• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * arch/parisc/kernel/firmware.c  - safe PDC access routines
3  *
4  *	PDC == Processor Dependent Code
5  *
6  * See http://www.parisc-linux.org/documentation/index.html
7  * for documentation describing the entry points and calling
8  * conventions defined below.
9  *
10  * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
11  * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
12  * Copyright 2003 Grant Grundler <grundler parisc-linux org>
13  * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
14  * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
15  *
16  *    This program is free software; you can redistribute it and/or modify
17  *    it under the terms of the GNU General Public License as published by
18  *    the Free Software Foundation; either version 2 of the License, or
19  *    (at your option) any later version.
20  *
21  */
22 
23 /*	I think it would be in everyone's best interest to follow this
24  *	guidelines when writing PDC wrappers:
25  *
26  *	 - the name of the pdc wrapper should match one of the macros
27  *	   used for the first two arguments
28  *	 - don't use caps for random parts of the name
29  *	 - use the static PDC result buffers and "copyout" to structs
30  *	   supplied by the caller to encapsulate alignment restrictions
31  *	 - hold pdc_lock while in PDC or using static result buffers
32  *	 - use __pa() to convert virtual (kernel) pointers to physical
33  *	   ones.
34  *	 - the name of the struct used for pdc return values should equal
35  *	   one of the macros used for the first two arguments to the
36  *	   corresponding PDC call
37  *	 - keep the order of arguments
38  *	 - don't be smart (setting trailing NUL bytes for strings, return
39  *	   something useful even if the call failed) unless you are sure
40  *	   it's not going to affect functionality or performance
41  *
42  *	Example:
43  *	int pdc_cache_info(struct pdc_cache_info *cache_info )
44  *	{
45  *		int retval;
46  *
47  *		spin_lock_irq(&pdc_lock);
48  *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
49  *		convert_to_wide(pdc_result);
50  *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
51  *		spin_unlock_irq(&pdc_lock);
52  *
53  *		return retval;
54  *	}
55  *					prumpf	991016
56  */
57 
58 #include <stdarg.h>
59 
60 #include <linux/delay.h>
61 #include <linux/init.h>
62 #include <linux/kernel.h>
63 #include <linux/module.h>
64 #include <linux/string.h>
65 #include <linux/spinlock.h>
66 
67 #include <asm/page.h>
68 #include <asm/pdc.h>
69 #include <asm/pdcpat.h>
70 #include <asm/system.h>
71 #include <asm/processor.h>	/* for boot_cpu_data */
72 
73 static DEFINE_SPINLOCK(pdc_lock);
74 extern unsigned long pdc_result[NUM_PDC_RESULT];
75 extern unsigned long pdc_result2[NUM_PDC_RESULT];
76 
77 #ifdef CONFIG_64BIT
78 #define WIDE_FIRMWARE 0x1
79 #define NARROW_FIRMWARE 0x2
80 
81 /* Firmware needs to be initially set to narrow to determine the
82  * actual firmware width. */
83 int parisc_narrow_firmware __read_mostly = 1;
84 #endif
85 
86 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls
87  * and MEM_PDC calls are always the same width as the OS.
88  * Some PAT boxes may have 64-bit IODC I/O.
89  *
90  * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
91  * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
92  * This allowed wide kernels to run on Cxxx boxes.
93  * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
94  * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
95  */
96 
97 #ifdef CONFIG_64BIT
98 long real64_call(unsigned long function, ...);
99 #endif
100 long real32_call(unsigned long function, ...);
101 
102 #ifdef CONFIG_64BIT
103 #   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
104 #   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
105 #else
106 #   define MEM_PDC (unsigned long)PAGE0->mem_pdc
107 #   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
108 #endif
109 
110 
111 /**
112  * f_extend - Convert PDC addresses to kernel addresses.
113  * @address: Address returned from PDC.
114  *
115  * This function is used to convert PDC addresses into kernel addresses
116  * when the PDC address size and kernel address size are different.
117  */
f_extend(unsigned long address)118 static unsigned long f_extend(unsigned long address)
119 {
120 #ifdef CONFIG_64BIT
121 	if(unlikely(parisc_narrow_firmware)) {
122 		if((address & 0xff000000) == 0xf0000000)
123 			return 0xf0f0f0f000000000UL | (u32)address;
124 
125 		if((address & 0xf0000000) == 0xf0000000)
126 			return 0xffffffff00000000UL | (u32)address;
127 	}
128 #endif
129 	return address;
130 }
131 
132 /**
133  * convert_to_wide - Convert the return buffer addresses into kernel addresses.
134  * @address: The return buffer from PDC.
135  *
136  * This function is used to convert the return buffer addresses retrieved from PDC
137  * into kernel addresses when the PDC address size and kernel address size are
138  * different.
139  */
convert_to_wide(unsigned long * addr)140 static void convert_to_wide(unsigned long *addr)
141 {
142 #ifdef CONFIG_64BIT
143 	int i;
144 	unsigned int *p = (unsigned int *)addr;
145 
146 	if(unlikely(parisc_narrow_firmware)) {
147 		for(i = 31; i >= 0; --i)
148 			addr[i] = p[i];
149 	}
150 #endif
151 }
152 
153 #ifdef CONFIG_64BIT
set_firmware_width_unlocked(void)154 void __cpuinit set_firmware_width_unlocked(void)
155 {
156 	int ret;
157 
158 	ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
159 		__pa(pdc_result), 0);
160 	convert_to_wide(pdc_result);
161 	if (pdc_result[0] != NARROW_FIRMWARE)
162 		parisc_narrow_firmware = 0;
163 }
164 
165 /**
166  * set_firmware_width - Determine if the firmware is wide or narrow.
167  *
168  * This function must be called before any pdc_* function that uses the
169  * convert_to_wide function.
170  */
set_firmware_width(void)171 void __cpuinit set_firmware_width(void)
172 {
173 	unsigned long flags;
174 	spin_lock_irqsave(&pdc_lock, flags);
175 	set_firmware_width_unlocked();
176 	spin_unlock_irqrestore(&pdc_lock, flags);
177 }
178 #else
set_firmware_width_unlocked(void)179 void __cpuinit set_firmware_width_unlocked(void) {
180 	return;
181 }
182 
set_firmware_width(void)183 void __cpuinit set_firmware_width(void) {
184 	return;
185 }
186 #endif /*CONFIG_64BIT*/
187 
188 /**
189  * pdc_emergency_unlock - Unlock the linux pdc lock
190  *
191  * This call unlocks the linux pdc lock in case we need some PDC functions
192  * (like pdc_add_valid) during kernel stack dump.
193  */
pdc_emergency_unlock(void)194 void pdc_emergency_unlock(void)
195 {
196  	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
197         if (spin_is_locked(&pdc_lock))
198 		spin_unlock(&pdc_lock);
199 }
200 
201 
202 /**
203  * pdc_add_valid - Verify address can be accessed without causing a HPMC.
204  * @address: Address to be verified.
205  *
206  * This PDC call attempts to read from the specified address and verifies
207  * if the address is valid.
208  *
209  * The return value is PDC_OK (0) in case accessing this address is valid.
210  */
pdc_add_valid(unsigned long address)211 int pdc_add_valid(unsigned long address)
212 {
213         int retval;
214 	unsigned long flags;
215 
216         spin_lock_irqsave(&pdc_lock, flags);
217         retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
218         spin_unlock_irqrestore(&pdc_lock, flags);
219 
220         return retval;
221 }
222 EXPORT_SYMBOL(pdc_add_valid);
223 
224 /**
225  * pdc_chassis_info - Return chassis information.
226  * @result: The return buffer.
227  * @chassis_info: The memory buffer address.
228  * @len: The size of the memory buffer address.
229  *
230  * An HVERSION dependent call for returning the chassis information.
231  */
pdc_chassis_info(struct pdc_chassis_info * chassis_info,void * led_info,unsigned long len)232 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
233 {
234         int retval;
235 	unsigned long flags;
236 
237         spin_lock_irqsave(&pdc_lock, flags);
238         memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
239         memcpy(&pdc_result2, led_info, len);
240         retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
241                               __pa(pdc_result), __pa(pdc_result2), len);
242         memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
243         memcpy(led_info, pdc_result2, len);
244         spin_unlock_irqrestore(&pdc_lock, flags);
245 
246         return retval;
247 }
248 
249 /**
250  * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
251  * @retval: -1 on error, 0 on success. Other value are PDC errors
252  *
253  * Must be correctly formatted or expect system crash
254  */
255 #ifdef CONFIG_64BIT
pdc_pat_chassis_send_log(unsigned long state,unsigned long data)256 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
257 {
258 	int retval = 0;
259 	unsigned long flags;
260 
261 	if (!is_pdc_pat())
262 		return -1;
263 
264 	spin_lock_irqsave(&pdc_lock, flags);
265 	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
266 	spin_unlock_irqrestore(&pdc_lock, flags);
267 
268 	return retval;
269 }
270 #endif
271 
272 /**
273  * pdc_chassis_disp - Updates chassis code
274  * @retval: -1 on error, 0 on success
275  */
pdc_chassis_disp(unsigned long disp)276 int pdc_chassis_disp(unsigned long disp)
277 {
278 	int retval = 0;
279 	unsigned long flags;
280 
281 	spin_lock_irqsave(&pdc_lock, flags);
282 	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
283 	spin_unlock_irqrestore(&pdc_lock, flags);
284 
285 	return retval;
286 }
287 
288 /**
289  * pdc_chassis_warn - Fetches chassis warnings
290  * @retval: -1 on error, 0 on success
291  */
pdc_chassis_warn(unsigned long * warn)292 int pdc_chassis_warn(unsigned long *warn)
293 {
294 	int retval = 0;
295 	unsigned long flags;
296 
297 	spin_lock_irqsave(&pdc_lock, flags);
298 	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
299 	*warn = pdc_result[0];
300 	spin_unlock_irqrestore(&pdc_lock, flags);
301 
302 	return retval;
303 }
304 
pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg * pdc_coproc_info)305 int __cpuinit pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
306 {
307 	int ret;
308 
309 	ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
310 	convert_to_wide(pdc_result);
311 	pdc_coproc_info->ccr_functional = pdc_result[0];
312 	pdc_coproc_info->ccr_present = pdc_result[1];
313 	pdc_coproc_info->revision = pdc_result[17];
314 	pdc_coproc_info->model = pdc_result[18];
315 
316 	return ret;
317 }
318 
319 /**
320  * pdc_coproc_cfg - To identify coprocessors attached to the processor.
321  * @pdc_coproc_info: Return buffer address.
322  *
323  * This PDC call returns the presence and status of all the coprocessors
324  * attached to the processor.
325  */
pdc_coproc_cfg(struct pdc_coproc_cfg * pdc_coproc_info)326 int __cpuinit pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
327 {
328 	int ret;
329 	unsigned long flags;
330 
331 	spin_lock_irqsave(&pdc_lock, flags);
332 	ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
333 	spin_unlock_irqrestore(&pdc_lock, flags);
334 
335 	return ret;
336 }
337 
338 /**
339  * pdc_iodc_read - Read data from the modules IODC.
340  * @actcnt: The actual number of bytes.
341  * @hpa: The HPA of the module for the iodc read.
342  * @index: The iodc entry point.
343  * @iodc_data: A buffer memory for the iodc options.
344  * @iodc_data_size: Size of the memory buffer.
345  *
346  * This PDC call reads from the IODC of the module specified by the hpa
347  * argument.
348  */
pdc_iodc_read(unsigned long * actcnt,unsigned long hpa,unsigned int index,void * iodc_data,unsigned int iodc_data_size)349 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
350 		  void *iodc_data, unsigned int iodc_data_size)
351 {
352 	int retval;
353 	unsigned long flags;
354 
355 	spin_lock_irqsave(&pdc_lock, flags);
356 	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
357 			      index, __pa(pdc_result2), iodc_data_size);
358 	convert_to_wide(pdc_result);
359 	*actcnt = pdc_result[0];
360 	memcpy(iodc_data, pdc_result2, iodc_data_size);
361 	spin_unlock_irqrestore(&pdc_lock, flags);
362 
363 	return retval;
364 }
365 EXPORT_SYMBOL(pdc_iodc_read);
366 
367 /**
368  * pdc_system_map_find_mods - Locate unarchitected modules.
369  * @pdc_mod_info: Return buffer address.
370  * @mod_path: pointer to dev path structure.
371  * @mod_index: fixed address module index.
372  *
373  * To locate and identify modules which reside at fixed I/O addresses, which
374  * do not self-identify via architected bus walks.
375  */
pdc_system_map_find_mods(struct pdc_system_map_mod_info * pdc_mod_info,struct pdc_module_path * mod_path,long mod_index)376 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
377 			     struct pdc_module_path *mod_path, long mod_index)
378 {
379 	int retval;
380 	unsigned long flags;
381 
382 	spin_lock_irqsave(&pdc_lock, flags);
383 	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
384 			      __pa(pdc_result2), mod_index);
385 	convert_to_wide(pdc_result);
386 	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
387 	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
388 	spin_unlock_irqrestore(&pdc_lock, flags);
389 
390 	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
391 	return retval;
392 }
393 
394 /**
395  * pdc_system_map_find_addrs - Retrieve additional address ranges.
396  * @pdc_addr_info: Return buffer address.
397  * @mod_index: Fixed address module index.
398  * @addr_index: Address range index.
399  *
400  * Retrieve additional information about subsequent address ranges for modules
401  * with multiple address ranges.
402  */
pdc_system_map_find_addrs(struct pdc_system_map_addr_info * pdc_addr_info,long mod_index,long addr_index)403 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
404 			      long mod_index, long addr_index)
405 {
406 	int retval;
407 	unsigned long flags;
408 
409 	spin_lock_irqsave(&pdc_lock, flags);
410 	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
411 			      mod_index, addr_index);
412 	convert_to_wide(pdc_result);
413 	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
414 	spin_unlock_irqrestore(&pdc_lock, flags);
415 
416 	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
417 	return retval;
418 }
419 
420 /**
421  * pdc_model_info - Return model information about the processor.
422  * @model: The return buffer.
423  *
424  * Returns the version numbers, identifiers, and capabilities from the processor module.
425  */
pdc_model_info(struct pdc_model * model)426 int pdc_model_info(struct pdc_model *model)
427 {
428 	int retval;
429 	unsigned long flags;
430 
431 	spin_lock_irqsave(&pdc_lock, flags);
432 	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
433 	convert_to_wide(pdc_result);
434 	memcpy(model, pdc_result, sizeof(*model));
435 	spin_unlock_irqrestore(&pdc_lock, flags);
436 
437 	return retval;
438 }
439 
440 /**
441  * pdc_model_sysmodel - Get the system model name.
442  * @name: A char array of at least 81 characters.
443  *
444  * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
445  * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
446  * on HP/UX.
447  */
pdc_model_sysmodel(char * name)448 int pdc_model_sysmodel(char *name)
449 {
450         int retval;
451 	unsigned long flags;
452 
453         spin_lock_irqsave(&pdc_lock, flags);
454         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
455                               OS_ID_HPUX, __pa(name));
456         convert_to_wide(pdc_result);
457 
458         if (retval == PDC_OK) {
459                 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
460         } else {
461                 name[0] = 0;
462         }
463         spin_unlock_irqrestore(&pdc_lock, flags);
464 
465         return retval;
466 }
467 
468 /**
469  * pdc_model_versions - Identify the version number of each processor.
470  * @cpu_id: The return buffer.
471  * @id: The id of the processor to check.
472  *
473  * Returns the version number for each processor component.
474  *
475  * This comment was here before, but I do not know what it means :( -RB
476  * id: 0 = cpu revision, 1 = boot-rom-version
477  */
pdc_model_versions(unsigned long * versions,int id)478 int pdc_model_versions(unsigned long *versions, int id)
479 {
480         int retval;
481 	unsigned long flags;
482 
483         spin_lock_irqsave(&pdc_lock, flags);
484         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
485         convert_to_wide(pdc_result);
486         *versions = pdc_result[0];
487         spin_unlock_irqrestore(&pdc_lock, flags);
488 
489         return retval;
490 }
491 
492 /**
493  * pdc_model_cpuid - Returns the CPU_ID.
494  * @cpu_id: The return buffer.
495  *
496  * Returns the CPU_ID value which uniquely identifies the cpu portion of
497  * the processor module.
498  */
pdc_model_cpuid(unsigned long * cpu_id)499 int pdc_model_cpuid(unsigned long *cpu_id)
500 {
501         int retval;
502 	unsigned long flags;
503 
504         spin_lock_irqsave(&pdc_lock, flags);
505         pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
506         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
507         convert_to_wide(pdc_result);
508         *cpu_id = pdc_result[0];
509         spin_unlock_irqrestore(&pdc_lock, flags);
510 
511         return retval;
512 }
513 
514 /**
515  * pdc_model_capabilities - Returns the platform capabilities.
516  * @capabilities: The return buffer.
517  *
518  * Returns information about platform support for 32- and/or 64-bit
519  * OSes, IO-PDIR coherency, and virtual aliasing.
520  */
pdc_model_capabilities(unsigned long * capabilities)521 int pdc_model_capabilities(unsigned long *capabilities)
522 {
523         int retval;
524 	unsigned long flags;
525 
526         spin_lock_irqsave(&pdc_lock, flags);
527         pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
528         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
529         convert_to_wide(pdc_result);
530         *capabilities = pdc_result[0];
531         spin_unlock_irqrestore(&pdc_lock, flags);
532 
533         return retval;
534 }
535 
536 /**
537  * pdc_cache_info - Return cache and TLB information.
538  * @cache_info: The return buffer.
539  *
540  * Returns information about the processor's cache and TLB.
541  */
pdc_cache_info(struct pdc_cache_info * cache_info)542 int pdc_cache_info(struct pdc_cache_info *cache_info)
543 {
544         int retval;
545 	unsigned long flags;
546 
547         spin_lock_irqsave(&pdc_lock, flags);
548         retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
549         convert_to_wide(pdc_result);
550         memcpy(cache_info, pdc_result, sizeof(*cache_info));
551         spin_unlock_irqrestore(&pdc_lock, flags);
552 
553         return retval;
554 }
555 
556 /**
557  * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
558  * @space_bits: Should be 0, if not, bad mojo!
559  *
560  * Returns information about Space ID hashing.
561  */
pdc_spaceid_bits(unsigned long * space_bits)562 int pdc_spaceid_bits(unsigned long *space_bits)
563 {
564 	int retval;
565 	unsigned long flags;
566 
567 	spin_lock_irqsave(&pdc_lock, flags);
568 	pdc_result[0] = 0;
569 	retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
570 	convert_to_wide(pdc_result);
571 	*space_bits = pdc_result[0];
572 	spin_unlock_irqrestore(&pdc_lock, flags);
573 
574 	return retval;
575 }
576 
577 #ifndef CONFIG_PA20
578 /**
579  * pdc_btlb_info - Return block TLB information.
580  * @btlb: The return buffer.
581  *
582  * Returns information about the hardware Block TLB.
583  */
pdc_btlb_info(struct pdc_btlb_info * btlb)584 int pdc_btlb_info(struct pdc_btlb_info *btlb)
585 {
586         int retval;
587 	unsigned long flags;
588 
589         spin_lock_irqsave(&pdc_lock, flags);
590         retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
591         memcpy(btlb, pdc_result, sizeof(*btlb));
592         spin_unlock_irqrestore(&pdc_lock, flags);
593 
594         if(retval < 0) {
595                 btlb->max_size = 0;
596         }
597         return retval;
598 }
599 
600 /**
601  * pdc_mem_map_hpa - Find fixed module information.
602  * @address: The return buffer
603  * @mod_path: pointer to dev path structure.
604  *
605  * This call was developed for S700 workstations to allow the kernel to find
606  * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
607  * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
608  * call.
609  *
610  * This call is supported by all existing S700 workstations (up to  Gecko).
611  */
pdc_mem_map_hpa(struct pdc_memory_map * address,struct pdc_module_path * mod_path)612 int pdc_mem_map_hpa(struct pdc_memory_map *address,
613 		struct pdc_module_path *mod_path)
614 {
615         int retval;
616 	unsigned long flags;
617 
618         spin_lock_irqsave(&pdc_lock, flags);
619         memcpy(pdc_result2, mod_path, sizeof(*mod_path));
620         retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
621 				__pa(pdc_result2));
622         memcpy(address, pdc_result, sizeof(*address));
623         spin_unlock_irqrestore(&pdc_lock, flags);
624 
625         return retval;
626 }
627 #endif	/* !CONFIG_PA20 */
628 
629 /**
630  * pdc_lan_station_id - Get the LAN address.
631  * @lan_addr: The return buffer.
632  * @hpa: The network device HPA.
633  *
634  * Get the LAN station address when it is not directly available from the LAN hardware.
635  */
pdc_lan_station_id(char * lan_addr,unsigned long hpa)636 int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
637 {
638 	int retval;
639 	unsigned long flags;
640 
641 	spin_lock_irqsave(&pdc_lock, flags);
642 	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
643 			__pa(pdc_result), hpa);
644 	if (retval < 0) {
645 		/* FIXME: else read MAC from NVRAM */
646 		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
647 	} else {
648 		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
649 	}
650 	spin_unlock_irqrestore(&pdc_lock, flags);
651 
652 	return retval;
653 }
654 EXPORT_SYMBOL(pdc_lan_station_id);
655 
656 /**
657  * pdc_stable_read - Read data from Stable Storage.
658  * @staddr: Stable Storage address to access.
659  * @memaddr: The memory address where Stable Storage data shall be copied.
660  * @count: number of bytes to transfer. count is multiple of 4.
661  *
662  * This PDC call reads from the Stable Storage address supplied in staddr
663  * and copies count bytes to the memory address memaddr.
664  * The call will fail if staddr+count > PDC_STABLE size.
665  */
pdc_stable_read(unsigned long staddr,void * memaddr,unsigned long count)666 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
667 {
668        int retval;
669 	unsigned long flags;
670 
671        spin_lock_irqsave(&pdc_lock, flags);
672        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
673                __pa(pdc_result), count);
674        convert_to_wide(pdc_result);
675        memcpy(memaddr, pdc_result, count);
676        spin_unlock_irqrestore(&pdc_lock, flags);
677 
678        return retval;
679 }
680 EXPORT_SYMBOL(pdc_stable_read);
681 
682 /**
683  * pdc_stable_write - Write data to Stable Storage.
684  * @staddr: Stable Storage address to access.
685  * @memaddr: The memory address where Stable Storage data shall be read from.
686  * @count: number of bytes to transfer. count is multiple of 4.
687  *
688  * This PDC call reads count bytes from the supplied memaddr address,
689  * and copies count bytes to the Stable Storage address staddr.
690  * The call will fail if staddr+count > PDC_STABLE size.
691  */
pdc_stable_write(unsigned long staddr,void * memaddr,unsigned long count)692 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
693 {
694        int retval;
695 	unsigned long flags;
696 
697        spin_lock_irqsave(&pdc_lock, flags);
698        memcpy(pdc_result, memaddr, count);
699        convert_to_wide(pdc_result);
700        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
701                __pa(pdc_result), count);
702        spin_unlock_irqrestore(&pdc_lock, flags);
703 
704        return retval;
705 }
706 EXPORT_SYMBOL(pdc_stable_write);
707 
708 /**
709  * pdc_stable_get_size - Get Stable Storage size in bytes.
710  * @size: pointer where the size will be stored.
711  *
712  * This PDC call returns the number of bytes in the processor's Stable
713  * Storage, which is the number of contiguous bytes implemented in Stable
714  * Storage starting from staddr=0. size in an unsigned 64-bit integer
715  * which is a multiple of four.
716  */
pdc_stable_get_size(unsigned long * size)717 int pdc_stable_get_size(unsigned long *size)
718 {
719        int retval;
720 	unsigned long flags;
721 
722        spin_lock_irqsave(&pdc_lock, flags);
723        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
724        *size = pdc_result[0];
725        spin_unlock_irqrestore(&pdc_lock, flags);
726 
727        return retval;
728 }
729 EXPORT_SYMBOL(pdc_stable_get_size);
730 
731 /**
732  * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
733  *
734  * This PDC call is meant to be used to check the integrity of the current
735  * contents of Stable Storage.
736  */
pdc_stable_verify_contents(void)737 int pdc_stable_verify_contents(void)
738 {
739        int retval;
740 	unsigned long flags;
741 
742        spin_lock_irqsave(&pdc_lock, flags);
743        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
744        spin_unlock_irqrestore(&pdc_lock, flags);
745 
746        return retval;
747 }
748 EXPORT_SYMBOL(pdc_stable_verify_contents);
749 
750 /**
751  * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
752  * the validity indicator.
753  *
754  * This PDC call will erase all contents of Stable Storage. Use with care!
755  */
pdc_stable_initialize(void)756 int pdc_stable_initialize(void)
757 {
758        int retval;
759 	unsigned long flags;
760 
761        spin_lock_irqsave(&pdc_lock, flags);
762        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
763        spin_unlock_irqrestore(&pdc_lock, flags);
764 
765        return retval;
766 }
767 EXPORT_SYMBOL(pdc_stable_initialize);
768 
769 /**
770  * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
771  * @hwpath: fully bc.mod style path to the device.
772  * @initiator: the array to return the result into
773  *
774  * Get the SCSI operational parameters from PDC.
775  * Needed since HPUX never used BIOS or symbios card NVRAM.
776  * Most ncr/sym cards won't have an entry and just use whatever
777  * capabilities of the card are (eg Ultra, LVD). But there are
778  * several cases where it's useful:
779  *    o set SCSI id for Multi-initiator clusters,
780  *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
781  *    o bus width exported is less than what the interface chip supports.
782  */
pdc_get_initiator(struct hardware_path * hwpath,struct pdc_initiator * initiator)783 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
784 {
785 	int retval;
786 	unsigned long flags;
787 
788 	spin_lock_irqsave(&pdc_lock, flags);
789 
790 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
791 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
792 	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
793 
794 	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
795 			      __pa(pdc_result), __pa(hwpath));
796 	if (retval < PDC_OK)
797 		goto out;
798 
799 	if (pdc_result[0] < 16) {
800 		initiator->host_id = pdc_result[0];
801 	} else {
802 		initiator->host_id = -1;
803 	}
804 
805 	/*
806 	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
807 	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
808 	 */
809 	switch (pdc_result[1]) {
810 		case  1: initiator->factor = 50; break;
811 		case  2: initiator->factor = 25; break;
812 		case  5: initiator->factor = 12; break;
813 		case 25: initiator->factor = 10; break;
814 		case 20: initiator->factor = 12; break;
815 		case 40: initiator->factor = 10; break;
816 		default: initiator->factor = -1; break;
817 	}
818 
819 	if (IS_SPROCKETS()) {
820 		initiator->width = pdc_result[4];
821 		initiator->mode = pdc_result[5];
822 	} else {
823 		initiator->width = -1;
824 		initiator->mode = -1;
825 	}
826 
827  out:
828 	spin_unlock_irqrestore(&pdc_lock, flags);
829 
830 	return (retval >= PDC_OK);
831 }
832 EXPORT_SYMBOL(pdc_get_initiator);
833 
834 
835 /**
836  * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
837  * @num_entries: The return value.
838  * @hpa: The HPA for the device.
839  *
840  * This PDC function returns the number of entries in the specified cell's
841  * interrupt table.
842  * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
843  */
pdc_pci_irt_size(unsigned long * num_entries,unsigned long hpa)844 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
845 {
846 	int retval;
847 	unsigned long flags;
848 
849 	spin_lock_irqsave(&pdc_lock, flags);
850 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
851 			      __pa(pdc_result), hpa);
852 	convert_to_wide(pdc_result);
853 	*num_entries = pdc_result[0];
854 	spin_unlock_irqrestore(&pdc_lock, flags);
855 
856 	return retval;
857 }
858 
859 /**
860  * pdc_pci_irt - Get the PCI interrupt routing table.
861  * @num_entries: The number of entries in the table.
862  * @hpa: The Hard Physical Address of the device.
863  * @tbl:
864  *
865  * Get the PCI interrupt routing table for the device at the given HPA.
866  * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
867  */
pdc_pci_irt(unsigned long num_entries,unsigned long hpa,void * tbl)868 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
869 {
870 	int retval;
871 	unsigned long flags;
872 
873 	BUG_ON((unsigned long)tbl & 0x7);
874 
875 	spin_lock_irqsave(&pdc_lock, flags);
876 	pdc_result[0] = num_entries;
877 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
878 			      __pa(pdc_result), hpa, __pa(tbl));
879 	spin_unlock_irqrestore(&pdc_lock, flags);
880 
881 	return retval;
882 }
883 
884 
885 #if 0	/* UNTEST CODE - left here in case someone needs it */
886 
887 /**
888  * pdc_pci_config_read - read PCI config space.
889  * @hpa		token from PDC to indicate which PCI device
890  * @pci_addr	configuration space address to read from
891  *
892  * Read PCI Configuration space *before* linux PCI subsystem is running.
893  */
894 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
895 {
896 	int retval;
897 	unsigned long flags;
898 
899 	spin_lock_irqsave(&pdc_lock, flags);
900 	pdc_result[0] = 0;
901 	pdc_result[1] = 0;
902 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
903 			      __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
904 	spin_unlock_irqrestore(&pdc_lock, flags);
905 
906 	return retval ? ~0 : (unsigned int) pdc_result[0];
907 }
908 
909 
910 /**
911  * pdc_pci_config_write - read PCI config space.
912  * @hpa		token from PDC to indicate which PCI device
913  * @pci_addr	configuration space address to write
914  * @val		value we want in the 32-bit register
915  *
916  * Write PCI Configuration space *before* linux PCI subsystem is running.
917  */
918 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
919 {
920 	int retval;
921 	unsigned long flags;
922 
923 	spin_lock_irqsave(&pdc_lock, flags);
924 	pdc_result[0] = 0;
925 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
926 			      __pa(pdc_result), hpa,
927 			      cfg_addr&~3UL, 4UL, (unsigned long) val);
928 	spin_unlock_irqrestore(&pdc_lock, flags);
929 
930 	return retval;
931 }
932 #endif /* UNTESTED CODE */
933 
934 /**
935  * pdc_tod_read - Read the Time-Of-Day clock.
936  * @tod: The return buffer:
937  *
938  * Read the Time-Of-Day clock
939  */
pdc_tod_read(struct pdc_tod * tod)940 int pdc_tod_read(struct pdc_tod *tod)
941 {
942         int retval;
943 	unsigned long flags;
944 
945         spin_lock_irqsave(&pdc_lock, flags);
946         retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
947         convert_to_wide(pdc_result);
948         memcpy(tod, pdc_result, sizeof(*tod));
949         spin_unlock_irqrestore(&pdc_lock, flags);
950 
951         return retval;
952 }
953 EXPORT_SYMBOL(pdc_tod_read);
954 
955 /**
956  * pdc_tod_set - Set the Time-Of-Day clock.
957  * @sec: The number of seconds since epoch.
958  * @usec: The number of micro seconds.
959  *
960  * Set the Time-Of-Day clock.
961  */
pdc_tod_set(unsigned long sec,unsigned long usec)962 int pdc_tod_set(unsigned long sec, unsigned long usec)
963 {
964         int retval;
965 	unsigned long flags;
966 
967         spin_lock_irqsave(&pdc_lock, flags);
968         retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
969         spin_unlock_irqrestore(&pdc_lock, flags);
970 
971         return retval;
972 }
973 EXPORT_SYMBOL(pdc_tod_set);
974 
975 #ifdef CONFIG_64BIT
pdc_mem_mem_table(struct pdc_memory_table_raddr * r_addr,struct pdc_memory_table * tbl,unsigned long entries)976 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
977 		struct pdc_memory_table *tbl, unsigned long entries)
978 {
979 	int retval;
980 	unsigned long flags;
981 
982 	spin_lock_irqsave(&pdc_lock, flags);
983 	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
984 	convert_to_wide(pdc_result);
985 	memcpy(r_addr, pdc_result, sizeof(*r_addr));
986 	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
987 	spin_unlock_irqrestore(&pdc_lock, flags);
988 
989 	return retval;
990 }
991 #endif /* CONFIG_64BIT */
992 
993 /* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
994  * so I guessed at unsigned long.  Someone who knows what this does, can fix
995  * it later. :)
996  */
pdc_do_firm_test_reset(unsigned long ftc_bitmap)997 int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
998 {
999         int retval;
1000 	unsigned long flags;
1001 
1002         spin_lock_irqsave(&pdc_lock, flags);
1003         retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1004                               PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1005         spin_unlock_irqrestore(&pdc_lock, flags);
1006 
1007         return retval;
1008 }
1009 
1010 /*
1011  * pdc_do_reset - Reset the system.
1012  *
1013  * Reset the system.
1014  */
pdc_do_reset(void)1015 int pdc_do_reset(void)
1016 {
1017         int retval;
1018 	unsigned long flags;
1019 
1020         spin_lock_irqsave(&pdc_lock, flags);
1021         retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1022         spin_unlock_irqrestore(&pdc_lock, flags);
1023 
1024         return retval;
1025 }
1026 
1027 /*
1028  * pdc_soft_power_info - Enable soft power switch.
1029  * @power_reg: address of soft power register
1030  *
1031  * Return the absolute address of the soft power switch register
1032  */
pdc_soft_power_info(unsigned long * power_reg)1033 int __init pdc_soft_power_info(unsigned long *power_reg)
1034 {
1035 	int retval;
1036 	unsigned long flags;
1037 
1038 	*power_reg = (unsigned long) (-1);
1039 
1040 	spin_lock_irqsave(&pdc_lock, flags);
1041 	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1042 	if (retval == PDC_OK) {
1043                 convert_to_wide(pdc_result);
1044                 *power_reg = f_extend(pdc_result[0]);
1045 	}
1046 	spin_unlock_irqrestore(&pdc_lock, flags);
1047 
1048 	return retval;
1049 }
1050 
1051 /*
1052  * pdc_soft_power_button - Control the soft power button behaviour
1053  * @sw_control: 0 for hardware control, 1 for software control
1054  *
1055  *
1056  * This PDC function places the soft power button under software or
1057  * hardware control.
1058  * Under software control the OS may control to when to allow to shut
1059  * down the system. Under hardware control pressing the power button
1060  * powers off the system immediately.
1061  */
pdc_soft_power_button(int sw_control)1062 int pdc_soft_power_button(int sw_control)
1063 {
1064 	int retval;
1065 	unsigned long flags;
1066 
1067 	spin_lock_irqsave(&pdc_lock, flags);
1068 	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1069 	spin_unlock_irqrestore(&pdc_lock, flags);
1070 
1071 	return retval;
1072 }
1073 
1074 /*
1075  * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1076  * Primarily a problem on T600 (which parisc-linux doesn't support) but
1077  * who knows what other platform firmware might do with this OS "hook".
1078  */
pdc_io_reset(void)1079 void pdc_io_reset(void)
1080 {
1081 	unsigned long flags;
1082 
1083 	spin_lock_irqsave(&pdc_lock, flags);
1084 	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1085 	spin_unlock_irqrestore(&pdc_lock, flags);
1086 }
1087 
1088 /*
1089  * pdc_io_reset_devices - Hack to Stop USB controller
1090  *
1091  * If PDC used the usb controller, the usb controller
1092  * is still running and will crash the machines during iommu
1093  * setup, because of still running DMA. This PDC call
1094  * stops the USB controller.
1095  * Normally called after calling pdc_io_reset().
1096  */
pdc_io_reset_devices(void)1097 void pdc_io_reset_devices(void)
1098 {
1099 	unsigned long flags;
1100 
1101 	spin_lock_irqsave(&pdc_lock, flags);
1102 	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1103 	spin_unlock_irqrestore(&pdc_lock, flags);
1104 }
1105 
1106 /* locked by pdc_console_lock */
1107 static int __attribute__((aligned(8)))   iodc_retbuf[32];
1108 static char __attribute__((aligned(64))) iodc_dbuf[4096];
1109 
1110 /**
1111  * pdc_iodc_print - Console print using IODC.
1112  * @str: the string to output.
1113  * @count: length of str
1114  *
1115  * Note that only these special chars are architected for console IODC io:
1116  * BEL, BS, CR, and LF. Others are passed through.
1117  * Since the HP console requires CR+LF to perform a 'newline', we translate
1118  * "\n" to "\r\n".
1119  */
pdc_iodc_print(const unsigned char * str,unsigned count)1120 int pdc_iodc_print(const unsigned char *str, unsigned count)
1121 {
1122 	static int posx;        /* for simple TAB-Simulation... */
1123 	unsigned int i;
1124 	unsigned long flags;
1125 
1126 	for (i = 0; i < count && i < 79;) {
1127 		switch(str[i]) {
1128 		case '\n':
1129 			iodc_dbuf[i+0] = '\r';
1130 			iodc_dbuf[i+1] = '\n';
1131 			i += 2;
1132 			posx = 0;
1133 			goto print;
1134 		case '\t':
1135 			while (posx & 7) {
1136 				iodc_dbuf[i] = ' ';
1137 				i++, posx++;
1138 			}
1139 			break;
1140 		case '\b':	/* BS */
1141 			posx -= 2;
1142 		default:
1143 			iodc_dbuf[i] = str[i];
1144 			i++, posx++;
1145 			break;
1146 		}
1147 	}
1148 
1149 	/* if we're at the end of line, and not already inserting a newline,
1150 	 * insert one anyway. iodc console doesn't claim to support >79 char
1151 	 * lines. don't account for this in the return value.
1152 	 */
1153 	if (i == 79 && iodc_dbuf[i-1] != '\n') {
1154 		iodc_dbuf[i+0] = '\r';
1155 		iodc_dbuf[i+1] = '\n';
1156 	}
1157 
1158 print:
1159         spin_lock_irqsave(&pdc_lock, flags);
1160         real32_call(PAGE0->mem_cons.iodc_io,
1161                     (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1162                     PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1163                     __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1164         spin_unlock_irqrestore(&pdc_lock, flags);
1165 
1166 	return i;
1167 }
1168 
1169 /**
1170  * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1171  *
1172  * Read a character (non-blocking) from the PDC console, returns -1 if
1173  * key is not present.
1174  */
pdc_iodc_getc(void)1175 int pdc_iodc_getc(void)
1176 {
1177 	int ch;
1178 	int status;
1179 	unsigned long flags;
1180 
1181 	/* Bail if no console input device. */
1182 	if (!PAGE0->mem_kbd.iodc_io)
1183 		return 0;
1184 
1185 	/* wait for a keyboard (rs232)-input */
1186 	spin_lock_irqsave(&pdc_lock, flags);
1187 	real32_call(PAGE0->mem_kbd.iodc_io,
1188 		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1189 		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1190 		    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1191 
1192 	ch = *iodc_dbuf;
1193 	status = *iodc_retbuf;
1194 	spin_unlock_irqrestore(&pdc_lock, flags);
1195 
1196 	if (status == 0)
1197 	    return -1;
1198 
1199 	return ch;
1200 }
1201 
pdc_sti_call(unsigned long func,unsigned long flags,unsigned long inptr,unsigned long outputr,unsigned long glob_cfg)1202 int pdc_sti_call(unsigned long func, unsigned long flags,
1203                  unsigned long inptr, unsigned long outputr,
1204                  unsigned long glob_cfg)
1205 {
1206         int retval;
1207 	unsigned long irqflags;
1208 
1209         spin_lock_irqsave(&pdc_lock, irqflags);
1210         retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1211         spin_unlock_irqrestore(&pdc_lock, irqflags);
1212 
1213         return retval;
1214 }
1215 EXPORT_SYMBOL(pdc_sti_call);
1216 
1217 #ifdef CONFIG_64BIT
1218 /**
1219  * pdc_pat_cell_get_number - Returns the cell number.
1220  * @cell_info: The return buffer.
1221  *
1222  * This PDC call returns the cell number of the cell from which the call
1223  * is made.
1224  */
pdc_pat_cell_get_number(struct pdc_pat_cell_num * cell_info)1225 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1226 {
1227 	int retval;
1228 	unsigned long flags;
1229 
1230 	spin_lock_irqsave(&pdc_lock, flags);
1231 	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1232 	memcpy(cell_info, pdc_result, sizeof(*cell_info));
1233 	spin_unlock_irqrestore(&pdc_lock, flags);
1234 
1235 	return retval;
1236 }
1237 
1238 /**
1239  * pdc_pat_cell_module - Retrieve the cell's module information.
1240  * @actcnt: The number of bytes written to mem_addr.
1241  * @ploc: The physical location.
1242  * @mod: The module index.
1243  * @view_type: The view of the address type.
1244  * @mem_addr: The return buffer.
1245  *
1246  * This PDC call returns information about each module attached to the cell
1247  * at the specified location.
1248  */
pdc_pat_cell_module(unsigned long * actcnt,unsigned long ploc,unsigned long mod,unsigned long view_type,void * mem_addr)1249 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1250 			unsigned long view_type, void *mem_addr)
1251 {
1252 	int retval;
1253 	unsigned long flags;
1254 	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1255 
1256 	spin_lock_irqsave(&pdc_lock, flags);
1257 	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1258 			      ploc, mod, view_type, __pa(&result));
1259 	if(!retval) {
1260 		*actcnt = pdc_result[0];
1261 		memcpy(mem_addr, &result, *actcnt);
1262 	}
1263 	spin_unlock_irqrestore(&pdc_lock, flags);
1264 
1265 	return retval;
1266 }
1267 
1268 /**
1269  * pdc_pat_cpu_get_number - Retrieve the cpu number.
1270  * @cpu_info: The return buffer.
1271  * @hpa: The Hard Physical Address of the CPU.
1272  *
1273  * Retrieve the cpu number for the cpu at the specified HPA.
1274  */
pdc_pat_cpu_get_number(struct pdc_pat_cpu_num * cpu_info,void * hpa)1275 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
1276 {
1277 	int retval;
1278 	unsigned long flags;
1279 
1280 	spin_lock_irqsave(&pdc_lock, flags);
1281 	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1282 			      __pa(&pdc_result), hpa);
1283 	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1284 	spin_unlock_irqrestore(&pdc_lock, flags);
1285 
1286 	return retval;
1287 }
1288 
1289 /**
1290  * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1291  * @num_entries: The return value.
1292  * @cell_num: The target cell.
1293  *
1294  * This PDC function returns the number of entries in the specified cell's
1295  * interrupt table.
1296  */
pdc_pat_get_irt_size(unsigned long * num_entries,unsigned long cell_num)1297 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1298 {
1299 	int retval;
1300 	unsigned long flags;
1301 
1302 	spin_lock_irqsave(&pdc_lock, flags);
1303 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1304 			      __pa(pdc_result), cell_num);
1305 	*num_entries = pdc_result[0];
1306 	spin_unlock_irqrestore(&pdc_lock, flags);
1307 
1308 	return retval;
1309 }
1310 
1311 /**
1312  * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1313  * @r_addr: The return buffer.
1314  * @cell_num: The target cell.
1315  *
1316  * This PDC function returns the actual interrupt table for the specified cell.
1317  */
pdc_pat_get_irt(void * r_addr,unsigned long cell_num)1318 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1319 {
1320 	int retval;
1321 	unsigned long flags;
1322 
1323 	spin_lock_irqsave(&pdc_lock, flags);
1324 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1325 			      __pa(r_addr), cell_num);
1326 	spin_unlock_irqrestore(&pdc_lock, flags);
1327 
1328 	return retval;
1329 }
1330 
1331 /**
1332  * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1333  * @actlen: The return buffer.
1334  * @mem_addr: Pointer to the memory buffer.
1335  * @count: The number of bytes to read from the buffer.
1336  * @offset: The offset with respect to the beginning of the buffer.
1337  *
1338  */
pdc_pat_pd_get_addr_map(unsigned long * actual_len,void * mem_addr,unsigned long count,unsigned long offset)1339 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1340 			    unsigned long count, unsigned long offset)
1341 {
1342 	int retval;
1343 	unsigned long flags;
1344 
1345 	spin_lock_irqsave(&pdc_lock, flags);
1346 	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1347 			      __pa(pdc_result2), count, offset);
1348 	*actual_len = pdc_result[0];
1349 	memcpy(mem_addr, pdc_result2, *actual_len);
1350 	spin_unlock_irqrestore(&pdc_lock, flags);
1351 
1352 	return retval;
1353 }
1354 
1355 /**
1356  * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1357  * @pci_addr: PCI configuration space address for which the read request is being made.
1358  * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1359  * @mem_addr: Pointer to return memory buffer.
1360  *
1361  */
pdc_pat_io_pci_cfg_read(unsigned long pci_addr,int pci_size,u32 * mem_addr)1362 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1363 {
1364 	int retval;
1365 	unsigned long flags;
1366 
1367 	spin_lock_irqsave(&pdc_lock, flags);
1368 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1369 					__pa(pdc_result), pci_addr, pci_size);
1370 	switch(pci_size) {
1371 		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0];
1372 		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0];
1373 		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0];
1374 	}
1375 	spin_unlock_irqrestore(&pdc_lock, flags);
1376 
1377 	return retval;
1378 }
1379 
1380 /**
1381  * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1382  * @pci_addr: PCI configuration space address for which the write  request is being made.
1383  * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1384  * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1385  *         written to PCI Config space.
1386  *
1387  */
pdc_pat_io_pci_cfg_write(unsigned long pci_addr,int pci_size,u32 val)1388 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1389 {
1390 	int retval;
1391 	unsigned long flags;
1392 
1393 	spin_lock_irqsave(&pdc_lock, flags);
1394 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1395 				pci_addr, pci_size, val);
1396 	spin_unlock_irqrestore(&pdc_lock, flags);
1397 
1398 	return retval;
1399 }
1400 #endif /* CONFIG_64BIT */
1401 
1402 
1403 /***************** 32-bit real-mode calls ***********/
1404 /* The struct below is used
1405  * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1406  * real32_call_asm() then uses this stack in narrow real mode
1407  */
1408 
1409 struct narrow_stack {
1410 	/* use int, not long which is 64 bits */
1411 	unsigned int arg13;
1412 	unsigned int arg12;
1413 	unsigned int arg11;
1414 	unsigned int arg10;
1415 	unsigned int arg9;
1416 	unsigned int arg8;
1417 	unsigned int arg7;
1418 	unsigned int arg6;
1419 	unsigned int arg5;
1420 	unsigned int arg4;
1421 	unsigned int arg3;
1422 	unsigned int arg2;
1423 	unsigned int arg1;
1424 	unsigned int arg0;
1425 	unsigned int frame_marker[8];
1426 	unsigned int sp;
1427 	/* in reality, there's nearly 8k of stack after this */
1428 };
1429 
real32_call(unsigned long fn,...)1430 long real32_call(unsigned long fn, ...)
1431 {
1432 	va_list args;
1433 	extern struct narrow_stack real_stack;
1434 	extern unsigned long real32_call_asm(unsigned int *,
1435 					     unsigned int *,
1436 					     unsigned int);
1437 
1438 	va_start(args, fn);
1439 	real_stack.arg0 = va_arg(args, unsigned int);
1440 	real_stack.arg1 = va_arg(args, unsigned int);
1441 	real_stack.arg2 = va_arg(args, unsigned int);
1442 	real_stack.arg3 = va_arg(args, unsigned int);
1443 	real_stack.arg4 = va_arg(args, unsigned int);
1444 	real_stack.arg5 = va_arg(args, unsigned int);
1445 	real_stack.arg6 = va_arg(args, unsigned int);
1446 	real_stack.arg7 = va_arg(args, unsigned int);
1447 	real_stack.arg8 = va_arg(args, unsigned int);
1448 	real_stack.arg9 = va_arg(args, unsigned int);
1449 	real_stack.arg10 = va_arg(args, unsigned int);
1450 	real_stack.arg11 = va_arg(args, unsigned int);
1451 	real_stack.arg12 = va_arg(args, unsigned int);
1452 	real_stack.arg13 = va_arg(args, unsigned int);
1453 	va_end(args);
1454 
1455 	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1456 }
1457 
1458 #ifdef CONFIG_64BIT
1459 /***************** 64-bit real-mode calls ***********/
1460 
1461 struct wide_stack {
1462 	unsigned long arg0;
1463 	unsigned long arg1;
1464 	unsigned long arg2;
1465 	unsigned long arg3;
1466 	unsigned long arg4;
1467 	unsigned long arg5;
1468 	unsigned long arg6;
1469 	unsigned long arg7;
1470 	unsigned long arg8;
1471 	unsigned long arg9;
1472 	unsigned long arg10;
1473 	unsigned long arg11;
1474 	unsigned long arg12;
1475 	unsigned long arg13;
1476 	unsigned long frame_marker[2];	/* rp, previous sp */
1477 	unsigned long sp;
1478 	/* in reality, there's nearly 8k of stack after this */
1479 };
1480 
real64_call(unsigned long fn,...)1481 long real64_call(unsigned long fn, ...)
1482 {
1483 	va_list args;
1484 	extern struct wide_stack real64_stack;
1485 	extern unsigned long real64_call_asm(unsigned long *,
1486 					     unsigned long *,
1487 					     unsigned long);
1488 
1489 	va_start(args, fn);
1490 	real64_stack.arg0 = va_arg(args, unsigned long);
1491 	real64_stack.arg1 = va_arg(args, unsigned long);
1492 	real64_stack.arg2 = va_arg(args, unsigned long);
1493 	real64_stack.arg3 = va_arg(args, unsigned long);
1494 	real64_stack.arg4 = va_arg(args, unsigned long);
1495 	real64_stack.arg5 = va_arg(args, unsigned long);
1496 	real64_stack.arg6 = va_arg(args, unsigned long);
1497 	real64_stack.arg7 = va_arg(args, unsigned long);
1498 	real64_stack.arg8 = va_arg(args, unsigned long);
1499 	real64_stack.arg9 = va_arg(args, unsigned long);
1500 	real64_stack.arg10 = va_arg(args, unsigned long);
1501 	real64_stack.arg11 = va_arg(args, unsigned long);
1502 	real64_stack.arg12 = va_arg(args, unsigned long);
1503 	real64_stack.arg13 = va_arg(args, unsigned long);
1504 	va_end(args);
1505 
1506 	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1507 }
1508 
1509 #endif /* CONFIG_64BIT */
1510 
1511