1 #ifndef _ASM_X86_PARAVIRT_H
2 #define _ASM_X86_PARAVIRT_H
3 /* Various instructions on x86 need to be replaced for
4 * para-virtualization: those hooks are defined here. */
5
6 #ifdef CONFIG_PARAVIRT
7 #include <asm/page.h>
8 #include <asm/asm.h>
9
10 /* Bitmask of what can be clobbered: usually at least eax. */
11 #define CLBR_NONE 0
12 #define CLBR_EAX (1 << 0)
13 #define CLBR_ECX (1 << 1)
14 #define CLBR_EDX (1 << 2)
15
16 #ifdef CONFIG_X86_64
17 #define CLBR_RSI (1 << 3)
18 #define CLBR_RDI (1 << 4)
19 #define CLBR_R8 (1 << 5)
20 #define CLBR_R9 (1 << 6)
21 #define CLBR_R10 (1 << 7)
22 #define CLBR_R11 (1 << 8)
23 #define CLBR_ANY ((1 << 9) - 1)
24 #include <asm/desc_defs.h>
25 #else
26 /* CLBR_ANY should match all regs platform has. For i386, that's just it */
27 #define CLBR_ANY ((1 << 3) - 1)
28 #endif /* X86_64 */
29
30 #ifndef __ASSEMBLY__
31 #include <linux/types.h>
32 #include <linux/cpumask.h>
33 #include <asm/kmap_types.h>
34 #include <asm/desc_defs.h>
35
36 struct page;
37 struct thread_struct;
38 struct desc_ptr;
39 struct tss_struct;
40 struct mm_struct;
41 struct desc_struct;
42
43 /* general info */
44 struct pv_info {
45 unsigned int kernel_rpl;
46 int shared_kernel_pmd;
47 int paravirt_enabled;
48 const char *name;
49 };
50
51 struct pv_init_ops {
52 /*
53 * Patch may replace one of the defined code sequences with
54 * arbitrary code, subject to the same register constraints.
55 * This generally means the code is not free to clobber any
56 * registers other than EAX. The patch function should return
57 * the number of bytes of code generated, as we nop pad the
58 * rest in generic code.
59 */
60 unsigned (*patch)(u8 type, u16 clobber, void *insnbuf,
61 unsigned long addr, unsigned len);
62
63 /* Basic arch-specific setup */
64 void (*arch_setup)(void);
65 char *(*memory_setup)(void);
66 void (*post_allocator_init)(void);
67
68 /* Print a banner to identify the environment */
69 void (*banner)(void);
70 };
71
72
73 struct pv_lazy_ops {
74 /* Set deferred update mode, used for batching operations. */
75 void (*enter)(void);
76 void (*leave)(void);
77 };
78
79 struct pv_time_ops {
80 void (*time_init)(void);
81
82 /* Set and set time of day */
83 unsigned long (*get_wallclock)(void);
84 int (*set_wallclock)(unsigned long);
85
86 unsigned long long (*sched_clock)(void);
87 unsigned long (*get_tsc_khz)(void);
88 };
89
90 struct pv_cpu_ops {
91 /* hooks for various privileged instructions */
92 unsigned long (*get_debugreg)(int regno);
93 void (*set_debugreg)(int regno, unsigned long value);
94
95 void (*clts)(void);
96
97 unsigned long (*read_cr0)(void);
98 void (*write_cr0)(unsigned long);
99
100 unsigned long (*read_cr4_safe)(void);
101 unsigned long (*read_cr4)(void);
102 void (*write_cr4)(unsigned long);
103
104 #ifdef CONFIG_X86_64
105 unsigned long (*read_cr8)(void);
106 void (*write_cr8)(unsigned long);
107 #endif
108
109 /* Segment descriptor handling */
110 void (*load_tr_desc)(void);
111 void (*load_gdt)(const struct desc_ptr *);
112 void (*load_idt)(const struct desc_ptr *);
113 void (*store_gdt)(struct desc_ptr *);
114 void (*store_idt)(struct desc_ptr *);
115 void (*set_ldt)(const void *desc, unsigned entries);
116 unsigned long (*store_tr)(void);
117 void (*load_tls)(struct thread_struct *t, unsigned int cpu);
118 #ifdef CONFIG_X86_64
119 void (*load_gs_index)(unsigned int idx);
120 #endif
121 void (*write_ldt_entry)(struct desc_struct *ldt, int entrynum,
122 const void *desc);
123 void (*write_gdt_entry)(struct desc_struct *,
124 int entrynum, const void *desc, int size);
125 void (*write_idt_entry)(gate_desc *,
126 int entrynum, const gate_desc *gate);
127 void (*alloc_ldt)(struct desc_struct *ldt, unsigned entries);
128 void (*free_ldt)(struct desc_struct *ldt, unsigned entries);
129
130 void (*load_sp0)(struct tss_struct *tss, struct thread_struct *t);
131
132 void (*set_iopl_mask)(unsigned mask);
133
134 void (*wbinvd)(void);
135 void (*io_delay)(void);
136
137 /* cpuid emulation, mostly so that caps bits can be disabled */
138 void (*cpuid)(unsigned int *eax, unsigned int *ebx,
139 unsigned int *ecx, unsigned int *edx);
140
141 /* MSR, PMC and TSR operations.
142 err = 0/-EFAULT. wrmsr returns 0/-EFAULT. */
143 u64 (*read_msr_amd)(unsigned int msr, int *err);
144 u64 (*read_msr)(unsigned int msr, int *err);
145 int (*write_msr)(unsigned int msr, unsigned low, unsigned high);
146
147 u64 (*read_tsc)(void);
148 u64 (*read_pmc)(int counter);
149 unsigned long long (*read_tscp)(unsigned int *aux);
150
151 /*
152 * Atomically enable interrupts and return to userspace. This
153 * is only ever used to return to 32-bit processes; in a
154 * 64-bit kernel, it's used for 32-on-64 compat processes, but
155 * never native 64-bit processes. (Jump, not call.)
156 */
157 void (*irq_enable_sysexit)(void);
158
159 /*
160 * Switch to usermode gs and return to 64-bit usermode using
161 * sysret. Only used in 64-bit kernels to return to 64-bit
162 * processes. Usermode register state, including %rsp, must
163 * already be restored.
164 */
165 void (*usergs_sysret64)(void);
166
167 /*
168 * Switch to usermode gs and return to 32-bit usermode using
169 * sysret. Used to return to 32-on-64 compat processes.
170 * Other usermode register state, including %esp, must already
171 * be restored.
172 */
173 void (*usergs_sysret32)(void);
174
175 /* Normal iret. Jump to this with the standard iret stack
176 frame set up. */
177 void (*iret)(void);
178
179 void (*swapgs)(void);
180
181 struct pv_lazy_ops lazy_mode;
182 };
183
184 struct pv_irq_ops {
185 void (*init_IRQ)(void);
186
187 /*
188 * Get/set interrupt state. save_fl and restore_fl are only
189 * expected to use X86_EFLAGS_IF; all other bits
190 * returned from save_fl are undefined, and may be ignored by
191 * restore_fl.
192 */
193 unsigned long (*save_fl)(void);
194 void (*restore_fl)(unsigned long);
195 void (*irq_disable)(void);
196 void (*irq_enable)(void);
197 void (*safe_halt)(void);
198 void (*halt)(void);
199
200 #ifdef CONFIG_X86_64
201 void (*adjust_exception_frame)(void);
202 #endif
203 };
204
205 struct pv_apic_ops {
206 #ifdef CONFIG_X86_LOCAL_APIC
207 void (*setup_boot_clock)(void);
208 void (*setup_secondary_clock)(void);
209
210 void (*startup_ipi_hook)(int phys_apicid,
211 unsigned long start_eip,
212 unsigned long start_esp);
213 #endif
214 };
215
216 struct pv_mmu_ops {
217 /*
218 * Called before/after init_mm pagetable setup. setup_start
219 * may reset %cr3, and may pre-install parts of the pagetable;
220 * pagetable setup is expected to preserve any existing
221 * mapping.
222 */
223 void (*pagetable_setup_start)(pgd_t *pgd_base);
224 void (*pagetable_setup_done)(pgd_t *pgd_base);
225
226 unsigned long (*read_cr2)(void);
227 void (*write_cr2)(unsigned long);
228
229 unsigned long (*read_cr3)(void);
230 void (*write_cr3)(unsigned long);
231
232 /*
233 * Hooks for intercepting the creation/use/destruction of an
234 * mm_struct.
235 */
236 void (*activate_mm)(struct mm_struct *prev,
237 struct mm_struct *next);
238 void (*dup_mmap)(struct mm_struct *oldmm,
239 struct mm_struct *mm);
240 void (*exit_mmap)(struct mm_struct *mm);
241
242
243 /* TLB operations */
244 void (*flush_tlb_user)(void);
245 void (*flush_tlb_kernel)(void);
246 void (*flush_tlb_single)(unsigned long addr);
247 void (*flush_tlb_others)(const cpumask_t *cpus, struct mm_struct *mm,
248 unsigned long va);
249
250 /* Hooks for allocating and freeing a pagetable top-level */
251 int (*pgd_alloc)(struct mm_struct *mm);
252 void (*pgd_free)(struct mm_struct *mm, pgd_t *pgd);
253
254 /*
255 * Hooks for allocating/releasing pagetable pages when they're
256 * attached to a pagetable
257 */
258 void (*alloc_pte)(struct mm_struct *mm, unsigned long pfn);
259 void (*alloc_pmd)(struct mm_struct *mm, unsigned long pfn);
260 void (*alloc_pmd_clone)(unsigned long pfn, unsigned long clonepfn, unsigned long start, unsigned long count);
261 void (*alloc_pud)(struct mm_struct *mm, unsigned long pfn);
262 void (*release_pte)(unsigned long pfn);
263 void (*release_pmd)(unsigned long pfn);
264 void (*release_pud)(unsigned long pfn);
265
266 /* Pagetable manipulation functions */
267 void (*set_pte)(pte_t *ptep, pte_t pteval);
268 void (*set_pte_at)(struct mm_struct *mm, unsigned long addr,
269 pte_t *ptep, pte_t pteval);
270 void (*set_pmd)(pmd_t *pmdp, pmd_t pmdval);
271 void (*pte_update)(struct mm_struct *mm, unsigned long addr,
272 pte_t *ptep);
273 void (*pte_update_defer)(struct mm_struct *mm,
274 unsigned long addr, pte_t *ptep);
275
276 pte_t (*ptep_modify_prot_start)(struct mm_struct *mm, unsigned long addr,
277 pte_t *ptep);
278 void (*ptep_modify_prot_commit)(struct mm_struct *mm, unsigned long addr,
279 pte_t *ptep, pte_t pte);
280
281 pteval_t (*pte_val)(pte_t);
282 pteval_t (*pte_flags)(pte_t);
283 pte_t (*make_pte)(pteval_t pte);
284
285 pgdval_t (*pgd_val)(pgd_t);
286 pgd_t (*make_pgd)(pgdval_t pgd);
287
288 #if PAGETABLE_LEVELS >= 3
289 #ifdef CONFIG_X86_PAE
290 void (*set_pte_atomic)(pte_t *ptep, pte_t pteval);
291 void (*set_pte_present)(struct mm_struct *mm, unsigned long addr,
292 pte_t *ptep, pte_t pte);
293 void (*pte_clear)(struct mm_struct *mm, unsigned long addr,
294 pte_t *ptep);
295 void (*pmd_clear)(pmd_t *pmdp);
296
297 #endif /* CONFIG_X86_PAE */
298
299 void (*set_pud)(pud_t *pudp, pud_t pudval);
300
301 pmdval_t (*pmd_val)(pmd_t);
302 pmd_t (*make_pmd)(pmdval_t pmd);
303
304 #if PAGETABLE_LEVELS == 4
305 pudval_t (*pud_val)(pud_t);
306 pud_t (*make_pud)(pudval_t pud);
307
308 void (*set_pgd)(pgd_t *pudp, pgd_t pgdval);
309 #endif /* PAGETABLE_LEVELS == 4 */
310 #endif /* PAGETABLE_LEVELS >= 3 */
311
312 #ifdef CONFIG_HIGHPTE
313 void *(*kmap_atomic_pte)(struct page *page, enum km_type type);
314 #endif
315
316 struct pv_lazy_ops lazy_mode;
317
318 /* dom0 ops */
319
320 /* Sometimes the physical address is a pfn, and sometimes its
321 an mfn. We can tell which is which from the index. */
322 void (*set_fixmap)(unsigned /* enum fixed_addresses */ idx,
323 unsigned long phys, pgprot_t flags);
324 };
325
326 struct raw_spinlock;
327 struct pv_lock_ops {
328 int (*spin_is_locked)(struct raw_spinlock *lock);
329 int (*spin_is_contended)(struct raw_spinlock *lock);
330 void (*spin_lock)(struct raw_spinlock *lock);
331 void (*spin_lock_flags)(struct raw_spinlock *lock, unsigned long flags);
332 int (*spin_trylock)(struct raw_spinlock *lock);
333 void (*spin_unlock)(struct raw_spinlock *lock);
334 };
335
336 /* This contains all the paravirt structures: we get a convenient
337 * number for each function using the offset which we use to indicate
338 * what to patch. */
339 struct paravirt_patch_template {
340 struct pv_init_ops pv_init_ops;
341 struct pv_time_ops pv_time_ops;
342 struct pv_cpu_ops pv_cpu_ops;
343 struct pv_irq_ops pv_irq_ops;
344 struct pv_apic_ops pv_apic_ops;
345 struct pv_mmu_ops pv_mmu_ops;
346 struct pv_lock_ops pv_lock_ops;
347 };
348
349 extern struct pv_info pv_info;
350 extern struct pv_init_ops pv_init_ops;
351 extern struct pv_time_ops pv_time_ops;
352 extern struct pv_cpu_ops pv_cpu_ops;
353 extern struct pv_irq_ops pv_irq_ops;
354 extern struct pv_apic_ops pv_apic_ops;
355 extern struct pv_mmu_ops pv_mmu_ops;
356 extern struct pv_lock_ops pv_lock_ops;
357
358 #define PARAVIRT_PATCH(x) \
359 (offsetof(struct paravirt_patch_template, x) / sizeof(void *))
360
361 #define paravirt_type(op) \
362 [paravirt_typenum] "i" (PARAVIRT_PATCH(op)), \
363 [paravirt_opptr] "m" (op)
364 #define paravirt_clobber(clobber) \
365 [paravirt_clobber] "i" (clobber)
366
367 /*
368 * Generate some code, and mark it as patchable by the
369 * apply_paravirt() alternate instruction patcher.
370 */
371 #define _paravirt_alt(insn_string, type, clobber) \
372 "771:\n\t" insn_string "\n" "772:\n" \
373 ".pushsection .parainstructions,\"a\"\n" \
374 _ASM_ALIGN "\n" \
375 _ASM_PTR " 771b\n" \
376 " .byte " type "\n" \
377 " .byte 772b-771b\n" \
378 " .short " clobber "\n" \
379 ".popsection\n"
380
381 /* Generate patchable code, with the default asm parameters. */
382 #define paravirt_alt(insn_string) \
383 _paravirt_alt(insn_string, "%c[paravirt_typenum]", "%c[paravirt_clobber]")
384
385 /* Simple instruction patching code. */
386 #define DEF_NATIVE(ops, name, code) \
387 extern const char start_##ops##_##name[], end_##ops##_##name[]; \
388 asm("start_" #ops "_" #name ": " code "; end_" #ops "_" #name ":")
389
390 unsigned paravirt_patch_nop(void);
391 unsigned paravirt_patch_ignore(unsigned len);
392 unsigned paravirt_patch_call(void *insnbuf,
393 const void *target, u16 tgt_clobbers,
394 unsigned long addr, u16 site_clobbers,
395 unsigned len);
396 unsigned paravirt_patch_jmp(void *insnbuf, const void *target,
397 unsigned long addr, unsigned len);
398 unsigned paravirt_patch_default(u8 type, u16 clobbers, void *insnbuf,
399 unsigned long addr, unsigned len);
400
401 unsigned paravirt_patch_insns(void *insnbuf, unsigned len,
402 const char *start, const char *end);
403
404 unsigned native_patch(u8 type, u16 clobbers, void *ibuf,
405 unsigned long addr, unsigned len);
406
407 int paravirt_disable_iospace(void);
408
409 /*
410 * This generates an indirect call based on the operation type number.
411 * The type number, computed in PARAVIRT_PATCH, is derived from the
412 * offset into the paravirt_patch_template structure, and can therefore be
413 * freely converted back into a structure offset.
414 */
415 #define PARAVIRT_CALL "call *%[paravirt_opptr];"
416
417 /*
418 * These macros are intended to wrap calls through one of the paravirt
419 * ops structs, so that they can be later identified and patched at
420 * runtime.
421 *
422 * Normally, a call to a pv_op function is a simple indirect call:
423 * (pv_op_struct.operations)(args...).
424 *
425 * Unfortunately, this is a relatively slow operation for modern CPUs,
426 * because it cannot necessarily determine what the destination
427 * address is. In this case, the address is a runtime constant, so at
428 * the very least we can patch the call to e a simple direct call, or
429 * ideally, patch an inline implementation into the callsite. (Direct
430 * calls are essentially free, because the call and return addresses
431 * are completely predictable.)
432 *
433 * For i386, these macros rely on the standard gcc "regparm(3)" calling
434 * convention, in which the first three arguments are placed in %eax,
435 * %edx, %ecx (in that order), and the remaining arguments are placed
436 * on the stack. All caller-save registers (eax,edx,ecx) are expected
437 * to be modified (either clobbered or used for return values).
438 * X86_64, on the other hand, already specifies a register-based calling
439 * conventions, returning at %rax, with parameteres going on %rdi, %rsi,
440 * %rdx, and %rcx. Note that for this reason, x86_64 does not need any
441 * special handling for dealing with 4 arguments, unlike i386.
442 * However, x86_64 also have to clobber all caller saved registers, which
443 * unfortunately, are quite a bit (r8 - r11)
444 *
445 * The call instruction itself is marked by placing its start address
446 * and size into the .parainstructions section, so that
447 * apply_paravirt() in arch/i386/kernel/alternative.c can do the
448 * appropriate patching under the control of the backend pv_init_ops
449 * implementation.
450 *
451 * Unfortunately there's no way to get gcc to generate the args setup
452 * for the call, and then allow the call itself to be generated by an
453 * inline asm. Because of this, we must do the complete arg setup and
454 * return value handling from within these macros. This is fairly
455 * cumbersome.
456 *
457 * There are 5 sets of PVOP_* macros for dealing with 0-4 arguments.
458 * It could be extended to more arguments, but there would be little
459 * to be gained from that. For each number of arguments, there are
460 * the two VCALL and CALL variants for void and non-void functions.
461 *
462 * When there is a return value, the invoker of the macro must specify
463 * the return type. The macro then uses sizeof() on that type to
464 * determine whether its a 32 or 64 bit value, and places the return
465 * in the right register(s) (just %eax for 32-bit, and %edx:%eax for
466 * 64-bit). For x86_64 machines, it just returns at %rax regardless of
467 * the return value size.
468 *
469 * 64-bit arguments are passed as a pair of adjacent 32-bit arguments
470 * i386 also passes 64-bit arguments as a pair of adjacent 32-bit arguments
471 * in low,high order
472 *
473 * Small structures are passed and returned in registers. The macro
474 * calling convention can't directly deal with this, so the wrapper
475 * functions must do this.
476 *
477 * These PVOP_* macros are only defined within this header. This
478 * means that all uses must be wrapped in inline functions. This also
479 * makes sure the incoming and outgoing types are always correct.
480 */
481 #ifdef CONFIG_X86_32
482 #define PVOP_VCALL_ARGS unsigned long __eax, __edx, __ecx
483 #define PVOP_CALL_ARGS PVOP_VCALL_ARGS
484 #define PVOP_VCALL_CLOBBERS "=a" (__eax), "=d" (__edx), \
485 "=c" (__ecx)
486 #define PVOP_CALL_CLOBBERS PVOP_VCALL_CLOBBERS
487 #define EXTRA_CLOBBERS
488 #define VEXTRA_CLOBBERS
489 #else
490 #define PVOP_VCALL_ARGS unsigned long __edi, __esi, __edx, __ecx
491 #define PVOP_CALL_ARGS PVOP_VCALL_ARGS, __eax
492 #define PVOP_VCALL_CLOBBERS "=D" (__edi), \
493 "=S" (__esi), "=d" (__edx), \
494 "=c" (__ecx)
495
496 #define PVOP_CALL_CLOBBERS PVOP_VCALL_CLOBBERS, "=a" (__eax)
497
498 #define EXTRA_CLOBBERS , "r8", "r9", "r10", "r11"
499 #define VEXTRA_CLOBBERS , "rax", "r8", "r9", "r10", "r11"
500 #endif
501
502 #ifdef CONFIG_PARAVIRT_DEBUG
503 #define PVOP_TEST_NULL(op) BUG_ON(op == NULL)
504 #else
505 #define PVOP_TEST_NULL(op) ((void)op)
506 #endif
507
508 #define __PVOP_CALL(rettype, op, pre, post, ...) \
509 ({ \
510 rettype __ret; \
511 PVOP_CALL_ARGS; \
512 PVOP_TEST_NULL(op); \
513 /* This is 32-bit specific, but is okay in 64-bit */ \
514 /* since this condition will never hold */ \
515 if (sizeof(rettype) > sizeof(unsigned long)) { \
516 asm volatile(pre \
517 paravirt_alt(PARAVIRT_CALL) \
518 post \
519 : PVOP_CALL_CLOBBERS \
520 : paravirt_type(op), \
521 paravirt_clobber(CLBR_ANY), \
522 ##__VA_ARGS__ \
523 : "memory", "cc" EXTRA_CLOBBERS); \
524 __ret = (rettype)((((u64)__edx) << 32) | __eax); \
525 } else { \
526 asm volatile(pre \
527 paravirt_alt(PARAVIRT_CALL) \
528 post \
529 : PVOP_CALL_CLOBBERS \
530 : paravirt_type(op), \
531 paravirt_clobber(CLBR_ANY), \
532 ##__VA_ARGS__ \
533 : "memory", "cc" EXTRA_CLOBBERS); \
534 __ret = (rettype)__eax; \
535 } \
536 __ret; \
537 })
538 #define __PVOP_VCALL(op, pre, post, ...) \
539 ({ \
540 PVOP_VCALL_ARGS; \
541 PVOP_TEST_NULL(op); \
542 asm volatile(pre \
543 paravirt_alt(PARAVIRT_CALL) \
544 post \
545 : PVOP_VCALL_CLOBBERS \
546 : paravirt_type(op), \
547 paravirt_clobber(CLBR_ANY), \
548 ##__VA_ARGS__ \
549 : "memory", "cc" VEXTRA_CLOBBERS); \
550 })
551
552 #define PVOP_CALL0(rettype, op) \
553 __PVOP_CALL(rettype, op, "", "")
554 #define PVOP_VCALL0(op) \
555 __PVOP_VCALL(op, "", "")
556
557 #define PVOP_CALL1(rettype, op, arg1) \
558 __PVOP_CALL(rettype, op, "", "", "0" ((unsigned long)(arg1)))
559 #define PVOP_VCALL1(op, arg1) \
560 __PVOP_VCALL(op, "", "", "0" ((unsigned long)(arg1)))
561
562 #define PVOP_CALL2(rettype, op, arg1, arg2) \
563 __PVOP_CALL(rettype, op, "", "", "0" ((unsigned long)(arg1)), \
564 "1" ((unsigned long)(arg2)))
565 #define PVOP_VCALL2(op, arg1, arg2) \
566 __PVOP_VCALL(op, "", "", "0" ((unsigned long)(arg1)), \
567 "1" ((unsigned long)(arg2)))
568
569 #define PVOP_CALL3(rettype, op, arg1, arg2, arg3) \
570 __PVOP_CALL(rettype, op, "", "", "0" ((unsigned long)(arg1)), \
571 "1"((unsigned long)(arg2)), "2"((unsigned long)(arg3)))
572 #define PVOP_VCALL3(op, arg1, arg2, arg3) \
573 __PVOP_VCALL(op, "", "", "0" ((unsigned long)(arg1)), \
574 "1"((unsigned long)(arg2)), "2"((unsigned long)(arg3)))
575
576 /* This is the only difference in x86_64. We can make it much simpler */
577 #ifdef CONFIG_X86_32
578 #define PVOP_CALL4(rettype, op, arg1, arg2, arg3, arg4) \
579 __PVOP_CALL(rettype, op, \
580 "push %[_arg4];", "lea 4(%%esp),%%esp;", \
581 "0" ((u32)(arg1)), "1" ((u32)(arg2)), \
582 "2" ((u32)(arg3)), [_arg4] "mr" ((u32)(arg4)))
583 #define PVOP_VCALL4(op, arg1, arg2, arg3, arg4) \
584 __PVOP_VCALL(op, \
585 "push %[_arg4];", "lea 4(%%esp),%%esp;", \
586 "0" ((u32)(arg1)), "1" ((u32)(arg2)), \
587 "2" ((u32)(arg3)), [_arg4] "mr" ((u32)(arg4)))
588 #else
589 #define PVOP_CALL4(rettype, op, arg1, arg2, arg3, arg4) \
590 __PVOP_CALL(rettype, op, "", "", "0" ((unsigned long)(arg1)), \
591 "1"((unsigned long)(arg2)), "2"((unsigned long)(arg3)), \
592 "3"((unsigned long)(arg4)))
593 #define PVOP_VCALL4(op, arg1, arg2, arg3, arg4) \
594 __PVOP_VCALL(op, "", "", "0" ((unsigned long)(arg1)), \
595 "1"((unsigned long)(arg2)), "2"((unsigned long)(arg3)), \
596 "3"((unsigned long)(arg4)))
597 #endif
598
paravirt_enabled(void)599 static inline int paravirt_enabled(void)
600 {
601 return pv_info.paravirt_enabled;
602 }
603
load_sp0(struct tss_struct * tss,struct thread_struct * thread)604 static inline void load_sp0(struct tss_struct *tss,
605 struct thread_struct *thread)
606 {
607 PVOP_VCALL2(pv_cpu_ops.load_sp0, tss, thread);
608 }
609
610 #define ARCH_SETUP pv_init_ops.arch_setup();
get_wallclock(void)611 static inline unsigned long get_wallclock(void)
612 {
613 return PVOP_CALL0(unsigned long, pv_time_ops.get_wallclock);
614 }
615
set_wallclock(unsigned long nowtime)616 static inline int set_wallclock(unsigned long nowtime)
617 {
618 return PVOP_CALL1(int, pv_time_ops.set_wallclock, nowtime);
619 }
620
choose_time_init(void)621 static inline void (*choose_time_init(void))(void)
622 {
623 return pv_time_ops.time_init;
624 }
625
626 /* The paravirtualized CPUID instruction. */
__cpuid(unsigned int * eax,unsigned int * ebx,unsigned int * ecx,unsigned int * edx)627 static inline void __cpuid(unsigned int *eax, unsigned int *ebx,
628 unsigned int *ecx, unsigned int *edx)
629 {
630 PVOP_VCALL4(pv_cpu_ops.cpuid, eax, ebx, ecx, edx);
631 }
632
633 /*
634 * These special macros can be used to get or set a debugging register
635 */
paravirt_get_debugreg(int reg)636 static inline unsigned long paravirt_get_debugreg(int reg)
637 {
638 return PVOP_CALL1(unsigned long, pv_cpu_ops.get_debugreg, reg);
639 }
640 #define get_debugreg(var, reg) var = paravirt_get_debugreg(reg)
set_debugreg(unsigned long val,int reg)641 static inline void set_debugreg(unsigned long val, int reg)
642 {
643 PVOP_VCALL2(pv_cpu_ops.set_debugreg, reg, val);
644 }
645
clts(void)646 static inline void clts(void)
647 {
648 PVOP_VCALL0(pv_cpu_ops.clts);
649 }
650
read_cr0(void)651 static inline unsigned long read_cr0(void)
652 {
653 return PVOP_CALL0(unsigned long, pv_cpu_ops.read_cr0);
654 }
655
write_cr0(unsigned long x)656 static inline void write_cr0(unsigned long x)
657 {
658 PVOP_VCALL1(pv_cpu_ops.write_cr0, x);
659 }
660
read_cr2(void)661 static inline unsigned long read_cr2(void)
662 {
663 return PVOP_CALL0(unsigned long, pv_mmu_ops.read_cr2);
664 }
665
write_cr2(unsigned long x)666 static inline void write_cr2(unsigned long x)
667 {
668 PVOP_VCALL1(pv_mmu_ops.write_cr2, x);
669 }
670
read_cr3(void)671 static inline unsigned long read_cr3(void)
672 {
673 return PVOP_CALL0(unsigned long, pv_mmu_ops.read_cr3);
674 }
675
write_cr3(unsigned long x)676 static inline void write_cr3(unsigned long x)
677 {
678 PVOP_VCALL1(pv_mmu_ops.write_cr3, x);
679 }
680
read_cr4(void)681 static inline unsigned long read_cr4(void)
682 {
683 return PVOP_CALL0(unsigned long, pv_cpu_ops.read_cr4);
684 }
read_cr4_safe(void)685 static inline unsigned long read_cr4_safe(void)
686 {
687 return PVOP_CALL0(unsigned long, pv_cpu_ops.read_cr4_safe);
688 }
689
write_cr4(unsigned long x)690 static inline void write_cr4(unsigned long x)
691 {
692 PVOP_VCALL1(pv_cpu_ops.write_cr4, x);
693 }
694
695 #ifdef CONFIG_X86_64
read_cr8(void)696 static inline unsigned long read_cr8(void)
697 {
698 return PVOP_CALL0(unsigned long, pv_cpu_ops.read_cr8);
699 }
700
write_cr8(unsigned long x)701 static inline void write_cr8(unsigned long x)
702 {
703 PVOP_VCALL1(pv_cpu_ops.write_cr8, x);
704 }
705 #endif
706
raw_safe_halt(void)707 static inline void raw_safe_halt(void)
708 {
709 PVOP_VCALL0(pv_irq_ops.safe_halt);
710 }
711
halt(void)712 static inline void halt(void)
713 {
714 PVOP_VCALL0(pv_irq_ops.safe_halt);
715 }
716
wbinvd(void)717 static inline void wbinvd(void)
718 {
719 PVOP_VCALL0(pv_cpu_ops.wbinvd);
720 }
721
722 #define get_kernel_rpl() (pv_info.kernel_rpl)
723
paravirt_read_msr(unsigned msr,int * err)724 static inline u64 paravirt_read_msr(unsigned msr, int *err)
725 {
726 return PVOP_CALL2(u64, pv_cpu_ops.read_msr, msr, err);
727 }
paravirt_read_msr_amd(unsigned msr,int * err)728 static inline u64 paravirt_read_msr_amd(unsigned msr, int *err)
729 {
730 return PVOP_CALL2(u64, pv_cpu_ops.read_msr_amd, msr, err);
731 }
paravirt_write_msr(unsigned msr,unsigned low,unsigned high)732 static inline int paravirt_write_msr(unsigned msr, unsigned low, unsigned high)
733 {
734 return PVOP_CALL3(int, pv_cpu_ops.write_msr, msr, low, high);
735 }
736
737 /* These should all do BUG_ON(_err), but our headers are too tangled. */
738 #define rdmsr(msr, val1, val2) \
739 do { \
740 int _err; \
741 u64 _l = paravirt_read_msr(msr, &_err); \
742 val1 = (u32)_l; \
743 val2 = _l >> 32; \
744 } while (0)
745
746 #define wrmsr(msr, val1, val2) \
747 do { \
748 paravirt_write_msr(msr, val1, val2); \
749 } while (0)
750
751 #define rdmsrl(msr, val) \
752 do { \
753 int _err; \
754 val = paravirt_read_msr(msr, &_err); \
755 } while (0)
756
757 #define wrmsrl(msr, val) wrmsr(msr, (u32)((u64)(val)), ((u64)(val))>>32)
758 #define wrmsr_safe(msr, a, b) paravirt_write_msr(msr, a, b)
759
760 /* rdmsr with exception handling */
761 #define rdmsr_safe(msr, a, b) \
762 ({ \
763 int _err; \
764 u64 _l = paravirt_read_msr(msr, &_err); \
765 (*a) = (u32)_l; \
766 (*b) = _l >> 32; \
767 _err; \
768 })
769
rdmsrl_safe(unsigned msr,unsigned long long * p)770 static inline int rdmsrl_safe(unsigned msr, unsigned long long *p)
771 {
772 int err;
773
774 *p = paravirt_read_msr(msr, &err);
775 return err;
776 }
rdmsrl_amd_safe(unsigned msr,unsigned long long * p)777 static inline int rdmsrl_amd_safe(unsigned msr, unsigned long long *p)
778 {
779 int err;
780
781 *p = paravirt_read_msr_amd(msr, &err);
782 return err;
783 }
784
paravirt_read_tsc(void)785 static inline u64 paravirt_read_tsc(void)
786 {
787 return PVOP_CALL0(u64, pv_cpu_ops.read_tsc);
788 }
789
790 #define rdtscl(low) \
791 do { \
792 u64 _l = paravirt_read_tsc(); \
793 low = (int)_l; \
794 } while (0)
795
796 #define rdtscll(val) (val = paravirt_read_tsc())
797
paravirt_sched_clock(void)798 static inline unsigned long long paravirt_sched_clock(void)
799 {
800 return PVOP_CALL0(unsigned long long, pv_time_ops.sched_clock);
801 }
802 #define calibrate_tsc() (pv_time_ops.get_tsc_khz())
803
paravirt_read_pmc(int counter)804 static inline unsigned long long paravirt_read_pmc(int counter)
805 {
806 return PVOP_CALL1(u64, pv_cpu_ops.read_pmc, counter);
807 }
808
809 #define rdpmc(counter, low, high) \
810 do { \
811 u64 _l = paravirt_read_pmc(counter); \
812 low = (u32)_l; \
813 high = _l >> 32; \
814 } while (0)
815
paravirt_rdtscp(unsigned int * aux)816 static inline unsigned long long paravirt_rdtscp(unsigned int *aux)
817 {
818 return PVOP_CALL1(u64, pv_cpu_ops.read_tscp, aux);
819 }
820
821 #define rdtscp(low, high, aux) \
822 do { \
823 int __aux; \
824 unsigned long __val = paravirt_rdtscp(&__aux); \
825 (low) = (u32)__val; \
826 (high) = (u32)(__val >> 32); \
827 (aux) = __aux; \
828 } while (0)
829
830 #define rdtscpll(val, aux) \
831 do { \
832 unsigned long __aux; \
833 val = paravirt_rdtscp(&__aux); \
834 (aux) = __aux; \
835 } while (0)
836
paravirt_alloc_ldt(struct desc_struct * ldt,unsigned entries)837 static inline void paravirt_alloc_ldt(struct desc_struct *ldt, unsigned entries)
838 {
839 PVOP_VCALL2(pv_cpu_ops.alloc_ldt, ldt, entries);
840 }
841
paravirt_free_ldt(struct desc_struct * ldt,unsigned entries)842 static inline void paravirt_free_ldt(struct desc_struct *ldt, unsigned entries)
843 {
844 PVOP_VCALL2(pv_cpu_ops.free_ldt, ldt, entries);
845 }
846
load_TR_desc(void)847 static inline void load_TR_desc(void)
848 {
849 PVOP_VCALL0(pv_cpu_ops.load_tr_desc);
850 }
load_gdt(const struct desc_ptr * dtr)851 static inline void load_gdt(const struct desc_ptr *dtr)
852 {
853 PVOP_VCALL1(pv_cpu_ops.load_gdt, dtr);
854 }
load_idt(const struct desc_ptr * dtr)855 static inline void load_idt(const struct desc_ptr *dtr)
856 {
857 PVOP_VCALL1(pv_cpu_ops.load_idt, dtr);
858 }
set_ldt(const void * addr,unsigned entries)859 static inline void set_ldt(const void *addr, unsigned entries)
860 {
861 PVOP_VCALL2(pv_cpu_ops.set_ldt, addr, entries);
862 }
store_gdt(struct desc_ptr * dtr)863 static inline void store_gdt(struct desc_ptr *dtr)
864 {
865 PVOP_VCALL1(pv_cpu_ops.store_gdt, dtr);
866 }
store_idt(struct desc_ptr * dtr)867 static inline void store_idt(struct desc_ptr *dtr)
868 {
869 PVOP_VCALL1(pv_cpu_ops.store_idt, dtr);
870 }
paravirt_store_tr(void)871 static inline unsigned long paravirt_store_tr(void)
872 {
873 return PVOP_CALL0(unsigned long, pv_cpu_ops.store_tr);
874 }
875 #define store_tr(tr) ((tr) = paravirt_store_tr())
load_TLS(struct thread_struct * t,unsigned cpu)876 static inline void load_TLS(struct thread_struct *t, unsigned cpu)
877 {
878 PVOP_VCALL2(pv_cpu_ops.load_tls, t, cpu);
879 }
880
881 #ifdef CONFIG_X86_64
load_gs_index(unsigned int gs)882 static inline void load_gs_index(unsigned int gs)
883 {
884 PVOP_VCALL1(pv_cpu_ops.load_gs_index, gs);
885 }
886 #endif
887
write_ldt_entry(struct desc_struct * dt,int entry,const void * desc)888 static inline void write_ldt_entry(struct desc_struct *dt, int entry,
889 const void *desc)
890 {
891 PVOP_VCALL3(pv_cpu_ops.write_ldt_entry, dt, entry, desc);
892 }
893
write_gdt_entry(struct desc_struct * dt,int entry,void * desc,int type)894 static inline void write_gdt_entry(struct desc_struct *dt, int entry,
895 void *desc, int type)
896 {
897 PVOP_VCALL4(pv_cpu_ops.write_gdt_entry, dt, entry, desc, type);
898 }
899
write_idt_entry(gate_desc * dt,int entry,const gate_desc * g)900 static inline void write_idt_entry(gate_desc *dt, int entry, const gate_desc *g)
901 {
902 PVOP_VCALL3(pv_cpu_ops.write_idt_entry, dt, entry, g);
903 }
set_iopl_mask(unsigned mask)904 static inline void set_iopl_mask(unsigned mask)
905 {
906 PVOP_VCALL1(pv_cpu_ops.set_iopl_mask, mask);
907 }
908
909 /* The paravirtualized I/O functions */
slow_down_io(void)910 static inline void slow_down_io(void)
911 {
912 pv_cpu_ops.io_delay();
913 #ifdef REALLY_SLOW_IO
914 pv_cpu_ops.io_delay();
915 pv_cpu_ops.io_delay();
916 pv_cpu_ops.io_delay();
917 #endif
918 }
919
920 #ifdef CONFIG_X86_LOCAL_APIC
setup_boot_clock(void)921 static inline void setup_boot_clock(void)
922 {
923 PVOP_VCALL0(pv_apic_ops.setup_boot_clock);
924 }
925
setup_secondary_clock(void)926 static inline void setup_secondary_clock(void)
927 {
928 PVOP_VCALL0(pv_apic_ops.setup_secondary_clock);
929 }
930 #endif
931
paravirt_post_allocator_init(void)932 static inline void paravirt_post_allocator_init(void)
933 {
934 if (pv_init_ops.post_allocator_init)
935 (*pv_init_ops.post_allocator_init)();
936 }
937
paravirt_pagetable_setup_start(pgd_t * base)938 static inline void paravirt_pagetable_setup_start(pgd_t *base)
939 {
940 (*pv_mmu_ops.pagetable_setup_start)(base);
941 }
942
paravirt_pagetable_setup_done(pgd_t * base)943 static inline void paravirt_pagetable_setup_done(pgd_t *base)
944 {
945 (*pv_mmu_ops.pagetable_setup_done)(base);
946 }
947
948 #ifdef CONFIG_SMP
startup_ipi_hook(int phys_apicid,unsigned long start_eip,unsigned long start_esp)949 static inline void startup_ipi_hook(int phys_apicid, unsigned long start_eip,
950 unsigned long start_esp)
951 {
952 PVOP_VCALL3(pv_apic_ops.startup_ipi_hook,
953 phys_apicid, start_eip, start_esp);
954 }
955 #endif
956
paravirt_activate_mm(struct mm_struct * prev,struct mm_struct * next)957 static inline void paravirt_activate_mm(struct mm_struct *prev,
958 struct mm_struct *next)
959 {
960 PVOP_VCALL2(pv_mmu_ops.activate_mm, prev, next);
961 }
962
arch_dup_mmap(struct mm_struct * oldmm,struct mm_struct * mm)963 static inline void arch_dup_mmap(struct mm_struct *oldmm,
964 struct mm_struct *mm)
965 {
966 PVOP_VCALL2(pv_mmu_ops.dup_mmap, oldmm, mm);
967 }
968
arch_exit_mmap(struct mm_struct * mm)969 static inline void arch_exit_mmap(struct mm_struct *mm)
970 {
971 PVOP_VCALL1(pv_mmu_ops.exit_mmap, mm);
972 }
973
__flush_tlb(void)974 static inline void __flush_tlb(void)
975 {
976 PVOP_VCALL0(pv_mmu_ops.flush_tlb_user);
977 }
__flush_tlb_global(void)978 static inline void __flush_tlb_global(void)
979 {
980 PVOP_VCALL0(pv_mmu_ops.flush_tlb_kernel);
981 }
__flush_tlb_single(unsigned long addr)982 static inline void __flush_tlb_single(unsigned long addr)
983 {
984 PVOP_VCALL1(pv_mmu_ops.flush_tlb_single, addr);
985 }
986
flush_tlb_others(cpumask_t cpumask,struct mm_struct * mm,unsigned long va)987 static inline void flush_tlb_others(cpumask_t cpumask, struct mm_struct *mm,
988 unsigned long va)
989 {
990 PVOP_VCALL3(pv_mmu_ops.flush_tlb_others, &cpumask, mm, va);
991 }
992
paravirt_pgd_alloc(struct mm_struct * mm)993 static inline int paravirt_pgd_alloc(struct mm_struct *mm)
994 {
995 return PVOP_CALL1(int, pv_mmu_ops.pgd_alloc, mm);
996 }
997
paravirt_pgd_free(struct mm_struct * mm,pgd_t * pgd)998 static inline void paravirt_pgd_free(struct mm_struct *mm, pgd_t *pgd)
999 {
1000 PVOP_VCALL2(pv_mmu_ops.pgd_free, mm, pgd);
1001 }
1002
paravirt_alloc_pte(struct mm_struct * mm,unsigned long pfn)1003 static inline void paravirt_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1004 {
1005 PVOP_VCALL2(pv_mmu_ops.alloc_pte, mm, pfn);
1006 }
paravirt_release_pte(unsigned long pfn)1007 static inline void paravirt_release_pte(unsigned long pfn)
1008 {
1009 PVOP_VCALL1(pv_mmu_ops.release_pte, pfn);
1010 }
1011
paravirt_alloc_pmd(struct mm_struct * mm,unsigned long pfn)1012 static inline void paravirt_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1013 {
1014 PVOP_VCALL2(pv_mmu_ops.alloc_pmd, mm, pfn);
1015 }
1016
paravirt_alloc_pmd_clone(unsigned long pfn,unsigned long clonepfn,unsigned long start,unsigned long count)1017 static inline void paravirt_alloc_pmd_clone(unsigned long pfn, unsigned long clonepfn,
1018 unsigned long start, unsigned long count)
1019 {
1020 PVOP_VCALL4(pv_mmu_ops.alloc_pmd_clone, pfn, clonepfn, start, count);
1021 }
paravirt_release_pmd(unsigned long pfn)1022 static inline void paravirt_release_pmd(unsigned long pfn)
1023 {
1024 PVOP_VCALL1(pv_mmu_ops.release_pmd, pfn);
1025 }
1026
paravirt_alloc_pud(struct mm_struct * mm,unsigned long pfn)1027 static inline void paravirt_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1028 {
1029 PVOP_VCALL2(pv_mmu_ops.alloc_pud, mm, pfn);
1030 }
paravirt_release_pud(unsigned long pfn)1031 static inline void paravirt_release_pud(unsigned long pfn)
1032 {
1033 PVOP_VCALL1(pv_mmu_ops.release_pud, pfn);
1034 }
1035
1036 #ifdef CONFIG_HIGHPTE
kmap_atomic_pte(struct page * page,enum km_type type)1037 static inline void *kmap_atomic_pte(struct page *page, enum km_type type)
1038 {
1039 unsigned long ret;
1040 ret = PVOP_CALL2(unsigned long, pv_mmu_ops.kmap_atomic_pte, page, type);
1041 return (void *)ret;
1042 }
1043 #endif
1044
pte_update(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1045 static inline void pte_update(struct mm_struct *mm, unsigned long addr,
1046 pte_t *ptep)
1047 {
1048 PVOP_VCALL3(pv_mmu_ops.pte_update, mm, addr, ptep);
1049 }
1050
pte_update_defer(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1051 static inline void pte_update_defer(struct mm_struct *mm, unsigned long addr,
1052 pte_t *ptep)
1053 {
1054 PVOP_VCALL3(pv_mmu_ops.pte_update_defer, mm, addr, ptep);
1055 }
1056
__pte(pteval_t val)1057 static inline pte_t __pte(pteval_t val)
1058 {
1059 pteval_t ret;
1060
1061 if (sizeof(pteval_t) > sizeof(long))
1062 ret = PVOP_CALL2(pteval_t,
1063 pv_mmu_ops.make_pte,
1064 val, (u64)val >> 32);
1065 else
1066 ret = PVOP_CALL1(pteval_t,
1067 pv_mmu_ops.make_pte,
1068 val);
1069
1070 return (pte_t) { .pte = ret };
1071 }
1072
pte_val(pte_t pte)1073 static inline pteval_t pte_val(pte_t pte)
1074 {
1075 pteval_t ret;
1076
1077 if (sizeof(pteval_t) > sizeof(long))
1078 ret = PVOP_CALL2(pteval_t, pv_mmu_ops.pte_val,
1079 pte.pte, (u64)pte.pte >> 32);
1080 else
1081 ret = PVOP_CALL1(pteval_t, pv_mmu_ops.pte_val,
1082 pte.pte);
1083
1084 return ret;
1085 }
1086
pte_flags(pte_t pte)1087 static inline pteval_t pte_flags(pte_t pte)
1088 {
1089 pteval_t ret;
1090
1091 if (sizeof(pteval_t) > sizeof(long))
1092 ret = PVOP_CALL2(pteval_t, pv_mmu_ops.pte_flags,
1093 pte.pte, (u64)pte.pte >> 32);
1094 else
1095 ret = PVOP_CALL1(pteval_t, pv_mmu_ops.pte_flags,
1096 pte.pte);
1097
1098 #ifdef CONFIG_PARAVIRT_DEBUG
1099 BUG_ON(ret & PTE_PFN_MASK);
1100 #endif
1101 return ret;
1102 }
1103
__pgd(pgdval_t val)1104 static inline pgd_t __pgd(pgdval_t val)
1105 {
1106 pgdval_t ret;
1107
1108 if (sizeof(pgdval_t) > sizeof(long))
1109 ret = PVOP_CALL2(pgdval_t, pv_mmu_ops.make_pgd,
1110 val, (u64)val >> 32);
1111 else
1112 ret = PVOP_CALL1(pgdval_t, pv_mmu_ops.make_pgd,
1113 val);
1114
1115 return (pgd_t) { ret };
1116 }
1117
pgd_val(pgd_t pgd)1118 static inline pgdval_t pgd_val(pgd_t pgd)
1119 {
1120 pgdval_t ret;
1121
1122 if (sizeof(pgdval_t) > sizeof(long))
1123 ret = PVOP_CALL2(pgdval_t, pv_mmu_ops.pgd_val,
1124 pgd.pgd, (u64)pgd.pgd >> 32);
1125 else
1126 ret = PVOP_CALL1(pgdval_t, pv_mmu_ops.pgd_val,
1127 pgd.pgd);
1128
1129 return ret;
1130 }
1131
1132 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
ptep_modify_prot_start(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1133 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm, unsigned long addr,
1134 pte_t *ptep)
1135 {
1136 pteval_t ret;
1137
1138 ret = PVOP_CALL3(pteval_t, pv_mmu_ops.ptep_modify_prot_start,
1139 mm, addr, ptep);
1140
1141 return (pte_t) { .pte = ret };
1142 }
1143
ptep_modify_prot_commit(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)1144 static inline void ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
1145 pte_t *ptep, pte_t pte)
1146 {
1147 if (sizeof(pteval_t) > sizeof(long))
1148 /* 5 arg words */
1149 pv_mmu_ops.ptep_modify_prot_commit(mm, addr, ptep, pte);
1150 else
1151 PVOP_VCALL4(pv_mmu_ops.ptep_modify_prot_commit,
1152 mm, addr, ptep, pte.pte);
1153 }
1154
set_pte(pte_t * ptep,pte_t pte)1155 static inline void set_pte(pte_t *ptep, pte_t pte)
1156 {
1157 if (sizeof(pteval_t) > sizeof(long))
1158 PVOP_VCALL3(pv_mmu_ops.set_pte, ptep,
1159 pte.pte, (u64)pte.pte >> 32);
1160 else
1161 PVOP_VCALL2(pv_mmu_ops.set_pte, ptep,
1162 pte.pte);
1163 }
1164
set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)1165 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1166 pte_t *ptep, pte_t pte)
1167 {
1168 if (sizeof(pteval_t) > sizeof(long))
1169 /* 5 arg words */
1170 pv_mmu_ops.set_pte_at(mm, addr, ptep, pte);
1171 else
1172 PVOP_VCALL4(pv_mmu_ops.set_pte_at, mm, addr, ptep, pte.pte);
1173 }
1174
set_pmd(pmd_t * pmdp,pmd_t pmd)1175 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
1176 {
1177 pmdval_t val = native_pmd_val(pmd);
1178
1179 if (sizeof(pmdval_t) > sizeof(long))
1180 PVOP_VCALL3(pv_mmu_ops.set_pmd, pmdp, val, (u64)val >> 32);
1181 else
1182 PVOP_VCALL2(pv_mmu_ops.set_pmd, pmdp, val);
1183 }
1184
1185 #if PAGETABLE_LEVELS >= 3
__pmd(pmdval_t val)1186 static inline pmd_t __pmd(pmdval_t val)
1187 {
1188 pmdval_t ret;
1189
1190 if (sizeof(pmdval_t) > sizeof(long))
1191 ret = PVOP_CALL2(pmdval_t, pv_mmu_ops.make_pmd,
1192 val, (u64)val >> 32);
1193 else
1194 ret = PVOP_CALL1(pmdval_t, pv_mmu_ops.make_pmd,
1195 val);
1196
1197 return (pmd_t) { ret };
1198 }
1199
pmd_val(pmd_t pmd)1200 static inline pmdval_t pmd_val(pmd_t pmd)
1201 {
1202 pmdval_t ret;
1203
1204 if (sizeof(pmdval_t) > sizeof(long))
1205 ret = PVOP_CALL2(pmdval_t, pv_mmu_ops.pmd_val,
1206 pmd.pmd, (u64)pmd.pmd >> 32);
1207 else
1208 ret = PVOP_CALL1(pmdval_t, pv_mmu_ops.pmd_val,
1209 pmd.pmd);
1210
1211 return ret;
1212 }
1213
set_pud(pud_t * pudp,pud_t pud)1214 static inline void set_pud(pud_t *pudp, pud_t pud)
1215 {
1216 pudval_t val = native_pud_val(pud);
1217
1218 if (sizeof(pudval_t) > sizeof(long))
1219 PVOP_VCALL3(pv_mmu_ops.set_pud, pudp,
1220 val, (u64)val >> 32);
1221 else
1222 PVOP_VCALL2(pv_mmu_ops.set_pud, pudp,
1223 val);
1224 }
1225 #if PAGETABLE_LEVELS == 4
__pud(pudval_t val)1226 static inline pud_t __pud(pudval_t val)
1227 {
1228 pudval_t ret;
1229
1230 if (sizeof(pudval_t) > sizeof(long))
1231 ret = PVOP_CALL2(pudval_t, pv_mmu_ops.make_pud,
1232 val, (u64)val >> 32);
1233 else
1234 ret = PVOP_CALL1(pudval_t, pv_mmu_ops.make_pud,
1235 val);
1236
1237 return (pud_t) { ret };
1238 }
1239
pud_val(pud_t pud)1240 static inline pudval_t pud_val(pud_t pud)
1241 {
1242 pudval_t ret;
1243
1244 if (sizeof(pudval_t) > sizeof(long))
1245 ret = PVOP_CALL2(pudval_t, pv_mmu_ops.pud_val,
1246 pud.pud, (u64)pud.pud >> 32);
1247 else
1248 ret = PVOP_CALL1(pudval_t, pv_mmu_ops.pud_val,
1249 pud.pud);
1250
1251 return ret;
1252 }
1253
set_pgd(pgd_t * pgdp,pgd_t pgd)1254 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
1255 {
1256 pgdval_t val = native_pgd_val(pgd);
1257
1258 if (sizeof(pgdval_t) > sizeof(long))
1259 PVOP_VCALL3(pv_mmu_ops.set_pgd, pgdp,
1260 val, (u64)val >> 32);
1261 else
1262 PVOP_VCALL2(pv_mmu_ops.set_pgd, pgdp,
1263 val);
1264 }
1265
pgd_clear(pgd_t * pgdp)1266 static inline void pgd_clear(pgd_t *pgdp)
1267 {
1268 set_pgd(pgdp, __pgd(0));
1269 }
1270
pud_clear(pud_t * pudp)1271 static inline void pud_clear(pud_t *pudp)
1272 {
1273 set_pud(pudp, __pud(0));
1274 }
1275
1276 #endif /* PAGETABLE_LEVELS == 4 */
1277
1278 #endif /* PAGETABLE_LEVELS >= 3 */
1279
1280 #ifdef CONFIG_X86_PAE
1281 /* Special-case pte-setting operations for PAE, which can't update a
1282 64-bit pte atomically */
set_pte_atomic(pte_t * ptep,pte_t pte)1283 static inline void set_pte_atomic(pte_t *ptep, pte_t pte)
1284 {
1285 PVOP_VCALL3(pv_mmu_ops.set_pte_atomic, ptep,
1286 pte.pte, pte.pte >> 32);
1287 }
1288
set_pte_present(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)1289 static inline void set_pte_present(struct mm_struct *mm, unsigned long addr,
1290 pte_t *ptep, pte_t pte)
1291 {
1292 /* 5 arg words */
1293 pv_mmu_ops.set_pte_present(mm, addr, ptep, pte);
1294 }
1295
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1296 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
1297 pte_t *ptep)
1298 {
1299 PVOP_VCALL3(pv_mmu_ops.pte_clear, mm, addr, ptep);
1300 }
1301
pmd_clear(pmd_t * pmdp)1302 static inline void pmd_clear(pmd_t *pmdp)
1303 {
1304 PVOP_VCALL1(pv_mmu_ops.pmd_clear, pmdp);
1305 }
1306 #else /* !CONFIG_X86_PAE */
set_pte_atomic(pte_t * ptep,pte_t pte)1307 static inline void set_pte_atomic(pte_t *ptep, pte_t pte)
1308 {
1309 set_pte(ptep, pte);
1310 }
1311
set_pte_present(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)1312 static inline void set_pte_present(struct mm_struct *mm, unsigned long addr,
1313 pte_t *ptep, pte_t pte)
1314 {
1315 set_pte(ptep, pte);
1316 }
1317
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1318 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
1319 pte_t *ptep)
1320 {
1321 set_pte_at(mm, addr, ptep, __pte(0));
1322 }
1323
pmd_clear(pmd_t * pmdp)1324 static inline void pmd_clear(pmd_t *pmdp)
1325 {
1326 set_pmd(pmdp, __pmd(0));
1327 }
1328 #endif /* CONFIG_X86_PAE */
1329
1330 /* Lazy mode for batching updates / context switch */
1331 enum paravirt_lazy_mode {
1332 PARAVIRT_LAZY_NONE,
1333 PARAVIRT_LAZY_MMU,
1334 PARAVIRT_LAZY_CPU,
1335 };
1336
1337 enum paravirt_lazy_mode paravirt_get_lazy_mode(void);
1338 void paravirt_enter_lazy_cpu(void);
1339 void paravirt_leave_lazy_cpu(void);
1340 void paravirt_enter_lazy_mmu(void);
1341 void paravirt_leave_lazy_mmu(void);
1342 void paravirt_leave_lazy(enum paravirt_lazy_mode mode);
1343
1344 #define __HAVE_ARCH_ENTER_LAZY_CPU_MODE
arch_enter_lazy_cpu_mode(void)1345 static inline void arch_enter_lazy_cpu_mode(void)
1346 {
1347 PVOP_VCALL0(pv_cpu_ops.lazy_mode.enter);
1348 }
1349
arch_leave_lazy_cpu_mode(void)1350 static inline void arch_leave_lazy_cpu_mode(void)
1351 {
1352 PVOP_VCALL0(pv_cpu_ops.lazy_mode.leave);
1353 }
1354
1355 void arch_flush_lazy_cpu_mode(void);
1356
1357 #define __HAVE_ARCH_ENTER_LAZY_MMU_MODE
arch_enter_lazy_mmu_mode(void)1358 static inline void arch_enter_lazy_mmu_mode(void)
1359 {
1360 PVOP_VCALL0(pv_mmu_ops.lazy_mode.enter);
1361 }
1362
arch_leave_lazy_mmu_mode(void)1363 static inline void arch_leave_lazy_mmu_mode(void)
1364 {
1365 PVOP_VCALL0(pv_mmu_ops.lazy_mode.leave);
1366 }
1367
1368 void arch_flush_lazy_mmu_mode(void);
1369
__set_fixmap(unsigned idx,unsigned long phys,pgprot_t flags)1370 static inline void __set_fixmap(unsigned /* enum fixed_addresses */ idx,
1371 unsigned long phys, pgprot_t flags)
1372 {
1373 pv_mmu_ops.set_fixmap(idx, phys, flags);
1374 }
1375
1376 void _paravirt_nop(void);
1377 #define paravirt_nop ((void *)_paravirt_nop)
1378
1379 void paravirt_use_bytelocks(void);
1380
1381 #ifdef CONFIG_SMP
1382
__raw_spin_is_locked(struct raw_spinlock * lock)1383 static inline int __raw_spin_is_locked(struct raw_spinlock *lock)
1384 {
1385 return PVOP_CALL1(int, pv_lock_ops.spin_is_locked, lock);
1386 }
1387
__raw_spin_is_contended(struct raw_spinlock * lock)1388 static inline int __raw_spin_is_contended(struct raw_spinlock *lock)
1389 {
1390 return PVOP_CALL1(int, pv_lock_ops.spin_is_contended, lock);
1391 }
1392 #define __raw_spin_is_contended __raw_spin_is_contended
1393
__raw_spin_lock(struct raw_spinlock * lock)1394 static __always_inline void __raw_spin_lock(struct raw_spinlock *lock)
1395 {
1396 PVOP_VCALL1(pv_lock_ops.spin_lock, lock);
1397 }
1398
__raw_spin_lock_flags(struct raw_spinlock * lock,unsigned long flags)1399 static __always_inline void __raw_spin_lock_flags(struct raw_spinlock *lock,
1400 unsigned long flags)
1401 {
1402 PVOP_VCALL2(pv_lock_ops.spin_lock_flags, lock, flags);
1403 }
1404
__raw_spin_trylock(struct raw_spinlock * lock)1405 static __always_inline int __raw_spin_trylock(struct raw_spinlock *lock)
1406 {
1407 return PVOP_CALL1(int, pv_lock_ops.spin_trylock, lock);
1408 }
1409
__raw_spin_unlock(struct raw_spinlock * lock)1410 static __always_inline void __raw_spin_unlock(struct raw_spinlock *lock)
1411 {
1412 PVOP_VCALL1(pv_lock_ops.spin_unlock, lock);
1413 }
1414
1415 #endif
1416
1417 /* These all sit in the .parainstructions section to tell us what to patch. */
1418 struct paravirt_patch_site {
1419 u8 *instr; /* original instructions */
1420 u8 instrtype; /* type of this instruction */
1421 u8 len; /* length of original instruction */
1422 u16 clobbers; /* what registers you may clobber */
1423 };
1424
1425 extern struct paravirt_patch_site __parainstructions[],
1426 __parainstructions_end[];
1427
1428 #ifdef CONFIG_X86_32
1429 #define PV_SAVE_REGS "pushl %%ecx; pushl %%edx;"
1430 #define PV_RESTORE_REGS "popl %%edx; popl %%ecx"
1431 #define PV_FLAGS_ARG "0"
1432 #define PV_EXTRA_CLOBBERS
1433 #define PV_VEXTRA_CLOBBERS
1434 #else
1435 /* We save some registers, but all of them, that's too much. We clobber all
1436 * caller saved registers but the argument parameter */
1437 #define PV_SAVE_REGS "pushq %%rdi;"
1438 #define PV_RESTORE_REGS "popq %%rdi;"
1439 #define PV_EXTRA_CLOBBERS EXTRA_CLOBBERS, "rcx" , "rdx", "rsi"
1440 #define PV_VEXTRA_CLOBBERS EXTRA_CLOBBERS, "rdi", "rcx" , "rdx", "rsi"
1441 #define PV_FLAGS_ARG "D"
1442 #endif
1443
__raw_local_save_flags(void)1444 static inline unsigned long __raw_local_save_flags(void)
1445 {
1446 unsigned long f;
1447
1448 asm volatile(paravirt_alt(PV_SAVE_REGS
1449 PARAVIRT_CALL
1450 PV_RESTORE_REGS)
1451 : "=a"(f)
1452 : paravirt_type(pv_irq_ops.save_fl),
1453 paravirt_clobber(CLBR_EAX)
1454 : "memory", "cc" PV_VEXTRA_CLOBBERS);
1455 return f;
1456 }
1457
raw_local_irq_restore(unsigned long f)1458 static inline void raw_local_irq_restore(unsigned long f)
1459 {
1460 asm volatile(paravirt_alt(PV_SAVE_REGS
1461 PARAVIRT_CALL
1462 PV_RESTORE_REGS)
1463 : "=a"(f)
1464 : PV_FLAGS_ARG(f),
1465 paravirt_type(pv_irq_ops.restore_fl),
1466 paravirt_clobber(CLBR_EAX)
1467 : "memory", "cc" PV_EXTRA_CLOBBERS);
1468 }
1469
raw_local_irq_disable(void)1470 static inline void raw_local_irq_disable(void)
1471 {
1472 asm volatile(paravirt_alt(PV_SAVE_REGS
1473 PARAVIRT_CALL
1474 PV_RESTORE_REGS)
1475 :
1476 : paravirt_type(pv_irq_ops.irq_disable),
1477 paravirt_clobber(CLBR_EAX)
1478 : "memory", "eax", "cc" PV_EXTRA_CLOBBERS);
1479 }
1480
raw_local_irq_enable(void)1481 static inline void raw_local_irq_enable(void)
1482 {
1483 asm volatile(paravirt_alt(PV_SAVE_REGS
1484 PARAVIRT_CALL
1485 PV_RESTORE_REGS)
1486 :
1487 : paravirt_type(pv_irq_ops.irq_enable),
1488 paravirt_clobber(CLBR_EAX)
1489 : "memory", "eax", "cc" PV_EXTRA_CLOBBERS);
1490 }
1491
__raw_local_irq_save(void)1492 static inline unsigned long __raw_local_irq_save(void)
1493 {
1494 unsigned long f;
1495
1496 f = __raw_local_save_flags();
1497 raw_local_irq_disable();
1498 return f;
1499 }
1500
1501
1502 /* Make sure as little as possible of this mess escapes. */
1503 #undef PARAVIRT_CALL
1504 #undef __PVOP_CALL
1505 #undef __PVOP_VCALL
1506 #undef PVOP_VCALL0
1507 #undef PVOP_CALL0
1508 #undef PVOP_VCALL1
1509 #undef PVOP_CALL1
1510 #undef PVOP_VCALL2
1511 #undef PVOP_CALL2
1512 #undef PVOP_VCALL3
1513 #undef PVOP_CALL3
1514 #undef PVOP_VCALL4
1515 #undef PVOP_CALL4
1516
1517 #else /* __ASSEMBLY__ */
1518
1519 #define _PVSITE(ptype, clobbers, ops, word, algn) \
1520 771:; \
1521 ops; \
1522 772:; \
1523 .pushsection .parainstructions,"a"; \
1524 .align algn; \
1525 word 771b; \
1526 .byte ptype; \
1527 .byte 772b-771b; \
1528 .short clobbers; \
1529 .popsection
1530
1531
1532 #ifdef CONFIG_X86_64
1533 #define PV_SAVE_REGS \
1534 push %rax; \
1535 push %rcx; \
1536 push %rdx; \
1537 push %rsi; \
1538 push %rdi; \
1539 push %r8; \
1540 push %r9; \
1541 push %r10; \
1542 push %r11
1543 #define PV_RESTORE_REGS \
1544 pop %r11; \
1545 pop %r10; \
1546 pop %r9; \
1547 pop %r8; \
1548 pop %rdi; \
1549 pop %rsi; \
1550 pop %rdx; \
1551 pop %rcx; \
1552 pop %rax
1553 #define PARA_PATCH(struct, off) ((PARAVIRT_PATCH_##struct + (off)) / 8)
1554 #define PARA_SITE(ptype, clobbers, ops) _PVSITE(ptype, clobbers, ops, .quad, 8)
1555 #define PARA_INDIRECT(addr) *addr(%rip)
1556 #else
1557 #define PV_SAVE_REGS pushl %eax; pushl %edi; pushl %ecx; pushl %edx
1558 #define PV_RESTORE_REGS popl %edx; popl %ecx; popl %edi; popl %eax
1559 #define PARA_PATCH(struct, off) ((PARAVIRT_PATCH_##struct + (off)) / 4)
1560 #define PARA_SITE(ptype, clobbers, ops) _PVSITE(ptype, clobbers, ops, .long, 4)
1561 #define PARA_INDIRECT(addr) *%cs:addr
1562 #endif
1563
1564 #define INTERRUPT_RETURN \
1565 PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_iret), CLBR_NONE, \
1566 jmp PARA_INDIRECT(pv_cpu_ops+PV_CPU_iret))
1567
1568 #define DISABLE_INTERRUPTS(clobbers) \
1569 PARA_SITE(PARA_PATCH(pv_irq_ops, PV_IRQ_irq_disable), clobbers, \
1570 PV_SAVE_REGS; \
1571 call PARA_INDIRECT(pv_irq_ops+PV_IRQ_irq_disable); \
1572 PV_RESTORE_REGS;) \
1573
1574 #define ENABLE_INTERRUPTS(clobbers) \
1575 PARA_SITE(PARA_PATCH(pv_irq_ops, PV_IRQ_irq_enable), clobbers, \
1576 PV_SAVE_REGS; \
1577 call PARA_INDIRECT(pv_irq_ops+PV_IRQ_irq_enable); \
1578 PV_RESTORE_REGS;)
1579
1580 #define USERGS_SYSRET32 \
1581 PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_usergs_sysret32), \
1582 CLBR_NONE, \
1583 jmp PARA_INDIRECT(pv_cpu_ops+PV_CPU_usergs_sysret32))
1584
1585 #ifdef CONFIG_X86_32
1586 #define GET_CR0_INTO_EAX \
1587 push %ecx; push %edx; \
1588 call PARA_INDIRECT(pv_cpu_ops+PV_CPU_read_cr0); \
1589 pop %edx; pop %ecx
1590
1591 #define ENABLE_INTERRUPTS_SYSEXIT \
1592 PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_irq_enable_sysexit), \
1593 CLBR_NONE, \
1594 jmp PARA_INDIRECT(pv_cpu_ops+PV_CPU_irq_enable_sysexit))
1595
1596
1597 #else /* !CONFIG_X86_32 */
1598
1599 /*
1600 * If swapgs is used while the userspace stack is still current,
1601 * there's no way to call a pvop. The PV replacement *must* be
1602 * inlined, or the swapgs instruction must be trapped and emulated.
1603 */
1604 #define SWAPGS_UNSAFE_STACK \
1605 PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_swapgs), CLBR_NONE, \
1606 swapgs)
1607
1608 #define SWAPGS \
1609 PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_swapgs), CLBR_NONE, \
1610 PV_SAVE_REGS; \
1611 call PARA_INDIRECT(pv_cpu_ops+PV_CPU_swapgs); \
1612 PV_RESTORE_REGS \
1613 )
1614
1615 #define GET_CR2_INTO_RCX \
1616 call PARA_INDIRECT(pv_mmu_ops+PV_MMU_read_cr2); \
1617 movq %rax, %rcx; \
1618 xorq %rax, %rax;
1619
1620 #define PARAVIRT_ADJUST_EXCEPTION_FRAME \
1621 PARA_SITE(PARA_PATCH(pv_irq_ops, PV_IRQ_adjust_exception_frame), \
1622 CLBR_NONE, \
1623 call PARA_INDIRECT(pv_irq_ops+PV_IRQ_adjust_exception_frame))
1624
1625 #define USERGS_SYSRET64 \
1626 PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_usergs_sysret64), \
1627 CLBR_NONE, \
1628 jmp PARA_INDIRECT(pv_cpu_ops+PV_CPU_usergs_sysret64))
1629
1630 #define ENABLE_INTERRUPTS_SYSEXIT32 \
1631 PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_irq_enable_sysexit), \
1632 CLBR_NONE, \
1633 jmp PARA_INDIRECT(pv_cpu_ops+PV_CPU_irq_enable_sysexit))
1634 #endif /* CONFIG_X86_32 */
1635
1636 #endif /* __ASSEMBLY__ */
1637 #endif /* CONFIG_PARAVIRT */
1638 #endif /* _ASM_X86_PARAVIRT_H */
1639