• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
13  */
14 #include <linux/bug.h>
15 #include <linux/compiler.h>
16 #include <linux/init.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/sched.h>
20 #include <linux/smp.h>
21 #include <linux/spinlock.h>
22 #include <linux/kallsyms.h>
23 #include <linux/bootmem.h>
24 #include <linux/interrupt.h>
25 #include <linux/ptrace.h>
26 #include <linux/kgdb.h>
27 #include <linux/kdebug.h>
28 
29 #include <asm/bootinfo.h>
30 #include <asm/branch.h>
31 #include <asm/break.h>
32 #include <asm/cpu.h>
33 #include <asm/dsp.h>
34 #include <asm/fpu.h>
35 #include <asm/fpu_emulator.h>
36 #include <asm/mipsregs.h>
37 #include <asm/mipsmtregs.h>
38 #include <asm/module.h>
39 #include <asm/pgtable.h>
40 #include <asm/ptrace.h>
41 #include <asm/sections.h>
42 #include <asm/system.h>
43 #include <asm/tlbdebug.h>
44 #include <asm/traps.h>
45 #include <asm/uaccess.h>
46 #include <asm/watch.h>
47 #include <asm/mmu_context.h>
48 #include <asm/types.h>
49 #include <asm/stacktrace.h>
50 #include <asm/irq.h>
51 
52 extern void check_wait(void);
53 extern asmlinkage void r4k_wait(void);
54 extern asmlinkage void rollback_handle_int(void);
55 extern asmlinkage void handle_int(void);
56 extern asmlinkage void handle_tlbm(void);
57 extern asmlinkage void handle_tlbl(void);
58 extern asmlinkage void handle_tlbs(void);
59 extern asmlinkage void handle_adel(void);
60 extern asmlinkage void handle_ades(void);
61 extern asmlinkage void handle_ibe(void);
62 extern asmlinkage void handle_dbe(void);
63 extern asmlinkage void handle_sys(void);
64 extern asmlinkage void handle_bp(void);
65 extern asmlinkage void handle_ri(void);
66 extern asmlinkage void handle_ri_rdhwr_vivt(void);
67 extern asmlinkage void handle_ri_rdhwr(void);
68 extern asmlinkage void handle_cpu(void);
69 extern asmlinkage void handle_ov(void);
70 extern asmlinkage void handle_tr(void);
71 extern asmlinkage void handle_fpe(void);
72 extern asmlinkage void handle_mdmx(void);
73 extern asmlinkage void handle_watch(void);
74 extern asmlinkage void handle_mt(void);
75 extern asmlinkage void handle_dsp(void);
76 extern asmlinkage void handle_mcheck(void);
77 extern asmlinkage void handle_reserved(void);
78 
79 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
80 	struct mips_fpu_struct *ctx, int has_fpu);
81 
82 #ifdef CONFIG_CPU_CAVIUM_OCTEON
83 extern asmlinkage void octeon_cop2_restore(struct octeon_cop2_state *task);
84 #endif
85 
86 void (*board_be_init)(void);
87 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
88 void (*board_nmi_handler_setup)(void);
89 void (*board_ejtag_handler_setup)(void);
90 void (*board_bind_eic_interrupt)(int irq, int regset);
91 
92 
show_raw_backtrace(unsigned long reg29)93 static void show_raw_backtrace(unsigned long reg29)
94 {
95 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
96 	unsigned long addr;
97 
98 	printk("Call Trace:");
99 #ifdef CONFIG_KALLSYMS
100 	printk("\n");
101 #endif
102 	while (!kstack_end(sp)) {
103 		unsigned long __user *p =
104 			(unsigned long __user *)(unsigned long)sp++;
105 		if (__get_user(addr, p)) {
106 			printk(" (Bad stack address)");
107 			break;
108 		}
109 		if (__kernel_text_address(addr))
110 			print_ip_sym(addr);
111 	}
112 	printk("\n");
113 }
114 
115 #ifdef CONFIG_KALLSYMS
116 int raw_show_trace;
set_raw_show_trace(char * str)117 static int __init set_raw_show_trace(char *str)
118 {
119 	raw_show_trace = 1;
120 	return 1;
121 }
122 __setup("raw_show_trace", set_raw_show_trace);
123 #endif
124 
show_backtrace(struct task_struct * task,const struct pt_regs * regs)125 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
126 {
127 	unsigned long sp = regs->regs[29];
128 	unsigned long ra = regs->regs[31];
129 	unsigned long pc = regs->cp0_epc;
130 
131 	if (raw_show_trace || !__kernel_text_address(pc)) {
132 		show_raw_backtrace(sp);
133 		return;
134 	}
135 	printk("Call Trace:\n");
136 	do {
137 		print_ip_sym(pc);
138 		pc = unwind_stack(task, &sp, pc, &ra);
139 	} while (pc);
140 	printk("\n");
141 }
142 
143 /*
144  * This routine abuses get_user()/put_user() to reference pointers
145  * with at least a bit of error checking ...
146  */
show_stacktrace(struct task_struct * task,const struct pt_regs * regs)147 static void show_stacktrace(struct task_struct *task,
148 	const struct pt_regs *regs)
149 {
150 	const int field = 2 * sizeof(unsigned long);
151 	long stackdata;
152 	int i;
153 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
154 
155 	printk("Stack :");
156 	i = 0;
157 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
158 		if (i && ((i % (64 / field)) == 0))
159 			printk("\n       ");
160 		if (i > 39) {
161 			printk(" ...");
162 			break;
163 		}
164 
165 		if (__get_user(stackdata, sp++)) {
166 			printk(" (Bad stack address)");
167 			break;
168 		}
169 
170 		printk(" %0*lx", field, stackdata);
171 		i++;
172 	}
173 	printk("\n");
174 	show_backtrace(task, regs);
175 }
176 
show_stack(struct task_struct * task,unsigned long * sp)177 void show_stack(struct task_struct *task, unsigned long *sp)
178 {
179 	struct pt_regs regs;
180 	if (sp) {
181 		regs.regs[29] = (unsigned long)sp;
182 		regs.regs[31] = 0;
183 		regs.cp0_epc = 0;
184 	} else {
185 		if (task && task != current) {
186 			regs.regs[29] = task->thread.reg29;
187 			regs.regs[31] = 0;
188 			regs.cp0_epc = task->thread.reg31;
189 		} else {
190 			prepare_frametrace(&regs);
191 		}
192 	}
193 	show_stacktrace(task, &regs);
194 }
195 
196 /*
197  * The architecture-independent dump_stack generator
198  */
dump_stack(void)199 void dump_stack(void)
200 {
201 	struct pt_regs regs;
202 
203 	prepare_frametrace(&regs);
204 	show_backtrace(current, &regs);
205 }
206 
207 EXPORT_SYMBOL(dump_stack);
208 
show_code(unsigned int __user * pc)209 static void show_code(unsigned int __user *pc)
210 {
211 	long i;
212 	unsigned short __user *pc16 = NULL;
213 
214 	printk("\nCode:");
215 
216 	if ((unsigned long)pc & 1)
217 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
218 	for(i = -3 ; i < 6 ; i++) {
219 		unsigned int insn;
220 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
221 			printk(" (Bad address in epc)\n");
222 			break;
223 		}
224 		printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
225 	}
226 }
227 
__show_regs(const struct pt_regs * regs)228 static void __show_regs(const struct pt_regs *regs)
229 {
230 	const int field = 2 * sizeof(unsigned long);
231 	unsigned int cause = regs->cp0_cause;
232 	int i;
233 
234 	printk("Cpu %d\n", smp_processor_id());
235 
236 	/*
237 	 * Saved main processor registers
238 	 */
239 	for (i = 0; i < 32; ) {
240 		if ((i % 4) == 0)
241 			printk("$%2d   :", i);
242 		if (i == 0)
243 			printk(" %0*lx", field, 0UL);
244 		else if (i == 26 || i == 27)
245 			printk(" %*s", field, "");
246 		else
247 			printk(" %0*lx", field, regs->regs[i]);
248 
249 		i++;
250 		if ((i % 4) == 0)
251 			printk("\n");
252 	}
253 
254 #ifdef CONFIG_CPU_HAS_SMARTMIPS
255 	printk("Acx    : %0*lx\n", field, regs->acx);
256 #endif
257 	printk("Hi    : %0*lx\n", field, regs->hi);
258 	printk("Lo    : %0*lx\n", field, regs->lo);
259 
260 	/*
261 	 * Saved cp0 registers
262 	 */
263 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
264 	       (void *) regs->cp0_epc);
265 	printk("    %s\n", print_tainted());
266 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
267 	       (void *) regs->regs[31]);
268 
269 	printk("Status: %08x    ", (uint32_t) regs->cp0_status);
270 
271 	if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
272 		if (regs->cp0_status & ST0_KUO)
273 			printk("KUo ");
274 		if (regs->cp0_status & ST0_IEO)
275 			printk("IEo ");
276 		if (regs->cp0_status & ST0_KUP)
277 			printk("KUp ");
278 		if (regs->cp0_status & ST0_IEP)
279 			printk("IEp ");
280 		if (regs->cp0_status & ST0_KUC)
281 			printk("KUc ");
282 		if (regs->cp0_status & ST0_IEC)
283 			printk("IEc ");
284 	} else {
285 		if (regs->cp0_status & ST0_KX)
286 			printk("KX ");
287 		if (regs->cp0_status & ST0_SX)
288 			printk("SX ");
289 		if (regs->cp0_status & ST0_UX)
290 			printk("UX ");
291 		switch (regs->cp0_status & ST0_KSU) {
292 		case KSU_USER:
293 			printk("USER ");
294 			break;
295 		case KSU_SUPERVISOR:
296 			printk("SUPERVISOR ");
297 			break;
298 		case KSU_KERNEL:
299 			printk("KERNEL ");
300 			break;
301 		default:
302 			printk("BAD_MODE ");
303 			break;
304 		}
305 		if (regs->cp0_status & ST0_ERL)
306 			printk("ERL ");
307 		if (regs->cp0_status & ST0_EXL)
308 			printk("EXL ");
309 		if (regs->cp0_status & ST0_IE)
310 			printk("IE ");
311 	}
312 	printk("\n");
313 
314 	printk("Cause : %08x\n", cause);
315 
316 	cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
317 	if (1 <= cause && cause <= 5)
318 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
319 
320 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
321 	       cpu_name_string());
322 }
323 
324 /*
325  * FIXME: really the generic show_regs should take a const pointer argument.
326  */
show_regs(struct pt_regs * regs)327 void show_regs(struct pt_regs *regs)
328 {
329 	__show_regs((struct pt_regs *)regs);
330 }
331 
show_registers(const struct pt_regs * regs)332 void show_registers(const struct pt_regs *regs)
333 {
334 	const int field = 2 * sizeof(unsigned long);
335 
336 	__show_regs(regs);
337 	print_modules();
338 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
339 	       current->comm, current->pid, current_thread_info(), current,
340 	      field, current_thread_info()->tp_value);
341 	if (cpu_has_userlocal) {
342 		unsigned long tls;
343 
344 		tls = read_c0_userlocal();
345 		if (tls != current_thread_info()->tp_value)
346 			printk("*HwTLS: %0*lx\n", field, tls);
347 	}
348 
349 	show_stacktrace(current, regs);
350 	show_code((unsigned int __user *) regs->cp0_epc);
351 	printk("\n");
352 }
353 
354 static DEFINE_SPINLOCK(die_lock);
355 
die(const char * str,const struct pt_regs * regs)356 void __noreturn die(const char * str, const struct pt_regs * regs)
357 {
358 	static int die_counter;
359 #ifdef CONFIG_MIPS_MT_SMTC
360 	unsigned long dvpret = dvpe();
361 #endif /* CONFIG_MIPS_MT_SMTC */
362 
363 	console_verbose();
364 	spin_lock_irq(&die_lock);
365 	bust_spinlocks(1);
366 #ifdef CONFIG_MIPS_MT_SMTC
367 	mips_mt_regdump(dvpret);
368 #endif /* CONFIG_MIPS_MT_SMTC */
369 	printk("%s[#%d]:\n", str, ++die_counter);
370 	show_registers(regs);
371 	add_taint(TAINT_DIE);
372 	spin_unlock_irq(&die_lock);
373 
374 	if (in_interrupt())
375 		panic("Fatal exception in interrupt");
376 
377 	if (panic_on_oops) {
378 		printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n");
379 		ssleep(5);
380 		panic("Fatal exception");
381 	}
382 
383 	do_exit(SIGSEGV);
384 }
385 
386 extern struct exception_table_entry __start___dbe_table[];
387 extern struct exception_table_entry __stop___dbe_table[];
388 
389 __asm__(
390 "	.section	__dbe_table, \"a\"\n"
391 "	.previous			\n");
392 
393 /* Given an address, look for it in the exception tables. */
search_dbe_tables(unsigned long addr)394 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
395 {
396 	const struct exception_table_entry *e;
397 
398 	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
399 	if (!e)
400 		e = search_module_dbetables(addr);
401 	return e;
402 }
403 
do_be(struct pt_regs * regs)404 asmlinkage void do_be(struct pt_regs *regs)
405 {
406 	const int field = 2 * sizeof(unsigned long);
407 	const struct exception_table_entry *fixup = NULL;
408 	int data = regs->cp0_cause & 4;
409 	int action = MIPS_BE_FATAL;
410 
411 	/* XXX For now.  Fixme, this searches the wrong table ...  */
412 	if (data && !user_mode(regs))
413 		fixup = search_dbe_tables(exception_epc(regs));
414 
415 	if (fixup)
416 		action = MIPS_BE_FIXUP;
417 
418 	if (board_be_handler)
419 		action = board_be_handler(regs, fixup != NULL);
420 
421 	switch (action) {
422 	case MIPS_BE_DISCARD:
423 		return;
424 	case MIPS_BE_FIXUP:
425 		if (fixup) {
426 			regs->cp0_epc = fixup->nextinsn;
427 			return;
428 		}
429 		break;
430 	default:
431 		break;
432 	}
433 
434 	/*
435 	 * Assume it would be too dangerous to continue ...
436 	 */
437 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
438 	       data ? "Data" : "Instruction",
439 	       field, regs->cp0_epc, field, regs->regs[31]);
440 	if (notify_die(DIE_OOPS, "bus error", regs, SIGBUS, 0, 0)
441 	    == NOTIFY_STOP)
442 		return;
443 
444 	die_if_kernel("Oops", regs);
445 	force_sig(SIGBUS, current);
446 }
447 
448 /*
449  * ll/sc, rdhwr, sync emulation
450  */
451 
452 #define OPCODE 0xfc000000
453 #define BASE   0x03e00000
454 #define RT     0x001f0000
455 #define OFFSET 0x0000ffff
456 #define LL     0xc0000000
457 #define SC     0xe0000000
458 #define SPEC0  0x00000000
459 #define SPEC3  0x7c000000
460 #define RD     0x0000f800
461 #define FUNC   0x0000003f
462 #define SYNC   0x0000000f
463 #define RDHWR  0x0000003b
464 
465 /*
466  * The ll_bit is cleared by r*_switch.S
467  */
468 
469 unsigned long ll_bit;
470 
471 static struct task_struct *ll_task = NULL;
472 
simulate_ll(struct pt_regs * regs,unsigned int opcode)473 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
474 {
475 	unsigned long value, __user *vaddr;
476 	long offset;
477 
478 	/*
479 	 * analyse the ll instruction that just caused a ri exception
480 	 * and put the referenced address to addr.
481 	 */
482 
483 	/* sign extend offset */
484 	offset = opcode & OFFSET;
485 	offset <<= 16;
486 	offset >>= 16;
487 
488 	vaddr = (unsigned long __user *)
489 	        ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
490 
491 	if ((unsigned long)vaddr & 3)
492 		return SIGBUS;
493 	if (get_user(value, vaddr))
494 		return SIGSEGV;
495 
496 	preempt_disable();
497 
498 	if (ll_task == NULL || ll_task == current) {
499 		ll_bit = 1;
500 	} else {
501 		ll_bit = 0;
502 	}
503 	ll_task = current;
504 
505 	preempt_enable();
506 
507 	regs->regs[(opcode & RT) >> 16] = value;
508 
509 	return 0;
510 }
511 
simulate_sc(struct pt_regs * regs,unsigned int opcode)512 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
513 {
514 	unsigned long __user *vaddr;
515 	unsigned long reg;
516 	long offset;
517 
518 	/*
519 	 * analyse the sc instruction that just caused a ri exception
520 	 * and put the referenced address to addr.
521 	 */
522 
523 	/* sign extend offset */
524 	offset = opcode & OFFSET;
525 	offset <<= 16;
526 	offset >>= 16;
527 
528 	vaddr = (unsigned long __user *)
529 	        ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
530 	reg = (opcode & RT) >> 16;
531 
532 	if ((unsigned long)vaddr & 3)
533 		return SIGBUS;
534 
535 	preempt_disable();
536 
537 	if (ll_bit == 0 || ll_task != current) {
538 		regs->regs[reg] = 0;
539 		preempt_enable();
540 		return 0;
541 	}
542 
543 	preempt_enable();
544 
545 	if (put_user(regs->regs[reg], vaddr))
546 		return SIGSEGV;
547 
548 	regs->regs[reg] = 1;
549 
550 	return 0;
551 }
552 
553 /*
554  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
555  * opcodes are supposed to result in coprocessor unusable exceptions if
556  * executed on ll/sc-less processors.  That's the theory.  In practice a
557  * few processors such as NEC's VR4100 throw reserved instruction exceptions
558  * instead, so we're doing the emulation thing in both exception handlers.
559  */
simulate_llsc(struct pt_regs * regs,unsigned int opcode)560 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
561 {
562 	if ((opcode & OPCODE) == LL)
563 		return simulate_ll(regs, opcode);
564 	if ((opcode & OPCODE) == SC)
565 		return simulate_sc(regs, opcode);
566 
567 	return -1;			/* Must be something else ... */
568 }
569 
570 /*
571  * Simulate trapping 'rdhwr' instructions to provide user accessible
572  * registers not implemented in hardware.
573  */
simulate_rdhwr(struct pt_regs * regs,unsigned int opcode)574 static int simulate_rdhwr(struct pt_regs *regs, unsigned int opcode)
575 {
576 	struct thread_info *ti = task_thread_info(current);
577 
578 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
579 		int rd = (opcode & RD) >> 11;
580 		int rt = (opcode & RT) >> 16;
581 		switch (rd) {
582 		case 0:		/* CPU number */
583 			regs->regs[rt] = smp_processor_id();
584 			return 0;
585 		case 1:		/* SYNCI length */
586 			regs->regs[rt] = min(current_cpu_data.dcache.linesz,
587 					     current_cpu_data.icache.linesz);
588 			return 0;
589 		case 2:		/* Read count register */
590 			regs->regs[rt] = read_c0_count();
591 			return 0;
592 		case 3:		/* Count register resolution */
593 			switch (current_cpu_data.cputype) {
594 			case CPU_20KC:
595 			case CPU_25KF:
596 				regs->regs[rt] = 1;
597 				break;
598 			default:
599 				regs->regs[rt] = 2;
600 			}
601 			return 0;
602 		case 29:
603 			regs->regs[rt] = ti->tp_value;
604 			return 0;
605 		default:
606 			return -1;
607 		}
608 	}
609 
610 	/* Not ours.  */
611 	return -1;
612 }
613 
simulate_sync(struct pt_regs * regs,unsigned int opcode)614 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
615 {
616 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC)
617 		return 0;
618 
619 	return -1;			/* Must be something else ... */
620 }
621 
do_ov(struct pt_regs * regs)622 asmlinkage void do_ov(struct pt_regs *regs)
623 {
624 	siginfo_t info;
625 
626 	die_if_kernel("Integer overflow", regs);
627 
628 	info.si_code = FPE_INTOVF;
629 	info.si_signo = SIGFPE;
630 	info.si_errno = 0;
631 	info.si_addr = (void __user *) regs->cp0_epc;
632 	force_sig_info(SIGFPE, &info, current);
633 }
634 
635 /*
636  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
637  */
do_fpe(struct pt_regs * regs,unsigned long fcr31)638 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
639 {
640 	siginfo_t info;
641 
642 	if (notify_die(DIE_FP, "FP exception", regs, SIGFPE, 0, 0)
643 	    == NOTIFY_STOP)
644 		return;
645 	die_if_kernel("FP exception in kernel code", regs);
646 
647 	if (fcr31 & FPU_CSR_UNI_X) {
648 		int sig;
649 
650 		/*
651 		 * Unimplemented operation exception.  If we've got the full
652 		 * software emulator on-board, let's use it...
653 		 *
654 		 * Force FPU to dump state into task/thread context.  We're
655 		 * moving a lot of data here for what is probably a single
656 		 * instruction, but the alternative is to pre-decode the FP
657 		 * register operands before invoking the emulator, which seems
658 		 * a bit extreme for what should be an infrequent event.
659 		 */
660 		/* Ensure 'resume' not overwrite saved fp context again. */
661 		lose_fpu(1);
662 
663 		/* Run the emulator */
664 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1);
665 
666 		/*
667 		 * We can't allow the emulated instruction to leave any of
668 		 * the cause bit set in $fcr31.
669 		 */
670 		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
671 
672 		/* Restore the hardware register state */
673 		own_fpu(1);	/* Using the FPU again.  */
674 
675 		/* If something went wrong, signal */
676 		if (sig)
677 			force_sig(sig, current);
678 
679 		return;
680 	} else if (fcr31 & FPU_CSR_INV_X)
681 		info.si_code = FPE_FLTINV;
682 	else if (fcr31 & FPU_CSR_DIV_X)
683 		info.si_code = FPE_FLTDIV;
684 	else if (fcr31 & FPU_CSR_OVF_X)
685 		info.si_code = FPE_FLTOVF;
686 	else if (fcr31 & FPU_CSR_UDF_X)
687 		info.si_code = FPE_FLTUND;
688 	else if (fcr31 & FPU_CSR_INE_X)
689 		info.si_code = FPE_FLTRES;
690 	else
691 		info.si_code = __SI_FAULT;
692 	info.si_signo = SIGFPE;
693 	info.si_errno = 0;
694 	info.si_addr = (void __user *) regs->cp0_epc;
695 	force_sig_info(SIGFPE, &info, current);
696 }
697 
do_trap_or_bp(struct pt_regs * regs,unsigned int code,const char * str)698 static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
699 	const char *str)
700 {
701 	siginfo_t info;
702 	char b[40];
703 
704 	if (notify_die(DIE_TRAP, str, regs, code, 0, 0) == NOTIFY_STOP)
705 		return;
706 
707 	/*
708 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
709 	 * insns, even for trap and break codes that indicate arithmetic
710 	 * failures.  Weird ...
711 	 * But should we continue the brokenness???  --macro
712 	 */
713 	switch (code) {
714 	case BRK_OVERFLOW:
715 	case BRK_DIVZERO:
716 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
717 		die_if_kernel(b, regs);
718 		if (code == BRK_DIVZERO)
719 			info.si_code = FPE_INTDIV;
720 		else
721 			info.si_code = FPE_INTOVF;
722 		info.si_signo = SIGFPE;
723 		info.si_errno = 0;
724 		info.si_addr = (void __user *) regs->cp0_epc;
725 		force_sig_info(SIGFPE, &info, current);
726 		break;
727 	case BRK_BUG:
728 		die_if_kernel("Kernel bug detected", regs);
729 		force_sig(SIGTRAP, current);
730 		break;
731 	case BRK_MEMU:
732 		/*
733 		 * Address errors may be deliberately induced by the FPU
734 		 * emulator to retake control of the CPU after executing the
735 		 * instruction in the delay slot of an emulated branch.
736 		 *
737 		 * Terminate if exception was recognized as a delay slot return
738 		 * otherwise handle as normal.
739 		 */
740 		if (do_dsemulret(regs))
741 			return;
742 
743 		die_if_kernel("Math emu break/trap", regs);
744 		force_sig(SIGTRAP, current);
745 		break;
746 	default:
747 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
748 		die_if_kernel(b, regs);
749 		force_sig(SIGTRAP, current);
750 	}
751 }
752 
do_bp(struct pt_regs * regs)753 asmlinkage void do_bp(struct pt_regs *regs)
754 {
755 	unsigned int opcode, bcode;
756 
757 	if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
758 		goto out_sigsegv;
759 
760 	/*
761 	 * There is the ancient bug in the MIPS assemblers that the break
762 	 * code starts left to bit 16 instead to bit 6 in the opcode.
763 	 * Gas is bug-compatible, but not always, grrr...
764 	 * We handle both cases with a simple heuristics.  --macro
765 	 */
766 	bcode = ((opcode >> 6) & ((1 << 20) - 1));
767 	if (bcode >= (1 << 10))
768 		bcode >>= 10;
769 
770 	do_trap_or_bp(regs, bcode, "Break");
771 	return;
772 
773 out_sigsegv:
774 	force_sig(SIGSEGV, current);
775 }
776 
do_tr(struct pt_regs * regs)777 asmlinkage void do_tr(struct pt_regs *regs)
778 {
779 	unsigned int opcode, tcode = 0;
780 
781 	if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
782 		goto out_sigsegv;
783 
784 	/* Immediate versions don't provide a code.  */
785 	if (!(opcode & OPCODE))
786 		tcode = ((opcode >> 6) & ((1 << 10) - 1));
787 
788 	do_trap_or_bp(regs, tcode, "Trap");
789 	return;
790 
791 out_sigsegv:
792 	force_sig(SIGSEGV, current);
793 }
794 
do_ri(struct pt_regs * regs)795 asmlinkage void do_ri(struct pt_regs *regs)
796 {
797 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
798 	unsigned long old_epc = regs->cp0_epc;
799 	unsigned int opcode = 0;
800 	int status = -1;
801 
802 	if (notify_die(DIE_RI, "RI Fault", regs, SIGSEGV, 0, 0)
803 	    == NOTIFY_STOP)
804 		return;
805 
806 	die_if_kernel("Reserved instruction in kernel code", regs);
807 
808 	if (unlikely(compute_return_epc(regs) < 0))
809 		return;
810 
811 	if (unlikely(get_user(opcode, epc) < 0))
812 		status = SIGSEGV;
813 
814 	if (!cpu_has_llsc && status < 0)
815 		status = simulate_llsc(regs, opcode);
816 
817 	if (status < 0)
818 		status = simulate_rdhwr(regs, opcode);
819 
820 	if (status < 0)
821 		status = simulate_sync(regs, opcode);
822 
823 	if (status < 0)
824 		status = SIGILL;
825 
826 	if (unlikely(status > 0)) {
827 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
828 		force_sig(status, current);
829 	}
830 }
831 
832 /*
833  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
834  * emulated more than some threshold number of instructions, force migration to
835  * a "CPU" that has FP support.
836  */
mt_ase_fp_affinity(void)837 static void mt_ase_fp_affinity(void)
838 {
839 #ifdef CONFIG_MIPS_MT_FPAFF
840 	if (mt_fpemul_threshold > 0 &&
841 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
842 		/*
843 		 * If there's no FPU present, or if the application has already
844 		 * restricted the allowed set to exclude any CPUs with FPUs,
845 		 * we'll skip the procedure.
846 		 */
847 		if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
848 			cpumask_t tmask;
849 
850 			current->thread.user_cpus_allowed
851 				= current->cpus_allowed;
852 			cpus_and(tmask, current->cpus_allowed,
853 				mt_fpu_cpumask);
854 			set_cpus_allowed(current, tmask);
855 			set_thread_flag(TIF_FPUBOUND);
856 		}
857 	}
858 #endif /* CONFIG_MIPS_MT_FPAFF */
859 }
860 
do_cpu(struct pt_regs * regs)861 asmlinkage void do_cpu(struct pt_regs *regs)
862 {
863 	unsigned int __user *epc;
864 	unsigned long old_epc;
865 	unsigned int opcode;
866 	unsigned int cpid;
867 	int status;
868 	unsigned long __maybe_unused flags;
869 
870 	die_if_kernel("do_cpu invoked from kernel context!", regs);
871 
872 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
873 
874 	switch (cpid) {
875 	case 0:
876 		epc = (unsigned int __user *)exception_epc(regs);
877 		old_epc = regs->cp0_epc;
878 		opcode = 0;
879 		status = -1;
880 
881 		if (unlikely(compute_return_epc(regs) < 0))
882 			return;
883 
884 		if (unlikely(get_user(opcode, epc) < 0))
885 			status = SIGSEGV;
886 
887 		if (!cpu_has_llsc && status < 0)
888 			status = simulate_llsc(regs, opcode);
889 
890 		if (status < 0)
891 			status = simulate_rdhwr(regs, opcode);
892 
893 		if (status < 0)
894 			status = SIGILL;
895 
896 		if (unlikely(status > 0)) {
897 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
898 			force_sig(status, current);
899 		}
900 
901 		return;
902 
903 	case 1:
904 		if (used_math())	/* Using the FPU again.  */
905 			own_fpu(1);
906 		else {			/* First time FPU user.  */
907 			init_fpu();
908 			set_used_math();
909 		}
910 
911 		if (!raw_cpu_has_fpu) {
912 			int sig;
913 			sig = fpu_emulator_cop1Handler(regs,
914 						&current->thread.fpu, 0);
915 			if (sig)
916 				force_sig(sig, current);
917 			else
918 				mt_ase_fp_affinity();
919 		}
920 
921 		return;
922 
923 	case 2:
924 #ifdef CONFIG_CPU_CAVIUM_OCTEON
925 		prefetch(&current->thread.cp2);
926 		local_irq_save(flags);
927 		KSTK_STATUS(current) |= ST0_CU2;
928 		status = read_c0_status();
929 		write_c0_status(status | ST0_CU2);
930 		octeon_cop2_restore(&(current->thread.cp2));
931 		write_c0_status(status & ~ST0_CU2);
932 		local_irq_restore(flags);
933 		return;
934 #endif
935 	case 3:
936 		break;
937 	}
938 
939 	force_sig(SIGILL, current);
940 }
941 
do_mdmx(struct pt_regs * regs)942 asmlinkage void do_mdmx(struct pt_regs *regs)
943 {
944 	force_sig(SIGILL, current);
945 }
946 
947 /*
948  * Called with interrupts disabled.
949  */
do_watch(struct pt_regs * regs)950 asmlinkage void do_watch(struct pt_regs *regs)
951 {
952 	u32 cause;
953 
954 	/*
955 	 * Clear WP (bit 22) bit of cause register so we don't loop
956 	 * forever.
957 	 */
958 	cause = read_c0_cause();
959 	cause &= ~(1 << 22);
960 	write_c0_cause(cause);
961 
962 	/*
963 	 * If the current thread has the watch registers loaded, save
964 	 * their values and send SIGTRAP.  Otherwise another thread
965 	 * left the registers set, clear them and continue.
966 	 */
967 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
968 		mips_read_watch_registers();
969 		local_irq_enable();
970 		force_sig(SIGTRAP, current);
971 	} else {
972 		mips_clear_watch_registers();
973 		local_irq_enable();
974 	}
975 }
976 
do_mcheck(struct pt_regs * regs)977 asmlinkage void do_mcheck(struct pt_regs *regs)
978 {
979 	const int field = 2 * sizeof(unsigned long);
980 	int multi_match = regs->cp0_status & ST0_TS;
981 
982 	show_regs(regs);
983 
984 	if (multi_match) {
985 		printk("Index   : %0x\n", read_c0_index());
986 		printk("Pagemask: %0x\n", read_c0_pagemask());
987 		printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
988 		printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
989 		printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
990 		printk("\n");
991 		dump_tlb_all();
992 	}
993 
994 	show_code((unsigned int __user *) regs->cp0_epc);
995 
996 	/*
997 	 * Some chips may have other causes of machine check (e.g. SB1
998 	 * graduation timer)
999 	 */
1000 	panic("Caught Machine Check exception - %scaused by multiple "
1001 	      "matching entries in the TLB.",
1002 	      (multi_match) ? "" : "not ");
1003 }
1004 
do_mt(struct pt_regs * regs)1005 asmlinkage void do_mt(struct pt_regs *regs)
1006 {
1007 	int subcode;
1008 
1009 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1010 			>> VPECONTROL_EXCPT_SHIFT;
1011 	switch (subcode) {
1012 	case 0:
1013 		printk(KERN_DEBUG "Thread Underflow\n");
1014 		break;
1015 	case 1:
1016 		printk(KERN_DEBUG "Thread Overflow\n");
1017 		break;
1018 	case 2:
1019 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1020 		break;
1021 	case 3:
1022 		printk(KERN_DEBUG "Gating Storage Exception\n");
1023 		break;
1024 	case 4:
1025 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1026 		break;
1027 	case 5:
1028 		printk(KERN_DEBUG "Gating Storage Schedulier Exception\n");
1029 		break;
1030 	default:
1031 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1032 			subcode);
1033 		break;
1034 	}
1035 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1036 
1037 	force_sig(SIGILL, current);
1038 }
1039 
1040 
do_dsp(struct pt_regs * regs)1041 asmlinkage void do_dsp(struct pt_regs *regs)
1042 {
1043 	if (cpu_has_dsp)
1044 		panic("Unexpected DSP exception\n");
1045 
1046 	force_sig(SIGILL, current);
1047 }
1048 
do_reserved(struct pt_regs * regs)1049 asmlinkage void do_reserved(struct pt_regs *regs)
1050 {
1051 	/*
1052 	 * Game over - no way to handle this if it ever occurs.  Most probably
1053 	 * caused by a new unknown cpu type or after another deadly
1054 	 * hard/software error.
1055 	 */
1056 	show_regs(regs);
1057 	panic("Caught reserved exception %ld - should not happen.",
1058 	      (regs->cp0_cause & 0x7f) >> 2);
1059 }
1060 
1061 static int __initdata l1parity = 1;
nol1parity(char * s)1062 static int __init nol1parity(char *s)
1063 {
1064 	l1parity = 0;
1065 	return 1;
1066 }
1067 __setup("nol1par", nol1parity);
1068 static int __initdata l2parity = 1;
nol2parity(char * s)1069 static int __init nol2parity(char *s)
1070 {
1071 	l2parity = 0;
1072 	return 1;
1073 }
1074 __setup("nol2par", nol2parity);
1075 
1076 /*
1077  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1078  * it different ways.
1079  */
parity_protection_init(void)1080 static inline void parity_protection_init(void)
1081 {
1082 	switch (current_cpu_type()) {
1083 	case CPU_24K:
1084 	case CPU_34K:
1085 	case CPU_74K:
1086 	case CPU_1004K:
1087 		{
1088 #define ERRCTL_PE	0x80000000
1089 #define ERRCTL_L2P	0x00800000
1090 			unsigned long errctl;
1091 			unsigned int l1parity_present, l2parity_present;
1092 
1093 			errctl = read_c0_ecc();
1094 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1095 
1096 			/* probe L1 parity support */
1097 			write_c0_ecc(errctl | ERRCTL_PE);
1098 			back_to_back_c0_hazard();
1099 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1100 
1101 			/* probe L2 parity support */
1102 			write_c0_ecc(errctl|ERRCTL_L2P);
1103 			back_to_back_c0_hazard();
1104 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1105 
1106 			if (l1parity_present && l2parity_present) {
1107 				if (l1parity)
1108 					errctl |= ERRCTL_PE;
1109 				if (l1parity ^ l2parity)
1110 					errctl |= ERRCTL_L2P;
1111 			} else if (l1parity_present) {
1112 				if (l1parity)
1113 					errctl |= ERRCTL_PE;
1114 			} else if (l2parity_present) {
1115 				if (l2parity)
1116 					errctl |= ERRCTL_L2P;
1117 			} else {
1118 				/* No parity available */
1119 			}
1120 
1121 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1122 
1123 			write_c0_ecc(errctl);
1124 			back_to_back_c0_hazard();
1125 			errctl = read_c0_ecc();
1126 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1127 
1128 			if (l1parity_present)
1129 				printk(KERN_INFO "Cache parity protection %sabled\n",
1130 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1131 
1132 			if (l2parity_present) {
1133 				if (l1parity_present && l1parity)
1134 					errctl ^= ERRCTL_L2P;
1135 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1136 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1137 			}
1138 		}
1139 		break;
1140 
1141 	case CPU_5KC:
1142 		write_c0_ecc(0x80000000);
1143 		back_to_back_c0_hazard();
1144 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1145 		printk(KERN_INFO "Cache parity protection %sabled\n",
1146 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1147 		break;
1148 	case CPU_20KC:
1149 	case CPU_25KF:
1150 		/* Clear the DE bit (bit 16) in the c0_status register. */
1151 		printk(KERN_INFO "Enable cache parity protection for "
1152 		       "MIPS 20KC/25KF CPUs.\n");
1153 		clear_c0_status(ST0_DE);
1154 		break;
1155 	default:
1156 		break;
1157 	}
1158 }
1159 
cache_parity_error(void)1160 asmlinkage void cache_parity_error(void)
1161 {
1162 	const int field = 2 * sizeof(unsigned long);
1163 	unsigned int reg_val;
1164 
1165 	/* For the moment, report the problem and hang. */
1166 	printk("Cache error exception:\n");
1167 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1168 	reg_val = read_c0_cacheerr();
1169 	printk("c0_cacheerr == %08x\n", reg_val);
1170 
1171 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1172 	       reg_val & (1<<30) ? "secondary" : "primary",
1173 	       reg_val & (1<<31) ? "data" : "insn");
1174 	printk("Error bits: %s%s%s%s%s%s%s\n",
1175 	       reg_val & (1<<29) ? "ED " : "",
1176 	       reg_val & (1<<28) ? "ET " : "",
1177 	       reg_val & (1<<26) ? "EE " : "",
1178 	       reg_val & (1<<25) ? "EB " : "",
1179 	       reg_val & (1<<24) ? "EI " : "",
1180 	       reg_val & (1<<23) ? "E1 " : "",
1181 	       reg_val & (1<<22) ? "E0 " : "");
1182 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1183 
1184 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1185 	if (reg_val & (1<<22))
1186 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1187 
1188 	if (reg_val & (1<<23))
1189 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1190 #endif
1191 
1192 	panic("Can't handle the cache error!");
1193 }
1194 
1195 /*
1196  * SDBBP EJTAG debug exception handler.
1197  * We skip the instruction and return to the next instruction.
1198  */
ejtag_exception_handler(struct pt_regs * regs)1199 void ejtag_exception_handler(struct pt_regs *regs)
1200 {
1201 	const int field = 2 * sizeof(unsigned long);
1202 	unsigned long depc, old_epc;
1203 	unsigned int debug;
1204 
1205 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1206 	depc = read_c0_depc();
1207 	debug = read_c0_debug();
1208 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1209 	if (debug & 0x80000000) {
1210 		/*
1211 		 * In branch delay slot.
1212 		 * We cheat a little bit here and use EPC to calculate the
1213 		 * debug return address (DEPC). EPC is restored after the
1214 		 * calculation.
1215 		 */
1216 		old_epc = regs->cp0_epc;
1217 		regs->cp0_epc = depc;
1218 		__compute_return_epc(regs);
1219 		depc = regs->cp0_epc;
1220 		regs->cp0_epc = old_epc;
1221 	} else
1222 		depc += 4;
1223 	write_c0_depc(depc);
1224 
1225 #if 0
1226 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1227 	write_c0_debug(debug | 0x100);
1228 #endif
1229 }
1230 
1231 /*
1232  * NMI exception handler.
1233  */
nmi_exception_handler(struct pt_regs * regs)1234 NORET_TYPE void ATTRIB_NORET nmi_exception_handler(struct pt_regs *regs)
1235 {
1236 	bust_spinlocks(1);
1237 	printk("NMI taken!!!!\n");
1238 	die("NMI", regs);
1239 }
1240 
1241 #define VECTORSPACING 0x100	/* for EI/VI mode */
1242 
1243 unsigned long ebase;
1244 unsigned long exception_handlers[32];
1245 unsigned long vi_handlers[64];
1246 
1247 /*
1248  * As a side effect of the way this is implemented we're limited
1249  * to interrupt handlers in the address range from
1250  * KSEG0 <= x < KSEG0 + 256mb on the Nevada.  Oh well ...
1251  */
set_except_vector(int n,void * addr)1252 void *set_except_vector(int n, void *addr)
1253 {
1254 	unsigned long handler = (unsigned long) addr;
1255 	unsigned long old_handler = exception_handlers[n];
1256 
1257 	exception_handlers[n] = handler;
1258 	if (n == 0 && cpu_has_divec) {
1259 		*(u32 *)(ebase + 0x200) = 0x08000000 |
1260 					  (0x03ffffff & (handler >> 2));
1261 		local_flush_icache_range(ebase + 0x200, ebase + 0x204);
1262 	}
1263 	return (void *)old_handler;
1264 }
1265 
do_default_vi(void)1266 static asmlinkage void do_default_vi(void)
1267 {
1268 	show_regs(get_irq_regs());
1269 	panic("Caught unexpected vectored interrupt.");
1270 }
1271 
set_vi_srs_handler(int n,vi_handler_t addr,int srs)1272 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1273 {
1274 	unsigned long handler;
1275 	unsigned long old_handler = vi_handlers[n];
1276 	int srssets = current_cpu_data.srsets;
1277 	u32 *w;
1278 	unsigned char *b;
1279 
1280 	if (!cpu_has_veic && !cpu_has_vint)
1281 		BUG();
1282 
1283 	if (addr == NULL) {
1284 		handler = (unsigned long) do_default_vi;
1285 		srs = 0;
1286 	} else
1287 		handler = (unsigned long) addr;
1288 	vi_handlers[n] = (unsigned long) addr;
1289 
1290 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1291 
1292 	if (srs >= srssets)
1293 		panic("Shadow register set %d not supported", srs);
1294 
1295 	if (cpu_has_veic) {
1296 		if (board_bind_eic_interrupt)
1297 			board_bind_eic_interrupt(n, srs);
1298 	} else if (cpu_has_vint) {
1299 		/* SRSMap is only defined if shadow sets are implemented */
1300 		if (srssets > 1)
1301 			change_c0_srsmap(0xf << n*4, srs << n*4);
1302 	}
1303 
1304 	if (srs == 0) {
1305 		/*
1306 		 * If no shadow set is selected then use the default handler
1307 		 * that does normal register saving and a standard interrupt exit
1308 		 */
1309 
1310 		extern char except_vec_vi, except_vec_vi_lui;
1311 		extern char except_vec_vi_ori, except_vec_vi_end;
1312 		extern char rollback_except_vec_vi;
1313 		char *vec_start = (cpu_wait == r4k_wait) ?
1314 			&rollback_except_vec_vi : &except_vec_vi;
1315 #ifdef CONFIG_MIPS_MT_SMTC
1316 		/*
1317 		 * We need to provide the SMTC vectored interrupt handler
1318 		 * not only with the address of the handler, but with the
1319 		 * Status.IM bit to be masked before going there.
1320 		 */
1321 		extern char except_vec_vi_mori;
1322 		const int mori_offset = &except_vec_vi_mori - vec_start;
1323 #endif /* CONFIG_MIPS_MT_SMTC */
1324 		const int handler_len = &except_vec_vi_end - vec_start;
1325 		const int lui_offset = &except_vec_vi_lui - vec_start;
1326 		const int ori_offset = &except_vec_vi_ori - vec_start;
1327 
1328 		if (handler_len > VECTORSPACING) {
1329 			/*
1330 			 * Sigh... panicing won't help as the console
1331 			 * is probably not configured :(
1332 			 */
1333 			panic("VECTORSPACING too small");
1334 		}
1335 
1336 		memcpy(b, vec_start, handler_len);
1337 #ifdef CONFIG_MIPS_MT_SMTC
1338 		BUG_ON(n > 7);	/* Vector index %d exceeds SMTC maximum. */
1339 
1340 		w = (u32 *)(b + mori_offset);
1341 		*w = (*w & 0xffff0000) | (0x100 << n);
1342 #endif /* CONFIG_MIPS_MT_SMTC */
1343 		w = (u32 *)(b + lui_offset);
1344 		*w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1345 		w = (u32 *)(b + ori_offset);
1346 		*w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1347 		local_flush_icache_range((unsigned long)b,
1348 					 (unsigned long)(b+handler_len));
1349 	}
1350 	else {
1351 		/*
1352 		 * In other cases jump directly to the interrupt handler
1353 		 *
1354 		 * It is the handlers responsibility to save registers if required
1355 		 * (eg hi/lo) and return from the exception using "eret"
1356 		 */
1357 		w = (u32 *)b;
1358 		*w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1359 		*w = 0;
1360 		local_flush_icache_range((unsigned long)b,
1361 					 (unsigned long)(b+8));
1362 	}
1363 
1364 	return (void *)old_handler;
1365 }
1366 
set_vi_handler(int n,vi_handler_t addr)1367 void *set_vi_handler(int n, vi_handler_t addr)
1368 {
1369 	return set_vi_srs_handler(n, addr, 0);
1370 }
1371 
1372 /*
1373  * This is used by native signal handling
1374  */
1375 asmlinkage int (*save_fp_context)(struct sigcontext __user *sc);
1376 asmlinkage int (*restore_fp_context)(struct sigcontext __user *sc);
1377 
1378 extern asmlinkage int _save_fp_context(struct sigcontext __user *sc);
1379 extern asmlinkage int _restore_fp_context(struct sigcontext __user *sc);
1380 
1381 extern asmlinkage int fpu_emulator_save_context(struct sigcontext __user *sc);
1382 extern asmlinkage int fpu_emulator_restore_context(struct sigcontext __user *sc);
1383 
1384 #ifdef CONFIG_SMP
smp_save_fp_context(struct sigcontext __user * sc)1385 static int smp_save_fp_context(struct sigcontext __user *sc)
1386 {
1387 	return raw_cpu_has_fpu
1388 	       ? _save_fp_context(sc)
1389 	       : fpu_emulator_save_context(sc);
1390 }
1391 
smp_restore_fp_context(struct sigcontext __user * sc)1392 static int smp_restore_fp_context(struct sigcontext __user *sc)
1393 {
1394 	return raw_cpu_has_fpu
1395 	       ? _restore_fp_context(sc)
1396 	       : fpu_emulator_restore_context(sc);
1397 }
1398 #endif
1399 
signal_init(void)1400 static inline void signal_init(void)
1401 {
1402 #ifdef CONFIG_SMP
1403 	/* For now just do the cpu_has_fpu check when the functions are invoked */
1404 	save_fp_context = smp_save_fp_context;
1405 	restore_fp_context = smp_restore_fp_context;
1406 #else
1407 	if (cpu_has_fpu) {
1408 		save_fp_context = _save_fp_context;
1409 		restore_fp_context = _restore_fp_context;
1410 	} else {
1411 		save_fp_context = fpu_emulator_save_context;
1412 		restore_fp_context = fpu_emulator_restore_context;
1413 	}
1414 #endif
1415 }
1416 
1417 #ifdef CONFIG_MIPS32_COMPAT
1418 
1419 /*
1420  * This is used by 32-bit signal stuff on the 64-bit kernel
1421  */
1422 asmlinkage int (*save_fp_context32)(struct sigcontext32 __user *sc);
1423 asmlinkage int (*restore_fp_context32)(struct sigcontext32 __user *sc);
1424 
1425 extern asmlinkage int _save_fp_context32(struct sigcontext32 __user *sc);
1426 extern asmlinkage int _restore_fp_context32(struct sigcontext32 __user *sc);
1427 
1428 extern asmlinkage int fpu_emulator_save_context32(struct sigcontext32 __user *sc);
1429 extern asmlinkage int fpu_emulator_restore_context32(struct sigcontext32 __user *sc);
1430 
signal32_init(void)1431 static inline void signal32_init(void)
1432 {
1433 	if (cpu_has_fpu) {
1434 		save_fp_context32 = _save_fp_context32;
1435 		restore_fp_context32 = _restore_fp_context32;
1436 	} else {
1437 		save_fp_context32 = fpu_emulator_save_context32;
1438 		restore_fp_context32 = fpu_emulator_restore_context32;
1439 	}
1440 }
1441 #endif
1442 
1443 extern void cpu_cache_init(void);
1444 extern void tlb_init(void);
1445 extern void flush_tlb_handlers(void);
1446 
1447 /*
1448  * Timer interrupt
1449  */
1450 int cp0_compare_irq;
1451 
1452 /*
1453  * Performance counter IRQ or -1 if shared with timer
1454  */
1455 int cp0_perfcount_irq;
1456 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1457 
1458 static int __cpuinitdata noulri;
1459 
ulri_disable(char * s)1460 static int __init ulri_disable(char *s)
1461 {
1462 	pr_info("Disabling ulri\n");
1463 	noulri = 1;
1464 
1465 	return 1;
1466 }
1467 __setup("noulri", ulri_disable);
1468 
per_cpu_trap_init(void)1469 void __cpuinit per_cpu_trap_init(void)
1470 {
1471 	unsigned int cpu = smp_processor_id();
1472 	unsigned int status_set = ST0_CU0;
1473 #ifdef CONFIG_MIPS_MT_SMTC
1474 	int secondaryTC = 0;
1475 	int bootTC = (cpu == 0);
1476 
1477 	/*
1478 	 * Only do per_cpu_trap_init() for first TC of Each VPE.
1479 	 * Note that this hack assumes that the SMTC init code
1480 	 * assigns TCs consecutively and in ascending order.
1481 	 */
1482 
1483 	if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1484 	    ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1485 		secondaryTC = 1;
1486 #endif /* CONFIG_MIPS_MT_SMTC */
1487 
1488 	/*
1489 	 * Disable coprocessors and select 32-bit or 64-bit addressing
1490 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
1491 	 * flag that some firmware may have left set and the TS bit (for
1492 	 * IP27).  Set XX for ISA IV code to work.
1493 	 */
1494 #ifdef CONFIG_64BIT
1495 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1496 #endif
1497 	if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1498 		status_set |= ST0_XX;
1499 	if (cpu_has_dsp)
1500 		status_set |= ST0_MX;
1501 
1502 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1503 			 status_set);
1504 
1505 	if (cpu_has_mips_r2) {
1506 		unsigned int enable = 0x0000000f;
1507 
1508 		if (!noulri && cpu_has_userlocal)
1509 			enable |= (1 << 29);
1510 
1511 		write_c0_hwrena(enable);
1512 	}
1513 
1514 #ifdef CONFIG_CPU_CAVIUM_OCTEON
1515 	write_c0_hwrena(0xc000000f); /* Octeon has register 30 and 31 */
1516 #endif
1517 
1518 #ifdef CONFIG_MIPS_MT_SMTC
1519 	if (!secondaryTC) {
1520 #endif /* CONFIG_MIPS_MT_SMTC */
1521 
1522 	if (cpu_has_veic || cpu_has_vint) {
1523 		write_c0_ebase(ebase);
1524 		/* Setting vector spacing enables EI/VI mode  */
1525 		change_c0_intctl(0x3e0, VECTORSPACING);
1526 	}
1527 	if (cpu_has_divec) {
1528 		if (cpu_has_mipsmt) {
1529 			unsigned int vpflags = dvpe();
1530 			set_c0_cause(CAUSEF_IV);
1531 			evpe(vpflags);
1532 		} else
1533 			set_c0_cause(CAUSEF_IV);
1534 	}
1535 
1536 	/*
1537 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1538 	 *
1539 	 *  o read IntCtl.IPTI to determine the timer interrupt
1540 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
1541 	 */
1542 	if (cpu_has_mips_r2) {
1543 		cp0_compare_irq = (read_c0_intctl() >> 29) & 7;
1544 		cp0_perfcount_irq = (read_c0_intctl() >> 26) & 7;
1545 		if (cp0_perfcount_irq == cp0_compare_irq)
1546 			cp0_perfcount_irq = -1;
1547 	} else {
1548 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1549 		cp0_perfcount_irq = -1;
1550 	}
1551 
1552 #ifdef CONFIG_MIPS_MT_SMTC
1553 	}
1554 #endif /* CONFIG_MIPS_MT_SMTC */
1555 
1556 	cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1557 	TLBMISS_HANDLER_SETUP();
1558 
1559 	atomic_inc(&init_mm.mm_count);
1560 	current->active_mm = &init_mm;
1561 	BUG_ON(current->mm);
1562 	enter_lazy_tlb(&init_mm, current);
1563 
1564 #ifdef CONFIG_MIPS_MT_SMTC
1565 	if (bootTC) {
1566 #endif /* CONFIG_MIPS_MT_SMTC */
1567 		cpu_cache_init();
1568 		tlb_init();
1569 #ifdef CONFIG_MIPS_MT_SMTC
1570 	} else if (!secondaryTC) {
1571 		/*
1572 		 * First TC in non-boot VPE must do subset of tlb_init()
1573 		 * for MMU countrol registers.
1574 		 */
1575 		write_c0_pagemask(PM_DEFAULT_MASK);
1576 		write_c0_wired(0);
1577 	}
1578 #endif /* CONFIG_MIPS_MT_SMTC */
1579 }
1580 
1581 /* Install CPU exception handler */
set_handler(unsigned long offset,void * addr,unsigned long size)1582 void __init set_handler(unsigned long offset, void *addr, unsigned long size)
1583 {
1584 	memcpy((void *)(ebase + offset), addr, size);
1585 	local_flush_icache_range(ebase + offset, ebase + offset + size);
1586 }
1587 
1588 static char panic_null_cerr[] __cpuinitdata =
1589 	"Trying to set NULL cache error exception handler";
1590 
1591 /*
1592  * Install uncached CPU exception handler.
1593  * This is suitable only for the cache error exception which is the only
1594  * exception handler that is being run uncached.
1595  */
set_uncached_handler(unsigned long offset,void * addr,unsigned long size)1596 void __cpuinit set_uncached_handler(unsigned long offset, void *addr,
1597 	unsigned long size)
1598 {
1599 #ifdef CONFIG_32BIT
1600 	unsigned long uncached_ebase = KSEG1ADDR(ebase);
1601 #endif
1602 #ifdef CONFIG_64BIT
1603 	unsigned long uncached_ebase = TO_UNCAC(ebase);
1604 #endif
1605 	if (cpu_has_mips_r2)
1606 		uncached_ebase += (read_c0_ebase() & 0x3ffff000);
1607 
1608 	if (!addr)
1609 		panic(panic_null_cerr);
1610 
1611 	memcpy((void *)(uncached_ebase + offset), addr, size);
1612 }
1613 
1614 static int __initdata rdhwr_noopt;
set_rdhwr_noopt(char * str)1615 static int __init set_rdhwr_noopt(char *str)
1616 {
1617 	rdhwr_noopt = 1;
1618 	return 1;
1619 }
1620 
1621 __setup("rdhwr_noopt", set_rdhwr_noopt);
1622 
trap_init(void)1623 void __init trap_init(void)
1624 {
1625 	extern char except_vec3_generic, except_vec3_r4000;
1626 	extern char except_vec4;
1627 	unsigned long i;
1628 	int rollback;
1629 
1630 	check_wait();
1631 	rollback = (cpu_wait == r4k_wait);
1632 
1633 #if defined(CONFIG_KGDB)
1634 	if (kgdb_early_setup)
1635 		return;	/* Already done */
1636 #endif
1637 
1638 	if (cpu_has_veic || cpu_has_vint)
1639 		ebase = (unsigned long) alloc_bootmem_low_pages(0x200 + VECTORSPACING*64);
1640 	else {
1641 		ebase = CAC_BASE;
1642 		if (cpu_has_mips_r2)
1643 			ebase += (read_c0_ebase() & 0x3ffff000);
1644 	}
1645 
1646 	per_cpu_trap_init();
1647 
1648 	/*
1649 	 * Copy the generic exception handlers to their final destination.
1650 	 * This will be overriden later as suitable for a particular
1651 	 * configuration.
1652 	 */
1653 	set_handler(0x180, &except_vec3_generic, 0x80);
1654 
1655 	/*
1656 	 * Setup default vectors
1657 	 */
1658 	for (i = 0; i <= 31; i++)
1659 		set_except_vector(i, handle_reserved);
1660 
1661 	/*
1662 	 * Copy the EJTAG debug exception vector handler code to it's final
1663 	 * destination.
1664 	 */
1665 	if (cpu_has_ejtag && board_ejtag_handler_setup)
1666 		board_ejtag_handler_setup();
1667 
1668 	/*
1669 	 * Only some CPUs have the watch exceptions.
1670 	 */
1671 	if (cpu_has_watch)
1672 		set_except_vector(23, handle_watch);
1673 
1674 	/*
1675 	 * Initialise interrupt handlers
1676 	 */
1677 	if (cpu_has_veic || cpu_has_vint) {
1678 		int nvec = cpu_has_veic ? 64 : 8;
1679 		for (i = 0; i < nvec; i++)
1680 			set_vi_handler(i, NULL);
1681 	}
1682 	else if (cpu_has_divec)
1683 		set_handler(0x200, &except_vec4, 0x8);
1684 
1685 	/*
1686 	 * Some CPUs can enable/disable for cache parity detection, but does
1687 	 * it different ways.
1688 	 */
1689 	parity_protection_init();
1690 
1691 	/*
1692 	 * The Data Bus Errors / Instruction Bus Errors are signaled
1693 	 * by external hardware.  Therefore these two exceptions
1694 	 * may have board specific handlers.
1695 	 */
1696 	if (board_be_init)
1697 		board_be_init();
1698 
1699 	set_except_vector(0, rollback ? rollback_handle_int : handle_int);
1700 	set_except_vector(1, handle_tlbm);
1701 	set_except_vector(2, handle_tlbl);
1702 	set_except_vector(3, handle_tlbs);
1703 
1704 	set_except_vector(4, handle_adel);
1705 	set_except_vector(5, handle_ades);
1706 
1707 	set_except_vector(6, handle_ibe);
1708 	set_except_vector(7, handle_dbe);
1709 
1710 	set_except_vector(8, handle_sys);
1711 	set_except_vector(9, handle_bp);
1712 	set_except_vector(10, rdhwr_noopt ? handle_ri :
1713 			  (cpu_has_vtag_icache ?
1714 			   handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1715 	set_except_vector(11, handle_cpu);
1716 	set_except_vector(12, handle_ov);
1717 	set_except_vector(13, handle_tr);
1718 
1719 	if (current_cpu_type() == CPU_R6000 ||
1720 	    current_cpu_type() == CPU_R6000A) {
1721 		/*
1722 		 * The R6000 is the only R-series CPU that features a machine
1723 		 * check exception (similar to the R4000 cache error) and
1724 		 * unaligned ldc1/sdc1 exception.  The handlers have not been
1725 		 * written yet.  Well, anyway there is no R6000 machine on the
1726 		 * current list of targets for Linux/MIPS.
1727 		 * (Duh, crap, there is someone with a triple R6k machine)
1728 		 */
1729 		//set_except_vector(14, handle_mc);
1730 		//set_except_vector(15, handle_ndc);
1731 	}
1732 
1733 
1734 	if (board_nmi_handler_setup)
1735 		board_nmi_handler_setup();
1736 
1737 	if (cpu_has_fpu && !cpu_has_nofpuex)
1738 		set_except_vector(15, handle_fpe);
1739 
1740 	set_except_vector(22, handle_mdmx);
1741 
1742 	if (cpu_has_mcheck)
1743 		set_except_vector(24, handle_mcheck);
1744 
1745 	if (cpu_has_mipsmt)
1746 		set_except_vector(25, handle_mt);
1747 
1748 	set_except_vector(26, handle_dsp);
1749 
1750 	if (cpu_has_vce)
1751 		/* Special exception: R4[04]00 uses also the divec space. */
1752 		memcpy((void *)(ebase + 0x180), &except_vec3_r4000, 0x100);
1753 	else if (cpu_has_4kex)
1754 		memcpy((void *)(ebase + 0x180), &except_vec3_generic, 0x80);
1755 	else
1756 		memcpy((void *)(ebase + 0x080), &except_vec3_generic, 0x80);
1757 
1758 	signal_init();
1759 #ifdef CONFIG_MIPS32_COMPAT
1760 	signal32_init();
1761 #endif
1762 
1763 	local_flush_icache_range(ebase, ebase + 0x400);
1764 	flush_tlb_handlers();
1765 
1766 	sort_extable(__start___dbe_table, __stop___dbe_table);
1767 }
1768