• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*P:200 This contains all the /dev/lguest code, whereby the userspace launcher
2  * controls and communicates with the Guest.  For example, the first write will
3  * tell us the Guest's memory layout, pagetable, entry point and kernel address
4  * offset.  A read will run the Guest until something happens, such as a signal
5  * or the Guest doing a NOTIFY out to the Launcher. :*/
6 #include <linux/uaccess.h>
7 #include <linux/miscdevice.h>
8 #include <linux/fs.h>
9 #include <linux/sched.h>
10 #include "lg.h"
11 
12 /*L:055 When something happens, the Waker process needs a way to stop the
13  * kernel running the Guest and return to the Launcher.  So the Waker writes
14  * LHREQ_BREAK and the value "1" to /dev/lguest to do this.  Once the Launcher
15  * has done whatever needs attention, it writes LHREQ_BREAK and "0" to release
16  * the Waker. */
break_guest_out(struct lg_cpu * cpu,const unsigned long __user * input)17 static int break_guest_out(struct lg_cpu *cpu, const unsigned long __user*input)
18 {
19 	unsigned long on;
20 
21 	/* Fetch whether they're turning break on or off. */
22 	if (get_user(on, input) != 0)
23 		return -EFAULT;
24 
25 	if (on) {
26 		cpu->break_out = 1;
27 		/* Pop it out of the Guest (may be running on different CPU) */
28 		wake_up_process(cpu->tsk);
29 		/* Wait for them to reset it */
30 		return wait_event_interruptible(cpu->break_wq, !cpu->break_out);
31 	} else {
32 		cpu->break_out = 0;
33 		wake_up(&cpu->break_wq);
34 		return 0;
35 	}
36 }
37 
38 /*L:050 Sending an interrupt is done by writing LHREQ_IRQ and an interrupt
39  * number to /dev/lguest. */
user_send_irq(struct lg_cpu * cpu,const unsigned long __user * input)40 static int user_send_irq(struct lg_cpu *cpu, const unsigned long __user *input)
41 {
42 	unsigned long irq;
43 
44 	if (get_user(irq, input) != 0)
45 		return -EFAULT;
46 	if (irq >= LGUEST_IRQS)
47 		return -EINVAL;
48 	/* Next time the Guest runs, the core code will see if it can deliver
49 	 * this interrupt. */
50 	set_bit(irq, cpu->irqs_pending);
51 	return 0;
52 }
53 
54 /*L:040 Once our Guest is initialized, the Launcher makes it run by reading
55  * from /dev/lguest. */
read(struct file * file,char __user * user,size_t size,loff_t * o)56 static ssize_t read(struct file *file, char __user *user, size_t size,loff_t*o)
57 {
58 	struct lguest *lg = file->private_data;
59 	struct lg_cpu *cpu;
60 	unsigned int cpu_id = *o;
61 
62 	/* You must write LHREQ_INITIALIZE first! */
63 	if (!lg)
64 		return -EINVAL;
65 
66 	/* Watch out for arbitrary vcpu indexes! */
67 	if (cpu_id >= lg->nr_cpus)
68 		return -EINVAL;
69 
70 	cpu = &lg->cpus[cpu_id];
71 
72 	/* If you're not the task which owns the Guest, go away. */
73 	if (current != cpu->tsk)
74 		return -EPERM;
75 
76 	/* If the Guest is already dead, we indicate why */
77 	if (lg->dead) {
78 		size_t len;
79 
80 		/* lg->dead either contains an error code, or a string. */
81 		if (IS_ERR(lg->dead))
82 			return PTR_ERR(lg->dead);
83 
84 		/* We can only return as much as the buffer they read with. */
85 		len = min(size, strlen(lg->dead)+1);
86 		if (copy_to_user(user, lg->dead, len) != 0)
87 			return -EFAULT;
88 		return len;
89 	}
90 
91 	/* If we returned from read() last time because the Guest sent I/O,
92 	 * clear the flag. */
93 	if (cpu->pending_notify)
94 		cpu->pending_notify = 0;
95 
96 	/* Run the Guest until something interesting happens. */
97 	return run_guest(cpu, (unsigned long __user *)user);
98 }
99 
100 /*L:025 This actually initializes a CPU.  For the moment, a Guest is only
101  * uniprocessor, so "id" is always 0. */
lg_cpu_start(struct lg_cpu * cpu,unsigned id,unsigned long start_ip)102 static int lg_cpu_start(struct lg_cpu *cpu, unsigned id, unsigned long start_ip)
103 {
104 	/* We have a limited number the number of CPUs in the lguest struct. */
105 	if (id >= ARRAY_SIZE(cpu->lg->cpus))
106 		return -EINVAL;
107 
108 	/* Set up this CPU's id, and pointer back to the lguest struct. */
109 	cpu->id = id;
110 	cpu->lg = container_of((cpu - id), struct lguest, cpus[0]);
111 	cpu->lg->nr_cpus++;
112 
113 	/* Each CPU has a timer it can set. */
114 	init_clockdev(cpu);
115 
116 	/* We need a complete page for the Guest registers: they are accessible
117 	 * to the Guest and we can only grant it access to whole pages. */
118 	cpu->regs_page = get_zeroed_page(GFP_KERNEL);
119 	if (!cpu->regs_page)
120 		return -ENOMEM;
121 
122 	/* We actually put the registers at the bottom of the page. */
123 	cpu->regs = (void *)cpu->regs_page + PAGE_SIZE - sizeof(*cpu->regs);
124 
125 	/* Now we initialize the Guest's registers, handing it the start
126 	 * address. */
127 	lguest_arch_setup_regs(cpu, start_ip);
128 
129 	/* Initialize the queue for the Waker to wait on */
130 	init_waitqueue_head(&cpu->break_wq);
131 
132 	/* We keep a pointer to the Launcher task (ie. current task) for when
133 	 * other Guests want to wake this one (eg. console input). */
134 	cpu->tsk = current;
135 
136 	/* We need to keep a pointer to the Launcher's memory map, because if
137 	 * the Launcher dies we need to clean it up.  If we don't keep a
138 	 * reference, it is destroyed before close() is called. */
139 	cpu->mm = get_task_mm(cpu->tsk);
140 
141 	/* We remember which CPU's pages this Guest used last, for optimization
142 	 * when the same Guest runs on the same CPU twice. */
143 	cpu->last_pages = NULL;
144 
145 	/* No error == success. */
146 	return 0;
147 }
148 
149 /*L:020 The initialization write supplies 3 pointer sized (32 or 64 bit)
150  * values (in addition to the LHREQ_INITIALIZE value).  These are:
151  *
152  * base: The start of the Guest-physical memory inside the Launcher memory.
153  *
154  * pfnlimit: The highest (Guest-physical) page number the Guest should be
155  * allowed to access.  The Guest memory lives inside the Launcher, so it sets
156  * this to ensure the Guest can only reach its own memory.
157  *
158  * start: The first instruction to execute ("eip" in x86-speak).
159  */
initialize(struct file * file,const unsigned long __user * input)160 static int initialize(struct file *file, const unsigned long __user *input)
161 {
162 	/* "struct lguest" contains everything we (the Host) know about a
163 	 * Guest. */
164 	struct lguest *lg;
165 	int err;
166 	unsigned long args[3];
167 
168 	/* We grab the Big Lguest lock, which protects against multiple
169 	 * simultaneous initializations. */
170 	mutex_lock(&lguest_lock);
171 	/* You can't initialize twice!  Close the device and start again... */
172 	if (file->private_data) {
173 		err = -EBUSY;
174 		goto unlock;
175 	}
176 
177 	if (copy_from_user(args, input, sizeof(args)) != 0) {
178 		err = -EFAULT;
179 		goto unlock;
180 	}
181 
182 	lg = kzalloc(sizeof(*lg), GFP_KERNEL);
183 	if (!lg) {
184 		err = -ENOMEM;
185 		goto unlock;
186 	}
187 
188 	/* Populate the easy fields of our "struct lguest" */
189 	lg->mem_base = (void __user *)args[0];
190 	lg->pfn_limit = args[1];
191 
192 	/* This is the first cpu (cpu 0) and it will start booting at args[2] */
193 	err = lg_cpu_start(&lg->cpus[0], 0, args[2]);
194 	if (err)
195 		goto release_guest;
196 
197 	/* Initialize the Guest's shadow page tables, using the toplevel
198 	 * address the Launcher gave us.  This allocates memory, so can fail. */
199 	err = init_guest_pagetable(lg);
200 	if (err)
201 		goto free_regs;
202 
203 	/* We keep our "struct lguest" in the file's private_data. */
204 	file->private_data = lg;
205 
206 	mutex_unlock(&lguest_lock);
207 
208 	/* And because this is a write() call, we return the length used. */
209 	return sizeof(args);
210 
211 free_regs:
212 	/* FIXME: This should be in free_vcpu */
213 	free_page(lg->cpus[0].regs_page);
214 release_guest:
215 	kfree(lg);
216 unlock:
217 	mutex_unlock(&lguest_lock);
218 	return err;
219 }
220 
221 /*L:010 The first operation the Launcher does must be a write.  All writes
222  * start with an unsigned long number: for the first write this must be
223  * LHREQ_INITIALIZE to set up the Guest.  After that the Launcher can use
224  * writes of other values to send interrupts.
225  *
226  * Note that we overload the "offset" in the /dev/lguest file to indicate what
227  * CPU number we're dealing with.  Currently this is always 0, since we only
228  * support uniprocessor Guests, but you can see the beginnings of SMP support
229  * here. */
write(struct file * file,const char __user * in,size_t size,loff_t * off)230 static ssize_t write(struct file *file, const char __user *in,
231 		     size_t size, loff_t *off)
232 {
233 	/* Once the Guest is initialized, we hold the "struct lguest" in the
234 	 * file private data. */
235 	struct lguest *lg = file->private_data;
236 	const unsigned long __user *input = (const unsigned long __user *)in;
237 	unsigned long req;
238 	struct lg_cpu *uninitialized_var(cpu);
239 	unsigned int cpu_id = *off;
240 
241 	/* The first value tells us what this request is. */
242 	if (get_user(req, input) != 0)
243 		return -EFAULT;
244 	input++;
245 
246 	/* If you haven't initialized, you must do that first. */
247 	if (req != LHREQ_INITIALIZE) {
248 		if (!lg || (cpu_id >= lg->nr_cpus))
249 			return -EINVAL;
250 		cpu = &lg->cpus[cpu_id];
251 
252 		/* Once the Guest is dead, you can only read() why it died. */
253 		if (lg->dead)
254 			return -ENOENT;
255 
256 		/* If you're not the task which owns the Guest, all you can do
257 		 * is break the Launcher out of running the Guest. */
258 		if (current != cpu->tsk && req != LHREQ_BREAK)
259 			return -EPERM;
260 	}
261 
262 	switch (req) {
263 	case LHREQ_INITIALIZE:
264 		return initialize(file, input);
265 	case LHREQ_IRQ:
266 		return user_send_irq(cpu, input);
267 	case LHREQ_BREAK:
268 		return break_guest_out(cpu, input);
269 	default:
270 		return -EINVAL;
271 	}
272 }
273 
274 /*L:060 The final piece of interface code is the close() routine.  It reverses
275  * everything done in initialize().  This is usually called because the
276  * Launcher exited.
277  *
278  * Note that the close routine returns 0 or a negative error number: it can't
279  * really fail, but it can whine.  I blame Sun for this wart, and K&R C for
280  * letting them do it. :*/
close(struct inode * inode,struct file * file)281 static int close(struct inode *inode, struct file *file)
282 {
283 	struct lguest *lg = file->private_data;
284 	unsigned int i;
285 
286 	/* If we never successfully initialized, there's nothing to clean up */
287 	if (!lg)
288 		return 0;
289 
290 	/* We need the big lock, to protect from inter-guest I/O and other
291 	 * Launchers initializing guests. */
292 	mutex_lock(&lguest_lock);
293 
294 	/* Free up the shadow page tables for the Guest. */
295 	free_guest_pagetable(lg);
296 
297 	for (i = 0; i < lg->nr_cpus; i++) {
298 		/* Cancels the hrtimer set via LHCALL_SET_CLOCKEVENT. */
299 		hrtimer_cancel(&lg->cpus[i].hrt);
300 		/* We can free up the register page we allocated. */
301 		free_page(lg->cpus[i].regs_page);
302 		/* Now all the memory cleanups are done, it's safe to release
303 		 * the Launcher's memory management structure. */
304 		mmput(lg->cpus[i].mm);
305 	}
306 	/* If lg->dead doesn't contain an error code it will be NULL or a
307 	 * kmalloc()ed string, either of which is ok to hand to kfree(). */
308 	if (!IS_ERR(lg->dead))
309 		kfree(lg->dead);
310 	/* Free the memory allocated to the lguest_struct */
311 	kfree(lg);
312 	/* Release lock and exit. */
313 	mutex_unlock(&lguest_lock);
314 
315 	return 0;
316 }
317 
318 /*L:000
319  * Welcome to our journey through the Launcher!
320  *
321  * The Launcher is the Host userspace program which sets up, runs and services
322  * the Guest.  In fact, many comments in the Drivers which refer to "the Host"
323  * doing things are inaccurate: the Launcher does all the device handling for
324  * the Guest, but the Guest can't know that.
325  *
326  * Just to confuse you: to the Host kernel, the Launcher *is* the Guest and we
327  * shall see more of that later.
328  *
329  * We begin our understanding with the Host kernel interface which the Launcher
330  * uses: reading and writing a character device called /dev/lguest.  All the
331  * work happens in the read(), write() and close() routines: */
332 static struct file_operations lguest_fops = {
333 	.owner	 = THIS_MODULE,
334 	.release = close,
335 	.write	 = write,
336 	.read	 = read,
337 };
338 
339 /* This is a textbook example of a "misc" character device.  Populate a "struct
340  * miscdevice" and register it with misc_register(). */
341 static struct miscdevice lguest_dev = {
342 	.minor	= MISC_DYNAMIC_MINOR,
343 	.name	= "lguest",
344 	.fops	= &lguest_fops,
345 };
346 
lguest_device_init(void)347 int __init lguest_device_init(void)
348 {
349 	return misc_register(&lguest_dev);
350 }
351 
lguest_device_remove(void)352 void __exit lguest_device_remove(void)
353 {
354 	misc_deregister(&lguest_dev);
355 }
356