1 /*
2 * Copyright (C) International Business Machines Corp., 2000-2004
3 * Portions Copyright (C) Christoph Hellwig, 2001-2002
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 /*
21 * jfs_logmgr.c: log manager
22 *
23 * for related information, see transaction manager (jfs_txnmgr.c), and
24 * recovery manager (jfs_logredo.c).
25 *
26 * note: for detail, RTFS.
27 *
28 * log buffer manager:
29 * special purpose buffer manager supporting log i/o requirements.
30 * per log serial pageout of logpage
31 * queuing i/o requests and redrive i/o at iodone
32 * maintain current logpage buffer
33 * no caching since append only
34 * appropriate jfs buffer cache buffers as needed
35 *
36 * group commit:
37 * transactions which wrote COMMIT records in the same in-memory
38 * log page during the pageout of previous/current log page(s) are
39 * committed together by the pageout of the page.
40 *
41 * TBD lazy commit:
42 * transactions are committed asynchronously when the log page
43 * containing it COMMIT is paged out when it becomes full;
44 *
45 * serialization:
46 * . a per log lock serialize log write.
47 * . a per log lock serialize group commit.
48 * . a per log lock serialize log open/close;
49 *
50 * TBD log integrity:
51 * careful-write (ping-pong) of last logpage to recover from crash
52 * in overwrite.
53 * detection of split (out-of-order) write of physical sectors
54 * of last logpage via timestamp at end of each sector
55 * with its mirror data array at trailer).
56 *
57 * alternatives:
58 * lsn - 64-bit monotonically increasing integer vs
59 * 32-bit lspn and page eor.
60 */
61
62 #include <linux/fs.h>
63 #include <linux/blkdev.h>
64 #include <linux/interrupt.h>
65 #include <linux/completion.h>
66 #include <linux/kthread.h>
67 #include <linux/buffer_head.h> /* for sync_blockdev() */
68 #include <linux/bio.h>
69 #include <linux/freezer.h>
70 #include <linux/delay.h>
71 #include <linux/mutex.h>
72 #include <linux/seq_file.h>
73 #include "jfs_incore.h"
74 #include "jfs_filsys.h"
75 #include "jfs_metapage.h"
76 #include "jfs_superblock.h"
77 #include "jfs_txnmgr.h"
78 #include "jfs_debug.h"
79
80
81 /*
82 * lbuf's ready to be redriven. Protected by log_redrive_lock (jfsIO thread)
83 */
84 static struct lbuf *log_redrive_list;
85 static DEFINE_SPINLOCK(log_redrive_lock);
86
87
88 /*
89 * log read/write serialization (per log)
90 */
91 #define LOG_LOCK_INIT(log) mutex_init(&(log)->loglock)
92 #define LOG_LOCK(log) mutex_lock(&((log)->loglock))
93 #define LOG_UNLOCK(log) mutex_unlock(&((log)->loglock))
94
95
96 /*
97 * log group commit serialization (per log)
98 */
99
100 #define LOGGC_LOCK_INIT(log) spin_lock_init(&(log)->gclock)
101 #define LOGGC_LOCK(log) spin_lock_irq(&(log)->gclock)
102 #define LOGGC_UNLOCK(log) spin_unlock_irq(&(log)->gclock)
103 #define LOGGC_WAKEUP(tblk) wake_up_all(&(tblk)->gcwait)
104
105 /*
106 * log sync serialization (per log)
107 */
108 #define LOGSYNC_DELTA(logsize) min((logsize)/8, 128*LOGPSIZE)
109 #define LOGSYNC_BARRIER(logsize) ((logsize)/4)
110 /*
111 #define LOGSYNC_DELTA(logsize) min((logsize)/4, 256*LOGPSIZE)
112 #define LOGSYNC_BARRIER(logsize) ((logsize)/2)
113 */
114
115
116 /*
117 * log buffer cache synchronization
118 */
119 static DEFINE_SPINLOCK(jfsLCacheLock);
120
121 #define LCACHE_LOCK(flags) spin_lock_irqsave(&jfsLCacheLock, flags)
122 #define LCACHE_UNLOCK(flags) spin_unlock_irqrestore(&jfsLCacheLock, flags)
123
124 /*
125 * See __SLEEP_COND in jfs_locks.h
126 */
127 #define LCACHE_SLEEP_COND(wq, cond, flags) \
128 do { \
129 if (cond) \
130 break; \
131 __SLEEP_COND(wq, cond, LCACHE_LOCK(flags), LCACHE_UNLOCK(flags)); \
132 } while (0)
133
134 #define LCACHE_WAKEUP(event) wake_up(event)
135
136
137 /*
138 * lbuf buffer cache (lCache) control
139 */
140 /* log buffer manager pageout control (cumulative, inclusive) */
141 #define lbmREAD 0x0001
142 #define lbmWRITE 0x0002 /* enqueue at tail of write queue;
143 * init pageout if at head of queue;
144 */
145 #define lbmRELEASE 0x0004 /* remove from write queue
146 * at completion of pageout;
147 * do not free/recycle it yet:
148 * caller will free it;
149 */
150 #define lbmSYNC 0x0008 /* do not return to freelist
151 * when removed from write queue;
152 */
153 #define lbmFREE 0x0010 /* return to freelist
154 * at completion of pageout;
155 * the buffer may be recycled;
156 */
157 #define lbmDONE 0x0020
158 #define lbmERROR 0x0040
159 #define lbmGC 0x0080 /* lbmIODone to perform post-GC processing
160 * of log page
161 */
162 #define lbmDIRECT 0x0100
163
164 /*
165 * Global list of active external journals
166 */
167 static LIST_HEAD(jfs_external_logs);
168 static struct jfs_log *dummy_log = NULL;
169 static DEFINE_MUTEX(jfs_log_mutex);
170
171 /*
172 * forward references
173 */
174 static int lmWriteRecord(struct jfs_log * log, struct tblock * tblk,
175 struct lrd * lrd, struct tlock * tlck);
176
177 static int lmNextPage(struct jfs_log * log);
178 static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi,
179 int activate);
180
181 static int open_inline_log(struct super_block *sb);
182 static int open_dummy_log(struct super_block *sb);
183 static int lbmLogInit(struct jfs_log * log);
184 static void lbmLogShutdown(struct jfs_log * log);
185 static struct lbuf *lbmAllocate(struct jfs_log * log, int);
186 static void lbmFree(struct lbuf * bp);
187 static void lbmfree(struct lbuf * bp);
188 static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp);
189 static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag, int cant_block);
190 static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag);
191 static int lbmIOWait(struct lbuf * bp, int flag);
192 static bio_end_io_t lbmIODone;
193 static void lbmStartIO(struct lbuf * bp);
194 static void lmGCwrite(struct jfs_log * log, int cant_block);
195 static int lmLogSync(struct jfs_log * log, int hard_sync);
196
197
198
199 /*
200 * statistics
201 */
202 #ifdef CONFIG_JFS_STATISTICS
203 static struct lmStat {
204 uint commit; /* # of commit */
205 uint pagedone; /* # of page written */
206 uint submitted; /* # of pages submitted */
207 uint full_page; /* # of full pages submitted */
208 uint partial_page; /* # of partial pages submitted */
209 } lmStat;
210 #endif
211
write_special_inodes(struct jfs_log * log,int (* writer)(struct address_space *))212 static void write_special_inodes(struct jfs_log *log,
213 int (*writer)(struct address_space *))
214 {
215 struct jfs_sb_info *sbi;
216
217 list_for_each_entry(sbi, &log->sb_list, log_list) {
218 writer(sbi->ipbmap->i_mapping);
219 writer(sbi->ipimap->i_mapping);
220 writer(sbi->direct_inode->i_mapping);
221 }
222 }
223
224 /*
225 * NAME: lmLog()
226 *
227 * FUNCTION: write a log record;
228 *
229 * PARAMETER:
230 *
231 * RETURN: lsn - offset to the next log record to write (end-of-log);
232 * -1 - error;
233 *
234 * note: todo: log error handler
235 */
lmLog(struct jfs_log * log,struct tblock * tblk,struct lrd * lrd,struct tlock * tlck)236 int lmLog(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd,
237 struct tlock * tlck)
238 {
239 int lsn;
240 int diffp, difft;
241 struct metapage *mp = NULL;
242 unsigned long flags;
243
244 jfs_info("lmLog: log:0x%p tblk:0x%p, lrd:0x%p tlck:0x%p",
245 log, tblk, lrd, tlck);
246
247 LOG_LOCK(log);
248
249 /* log by (out-of-transaction) JFS ? */
250 if (tblk == NULL)
251 goto writeRecord;
252
253 /* log from page ? */
254 if (tlck == NULL ||
255 tlck->type & tlckBTROOT || (mp = tlck->mp) == NULL)
256 goto writeRecord;
257
258 /*
259 * initialize/update page/transaction recovery lsn
260 */
261 lsn = log->lsn;
262
263 LOGSYNC_LOCK(log, flags);
264
265 /*
266 * initialize page lsn if first log write of the page
267 */
268 if (mp->lsn == 0) {
269 mp->log = log;
270 mp->lsn = lsn;
271 log->count++;
272
273 /* insert page at tail of logsynclist */
274 list_add_tail(&mp->synclist, &log->synclist);
275 }
276
277 /*
278 * initialize/update lsn of tblock of the page
279 *
280 * transaction inherits oldest lsn of pages associated
281 * with allocation/deallocation of resources (their
282 * log records are used to reconstruct allocation map
283 * at recovery time: inode for inode allocation map,
284 * B+-tree index of extent descriptors for block
285 * allocation map);
286 * allocation map pages inherit transaction lsn at
287 * commit time to allow forwarding log syncpt past log
288 * records associated with allocation/deallocation of
289 * resources only after persistent map of these map pages
290 * have been updated and propagated to home.
291 */
292 /*
293 * initialize transaction lsn:
294 */
295 if (tblk->lsn == 0) {
296 /* inherit lsn of its first page logged */
297 tblk->lsn = mp->lsn;
298 log->count++;
299
300 /* insert tblock after the page on logsynclist */
301 list_add(&tblk->synclist, &mp->synclist);
302 }
303 /*
304 * update transaction lsn:
305 */
306 else {
307 /* inherit oldest/smallest lsn of page */
308 logdiff(diffp, mp->lsn, log);
309 logdiff(difft, tblk->lsn, log);
310 if (diffp < difft) {
311 /* update tblock lsn with page lsn */
312 tblk->lsn = mp->lsn;
313
314 /* move tblock after page on logsynclist */
315 list_move(&tblk->synclist, &mp->synclist);
316 }
317 }
318
319 LOGSYNC_UNLOCK(log, flags);
320
321 /*
322 * write the log record
323 */
324 writeRecord:
325 lsn = lmWriteRecord(log, tblk, lrd, tlck);
326
327 /*
328 * forward log syncpt if log reached next syncpt trigger
329 */
330 logdiff(diffp, lsn, log);
331 if (diffp >= log->nextsync)
332 lsn = lmLogSync(log, 0);
333
334 /* update end-of-log lsn */
335 log->lsn = lsn;
336
337 LOG_UNLOCK(log);
338
339 /* return end-of-log address */
340 return lsn;
341 }
342
343 /*
344 * NAME: lmWriteRecord()
345 *
346 * FUNCTION: move the log record to current log page
347 *
348 * PARAMETER: cd - commit descriptor
349 *
350 * RETURN: end-of-log address
351 *
352 * serialization: LOG_LOCK() held on entry/exit
353 */
354 static int
lmWriteRecord(struct jfs_log * log,struct tblock * tblk,struct lrd * lrd,struct tlock * tlck)355 lmWriteRecord(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd,
356 struct tlock * tlck)
357 {
358 int lsn = 0; /* end-of-log address */
359 struct lbuf *bp; /* dst log page buffer */
360 struct logpage *lp; /* dst log page */
361 caddr_t dst; /* destination address in log page */
362 int dstoffset; /* end-of-log offset in log page */
363 int freespace; /* free space in log page */
364 caddr_t p; /* src meta-data page */
365 caddr_t src;
366 int srclen;
367 int nbytes; /* number of bytes to move */
368 int i;
369 int len;
370 struct linelock *linelock;
371 struct lv *lv;
372 struct lvd *lvd;
373 int l2linesize;
374
375 len = 0;
376
377 /* retrieve destination log page to write */
378 bp = (struct lbuf *) log->bp;
379 lp = (struct logpage *) bp->l_ldata;
380 dstoffset = log->eor;
381
382 /* any log data to write ? */
383 if (tlck == NULL)
384 goto moveLrd;
385
386 /*
387 * move log record data
388 */
389 /* retrieve source meta-data page to log */
390 if (tlck->flag & tlckPAGELOCK) {
391 p = (caddr_t) (tlck->mp->data);
392 linelock = (struct linelock *) & tlck->lock;
393 }
394 /* retrieve source in-memory inode to log */
395 else if (tlck->flag & tlckINODELOCK) {
396 if (tlck->type & tlckDTREE)
397 p = (caddr_t) &JFS_IP(tlck->ip)->i_dtroot;
398 else
399 p = (caddr_t) &JFS_IP(tlck->ip)->i_xtroot;
400 linelock = (struct linelock *) & tlck->lock;
401 }
402 #ifdef _JFS_WIP
403 else if (tlck->flag & tlckINLINELOCK) {
404
405 inlinelock = (struct inlinelock *) & tlck;
406 p = (caddr_t) & inlinelock->pxd;
407 linelock = (struct linelock *) & tlck;
408 }
409 #endif /* _JFS_WIP */
410 else {
411 jfs_err("lmWriteRecord: UFO tlck:0x%p", tlck);
412 return 0; /* Probably should trap */
413 }
414 l2linesize = linelock->l2linesize;
415
416 moveData:
417 ASSERT(linelock->index <= linelock->maxcnt);
418
419 lv = linelock->lv;
420 for (i = 0; i < linelock->index; i++, lv++) {
421 if (lv->length == 0)
422 continue;
423
424 /* is page full ? */
425 if (dstoffset >= LOGPSIZE - LOGPTLRSIZE) {
426 /* page become full: move on to next page */
427 lmNextPage(log);
428
429 bp = log->bp;
430 lp = (struct logpage *) bp->l_ldata;
431 dstoffset = LOGPHDRSIZE;
432 }
433
434 /*
435 * move log vector data
436 */
437 src = (u8 *) p + (lv->offset << l2linesize);
438 srclen = lv->length << l2linesize;
439 len += srclen;
440 while (srclen > 0) {
441 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset;
442 nbytes = min(freespace, srclen);
443 dst = (caddr_t) lp + dstoffset;
444 memcpy(dst, src, nbytes);
445 dstoffset += nbytes;
446
447 /* is page not full ? */
448 if (dstoffset < LOGPSIZE - LOGPTLRSIZE)
449 break;
450
451 /* page become full: move on to next page */
452 lmNextPage(log);
453
454 bp = (struct lbuf *) log->bp;
455 lp = (struct logpage *) bp->l_ldata;
456 dstoffset = LOGPHDRSIZE;
457
458 srclen -= nbytes;
459 src += nbytes;
460 }
461
462 /*
463 * move log vector descriptor
464 */
465 len += 4;
466 lvd = (struct lvd *) ((caddr_t) lp + dstoffset);
467 lvd->offset = cpu_to_le16(lv->offset);
468 lvd->length = cpu_to_le16(lv->length);
469 dstoffset += 4;
470 jfs_info("lmWriteRecord: lv offset:%d length:%d",
471 lv->offset, lv->length);
472 }
473
474 if ((i = linelock->next)) {
475 linelock = (struct linelock *) lid_to_tlock(i);
476 goto moveData;
477 }
478
479 /*
480 * move log record descriptor
481 */
482 moveLrd:
483 lrd->length = cpu_to_le16(len);
484
485 src = (caddr_t) lrd;
486 srclen = LOGRDSIZE;
487
488 while (srclen > 0) {
489 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset;
490 nbytes = min(freespace, srclen);
491 dst = (caddr_t) lp + dstoffset;
492 memcpy(dst, src, nbytes);
493
494 dstoffset += nbytes;
495 srclen -= nbytes;
496
497 /* are there more to move than freespace of page ? */
498 if (srclen)
499 goto pageFull;
500
501 /*
502 * end of log record descriptor
503 */
504
505 /* update last log record eor */
506 log->eor = dstoffset;
507 bp->l_eor = dstoffset;
508 lsn = (log->page << L2LOGPSIZE) + dstoffset;
509
510 if (lrd->type & cpu_to_le16(LOG_COMMIT)) {
511 tblk->clsn = lsn;
512 jfs_info("wr: tclsn:0x%x, beor:0x%x", tblk->clsn,
513 bp->l_eor);
514
515 INCREMENT(lmStat.commit); /* # of commit */
516
517 /*
518 * enqueue tblock for group commit:
519 *
520 * enqueue tblock of non-trivial/synchronous COMMIT
521 * at tail of group commit queue
522 * (trivial/asynchronous COMMITs are ignored by
523 * group commit.)
524 */
525 LOGGC_LOCK(log);
526
527 /* init tblock gc state */
528 tblk->flag = tblkGC_QUEUE;
529 tblk->bp = log->bp;
530 tblk->pn = log->page;
531 tblk->eor = log->eor;
532
533 /* enqueue transaction to commit queue */
534 list_add_tail(&tblk->cqueue, &log->cqueue);
535
536 LOGGC_UNLOCK(log);
537 }
538
539 jfs_info("lmWriteRecord: lrd:0x%04x bp:0x%p pn:%d eor:0x%x",
540 le16_to_cpu(lrd->type), log->bp, log->page, dstoffset);
541
542 /* page not full ? */
543 if (dstoffset < LOGPSIZE - LOGPTLRSIZE)
544 return lsn;
545
546 pageFull:
547 /* page become full: move on to next page */
548 lmNextPage(log);
549
550 bp = (struct lbuf *) log->bp;
551 lp = (struct logpage *) bp->l_ldata;
552 dstoffset = LOGPHDRSIZE;
553 src += nbytes;
554 }
555
556 return lsn;
557 }
558
559
560 /*
561 * NAME: lmNextPage()
562 *
563 * FUNCTION: write current page and allocate next page.
564 *
565 * PARAMETER: log
566 *
567 * RETURN: 0
568 *
569 * serialization: LOG_LOCK() held on entry/exit
570 */
lmNextPage(struct jfs_log * log)571 static int lmNextPage(struct jfs_log * log)
572 {
573 struct logpage *lp;
574 int lspn; /* log sequence page number */
575 int pn; /* current page number */
576 struct lbuf *bp;
577 struct lbuf *nextbp;
578 struct tblock *tblk;
579
580 /* get current log page number and log sequence page number */
581 pn = log->page;
582 bp = log->bp;
583 lp = (struct logpage *) bp->l_ldata;
584 lspn = le32_to_cpu(lp->h.page);
585
586 LOGGC_LOCK(log);
587
588 /*
589 * write or queue the full page at the tail of write queue
590 */
591 /* get the tail tblk on commit queue */
592 if (list_empty(&log->cqueue))
593 tblk = NULL;
594 else
595 tblk = list_entry(log->cqueue.prev, struct tblock, cqueue);
596
597 /* every tblk who has COMMIT record on the current page,
598 * and has not been committed, must be on commit queue
599 * since tblk is queued at commit queueu at the time
600 * of writing its COMMIT record on the page before
601 * page becomes full (even though the tblk thread
602 * who wrote COMMIT record may have been suspended
603 * currently);
604 */
605
606 /* is page bound with outstanding tail tblk ? */
607 if (tblk && tblk->pn == pn) {
608 /* mark tblk for end-of-page */
609 tblk->flag |= tblkGC_EOP;
610
611 if (log->cflag & logGC_PAGEOUT) {
612 /* if page is not already on write queue,
613 * just enqueue (no lbmWRITE to prevent redrive)
614 * buffer to wqueue to ensure correct serial order
615 * of the pages since log pages will be added
616 * continuously
617 */
618 if (bp->l_wqnext == NULL)
619 lbmWrite(log, bp, 0, 0);
620 } else {
621 /*
622 * No current GC leader, initiate group commit
623 */
624 log->cflag |= logGC_PAGEOUT;
625 lmGCwrite(log, 0);
626 }
627 }
628 /* page is not bound with outstanding tblk:
629 * init write or mark it to be redriven (lbmWRITE)
630 */
631 else {
632 /* finalize the page */
633 bp->l_ceor = bp->l_eor;
634 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
635 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE, 0);
636 }
637 LOGGC_UNLOCK(log);
638
639 /*
640 * allocate/initialize next page
641 */
642 /* if log wraps, the first data page of log is 2
643 * (0 never used, 1 is superblock).
644 */
645 log->page = (pn == log->size - 1) ? 2 : pn + 1;
646 log->eor = LOGPHDRSIZE; /* ? valid page empty/full at logRedo() */
647
648 /* allocate/initialize next log page buffer */
649 nextbp = lbmAllocate(log, log->page);
650 nextbp->l_eor = log->eor;
651 log->bp = nextbp;
652
653 /* initialize next log page */
654 lp = (struct logpage *) nextbp->l_ldata;
655 lp->h.page = lp->t.page = cpu_to_le32(lspn + 1);
656 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE);
657
658 return 0;
659 }
660
661
662 /*
663 * NAME: lmGroupCommit()
664 *
665 * FUNCTION: group commit
666 * initiate pageout of the pages with COMMIT in the order of
667 * page number - redrive pageout of the page at the head of
668 * pageout queue until full page has been written.
669 *
670 * RETURN:
671 *
672 * NOTE:
673 * LOGGC_LOCK serializes log group commit queue, and
674 * transaction blocks on the commit queue.
675 * N.B. LOG_LOCK is NOT held during lmGroupCommit().
676 */
lmGroupCommit(struct jfs_log * log,struct tblock * tblk)677 int lmGroupCommit(struct jfs_log * log, struct tblock * tblk)
678 {
679 int rc = 0;
680
681 LOGGC_LOCK(log);
682
683 /* group committed already ? */
684 if (tblk->flag & tblkGC_COMMITTED) {
685 if (tblk->flag & tblkGC_ERROR)
686 rc = -EIO;
687
688 LOGGC_UNLOCK(log);
689 return rc;
690 }
691 jfs_info("lmGroup Commit: tblk = 0x%p, gcrtc = %d", tblk, log->gcrtc);
692
693 if (tblk->xflag & COMMIT_LAZY)
694 tblk->flag |= tblkGC_LAZY;
695
696 if ((!(log->cflag & logGC_PAGEOUT)) && (!list_empty(&log->cqueue)) &&
697 (!(tblk->xflag & COMMIT_LAZY) || test_bit(log_FLUSH, &log->flag)
698 || jfs_tlocks_low)) {
699 /*
700 * No pageout in progress
701 *
702 * start group commit as its group leader.
703 */
704 log->cflag |= logGC_PAGEOUT;
705
706 lmGCwrite(log, 0);
707 }
708
709 if (tblk->xflag & COMMIT_LAZY) {
710 /*
711 * Lazy transactions can leave now
712 */
713 LOGGC_UNLOCK(log);
714 return 0;
715 }
716
717 /* lmGCwrite gives up LOGGC_LOCK, check again */
718
719 if (tblk->flag & tblkGC_COMMITTED) {
720 if (tblk->flag & tblkGC_ERROR)
721 rc = -EIO;
722
723 LOGGC_UNLOCK(log);
724 return rc;
725 }
726
727 /* upcount transaction waiting for completion
728 */
729 log->gcrtc++;
730 tblk->flag |= tblkGC_READY;
731
732 __SLEEP_COND(tblk->gcwait, (tblk->flag & tblkGC_COMMITTED),
733 LOGGC_LOCK(log), LOGGC_UNLOCK(log));
734
735 /* removed from commit queue */
736 if (tblk->flag & tblkGC_ERROR)
737 rc = -EIO;
738
739 LOGGC_UNLOCK(log);
740 return rc;
741 }
742
743 /*
744 * NAME: lmGCwrite()
745 *
746 * FUNCTION: group commit write
747 * initiate write of log page, building a group of all transactions
748 * with commit records on that page.
749 *
750 * RETURN: None
751 *
752 * NOTE:
753 * LOGGC_LOCK must be held by caller.
754 * N.B. LOG_LOCK is NOT held during lmGroupCommit().
755 */
lmGCwrite(struct jfs_log * log,int cant_write)756 static void lmGCwrite(struct jfs_log * log, int cant_write)
757 {
758 struct lbuf *bp;
759 struct logpage *lp;
760 int gcpn; /* group commit page number */
761 struct tblock *tblk;
762 struct tblock *xtblk = NULL;
763
764 /*
765 * build the commit group of a log page
766 *
767 * scan commit queue and make a commit group of all
768 * transactions with COMMIT records on the same log page.
769 */
770 /* get the head tblk on the commit queue */
771 gcpn = list_entry(log->cqueue.next, struct tblock, cqueue)->pn;
772
773 list_for_each_entry(tblk, &log->cqueue, cqueue) {
774 if (tblk->pn != gcpn)
775 break;
776
777 xtblk = tblk;
778
779 /* state transition: (QUEUE, READY) -> COMMIT */
780 tblk->flag |= tblkGC_COMMIT;
781 }
782 tblk = xtblk; /* last tblk of the page */
783
784 /*
785 * pageout to commit transactions on the log page.
786 */
787 bp = (struct lbuf *) tblk->bp;
788 lp = (struct logpage *) bp->l_ldata;
789 /* is page already full ? */
790 if (tblk->flag & tblkGC_EOP) {
791 /* mark page to free at end of group commit of the page */
792 tblk->flag &= ~tblkGC_EOP;
793 tblk->flag |= tblkGC_FREE;
794 bp->l_ceor = bp->l_eor;
795 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
796 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmGC,
797 cant_write);
798 INCREMENT(lmStat.full_page);
799 }
800 /* page is not yet full */
801 else {
802 bp->l_ceor = tblk->eor; /* ? bp->l_ceor = bp->l_eor; */
803 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
804 lbmWrite(log, bp, lbmWRITE | lbmGC, cant_write);
805 INCREMENT(lmStat.partial_page);
806 }
807 }
808
809 /*
810 * NAME: lmPostGC()
811 *
812 * FUNCTION: group commit post-processing
813 * Processes transactions after their commit records have been written
814 * to disk, redriving log I/O if necessary.
815 *
816 * RETURN: None
817 *
818 * NOTE:
819 * This routine is called a interrupt time by lbmIODone
820 */
lmPostGC(struct lbuf * bp)821 static void lmPostGC(struct lbuf * bp)
822 {
823 unsigned long flags;
824 struct jfs_log *log = bp->l_log;
825 struct logpage *lp;
826 struct tblock *tblk, *temp;
827
828 //LOGGC_LOCK(log);
829 spin_lock_irqsave(&log->gclock, flags);
830 /*
831 * current pageout of group commit completed.
832 *
833 * remove/wakeup transactions from commit queue who were
834 * group committed with the current log page
835 */
836 list_for_each_entry_safe(tblk, temp, &log->cqueue, cqueue) {
837 if (!(tblk->flag & tblkGC_COMMIT))
838 break;
839 /* if transaction was marked GC_COMMIT then
840 * it has been shipped in the current pageout
841 * and made it to disk - it is committed.
842 */
843
844 if (bp->l_flag & lbmERROR)
845 tblk->flag |= tblkGC_ERROR;
846
847 /* remove it from the commit queue */
848 list_del(&tblk->cqueue);
849 tblk->flag &= ~tblkGC_QUEUE;
850
851 if (tblk == log->flush_tblk) {
852 /* we can stop flushing the log now */
853 clear_bit(log_FLUSH, &log->flag);
854 log->flush_tblk = NULL;
855 }
856
857 jfs_info("lmPostGC: tblk = 0x%p, flag = 0x%x", tblk,
858 tblk->flag);
859
860 if (!(tblk->xflag & COMMIT_FORCE))
861 /*
862 * Hand tblk over to lazy commit thread
863 */
864 txLazyUnlock(tblk);
865 else {
866 /* state transition: COMMIT -> COMMITTED */
867 tblk->flag |= tblkGC_COMMITTED;
868
869 if (tblk->flag & tblkGC_READY)
870 log->gcrtc--;
871
872 LOGGC_WAKEUP(tblk);
873 }
874
875 /* was page full before pageout ?
876 * (and this is the last tblk bound with the page)
877 */
878 if (tblk->flag & tblkGC_FREE)
879 lbmFree(bp);
880 /* did page become full after pageout ?
881 * (and this is the last tblk bound with the page)
882 */
883 else if (tblk->flag & tblkGC_EOP) {
884 /* finalize the page */
885 lp = (struct logpage *) bp->l_ldata;
886 bp->l_ceor = bp->l_eor;
887 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
888 jfs_info("lmPostGC: calling lbmWrite");
889 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE,
890 1);
891 }
892
893 }
894
895 /* are there any transactions who have entered lnGroupCommit()
896 * (whose COMMITs are after that of the last log page written.
897 * They are waiting for new group commit (above at (SLEEP 1))
898 * or lazy transactions are on a full (queued) log page,
899 * select the latest ready transaction as new group leader and
900 * wake her up to lead her group.
901 */
902 if ((!list_empty(&log->cqueue)) &&
903 ((log->gcrtc > 0) || (tblk->bp->l_wqnext != NULL) ||
904 test_bit(log_FLUSH, &log->flag) || jfs_tlocks_low))
905 /*
906 * Call lmGCwrite with new group leader
907 */
908 lmGCwrite(log, 1);
909
910 /* no transaction are ready yet (transactions are only just
911 * queued (GC_QUEUE) and not entered for group commit yet).
912 * the first transaction entering group commit
913 * will elect herself as new group leader.
914 */
915 else
916 log->cflag &= ~logGC_PAGEOUT;
917
918 //LOGGC_UNLOCK(log);
919 spin_unlock_irqrestore(&log->gclock, flags);
920 return;
921 }
922
923 /*
924 * NAME: lmLogSync()
925 *
926 * FUNCTION: write log SYNCPT record for specified log
927 * if new sync address is available
928 * (normally the case if sync() is executed by back-ground
929 * process).
930 * calculate new value of i_nextsync which determines when
931 * this code is called again.
932 *
933 * PARAMETERS: log - log structure
934 * hard_sync - 1 to force all metadata to be written
935 *
936 * RETURN: 0
937 *
938 * serialization: LOG_LOCK() held on entry/exit
939 */
lmLogSync(struct jfs_log * log,int hard_sync)940 static int lmLogSync(struct jfs_log * log, int hard_sync)
941 {
942 int logsize;
943 int written; /* written since last syncpt */
944 int free; /* free space left available */
945 int delta; /* additional delta to write normally */
946 int more; /* additional write granted */
947 struct lrd lrd;
948 int lsn;
949 struct logsyncblk *lp;
950 unsigned long flags;
951
952 /* push dirty metapages out to disk */
953 if (hard_sync)
954 write_special_inodes(log, filemap_fdatawrite);
955 else
956 write_special_inodes(log, filemap_flush);
957
958 /*
959 * forward syncpt
960 */
961 /* if last sync is same as last syncpt,
962 * invoke sync point forward processing to update sync.
963 */
964
965 if (log->sync == log->syncpt) {
966 LOGSYNC_LOCK(log, flags);
967 if (list_empty(&log->synclist))
968 log->sync = log->lsn;
969 else {
970 lp = list_entry(log->synclist.next,
971 struct logsyncblk, synclist);
972 log->sync = lp->lsn;
973 }
974 LOGSYNC_UNLOCK(log, flags);
975
976 }
977
978 /* if sync is different from last syncpt,
979 * write a SYNCPT record with syncpt = sync.
980 * reset syncpt = sync
981 */
982 if (log->sync != log->syncpt) {
983 lrd.logtid = 0;
984 lrd.backchain = 0;
985 lrd.type = cpu_to_le16(LOG_SYNCPT);
986 lrd.length = 0;
987 lrd.log.syncpt.sync = cpu_to_le32(log->sync);
988 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
989
990 log->syncpt = log->sync;
991 } else
992 lsn = log->lsn;
993
994 /*
995 * setup next syncpt trigger (SWAG)
996 */
997 logsize = log->logsize;
998
999 logdiff(written, lsn, log);
1000 free = logsize - written;
1001 delta = LOGSYNC_DELTA(logsize);
1002 more = min(free / 2, delta);
1003 if (more < 2 * LOGPSIZE) {
1004 jfs_warn("\n ... Log Wrap ... Log Wrap ... Log Wrap ...\n");
1005 /*
1006 * log wrapping
1007 *
1008 * option 1 - panic ? No.!
1009 * option 2 - shutdown file systems
1010 * associated with log ?
1011 * option 3 - extend log ?
1012 */
1013 /*
1014 * option 4 - second chance
1015 *
1016 * mark log wrapped, and continue.
1017 * when all active transactions are completed,
1018 * mark log vaild for recovery.
1019 * if crashed during invalid state, log state
1020 * implies invald log, forcing fsck().
1021 */
1022 /* mark log state log wrap in log superblock */
1023 /* log->state = LOGWRAP; */
1024
1025 /* reset sync point computation */
1026 log->syncpt = log->sync = lsn;
1027 log->nextsync = delta;
1028 } else
1029 /* next syncpt trigger = written + more */
1030 log->nextsync = written + more;
1031
1032 /* if number of bytes written from last sync point is more
1033 * than 1/4 of the log size, stop new transactions from
1034 * starting until all current transactions are completed
1035 * by setting syncbarrier flag.
1036 */
1037 if (!test_bit(log_SYNCBARRIER, &log->flag) &&
1038 (written > LOGSYNC_BARRIER(logsize)) && log->active) {
1039 set_bit(log_SYNCBARRIER, &log->flag);
1040 jfs_info("log barrier on: lsn=0x%x syncpt=0x%x", lsn,
1041 log->syncpt);
1042 /*
1043 * We may have to initiate group commit
1044 */
1045 jfs_flush_journal(log, 0);
1046 }
1047
1048 return lsn;
1049 }
1050
1051 /*
1052 * NAME: jfs_syncpt
1053 *
1054 * FUNCTION: write log SYNCPT record for specified log
1055 *
1056 * PARAMETERS: log - log structure
1057 * hard_sync - set to 1 to force metadata to be written
1058 */
jfs_syncpt(struct jfs_log * log,int hard_sync)1059 void jfs_syncpt(struct jfs_log *log, int hard_sync)
1060 { LOG_LOCK(log);
1061 lmLogSync(log, hard_sync);
1062 LOG_UNLOCK(log);
1063 }
1064
1065 /*
1066 * NAME: lmLogOpen()
1067 *
1068 * FUNCTION: open the log on first open;
1069 * insert filesystem in the active list of the log.
1070 *
1071 * PARAMETER: ipmnt - file system mount inode
1072 * iplog - log inode (out)
1073 *
1074 * RETURN:
1075 *
1076 * serialization:
1077 */
lmLogOpen(struct super_block * sb)1078 int lmLogOpen(struct super_block *sb)
1079 {
1080 int rc;
1081 struct block_device *bdev;
1082 struct jfs_log *log;
1083 struct jfs_sb_info *sbi = JFS_SBI(sb);
1084
1085 if (sbi->flag & JFS_NOINTEGRITY)
1086 return open_dummy_log(sb);
1087
1088 if (sbi->mntflag & JFS_INLINELOG)
1089 return open_inline_log(sb);
1090
1091 mutex_lock(&jfs_log_mutex);
1092 list_for_each_entry(log, &jfs_external_logs, journal_list) {
1093 if (log->bdev->bd_dev == sbi->logdev) {
1094 if (memcmp(log->uuid, sbi->loguuid,
1095 sizeof(log->uuid))) {
1096 jfs_warn("wrong uuid on JFS journal\n");
1097 mutex_unlock(&jfs_log_mutex);
1098 return -EINVAL;
1099 }
1100 /*
1101 * add file system to log active file system list
1102 */
1103 if ((rc = lmLogFileSystem(log, sbi, 1))) {
1104 mutex_unlock(&jfs_log_mutex);
1105 return rc;
1106 }
1107 goto journal_found;
1108 }
1109 }
1110
1111 if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL))) {
1112 mutex_unlock(&jfs_log_mutex);
1113 return -ENOMEM;
1114 }
1115 INIT_LIST_HEAD(&log->sb_list);
1116 init_waitqueue_head(&log->syncwait);
1117
1118 /*
1119 * external log as separate logical volume
1120 *
1121 * file systems to log may have n-to-1 relationship;
1122 */
1123
1124 bdev = open_by_devnum(sbi->logdev, FMODE_READ|FMODE_WRITE);
1125 if (IS_ERR(bdev)) {
1126 rc = -PTR_ERR(bdev);
1127 goto free;
1128 }
1129
1130 if ((rc = bd_claim(bdev, log))) {
1131 goto close;
1132 }
1133
1134 log->bdev = bdev;
1135 memcpy(log->uuid, sbi->loguuid, sizeof(log->uuid));
1136
1137 /*
1138 * initialize log:
1139 */
1140 if ((rc = lmLogInit(log)))
1141 goto unclaim;
1142
1143 list_add(&log->journal_list, &jfs_external_logs);
1144
1145 /*
1146 * add file system to log active file system list
1147 */
1148 if ((rc = lmLogFileSystem(log, sbi, 1)))
1149 goto shutdown;
1150
1151 journal_found:
1152 LOG_LOCK(log);
1153 list_add(&sbi->log_list, &log->sb_list);
1154 sbi->log = log;
1155 LOG_UNLOCK(log);
1156
1157 mutex_unlock(&jfs_log_mutex);
1158 return 0;
1159
1160 /*
1161 * unwind on error
1162 */
1163 shutdown: /* unwind lbmLogInit() */
1164 list_del(&log->journal_list);
1165 lbmLogShutdown(log);
1166
1167 unclaim:
1168 bd_release(bdev);
1169
1170 close: /* close external log device */
1171 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1172
1173 free: /* free log descriptor */
1174 mutex_unlock(&jfs_log_mutex);
1175 kfree(log);
1176
1177 jfs_warn("lmLogOpen: exit(%d)", rc);
1178 return rc;
1179 }
1180
open_inline_log(struct super_block * sb)1181 static int open_inline_log(struct super_block *sb)
1182 {
1183 struct jfs_log *log;
1184 int rc;
1185
1186 if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL)))
1187 return -ENOMEM;
1188 INIT_LIST_HEAD(&log->sb_list);
1189 init_waitqueue_head(&log->syncwait);
1190
1191 set_bit(log_INLINELOG, &log->flag);
1192 log->bdev = sb->s_bdev;
1193 log->base = addressPXD(&JFS_SBI(sb)->logpxd);
1194 log->size = lengthPXD(&JFS_SBI(sb)->logpxd) >>
1195 (L2LOGPSIZE - sb->s_blocksize_bits);
1196 log->l2bsize = sb->s_blocksize_bits;
1197 ASSERT(L2LOGPSIZE >= sb->s_blocksize_bits);
1198
1199 /*
1200 * initialize log.
1201 */
1202 if ((rc = lmLogInit(log))) {
1203 kfree(log);
1204 jfs_warn("lmLogOpen: exit(%d)", rc);
1205 return rc;
1206 }
1207
1208 list_add(&JFS_SBI(sb)->log_list, &log->sb_list);
1209 JFS_SBI(sb)->log = log;
1210
1211 return rc;
1212 }
1213
open_dummy_log(struct super_block * sb)1214 static int open_dummy_log(struct super_block *sb)
1215 {
1216 int rc;
1217
1218 mutex_lock(&jfs_log_mutex);
1219 if (!dummy_log) {
1220 dummy_log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL);
1221 if (!dummy_log) {
1222 mutex_unlock(&jfs_log_mutex);
1223 return -ENOMEM;
1224 }
1225 INIT_LIST_HEAD(&dummy_log->sb_list);
1226 init_waitqueue_head(&dummy_log->syncwait);
1227 dummy_log->no_integrity = 1;
1228 /* Make up some stuff */
1229 dummy_log->base = 0;
1230 dummy_log->size = 1024;
1231 rc = lmLogInit(dummy_log);
1232 if (rc) {
1233 kfree(dummy_log);
1234 dummy_log = NULL;
1235 mutex_unlock(&jfs_log_mutex);
1236 return rc;
1237 }
1238 }
1239
1240 LOG_LOCK(dummy_log);
1241 list_add(&JFS_SBI(sb)->log_list, &dummy_log->sb_list);
1242 JFS_SBI(sb)->log = dummy_log;
1243 LOG_UNLOCK(dummy_log);
1244 mutex_unlock(&jfs_log_mutex);
1245
1246 return 0;
1247 }
1248
1249 /*
1250 * NAME: lmLogInit()
1251 *
1252 * FUNCTION: log initialization at first log open.
1253 *
1254 * logredo() (or logformat()) should have been run previously.
1255 * initialize the log from log superblock.
1256 * set the log state in the superblock to LOGMOUNT and
1257 * write SYNCPT log record.
1258 *
1259 * PARAMETER: log - log structure
1260 *
1261 * RETURN: 0 - if ok
1262 * -EINVAL - bad log magic number or superblock dirty
1263 * error returned from logwait()
1264 *
1265 * serialization: single first open thread
1266 */
lmLogInit(struct jfs_log * log)1267 int lmLogInit(struct jfs_log * log)
1268 {
1269 int rc = 0;
1270 struct lrd lrd;
1271 struct logsuper *logsuper;
1272 struct lbuf *bpsuper;
1273 struct lbuf *bp;
1274 struct logpage *lp;
1275 int lsn = 0;
1276
1277 jfs_info("lmLogInit: log:0x%p", log);
1278
1279 /* initialize the group commit serialization lock */
1280 LOGGC_LOCK_INIT(log);
1281
1282 /* allocate/initialize the log write serialization lock */
1283 LOG_LOCK_INIT(log);
1284
1285 LOGSYNC_LOCK_INIT(log);
1286
1287 INIT_LIST_HEAD(&log->synclist);
1288
1289 INIT_LIST_HEAD(&log->cqueue);
1290 log->flush_tblk = NULL;
1291
1292 log->count = 0;
1293
1294 /*
1295 * initialize log i/o
1296 */
1297 if ((rc = lbmLogInit(log)))
1298 return rc;
1299
1300 if (!test_bit(log_INLINELOG, &log->flag))
1301 log->l2bsize = L2LOGPSIZE;
1302
1303 /* check for disabled journaling to disk */
1304 if (log->no_integrity) {
1305 /*
1306 * Journal pages will still be filled. When the time comes
1307 * to actually do the I/O, the write is not done, and the
1308 * endio routine is called directly.
1309 */
1310 bp = lbmAllocate(log , 0);
1311 log->bp = bp;
1312 bp->l_pn = bp->l_eor = 0;
1313 } else {
1314 /*
1315 * validate log superblock
1316 */
1317 if ((rc = lbmRead(log, 1, &bpsuper)))
1318 goto errout10;
1319
1320 logsuper = (struct logsuper *) bpsuper->l_ldata;
1321
1322 if (logsuper->magic != cpu_to_le32(LOGMAGIC)) {
1323 jfs_warn("*** Log Format Error ! ***");
1324 rc = -EINVAL;
1325 goto errout20;
1326 }
1327
1328 /* logredo() should have been run successfully. */
1329 if (logsuper->state != cpu_to_le32(LOGREDONE)) {
1330 jfs_warn("*** Log Is Dirty ! ***");
1331 rc = -EINVAL;
1332 goto errout20;
1333 }
1334
1335 /* initialize log from log superblock */
1336 if (test_bit(log_INLINELOG,&log->flag)) {
1337 if (log->size != le32_to_cpu(logsuper->size)) {
1338 rc = -EINVAL;
1339 goto errout20;
1340 }
1341 jfs_info("lmLogInit: inline log:0x%p base:0x%Lx "
1342 "size:0x%x", log,
1343 (unsigned long long) log->base, log->size);
1344 } else {
1345 if (memcmp(logsuper->uuid, log->uuid, 16)) {
1346 jfs_warn("wrong uuid on JFS log device");
1347 goto errout20;
1348 }
1349 log->size = le32_to_cpu(logsuper->size);
1350 log->l2bsize = le32_to_cpu(logsuper->l2bsize);
1351 jfs_info("lmLogInit: external log:0x%p base:0x%Lx "
1352 "size:0x%x", log,
1353 (unsigned long long) log->base, log->size);
1354 }
1355
1356 log->page = le32_to_cpu(logsuper->end) / LOGPSIZE;
1357 log->eor = le32_to_cpu(logsuper->end) - (LOGPSIZE * log->page);
1358
1359 /*
1360 * initialize for log append write mode
1361 */
1362 /* establish current/end-of-log page/buffer */
1363 if ((rc = lbmRead(log, log->page, &bp)))
1364 goto errout20;
1365
1366 lp = (struct logpage *) bp->l_ldata;
1367
1368 jfs_info("lmLogInit: lsn:0x%x page:%d eor:%d:%d",
1369 le32_to_cpu(logsuper->end), log->page, log->eor,
1370 le16_to_cpu(lp->h.eor));
1371
1372 log->bp = bp;
1373 bp->l_pn = log->page;
1374 bp->l_eor = log->eor;
1375
1376 /* if current page is full, move on to next page */
1377 if (log->eor >= LOGPSIZE - LOGPTLRSIZE)
1378 lmNextPage(log);
1379
1380 /*
1381 * initialize log syncpoint
1382 */
1383 /*
1384 * write the first SYNCPT record with syncpoint = 0
1385 * (i.e., log redo up to HERE !);
1386 * remove current page from lbm write queue at end of pageout
1387 * (to write log superblock update), but do not release to
1388 * freelist;
1389 */
1390 lrd.logtid = 0;
1391 lrd.backchain = 0;
1392 lrd.type = cpu_to_le16(LOG_SYNCPT);
1393 lrd.length = 0;
1394 lrd.log.syncpt.sync = 0;
1395 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
1396 bp = log->bp;
1397 bp->l_ceor = bp->l_eor;
1398 lp = (struct logpage *) bp->l_ldata;
1399 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
1400 lbmWrite(log, bp, lbmWRITE | lbmSYNC, 0);
1401 if ((rc = lbmIOWait(bp, 0)))
1402 goto errout30;
1403
1404 /*
1405 * update/write superblock
1406 */
1407 logsuper->state = cpu_to_le32(LOGMOUNT);
1408 log->serial = le32_to_cpu(logsuper->serial) + 1;
1409 logsuper->serial = cpu_to_le32(log->serial);
1410 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1411 if ((rc = lbmIOWait(bpsuper, lbmFREE)))
1412 goto errout30;
1413 }
1414
1415 /* initialize logsync parameters */
1416 log->logsize = (log->size - 2) << L2LOGPSIZE;
1417 log->lsn = lsn;
1418 log->syncpt = lsn;
1419 log->sync = log->syncpt;
1420 log->nextsync = LOGSYNC_DELTA(log->logsize);
1421
1422 jfs_info("lmLogInit: lsn:0x%x syncpt:0x%x sync:0x%x",
1423 log->lsn, log->syncpt, log->sync);
1424
1425 /*
1426 * initialize for lazy/group commit
1427 */
1428 log->clsn = lsn;
1429
1430 return 0;
1431
1432 /*
1433 * unwind on error
1434 */
1435 errout30: /* release log page */
1436 log->wqueue = NULL;
1437 bp->l_wqnext = NULL;
1438 lbmFree(bp);
1439
1440 errout20: /* release log superblock */
1441 lbmFree(bpsuper);
1442
1443 errout10: /* unwind lbmLogInit() */
1444 lbmLogShutdown(log);
1445
1446 jfs_warn("lmLogInit: exit(%d)", rc);
1447 return rc;
1448 }
1449
1450
1451 /*
1452 * NAME: lmLogClose()
1453 *
1454 * FUNCTION: remove file system <ipmnt> from active list of log <iplog>
1455 * and close it on last close.
1456 *
1457 * PARAMETER: sb - superblock
1458 *
1459 * RETURN: errors from subroutines
1460 *
1461 * serialization:
1462 */
lmLogClose(struct super_block * sb)1463 int lmLogClose(struct super_block *sb)
1464 {
1465 struct jfs_sb_info *sbi = JFS_SBI(sb);
1466 struct jfs_log *log = sbi->log;
1467 struct block_device *bdev;
1468 int rc = 0;
1469
1470 jfs_info("lmLogClose: log:0x%p", log);
1471
1472 mutex_lock(&jfs_log_mutex);
1473 LOG_LOCK(log);
1474 list_del(&sbi->log_list);
1475 LOG_UNLOCK(log);
1476 sbi->log = NULL;
1477
1478 /*
1479 * We need to make sure all of the "written" metapages
1480 * actually make it to disk
1481 */
1482 sync_blockdev(sb->s_bdev);
1483
1484 if (test_bit(log_INLINELOG, &log->flag)) {
1485 /*
1486 * in-line log in host file system
1487 */
1488 rc = lmLogShutdown(log);
1489 kfree(log);
1490 goto out;
1491 }
1492
1493 if (!log->no_integrity)
1494 lmLogFileSystem(log, sbi, 0);
1495
1496 if (!list_empty(&log->sb_list))
1497 goto out;
1498
1499 /*
1500 * TODO: ensure that the dummy_log is in a state to allow
1501 * lbmLogShutdown to deallocate all the buffers and call
1502 * kfree against dummy_log. For now, leave dummy_log & its
1503 * buffers in memory, and resuse if another no-integrity mount
1504 * is requested.
1505 */
1506 if (log->no_integrity)
1507 goto out;
1508
1509 /*
1510 * external log as separate logical volume
1511 */
1512 list_del(&log->journal_list);
1513 bdev = log->bdev;
1514 rc = lmLogShutdown(log);
1515
1516 bd_release(bdev);
1517 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1518
1519 kfree(log);
1520
1521 out:
1522 mutex_unlock(&jfs_log_mutex);
1523 jfs_info("lmLogClose: exit(%d)", rc);
1524 return rc;
1525 }
1526
1527
1528 /*
1529 * NAME: jfs_flush_journal()
1530 *
1531 * FUNCTION: initiate write of any outstanding transactions to the journal
1532 * and optionally wait until they are all written to disk
1533 *
1534 * wait == 0 flush until latest txn is committed, don't wait
1535 * wait == 1 flush until latest txn is committed, wait
1536 * wait > 1 flush until all txn's are complete, wait
1537 */
jfs_flush_journal(struct jfs_log * log,int wait)1538 void jfs_flush_journal(struct jfs_log *log, int wait)
1539 {
1540 int i;
1541 struct tblock *target = NULL;
1542
1543 /* jfs_write_inode may call us during read-only mount */
1544 if (!log)
1545 return;
1546
1547 jfs_info("jfs_flush_journal: log:0x%p wait=%d", log, wait);
1548
1549 LOGGC_LOCK(log);
1550
1551 if (!list_empty(&log->cqueue)) {
1552 /*
1553 * This ensures that we will keep writing to the journal as long
1554 * as there are unwritten commit records
1555 */
1556 target = list_entry(log->cqueue.prev, struct tblock, cqueue);
1557
1558 if (test_bit(log_FLUSH, &log->flag)) {
1559 /*
1560 * We're already flushing.
1561 * if flush_tblk is NULL, we are flushing everything,
1562 * so leave it that way. Otherwise, update it to the
1563 * latest transaction
1564 */
1565 if (log->flush_tblk)
1566 log->flush_tblk = target;
1567 } else {
1568 /* Only flush until latest transaction is committed */
1569 log->flush_tblk = target;
1570 set_bit(log_FLUSH, &log->flag);
1571
1572 /*
1573 * Initiate I/O on outstanding transactions
1574 */
1575 if (!(log->cflag & logGC_PAGEOUT)) {
1576 log->cflag |= logGC_PAGEOUT;
1577 lmGCwrite(log, 0);
1578 }
1579 }
1580 }
1581 if ((wait > 1) || test_bit(log_SYNCBARRIER, &log->flag)) {
1582 /* Flush until all activity complete */
1583 set_bit(log_FLUSH, &log->flag);
1584 log->flush_tblk = NULL;
1585 }
1586
1587 if (wait && target && !(target->flag & tblkGC_COMMITTED)) {
1588 DECLARE_WAITQUEUE(__wait, current);
1589
1590 add_wait_queue(&target->gcwait, &__wait);
1591 set_current_state(TASK_UNINTERRUPTIBLE);
1592 LOGGC_UNLOCK(log);
1593 schedule();
1594 __set_current_state(TASK_RUNNING);
1595 LOGGC_LOCK(log);
1596 remove_wait_queue(&target->gcwait, &__wait);
1597 }
1598 LOGGC_UNLOCK(log);
1599
1600 if (wait < 2)
1601 return;
1602
1603 write_special_inodes(log, filemap_fdatawrite);
1604
1605 /*
1606 * If there was recent activity, we may need to wait
1607 * for the lazycommit thread to catch up
1608 */
1609 if ((!list_empty(&log->cqueue)) || !list_empty(&log->synclist)) {
1610 for (i = 0; i < 200; i++) { /* Too much? */
1611 msleep(250);
1612 write_special_inodes(log, filemap_fdatawrite);
1613 if (list_empty(&log->cqueue) &&
1614 list_empty(&log->synclist))
1615 break;
1616 }
1617 }
1618 assert(list_empty(&log->cqueue));
1619
1620 #ifdef CONFIG_JFS_DEBUG
1621 if (!list_empty(&log->synclist)) {
1622 struct logsyncblk *lp;
1623
1624 printk(KERN_ERR "jfs_flush_journal: synclist not empty\n");
1625 list_for_each_entry(lp, &log->synclist, synclist) {
1626 if (lp->xflag & COMMIT_PAGE) {
1627 struct metapage *mp = (struct metapage *)lp;
1628 print_hex_dump(KERN_ERR, "metapage: ",
1629 DUMP_PREFIX_ADDRESS, 16, 4,
1630 mp, sizeof(struct metapage), 0);
1631 print_hex_dump(KERN_ERR, "page: ",
1632 DUMP_PREFIX_ADDRESS, 16,
1633 sizeof(long), mp->page,
1634 sizeof(struct page), 0);
1635 } else
1636 print_hex_dump(KERN_ERR, "tblock:",
1637 DUMP_PREFIX_ADDRESS, 16, 4,
1638 lp, sizeof(struct tblock), 0);
1639 }
1640 }
1641 #else
1642 WARN_ON(!list_empty(&log->synclist));
1643 #endif
1644 clear_bit(log_FLUSH, &log->flag);
1645 }
1646
1647 /*
1648 * NAME: lmLogShutdown()
1649 *
1650 * FUNCTION: log shutdown at last LogClose().
1651 *
1652 * write log syncpt record.
1653 * update super block to set redone flag to 0.
1654 *
1655 * PARAMETER: log - log inode
1656 *
1657 * RETURN: 0 - success
1658 *
1659 * serialization: single last close thread
1660 */
lmLogShutdown(struct jfs_log * log)1661 int lmLogShutdown(struct jfs_log * log)
1662 {
1663 int rc;
1664 struct lrd lrd;
1665 int lsn;
1666 struct logsuper *logsuper;
1667 struct lbuf *bpsuper;
1668 struct lbuf *bp;
1669 struct logpage *lp;
1670
1671 jfs_info("lmLogShutdown: log:0x%p", log);
1672
1673 jfs_flush_journal(log, 2);
1674
1675 /*
1676 * write the last SYNCPT record with syncpoint = 0
1677 * (i.e., log redo up to HERE !)
1678 */
1679 lrd.logtid = 0;
1680 lrd.backchain = 0;
1681 lrd.type = cpu_to_le16(LOG_SYNCPT);
1682 lrd.length = 0;
1683 lrd.log.syncpt.sync = 0;
1684
1685 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
1686 bp = log->bp;
1687 lp = (struct logpage *) bp->l_ldata;
1688 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
1689 lbmWrite(log, log->bp, lbmWRITE | lbmRELEASE | lbmSYNC, 0);
1690 lbmIOWait(log->bp, lbmFREE);
1691 log->bp = NULL;
1692
1693 /*
1694 * synchronous update log superblock
1695 * mark log state as shutdown cleanly
1696 * (i.e., Log does not need to be replayed).
1697 */
1698 if ((rc = lbmRead(log, 1, &bpsuper)))
1699 goto out;
1700
1701 logsuper = (struct logsuper *) bpsuper->l_ldata;
1702 logsuper->state = cpu_to_le32(LOGREDONE);
1703 logsuper->end = cpu_to_le32(lsn);
1704 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1705 rc = lbmIOWait(bpsuper, lbmFREE);
1706
1707 jfs_info("lmLogShutdown: lsn:0x%x page:%d eor:%d",
1708 lsn, log->page, log->eor);
1709
1710 out:
1711 /*
1712 * shutdown per log i/o
1713 */
1714 lbmLogShutdown(log);
1715
1716 if (rc) {
1717 jfs_warn("lmLogShutdown: exit(%d)", rc);
1718 }
1719 return rc;
1720 }
1721
1722
1723 /*
1724 * NAME: lmLogFileSystem()
1725 *
1726 * FUNCTION: insert (<activate> = true)/remove (<activate> = false)
1727 * file system into/from log active file system list.
1728 *
1729 * PARAMETE: log - pointer to logs inode.
1730 * fsdev - kdev_t of filesystem.
1731 * serial - pointer to returned log serial number
1732 * activate - insert/remove device from active list.
1733 *
1734 * RETURN: 0 - success
1735 * errors returned by vms_iowait().
1736 */
lmLogFileSystem(struct jfs_log * log,struct jfs_sb_info * sbi,int activate)1737 static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi,
1738 int activate)
1739 {
1740 int rc = 0;
1741 int i;
1742 struct logsuper *logsuper;
1743 struct lbuf *bpsuper;
1744 char *uuid = sbi->uuid;
1745
1746 /*
1747 * insert/remove file system device to log active file system list.
1748 */
1749 if ((rc = lbmRead(log, 1, &bpsuper)))
1750 return rc;
1751
1752 logsuper = (struct logsuper *) bpsuper->l_ldata;
1753 if (activate) {
1754 for (i = 0; i < MAX_ACTIVE; i++)
1755 if (!memcmp(logsuper->active[i].uuid, NULL_UUID, 16)) {
1756 memcpy(logsuper->active[i].uuid, uuid, 16);
1757 sbi->aggregate = i;
1758 break;
1759 }
1760 if (i == MAX_ACTIVE) {
1761 jfs_warn("Too many file systems sharing journal!");
1762 lbmFree(bpsuper);
1763 return -EMFILE; /* Is there a better rc? */
1764 }
1765 } else {
1766 for (i = 0; i < MAX_ACTIVE; i++)
1767 if (!memcmp(logsuper->active[i].uuid, uuid, 16)) {
1768 memcpy(logsuper->active[i].uuid, NULL_UUID, 16);
1769 break;
1770 }
1771 if (i == MAX_ACTIVE) {
1772 jfs_warn("Somebody stomped on the journal!");
1773 lbmFree(bpsuper);
1774 return -EIO;
1775 }
1776
1777 }
1778
1779 /*
1780 * synchronous write log superblock:
1781 *
1782 * write sidestream bypassing write queue:
1783 * at file system mount, log super block is updated for
1784 * activation of the file system before any log record
1785 * (MOUNT record) of the file system, and at file system
1786 * unmount, all meta data for the file system has been
1787 * flushed before log super block is updated for deactivation
1788 * of the file system.
1789 */
1790 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1791 rc = lbmIOWait(bpsuper, lbmFREE);
1792
1793 return rc;
1794 }
1795
1796 /*
1797 * log buffer manager (lbm)
1798 * ------------------------
1799 *
1800 * special purpose buffer manager supporting log i/o requirements.
1801 *
1802 * per log write queue:
1803 * log pageout occurs in serial order by fifo write queue and
1804 * restricting to a single i/o in pregress at any one time.
1805 * a circular singly-linked list
1806 * (log->wrqueue points to the tail, and buffers are linked via
1807 * bp->wrqueue field), and
1808 * maintains log page in pageout ot waiting for pageout in serial pageout.
1809 */
1810
1811 /*
1812 * lbmLogInit()
1813 *
1814 * initialize per log I/O setup at lmLogInit()
1815 */
lbmLogInit(struct jfs_log * log)1816 static int lbmLogInit(struct jfs_log * log)
1817 { /* log inode */
1818 int i;
1819 struct lbuf *lbuf;
1820
1821 jfs_info("lbmLogInit: log:0x%p", log);
1822
1823 /* initialize current buffer cursor */
1824 log->bp = NULL;
1825
1826 /* initialize log device write queue */
1827 log->wqueue = NULL;
1828
1829 /*
1830 * Each log has its own buffer pages allocated to it. These are
1831 * not managed by the page cache. This ensures that a transaction
1832 * writing to the log does not block trying to allocate a page from
1833 * the page cache (for the log). This would be bad, since page
1834 * allocation waits on the kswapd thread that may be committing inodes
1835 * which would cause log activity. Was that clear? I'm trying to
1836 * avoid deadlock here.
1837 */
1838 init_waitqueue_head(&log->free_wait);
1839
1840 log->lbuf_free = NULL;
1841
1842 for (i = 0; i < LOGPAGES;) {
1843 char *buffer;
1844 uint offset;
1845 struct page *page;
1846
1847 buffer = (char *) get_zeroed_page(GFP_KERNEL);
1848 if (buffer == NULL)
1849 goto error;
1850 page = virt_to_page(buffer);
1851 for (offset = 0; offset < PAGE_SIZE; offset += LOGPSIZE) {
1852 lbuf = kmalloc(sizeof(struct lbuf), GFP_KERNEL);
1853 if (lbuf == NULL) {
1854 if (offset == 0)
1855 free_page((unsigned long) buffer);
1856 goto error;
1857 }
1858 if (offset) /* we already have one reference */
1859 get_page(page);
1860 lbuf->l_offset = offset;
1861 lbuf->l_ldata = buffer + offset;
1862 lbuf->l_page = page;
1863 lbuf->l_log = log;
1864 init_waitqueue_head(&lbuf->l_ioevent);
1865
1866 lbuf->l_freelist = log->lbuf_free;
1867 log->lbuf_free = lbuf;
1868 i++;
1869 }
1870 }
1871
1872 return (0);
1873
1874 error:
1875 lbmLogShutdown(log);
1876 return -ENOMEM;
1877 }
1878
1879
1880 /*
1881 * lbmLogShutdown()
1882 *
1883 * finalize per log I/O setup at lmLogShutdown()
1884 */
lbmLogShutdown(struct jfs_log * log)1885 static void lbmLogShutdown(struct jfs_log * log)
1886 {
1887 struct lbuf *lbuf;
1888
1889 jfs_info("lbmLogShutdown: log:0x%p", log);
1890
1891 lbuf = log->lbuf_free;
1892 while (lbuf) {
1893 struct lbuf *next = lbuf->l_freelist;
1894 __free_page(lbuf->l_page);
1895 kfree(lbuf);
1896 lbuf = next;
1897 }
1898 }
1899
1900
1901 /*
1902 * lbmAllocate()
1903 *
1904 * allocate an empty log buffer
1905 */
lbmAllocate(struct jfs_log * log,int pn)1906 static struct lbuf *lbmAllocate(struct jfs_log * log, int pn)
1907 {
1908 struct lbuf *bp;
1909 unsigned long flags;
1910
1911 /*
1912 * recycle from log buffer freelist if any
1913 */
1914 LCACHE_LOCK(flags);
1915 LCACHE_SLEEP_COND(log->free_wait, (bp = log->lbuf_free), flags);
1916 log->lbuf_free = bp->l_freelist;
1917 LCACHE_UNLOCK(flags);
1918
1919 bp->l_flag = 0;
1920
1921 bp->l_wqnext = NULL;
1922 bp->l_freelist = NULL;
1923
1924 bp->l_pn = pn;
1925 bp->l_blkno = log->base + (pn << (L2LOGPSIZE - log->l2bsize));
1926 bp->l_ceor = 0;
1927
1928 return bp;
1929 }
1930
1931
1932 /*
1933 * lbmFree()
1934 *
1935 * release a log buffer to freelist
1936 */
lbmFree(struct lbuf * bp)1937 static void lbmFree(struct lbuf * bp)
1938 {
1939 unsigned long flags;
1940
1941 LCACHE_LOCK(flags);
1942
1943 lbmfree(bp);
1944
1945 LCACHE_UNLOCK(flags);
1946 }
1947
lbmfree(struct lbuf * bp)1948 static void lbmfree(struct lbuf * bp)
1949 {
1950 struct jfs_log *log = bp->l_log;
1951
1952 assert(bp->l_wqnext == NULL);
1953
1954 /*
1955 * return the buffer to head of freelist
1956 */
1957 bp->l_freelist = log->lbuf_free;
1958 log->lbuf_free = bp;
1959
1960 wake_up(&log->free_wait);
1961 return;
1962 }
1963
1964
1965 /*
1966 * NAME: lbmRedrive
1967 *
1968 * FUNCTION: add a log buffer to the log redrive list
1969 *
1970 * PARAMETER:
1971 * bp - log buffer
1972 *
1973 * NOTES:
1974 * Takes log_redrive_lock.
1975 */
lbmRedrive(struct lbuf * bp)1976 static inline void lbmRedrive(struct lbuf *bp)
1977 {
1978 unsigned long flags;
1979
1980 spin_lock_irqsave(&log_redrive_lock, flags);
1981 bp->l_redrive_next = log_redrive_list;
1982 log_redrive_list = bp;
1983 spin_unlock_irqrestore(&log_redrive_lock, flags);
1984
1985 wake_up_process(jfsIOthread);
1986 }
1987
1988
1989 /*
1990 * lbmRead()
1991 */
lbmRead(struct jfs_log * log,int pn,struct lbuf ** bpp)1992 static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp)
1993 {
1994 struct bio *bio;
1995 struct lbuf *bp;
1996
1997 /*
1998 * allocate a log buffer
1999 */
2000 *bpp = bp = lbmAllocate(log, pn);
2001 jfs_info("lbmRead: bp:0x%p pn:0x%x", bp, pn);
2002
2003 bp->l_flag |= lbmREAD;
2004
2005 bio = bio_alloc(GFP_NOFS, 1);
2006
2007 bio->bi_sector = bp->l_blkno << (log->l2bsize - 9);
2008 bio->bi_bdev = log->bdev;
2009 bio->bi_io_vec[0].bv_page = bp->l_page;
2010 bio->bi_io_vec[0].bv_len = LOGPSIZE;
2011 bio->bi_io_vec[0].bv_offset = bp->l_offset;
2012
2013 bio->bi_vcnt = 1;
2014 bio->bi_idx = 0;
2015 bio->bi_size = LOGPSIZE;
2016
2017 bio->bi_end_io = lbmIODone;
2018 bio->bi_private = bp;
2019 submit_bio(READ_SYNC, bio);
2020
2021 wait_event(bp->l_ioevent, (bp->l_flag != lbmREAD));
2022
2023 return 0;
2024 }
2025
2026
2027 /*
2028 * lbmWrite()
2029 *
2030 * buffer at head of pageout queue stays after completion of
2031 * partial-page pageout and redriven by explicit initiation of
2032 * pageout by caller until full-page pageout is completed and
2033 * released.
2034 *
2035 * device driver i/o done redrives pageout of new buffer at
2036 * head of pageout queue when current buffer at head of pageout
2037 * queue is released at the completion of its full-page pageout.
2038 *
2039 * LOGGC_LOCK() serializes lbmWrite() by lmNextPage() and lmGroupCommit().
2040 * LCACHE_LOCK() serializes xflag between lbmWrite() and lbmIODone()
2041 */
lbmWrite(struct jfs_log * log,struct lbuf * bp,int flag,int cant_block)2042 static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag,
2043 int cant_block)
2044 {
2045 struct lbuf *tail;
2046 unsigned long flags;
2047
2048 jfs_info("lbmWrite: bp:0x%p flag:0x%x pn:0x%x", bp, flag, bp->l_pn);
2049
2050 /* map the logical block address to physical block address */
2051 bp->l_blkno =
2052 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize));
2053
2054 LCACHE_LOCK(flags); /* disable+lock */
2055
2056 /*
2057 * initialize buffer for device driver
2058 */
2059 bp->l_flag = flag;
2060
2061 /*
2062 * insert bp at tail of write queue associated with log
2063 *
2064 * (request is either for bp already/currently at head of queue
2065 * or new bp to be inserted at tail)
2066 */
2067 tail = log->wqueue;
2068
2069 /* is buffer not already on write queue ? */
2070 if (bp->l_wqnext == NULL) {
2071 /* insert at tail of wqueue */
2072 if (tail == NULL) {
2073 log->wqueue = bp;
2074 bp->l_wqnext = bp;
2075 } else {
2076 log->wqueue = bp;
2077 bp->l_wqnext = tail->l_wqnext;
2078 tail->l_wqnext = bp;
2079 }
2080
2081 tail = bp;
2082 }
2083
2084 /* is buffer at head of wqueue and for write ? */
2085 if ((bp != tail->l_wqnext) || !(flag & lbmWRITE)) {
2086 LCACHE_UNLOCK(flags); /* unlock+enable */
2087 return;
2088 }
2089
2090 LCACHE_UNLOCK(flags); /* unlock+enable */
2091
2092 if (cant_block)
2093 lbmRedrive(bp);
2094 else if (flag & lbmSYNC)
2095 lbmStartIO(bp);
2096 else {
2097 LOGGC_UNLOCK(log);
2098 lbmStartIO(bp);
2099 LOGGC_LOCK(log);
2100 }
2101 }
2102
2103
2104 /*
2105 * lbmDirectWrite()
2106 *
2107 * initiate pageout bypassing write queue for sidestream
2108 * (e.g., log superblock) write;
2109 */
lbmDirectWrite(struct jfs_log * log,struct lbuf * bp,int flag)2110 static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag)
2111 {
2112 jfs_info("lbmDirectWrite: bp:0x%p flag:0x%x pn:0x%x",
2113 bp, flag, bp->l_pn);
2114
2115 /*
2116 * initialize buffer for device driver
2117 */
2118 bp->l_flag = flag | lbmDIRECT;
2119
2120 /* map the logical block address to physical block address */
2121 bp->l_blkno =
2122 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize));
2123
2124 /*
2125 * initiate pageout of the page
2126 */
2127 lbmStartIO(bp);
2128 }
2129
2130
2131 /*
2132 * NAME: lbmStartIO()
2133 *
2134 * FUNCTION: Interface to DD strategy routine
2135 *
2136 * RETURN: none
2137 *
2138 * serialization: LCACHE_LOCK() is NOT held during log i/o;
2139 */
lbmStartIO(struct lbuf * bp)2140 static void lbmStartIO(struct lbuf * bp)
2141 {
2142 struct bio *bio;
2143 struct jfs_log *log = bp->l_log;
2144
2145 jfs_info("lbmStartIO\n");
2146
2147 bio = bio_alloc(GFP_NOFS, 1);
2148 bio->bi_sector = bp->l_blkno << (log->l2bsize - 9);
2149 bio->bi_bdev = log->bdev;
2150 bio->bi_io_vec[0].bv_page = bp->l_page;
2151 bio->bi_io_vec[0].bv_len = LOGPSIZE;
2152 bio->bi_io_vec[0].bv_offset = bp->l_offset;
2153
2154 bio->bi_vcnt = 1;
2155 bio->bi_idx = 0;
2156 bio->bi_size = LOGPSIZE;
2157
2158 bio->bi_end_io = lbmIODone;
2159 bio->bi_private = bp;
2160
2161 /* check if journaling to disk has been disabled */
2162 if (log->no_integrity) {
2163 bio->bi_size = 0;
2164 lbmIODone(bio, 0);
2165 } else {
2166 submit_bio(WRITE_SYNC, bio);
2167 INCREMENT(lmStat.submitted);
2168 }
2169 }
2170
2171
2172 /*
2173 * lbmIOWait()
2174 */
lbmIOWait(struct lbuf * bp,int flag)2175 static int lbmIOWait(struct lbuf * bp, int flag)
2176 {
2177 unsigned long flags;
2178 int rc = 0;
2179
2180 jfs_info("lbmIOWait1: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag);
2181
2182 LCACHE_LOCK(flags); /* disable+lock */
2183
2184 LCACHE_SLEEP_COND(bp->l_ioevent, (bp->l_flag & lbmDONE), flags);
2185
2186 rc = (bp->l_flag & lbmERROR) ? -EIO : 0;
2187
2188 if (flag & lbmFREE)
2189 lbmfree(bp);
2190
2191 LCACHE_UNLOCK(flags); /* unlock+enable */
2192
2193 jfs_info("lbmIOWait2: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag);
2194 return rc;
2195 }
2196
2197 /*
2198 * lbmIODone()
2199 *
2200 * executed at INTIODONE level
2201 */
lbmIODone(struct bio * bio,int error)2202 static void lbmIODone(struct bio *bio, int error)
2203 {
2204 struct lbuf *bp = bio->bi_private;
2205 struct lbuf *nextbp, *tail;
2206 struct jfs_log *log;
2207 unsigned long flags;
2208
2209 /*
2210 * get back jfs buffer bound to the i/o buffer
2211 */
2212 jfs_info("lbmIODone: bp:0x%p flag:0x%x", bp, bp->l_flag);
2213
2214 LCACHE_LOCK(flags); /* disable+lock */
2215
2216 bp->l_flag |= lbmDONE;
2217
2218 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2219 bp->l_flag |= lbmERROR;
2220
2221 jfs_err("lbmIODone: I/O error in JFS log");
2222 }
2223
2224 bio_put(bio);
2225
2226 /*
2227 * pagein completion
2228 */
2229 if (bp->l_flag & lbmREAD) {
2230 bp->l_flag &= ~lbmREAD;
2231
2232 LCACHE_UNLOCK(flags); /* unlock+enable */
2233
2234 /* wakeup I/O initiator */
2235 LCACHE_WAKEUP(&bp->l_ioevent);
2236
2237 return;
2238 }
2239
2240 /*
2241 * pageout completion
2242 *
2243 * the bp at the head of write queue has completed pageout.
2244 *
2245 * if single-commit/full-page pageout, remove the current buffer
2246 * from head of pageout queue, and redrive pageout with
2247 * the new buffer at head of pageout queue;
2248 * otherwise, the partial-page pageout buffer stays at
2249 * the head of pageout queue to be redriven for pageout
2250 * by lmGroupCommit() until full-page pageout is completed.
2251 */
2252 bp->l_flag &= ~lbmWRITE;
2253 INCREMENT(lmStat.pagedone);
2254
2255 /* update committed lsn */
2256 log = bp->l_log;
2257 log->clsn = (bp->l_pn << L2LOGPSIZE) + bp->l_ceor;
2258
2259 if (bp->l_flag & lbmDIRECT) {
2260 LCACHE_WAKEUP(&bp->l_ioevent);
2261 LCACHE_UNLOCK(flags);
2262 return;
2263 }
2264
2265 tail = log->wqueue;
2266
2267 /* single element queue */
2268 if (bp == tail) {
2269 /* remove head buffer of full-page pageout
2270 * from log device write queue
2271 */
2272 if (bp->l_flag & lbmRELEASE) {
2273 log->wqueue = NULL;
2274 bp->l_wqnext = NULL;
2275 }
2276 }
2277 /* multi element queue */
2278 else {
2279 /* remove head buffer of full-page pageout
2280 * from log device write queue
2281 */
2282 if (bp->l_flag & lbmRELEASE) {
2283 nextbp = tail->l_wqnext = bp->l_wqnext;
2284 bp->l_wqnext = NULL;
2285
2286 /*
2287 * redrive pageout of next page at head of write queue:
2288 * redrive next page without any bound tblk
2289 * (i.e., page w/o any COMMIT records), or
2290 * first page of new group commit which has been
2291 * queued after current page (subsequent pageout
2292 * is performed synchronously, except page without
2293 * any COMMITs) by lmGroupCommit() as indicated
2294 * by lbmWRITE flag;
2295 */
2296 if (nextbp->l_flag & lbmWRITE) {
2297 /*
2298 * We can't do the I/O at interrupt time.
2299 * The jfsIO thread can do it
2300 */
2301 lbmRedrive(nextbp);
2302 }
2303 }
2304 }
2305
2306 /*
2307 * synchronous pageout:
2308 *
2309 * buffer has not necessarily been removed from write queue
2310 * (e.g., synchronous write of partial-page with COMMIT):
2311 * leave buffer for i/o initiator to dispose
2312 */
2313 if (bp->l_flag & lbmSYNC) {
2314 LCACHE_UNLOCK(flags); /* unlock+enable */
2315
2316 /* wakeup I/O initiator */
2317 LCACHE_WAKEUP(&bp->l_ioevent);
2318 }
2319
2320 /*
2321 * Group Commit pageout:
2322 */
2323 else if (bp->l_flag & lbmGC) {
2324 LCACHE_UNLOCK(flags);
2325 lmPostGC(bp);
2326 }
2327
2328 /*
2329 * asynchronous pageout:
2330 *
2331 * buffer must have been removed from write queue:
2332 * insert buffer at head of freelist where it can be recycled
2333 */
2334 else {
2335 assert(bp->l_flag & lbmRELEASE);
2336 assert(bp->l_flag & lbmFREE);
2337 lbmfree(bp);
2338
2339 LCACHE_UNLOCK(flags); /* unlock+enable */
2340 }
2341 }
2342
jfsIOWait(void * arg)2343 int jfsIOWait(void *arg)
2344 {
2345 struct lbuf *bp;
2346
2347 do {
2348 spin_lock_irq(&log_redrive_lock);
2349 while ((bp = log_redrive_list)) {
2350 log_redrive_list = bp->l_redrive_next;
2351 bp->l_redrive_next = NULL;
2352 spin_unlock_irq(&log_redrive_lock);
2353 lbmStartIO(bp);
2354 spin_lock_irq(&log_redrive_lock);
2355 }
2356
2357 if (freezing(current)) {
2358 spin_unlock_irq(&log_redrive_lock);
2359 refrigerator();
2360 } else {
2361 set_current_state(TASK_INTERRUPTIBLE);
2362 spin_unlock_irq(&log_redrive_lock);
2363 schedule();
2364 __set_current_state(TASK_RUNNING);
2365 }
2366 } while (!kthread_should_stop());
2367
2368 jfs_info("jfsIOWait being killed!");
2369 return 0;
2370 }
2371
2372 /*
2373 * NAME: lmLogFormat()/jfs_logform()
2374 *
2375 * FUNCTION: format file system log
2376 *
2377 * PARAMETERS:
2378 * log - volume log
2379 * logAddress - start address of log space in FS block
2380 * logSize - length of log space in FS block;
2381 *
2382 * RETURN: 0 - success
2383 * -EIO - i/o error
2384 *
2385 * XXX: We're synchronously writing one page at a time. This needs to
2386 * be improved by writing multiple pages at once.
2387 */
lmLogFormat(struct jfs_log * log,s64 logAddress,int logSize)2388 int lmLogFormat(struct jfs_log *log, s64 logAddress, int logSize)
2389 {
2390 int rc = -EIO;
2391 struct jfs_sb_info *sbi;
2392 struct logsuper *logsuper;
2393 struct logpage *lp;
2394 int lspn; /* log sequence page number */
2395 struct lrd *lrd_ptr;
2396 int npages = 0;
2397 struct lbuf *bp;
2398
2399 jfs_info("lmLogFormat: logAddress:%Ld logSize:%d",
2400 (long long)logAddress, logSize);
2401
2402 sbi = list_entry(log->sb_list.next, struct jfs_sb_info, log_list);
2403
2404 /* allocate a log buffer */
2405 bp = lbmAllocate(log, 1);
2406
2407 npages = logSize >> sbi->l2nbperpage;
2408
2409 /*
2410 * log space:
2411 *
2412 * page 0 - reserved;
2413 * page 1 - log superblock;
2414 * page 2 - log data page: A SYNC log record is written
2415 * into this page at logform time;
2416 * pages 3-N - log data page: set to empty log data pages;
2417 */
2418 /*
2419 * init log superblock: log page 1
2420 */
2421 logsuper = (struct logsuper *) bp->l_ldata;
2422
2423 logsuper->magic = cpu_to_le32(LOGMAGIC);
2424 logsuper->version = cpu_to_le32(LOGVERSION);
2425 logsuper->state = cpu_to_le32(LOGREDONE);
2426 logsuper->flag = cpu_to_le32(sbi->mntflag); /* ? */
2427 logsuper->size = cpu_to_le32(npages);
2428 logsuper->bsize = cpu_to_le32(sbi->bsize);
2429 logsuper->l2bsize = cpu_to_le32(sbi->l2bsize);
2430 logsuper->end = cpu_to_le32(2 * LOGPSIZE + LOGPHDRSIZE + LOGRDSIZE);
2431
2432 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2433 bp->l_blkno = logAddress + sbi->nbperpage;
2434 lbmStartIO(bp);
2435 if ((rc = lbmIOWait(bp, 0)))
2436 goto exit;
2437
2438 /*
2439 * init pages 2 to npages-1 as log data pages:
2440 *
2441 * log page sequence number (lpsn) initialization:
2442 *
2443 * pn: 0 1 2 3 n-1
2444 * +-----+-----+=====+=====+===.....===+=====+
2445 * lspn: N-1 0 1 N-2
2446 * <--- N page circular file ---->
2447 *
2448 * the N (= npages-2) data pages of the log is maintained as
2449 * a circular file for the log records;
2450 * lpsn grows by 1 monotonically as each log page is written
2451 * to the circular file of the log;
2452 * and setLogpage() will not reset the page number even if
2453 * the eor is equal to LOGPHDRSIZE. In order for binary search
2454 * still work in find log end process, we have to simulate the
2455 * log wrap situation at the log format time.
2456 * The 1st log page written will have the highest lpsn. Then
2457 * the succeeding log pages will have ascending order of
2458 * the lspn starting from 0, ... (N-2)
2459 */
2460 lp = (struct logpage *) bp->l_ldata;
2461 /*
2462 * initialize 1st log page to be written: lpsn = N - 1,
2463 * write a SYNCPT log record is written to this page
2464 */
2465 lp->h.page = lp->t.page = cpu_to_le32(npages - 3);
2466 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE + LOGRDSIZE);
2467
2468 lrd_ptr = (struct lrd *) &lp->data;
2469 lrd_ptr->logtid = 0;
2470 lrd_ptr->backchain = 0;
2471 lrd_ptr->type = cpu_to_le16(LOG_SYNCPT);
2472 lrd_ptr->length = 0;
2473 lrd_ptr->log.syncpt.sync = 0;
2474
2475 bp->l_blkno += sbi->nbperpage;
2476 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2477 lbmStartIO(bp);
2478 if ((rc = lbmIOWait(bp, 0)))
2479 goto exit;
2480
2481 /*
2482 * initialize succeeding log pages: lpsn = 0, 1, ..., (N-2)
2483 */
2484 for (lspn = 0; lspn < npages - 3; lspn++) {
2485 lp->h.page = lp->t.page = cpu_to_le32(lspn);
2486 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE);
2487
2488 bp->l_blkno += sbi->nbperpage;
2489 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2490 lbmStartIO(bp);
2491 if ((rc = lbmIOWait(bp, 0)))
2492 goto exit;
2493 }
2494
2495 rc = 0;
2496 exit:
2497 /*
2498 * finalize log
2499 */
2500 /* release the buffer */
2501 lbmFree(bp);
2502
2503 return rc;
2504 }
2505
2506 #ifdef CONFIG_JFS_STATISTICS
jfs_lmstats_proc_show(struct seq_file * m,void * v)2507 static int jfs_lmstats_proc_show(struct seq_file *m, void *v)
2508 {
2509 seq_printf(m,
2510 "JFS Logmgr stats\n"
2511 "================\n"
2512 "commits = %d\n"
2513 "writes submitted = %d\n"
2514 "writes completed = %d\n"
2515 "full pages submitted = %d\n"
2516 "partial pages submitted = %d\n",
2517 lmStat.commit,
2518 lmStat.submitted,
2519 lmStat.pagedone,
2520 lmStat.full_page,
2521 lmStat.partial_page);
2522 return 0;
2523 }
2524
jfs_lmstats_proc_open(struct inode * inode,struct file * file)2525 static int jfs_lmstats_proc_open(struct inode *inode, struct file *file)
2526 {
2527 return single_open(file, jfs_lmstats_proc_show, NULL);
2528 }
2529
2530 const struct file_operations jfs_lmstats_proc_fops = {
2531 .owner = THIS_MODULE,
2532 .open = jfs_lmstats_proc_open,
2533 .read = seq_read,
2534 .llseek = seq_lseek,
2535 .release = single_release,
2536 };
2537 #endif /* CONFIG_JFS_STATISTICS */
2538