTH))
387 return l1_data_A_sram_free(addr);
388 else
389 #endif
390 #if L1_DATA_B_LENGTH != 0
391 if (addr >= (void *)get_l1_data_b_start()
392 && addr < (void *)(get_l1_data_b_start() + L1_DATA_B_LENGTH))
393 return l1_data_B_sram_free(addr);
394 else
395 #endif
396 #if L2_LENGTH != 0
397 if (addr >= (void *)L2_START
398 && addr < (void *)(L2_START + L2_LENGTH))
399 return l2_sram_free(addr);
400 else
401 #endif
402 return -1;
403 }
404 EXPORT_SYMBOL(sram_free);
405
l1_data_A_sram_alloc(size_t size)406 void *l1_data_A_sram_alloc(size_t size)
407 {
408 unsigned long flags;
409 void *addr = NULL;
410 unsigned int cpu;
411
412 cpu = get_cpu();
413 /* add mutex operation */
414 spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
415
416 #if L1_DATA_A_LENGTH != 0
417 addr = _sram_alloc(size, &per_cpu(free_l1_data_A_sram_head, cpu),
418 &per_cpu(used_l1_data_A_sram_head, cpu));
419 #endif
420
421 /* add mutex operation */
422 spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
423 put_cpu();
424
425 pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n",
426 (long unsigned int)addr, size);
427
428 return addr;
429 }
430 EXPORT_SYMBOL(l1_data_A_sram_alloc);
431
l1_data_A_sram_free(const void * addr)432 int l1_data_A_sram_free(const void *addr)
433 {
434 unsigned long flags;
435 int ret;
436 unsigned int cpu;
437
438 cpu = get_cpu();
439 /* add mutex operation */
440 spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
441
442 #if L1_DATA_A_LENGTH != 0
443 ret = _sram_free(addr, &per_cpu(free_l1_data_A_sram_head, cpu),
444 &per_cpu(used_l1_data_A_sram_head, cpu));
445 #else
446 ret = -1;
447 #endif
448
449 /* add mutex operation */
450 spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
451 put_cpu();
452
453 return ret;
454 }
455 EXPORT_SYMBOL(l1_data_A_sram_free);
456
l1_data_B_sram_alloc(size_t size)457 void *l1_data_B_sram_alloc(size_t size)
458 {
459 #if L1_DATA_B_LENGTH != 0
460 unsigned long flags;
461 void *addr;
462 unsigned int cpu;
463
464 cpu = get_cpu();
465 /* add mutex operation */
466 spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
467
468 addr = _sram_alloc(size, &per_cpu(free_l1_data_B_sram_head, cpu),
469 &per_cpu(used_l1_data_B_sram_head, cpu));
470
471 /* add mutex operation */
472 spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
473 put_cpu();
474
475 pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n",
476 (long unsigned int)addr, size);
477
478 return addr;
479 #else
480 return NULL;
481 #endif
482 }
483 EXPORT_SYMBOL(l1_data_B_sram_alloc);
484
l1_data_B_sram_free(const void * addr)485 int l1_data_B_sram_free(const void *addr)
486 {
487 #if L1_DATA_B_LENGTH != 0
488 unsigned long flags;
489 int ret;
490 unsigned int cpu;
491
492 cpu = get_cpu();
493 /* add mutex operation */
494 spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
495
496 ret = _sram_free(addr, &per_cpu(free_l1_data_B_sram_head, cpu),
497 &per_cpu(used_l1_data_B_sram_head, cpu));
498
499 /* add mutex operation */
500 spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
501 put_cpu();
502
503 return ret;
504 #else
505 return -1;
506 #endif
507 }
508 EXPORT_SYMBOL(l1_data_B_sram_free);
509
l1_data_sram_alloc(size_t size)510 void *l1_data_sram_alloc(size_t size)
511 {
512 void *addr = l1_data_A_sram_alloc(size);
513
514 if (!addr)
515 addr = l1_data_B_sram_alloc(size);
516
517 return addr;
518 }
519 EXPORT_SYMBOL(l1_data_sram_alloc);
520
l1_data_sram_zalloc(size_t size)521 void *l1_data_sram_zalloc(size_t size)
522 {
523 void *addr = l1_data_sram_alloc(size);
524
525 if (addr)
526 memset(addr, 0x00, size);
527
528 return addr;
529 }
530 EXPORT_SYMBOL(l1_data_sram_zalloc);
531
l1_data_sram_free(const void * addr)532 int l1_data_sram_free(const void *addr)
533 {
534 int ret;
535 ret = l1_data_A_sram_free(addr);
536 if (ret == -1)
537 ret = l1_data_B_sram_free(addr);
538 return ret;
539 }
540 EXPORT_SYMBOL(l1_data_sram_free);
541
l1_inst_sram_alloc(size_t size)542 void *l1_inst_sram_alloc(size_t size)
543 {
544 #if L1_CODE_LENGTH != 0
545 unsigned long flags;
546 void *addr;
547 unsigned int cpu;
548
549 cpu = get_cpu();
550 /* add mutex operation */
551 spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
552
553 addr = _sram_alloc(size, &per_cpu(free_l1_inst_sram_head, cpu),
554 &per_cpu(used_l1_inst_sram_head, cpu));
555
556 /* add mutex operation */
557 spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
558 put_cpu();
559
560 pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n",
561 (long unsigned int)addr, size);
562
563 return addr;
564 #else
565 return NULL;
566 #endif
567 }
568 EXPORT_SYMBOL(l1_inst_sram_alloc);
569
l1_inst_sram_free(const void * addr)570 int l1_inst_sram_free(const void *addr)
571 {
572 #if L1_CODE_LENGTH != 0
573 unsigned long flags;
574 int ret;
575 unsigned int cpu;
576
577 cpu = get_cpu();
578 /* add mutex operation */
579 spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
580
581 ret = _sram_free(addr, &per_cpu(free_l1_inst_sram_head, cpu),
582 &per_cpu(used_l1_inst_sram_head, cpu));
583
584 /* add mutex operation */
585 spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
586 put_cpu();
587
588 return ret;
589 #else
590 return -1;
591 #endif
592 }
593 EXPORT_SYMBOL(l1_inst_sram_free);
594
595 /* L1 Scratchpad memory allocate function */
l1sram_alloc(size_t size)596 void *l1sram_alloc(size_t size)
597 {
598 unsigned long flags;
599 void *addr;
600 unsigned int cpu;
601
602 cpu = get_cpu();
603 /* add mutex operation */
604 spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
605
606 addr = _sram_alloc(size, &per_cpu(free_l1_ssram_head, cpu),
607 &per_cpu(used_l1_ssram_head, cpu));
608
609 /* add mutex operation */
610 spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
611 put_cpu();
612
613 return addr;
614 }
615
616 /* L1 Scratchpad memory allocate function */
l1sram_alloc_max(size_t * psize)617 void *l1sram_alloc_max(size_t *psize)
618 {
619 unsigned long flags;
620 void *addr;
621 unsigned int cpu;
622
623 cpu = get_cpu();
624 /* add mutex operation */
625 spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
626
627 addr = _sram_alloc_max(&per_cpu(free_l1_ssram_head, cpu),
628 &per_cpu(used_l1_ssram_head, cpu), psize);
629
630 /* add mutex operation */
631 spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
632 put_cpu();
633
634 return addr;
635 }
636
637 /* L1 Scratchpad memory free function */
l1sram_free(const void * addr)638 int l1sram_free(const void *addr)
639 {
640 unsigned long flags;
641 int ret;
642 unsigned int cpu;
643
644 cpu = get_cpu();
645 /* add mutex operation */
646 spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
647
648 ret = _sram_free(addr, &per_cpu(free_l1_ssram_head, cpu),
649 &per_cpu(used_l1_ssram_head, cpu));
650
651 /* add mutex operation */
652 spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
653 put_cpu();
654
655 return ret;
656 }
657
l2_sram_alloc(size_t size)658 void *l2_sram_alloc(size_t size)
659 {
660 #if L2_LENGTH != 0
661 unsigned long flags;
662 void *addr;
663
664 /* add mutex operation */
665 spin_lock_irqsave(&l2_sram_lock, flags);
666
667 addr = _sram_alloc(size, &free_l2_sram_head,
668 &used_l2_sram_head);
669
670 /* add mutex operation */
671 spin_unlock_irqrestore(&l2_sram_lock, flags);
672
673 pr_debug("Allocated address in l2_sram_alloc is 0x%lx+0x%lx\n",
674 (long unsigned int)addr, size);
675
676 return addr;
677 #else
678 return NULL;
679 #endif
680 }
681 EXPORT_SYMBOL(l2_sram_alloc);
682
l2_sram_zalloc(size_t size)683 void *l2_sram_zalloc(size_t size)
684 {
685 void *addr = l2_sram_alloc(size);
686
687 if (addr)
688 memset(addr, 0x00, size);
689
690 return addr;
691 }
692 EXPORT_SYMBOL(l2_sram_zalloc);
693
l2_sram_free(const void * addr)694 int l2_sram_free(const void *addr)
695 {
696 #if L2_LENGTH != 0
697 unsigned long flags;
698 int ret;
699
700 /* add mutex operation */
701 spin_lock_irqsave(&l2_sram_lock, flags);
702
703 ret = _sram_free(addr, &free_l2_sram_head,
704 &used_l2_sram_head);
705
706 /* add mutex operation */
707 spin_unlock_irqrestore(&l2_sram_lock, flags);
708
709 return ret;
710 #else
711 return -1;
712 #endif
713 }
714 EXPORT_SYMBOL(l2_sram_free);
715
sram_free_with_lsl(const void * addr)716 int sram_free_with_lsl(const void *addr)
717 {
718 struct sram_list_struct *lsl, **tmp;
719 struct mm_struct *mm = current->mm;
720
721 for (tmp = &mm->context.sram_list; *tmp; tmp = &(*tmp)->next)
722 if ((*tmp)->addr == addr)
723 goto found;
724 return -1;
725 found:
726 lsl = *tmp;
727 sram_free(addr);
728 *tmp = lsl->next;
729 kfree(lsl);
730
731 return 0;
732 }
733 EXPORT_SYMBOL(sram_free_with_lsl);
734
sram_alloc_with_lsl(size_t size,unsigned long flags)735 void *sram_alloc_with_lsl(size_t size, unsigned long flags)
736 {
737 void *addr = NULL;
738 struct sram_list_struct *lsl = NULL;
739 struct mm_struct *mm = current->mm;
740
741 lsl = kzalloc(sizeof(struct sram_list_struct), GFP_KERNEL);
742 if (!lsl)
743 return NULL;
744
745 if (flags & L1_INST_SRAM)
746 addr = l1_inst_sram_alloc(size);
747
748 if (addr == NULL && (flags & L1_DATA_A_SRAM))
749 addr = l1_data_A_sram_alloc(size);
750
751 if (addr == NULL && (flags & L1_DATA_B_SRAM))
752 addr = l1_data_B_sram_alloc(size);
753
754 if (addr == NULL && (flags & L2_SRAM))
755 addr = l2_sram_alloc(size);
756
757 if (addr == NULL) {
758 kfree(lsl);
759 return NULL;
760 }
761 lsl->addr = addr;
762 lsl->length = size;
763 lsl->next = mm->context.sram_list;
764 mm->context.sram_list = lsl;
765 return addr;
766 }
767 EXPORT_SYMBOL(sram_alloc_with_lsl);
768
769 #ifdef CONFIG_PROC_FS
770 /* Once we get a real allocator, we'll throw all of this away.
771 * Until then, we need some sort of visibility into the L1 alloc.
772 */
773 /* Need to keep line of output the same. Currently, that is 44 bytes
774 * (including newline).
775 */
_sram_proc_read(char * buf,int * len,int count,const char * desc,struct sram_piece * pfree_head,struct sram_piece * pused_head)776 static int _sram_proc_read(char *buf, int *len, int count, const char *desc,
777 struct sram_piece *pfree_head,
778 struct sram_piece *pused_head)
779 {
780 struct sram_piece *pslot;
781
782 if (!pfree_head || !pused_head)
783 return -1;
784
785 *len += sprintf(&buf[*len], "--- SRAM %-14s Size PID State \n", desc);
786
787 /* search the relevant memory slot */
788 pslot = pused_head->next;
789
790 while (pslot != NULL) {
791 *len += sprintf(&buf[*len], "%p-%p %10i %5i %-10s\n",
792 pslot->paddr, pslot->paddr + pslot->size,
793 pslot->size, pslot->pid, "ALLOCATED");
794
795 pslot = pslot->next;
796 }
797
798 pslot = pfree_head->next;
799
800 while (pslot != NULL) {
801 *len += sprintf(&buf[*len], "%p-%p %10i %5i %-10s\n",
802 pslot->paddr, pslot->paddr + pslot->size,
803 pslot->size, pslot->pid, "FREE");
804
805 pslot = pslot->next;
806 }
807
808 return 0;
809 }
sram_proc_read(char * buf,char ** start,off_t offset,int count,int * eof,void * data)810 static int sram_proc_read(char *buf, char **start, off_t offset, int count,
811 int *eof, void *data)
812 {
813 int len = 0;
814 unsigned int cpu;
815
816 for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
817 if (_sram_proc_read(buf, &len, count, "Scratchpad",
818 &per_cpu(free_l1_ssram_head, cpu), &per_cpu(used_l1_ssram_head, cpu)))
819 goto not_done;
820 #if L1_DATA_A_LENGTH != 0
821 if (_sram_proc_read(buf, &len, count, "L1 Data A",
822 &per_cpu(free_l1_data_A_sram_head, cpu),
823 &per_cpu(used_l1_data_A_sram_head, cpu)))
824 goto not_done;
825 #endif
826 #if L1_DATA_B_LENGTH != 0
827 if (_sram_proc_read(buf, &len, count, "L1 Data B",
828 &per_cpu(free_l1_data_B_sram_head, cpu),
829 &per_cpu(used_l1_data_B_sram_head, cpu)))
830 goto not_done;
831 #endif
832 #if L1_CODE_LENGTH != 0
833 if (_sram_proc_read(buf, &len, count, "L1 Instruction",
834 &per_cpu(free_l1_inst_sram_head, cpu),
835 &per_cpu(used_l1_inst_sram_head, cpu)))
836 goto not_done;
837 #endif
838 }
839 #if L2_LENGTH != 0
840 if (_sram_proc_read(buf, &len, count, "L2", &free_l2_sram_head,
841 &used_l2_sram_head))
842 goto not_done;
843 #endif
844 *eof = 1;
845 not_done:
846 return len;
847 }
848
sram_proc_init(void)849 static int __init sram_proc_init(void)
850 {
851 struct proc_dir_entry *ptr;
852 ptr = create_proc_entry("sram", S_IFREG | S_IRUGO, NULL);
853 if (!ptr) {
854 printk(KERN_WARNING "unable to create /proc/sram\n");
855 return -1;
856 }
857 ptr->owner = THIS_MODULE;
858 ptr->read_proc = sram_proc_read;
859 return 0;
860 }
861 late_initcall(sram_proc_init);
862 #endif
863