• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/tracehook.h>
26 #include <linux/capability.h>
27 #include <linux/freezer.h>
28 #include <linux/pid_namespace.h>
29 #include <linux/nsproxy.h>
30 #include <trace/sched.h>
31 
32 #include <asm/param.h>
33 #include <asm/uaccess.h>
34 #include <asm/unistd.h>
35 #include <asm/siginfo.h>
36 #include "audit.h"	/* audit_signal_info() */
37 
38 /*
39  * SLAB caches for signal bits.
40  */
41 
42 static struct kmem_cache *sigqueue_cachep;
43 
44 DEFINE_TRACE(sched_signal_send);
45 
sig_handler(struct task_struct * t,int sig)46 static void __user *sig_handler(struct task_struct *t, int sig)
47 {
48 	return t->sighand->action[sig - 1].sa.sa_handler;
49 }
50 
sig_handler_ignored(void __user * handler,int sig)51 static int sig_handler_ignored(void __user *handler, int sig)
52 {
53 	/* Is it explicitly or implicitly ignored? */
54 	return handler == SIG_IGN ||
55 		(handler == SIG_DFL && sig_kernel_ignore(sig));
56 }
57 
sig_ignored(struct task_struct * t,int sig)58 static int sig_ignored(struct task_struct *t, int sig)
59 {
60 	void __user *handler;
61 
62 	/*
63 	 * Blocked signals are never ignored, since the
64 	 * signal handler may change by the time it is
65 	 * unblocked.
66 	 */
67 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
68 		return 0;
69 
70 	handler = sig_handler(t, sig);
71 	if (!sig_handler_ignored(handler, sig))
72 		return 0;
73 
74 	/*
75 	 * Tracers may want to know about even ignored signals.
76 	 */
77 	return !tracehook_consider_ignored_signal(t, sig, handler);
78 }
79 
80 /*
81  * Re-calculate pending state from the set of locally pending
82  * signals, globally pending signals, and blocked signals.
83  */
has_pending_signals(sigset_t * signal,sigset_t * blocked)84 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
85 {
86 	unsigned long ready;
87 	long i;
88 
89 	switch (_NSIG_WORDS) {
90 	default:
91 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
92 			ready |= signal->sig[i] &~ blocked->sig[i];
93 		break;
94 
95 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
96 		ready |= signal->sig[2] &~ blocked->sig[2];
97 		ready |= signal->sig[1] &~ blocked->sig[1];
98 		ready |= signal->sig[0] &~ blocked->sig[0];
99 		break;
100 
101 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
102 		ready |= signal->sig[0] &~ blocked->sig[0];
103 		break;
104 
105 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
106 	}
107 	return ready !=	0;
108 }
109 
110 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
111 
recalc_sigpending_tsk(struct task_struct * t)112 static int recalc_sigpending_tsk(struct task_struct *t)
113 {
114 	if (t->signal->group_stop_count > 0 ||
115 	    PENDING(&t->pending, &t->blocked) ||
116 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
117 		set_tsk_thread_flag(t, TIF_SIGPENDING);
118 		return 1;
119 	}
120 	/*
121 	 * We must never clear the flag in another thread, or in current
122 	 * when it's possible the current syscall is returning -ERESTART*.
123 	 * So we don't clear it here, and only callers who know they should do.
124 	 */
125 	return 0;
126 }
127 
128 /*
129  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
130  * This is superfluous when called on current, the wakeup is a harmless no-op.
131  */
recalc_sigpending_and_wake(struct task_struct * t)132 void recalc_sigpending_and_wake(struct task_struct *t)
133 {
134 	if (recalc_sigpending_tsk(t))
135 		signal_wake_up(t, 0);
136 }
137 
recalc_sigpending(void)138 void recalc_sigpending(void)
139 {
140 	if (unlikely(tracehook_force_sigpending()))
141 		set_thread_flag(TIF_SIGPENDING);
142 	else if (!recalc_sigpending_tsk(current) && !freezing(current))
143 		clear_thread_flag(TIF_SIGPENDING);
144 
145 }
146 
147 /* Given the mask, find the first available signal that should be serviced. */
148 
next_signal(struct sigpending * pending,sigset_t * mask)149 int next_signal(struct sigpending *pending, sigset_t *mask)
150 {
151 	unsigned long i, *s, *m, x;
152 	int sig = 0;
153 
154 	s = pending->signal.sig;
155 	m = mask->sig;
156 	switch (_NSIG_WORDS) {
157 	default:
158 		for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
159 			if ((x = *s &~ *m) != 0) {
160 				sig = ffz(~x) + i*_NSIG_BPW + 1;
161 				break;
162 			}
163 		break;
164 
165 	case 2: if ((x = s[0] &~ m[0]) != 0)
166 			sig = 1;
167 		else if ((x = s[1] &~ m[1]) != 0)
168 			sig = _NSIG_BPW + 1;
169 		else
170 			break;
171 		sig += ffz(~x);
172 		break;
173 
174 	case 1: if ((x = *s &~ *m) != 0)
175 			sig = ffz(~x) + 1;
176 		break;
177 	}
178 
179 	return sig;
180 }
181 
182 /*
183  * allocate a new signal queue record
184  * - this may be called without locks if and only if t == current, otherwise an
185  *   appopriate lock must be held to stop the target task from exiting
186  */
__sigqueue_alloc(struct task_struct * t,gfp_t flags,int override_rlimit)187 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
188 					 int override_rlimit)
189 {
190 	struct sigqueue *q = NULL;
191 	struct user_struct *user;
192 
193 	/*
194 	 * We won't get problems with the target's UID changing under us
195 	 * because changing it requires RCU be used, and if t != current, the
196 	 * caller must be holding the RCU readlock (by way of a spinlock) and
197 	 * we use RCU protection here
198 	 */
199 	user = get_uid(__task_cred(t)->user);
200 	atomic_inc(&user->sigpending);
201 	if (override_rlimit ||
202 	    atomic_read(&user->sigpending) <=
203 			t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
204 		q = kmem_cache_alloc(sigqueue_cachep, flags);
205 	if (unlikely(q == NULL)) {
206 		atomic_dec(&user->sigpending);
207 		free_uid(user);
208 	} else {
209 		INIT_LIST_HEAD(&q->list);
210 		q->flags = 0;
211 		q->user = user;
212 	}
213 
214 	return q;
215 }
216 
__sigqueue_free(struct sigqueue * q)217 static void __sigqueue_free(struct sigqueue *q)
218 {
219 	if (q->flags & SIGQUEUE_PREALLOC)
220 		return;
221 	atomic_dec(&q->user->sigpending);
222 	free_uid(q->user);
223 	kmem_cache_free(sigqueue_cachep, q);
224 }
225 
flush_sigqueue(struct sigpending * queue)226 void flush_sigqueue(struct sigpending *queue)
227 {
228 	struct sigqueue *q;
229 
230 	sigemptyset(&queue->signal);
231 	while (!list_empty(&queue->list)) {
232 		q = list_entry(queue->list.next, struct sigqueue , list);
233 		list_del_init(&q->list);
234 		__sigqueue_free(q);
235 	}
236 }
237 
238 /*
239  * Flush all pending signals for a task.
240  */
flush_signals(struct task_struct * t)241 void flush_signals(struct task_struct *t)
242 {
243 	unsigned long flags;
244 
245 	spin_lock_irqsave(&t->sighand->siglock, flags);
246 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
247 	flush_sigqueue(&t->pending);
248 	flush_sigqueue(&t->signal->shared_pending);
249 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
250 }
251 
__flush_itimer_signals(struct sigpending * pending)252 static void __flush_itimer_signals(struct sigpending *pending)
253 {
254 	sigset_t signal, retain;
255 	struct sigqueue *q, *n;
256 
257 	signal = pending->signal;
258 	sigemptyset(&retain);
259 
260 	list_for_each_entry_safe(q, n, &pending->list, list) {
261 		int sig = q->info.si_signo;
262 
263 		if (likely(q->info.si_code != SI_TIMER)) {
264 			sigaddset(&retain, sig);
265 		} else {
266 			sigdelset(&signal, sig);
267 			list_del_init(&q->list);
268 			__sigqueue_free(q);
269 		}
270 	}
271 
272 	sigorsets(&pending->signal, &signal, &retain);
273 }
274 
flush_itimer_signals(void)275 void flush_itimer_signals(void)
276 {
277 	struct task_struct *tsk = current;
278 	unsigned long flags;
279 
280 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
281 	__flush_itimer_signals(&tsk->pending);
282 	__flush_itimer_signals(&tsk->signal->shared_pending);
283 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
284 }
285 
ignore_signals(struct task_struct * t)286 void ignore_signals(struct task_struct *t)
287 {
288 	int i;
289 
290 	for (i = 0; i < _NSIG; ++i)
291 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
292 
293 	flush_signals(t);
294 }
295 
296 /*
297  * Flush all handlers for a task.
298  */
299 
300 void
flush_signal_handlers(struct task_struct * t,int force_default)301 flush_signal_handlers(struct task_struct *t, int force_default)
302 {
303 	int i;
304 	struct k_sigaction *ka = &t->sighand->action[0];
305 	for (i = _NSIG ; i != 0 ; i--) {
306 		if (force_default || ka->sa.sa_handler != SIG_IGN)
307 			ka->sa.sa_handler = SIG_DFL;
308 		ka->sa.sa_flags = 0;
309 		sigemptyset(&ka->sa.sa_mask);
310 		ka++;
311 	}
312 }
313 
unhandled_signal(struct task_struct * tsk,int sig)314 int unhandled_signal(struct task_struct *tsk, int sig)
315 {
316 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
317 	if (is_global_init(tsk))
318 		return 1;
319 	if (handler != SIG_IGN && handler != SIG_DFL)
320 		return 0;
321 	return !tracehook_consider_fatal_signal(tsk, sig, handler);
322 }
323 
324 
325 /* Notify the system that a driver wants to block all signals for this
326  * process, and wants to be notified if any signals at all were to be
327  * sent/acted upon.  If the notifier routine returns non-zero, then the
328  * signal will be acted upon after all.  If the notifier routine returns 0,
329  * then then signal will be blocked.  Only one block per process is
330  * allowed.  priv is a pointer to private data that the notifier routine
331  * can use to determine if the signal should be blocked or not.  */
332 
333 void
block_all_signals(int (* notifier)(void * priv),void * priv,sigset_t * mask)334 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
335 {
336 	unsigned long flags;
337 
338 	spin_lock_irqsave(&current->sighand->siglock, flags);
339 	current->notifier_mask = mask;
340 	current->notifier_data = priv;
341 	current->notifier = notifier;
342 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
343 }
344 
345 /* Notify the system that blocking has ended. */
346 
347 void
unblock_all_signals(void)348 unblock_all_signals(void)
349 {
350 	unsigned long flags;
351 
352 	spin_lock_irqsave(&current->sighand->siglock, flags);
353 	current->notifier = NULL;
354 	current->notifier_data = NULL;
355 	recalc_sigpending();
356 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
357 }
358 
collect_signal(int sig,struct sigpending * list,siginfo_t * info)359 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
360 {
361 	struct sigqueue *q, *first = NULL;
362 
363 	/*
364 	 * Collect the siginfo appropriate to this signal.  Check if
365 	 * there is another siginfo for the same signal.
366 	*/
367 	list_for_each_entry(q, &list->list, list) {
368 		if (q->info.si_signo == sig) {
369 			if (first)
370 				goto still_pending;
371 			first = q;
372 		}
373 	}
374 
375 	sigdelset(&list->signal, sig);
376 
377 	if (first) {
378 still_pending:
379 		list_del_init(&first->list);
380 		copy_siginfo(info, &first->info);
381 		__sigqueue_free(first);
382 	} else {
383 		/* Ok, it wasn't in the queue.  This must be
384 		   a fast-pathed signal or we must have been
385 		   out of queue space.  So zero out the info.
386 		 */
387 		info->si_signo = sig;
388 		info->si_errno = 0;
389 		info->si_code = 0;
390 		info->si_pid = 0;
391 		info->si_uid = 0;
392 	}
393 }
394 
__dequeue_signal(struct sigpending * pending,sigset_t * mask,siginfo_t * info)395 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
396 			siginfo_t *info)
397 {
398 	int sig = next_signal(pending, mask);
399 
400 	if (sig) {
401 		if (current->notifier) {
402 			if (sigismember(current->notifier_mask, sig)) {
403 				if (!(current->notifier)(current->notifier_data)) {
404 					clear_thread_flag(TIF_SIGPENDING);
405 					return 0;
406 				}
407 			}
408 		}
409 
410 		collect_signal(sig, pending, info);
411 	}
412 
413 	return sig;
414 }
415 
416 /*
417  * Dequeue a signal and return the element to the caller, which is
418  * expected to free it.
419  *
420  * All callers have to hold the siglock.
421  */
dequeue_signal(struct task_struct * tsk,sigset_t * mask,siginfo_t * info)422 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
423 {
424 	int signr;
425 
426 	/* We only dequeue private signals from ourselves, we don't let
427 	 * signalfd steal them
428 	 */
429 	signr = __dequeue_signal(&tsk->pending, mask, info);
430 	if (!signr) {
431 		signr = __dequeue_signal(&tsk->signal->shared_pending,
432 					 mask, info);
433 		/*
434 		 * itimer signal ?
435 		 *
436 		 * itimers are process shared and we restart periodic
437 		 * itimers in the signal delivery path to prevent DoS
438 		 * attacks in the high resolution timer case. This is
439 		 * compliant with the old way of self restarting
440 		 * itimers, as the SIGALRM is a legacy signal and only
441 		 * queued once. Changing the restart behaviour to
442 		 * restart the timer in the signal dequeue path is
443 		 * reducing the timer noise on heavy loaded !highres
444 		 * systems too.
445 		 */
446 		if (unlikely(signr == SIGALRM)) {
447 			struct hrtimer *tmr = &tsk->signal->real_timer;
448 
449 			if (!hrtimer_is_queued(tmr) &&
450 			    tsk->signal->it_real_incr.tv64 != 0) {
451 				hrtimer_forward(tmr, tmr->base->get_time(),
452 						tsk->signal->it_real_incr);
453 				hrtimer_restart(tmr);
454 			}
455 		}
456 	}
457 
458 	recalc_sigpending();
459 	if (!signr)
460 		return 0;
461 
462 	if (unlikely(sig_kernel_stop(signr))) {
463 		/*
464 		 * Set a marker that we have dequeued a stop signal.  Our
465 		 * caller might release the siglock and then the pending
466 		 * stop signal it is about to process is no longer in the
467 		 * pending bitmasks, but must still be cleared by a SIGCONT
468 		 * (and overruled by a SIGKILL).  So those cases clear this
469 		 * shared flag after we've set it.  Note that this flag may
470 		 * remain set after the signal we return is ignored or
471 		 * handled.  That doesn't matter because its only purpose
472 		 * is to alert stop-signal processing code when another
473 		 * processor has come along and cleared the flag.
474 		 */
475 		tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
476 	}
477 	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
478 		/*
479 		 * Release the siglock to ensure proper locking order
480 		 * of timer locks outside of siglocks.  Note, we leave
481 		 * irqs disabled here, since the posix-timers code is
482 		 * about to disable them again anyway.
483 		 */
484 		spin_unlock(&tsk->sighand->siglock);
485 		do_schedule_next_timer(info);
486 		spin_lock(&tsk->sighand->siglock);
487 	}
488 	return signr;
489 }
490 
491 /*
492  * Tell a process that it has a new active signal..
493  *
494  * NOTE! we rely on the previous spin_lock to
495  * lock interrupts for us! We can only be called with
496  * "siglock" held, and the local interrupt must
497  * have been disabled when that got acquired!
498  *
499  * No need to set need_resched since signal event passing
500  * goes through ->blocked
501  */
signal_wake_up(struct task_struct * t,int resume)502 void signal_wake_up(struct task_struct *t, int resume)
503 {
504 	unsigned int mask;
505 
506 	set_tsk_thread_flag(t, TIF_SIGPENDING);
507 
508 	/*
509 	 * For SIGKILL, we want to wake it up in the stopped/traced/killable
510 	 * case. We don't check t->state here because there is a race with it
511 	 * executing another processor and just now entering stopped state.
512 	 * By using wake_up_state, we ensure the process will wake up and
513 	 * handle its death signal.
514 	 */
515 	mask = TASK_INTERRUPTIBLE;
516 	if (resume)
517 		mask |= TASK_WAKEKILL;
518 	if (!wake_up_state(t, mask))
519 		kick_process(t);
520 }
521 
522 /*
523  * Remove signals in mask from the pending set and queue.
524  * Returns 1 if any signals were found.
525  *
526  * All callers must be holding the siglock.
527  *
528  * This version takes a sigset mask and looks at all signals,
529  * not just those in the first mask word.
530  */
rm_from_queue_full(sigset_t * mask,struct sigpending * s)531 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
532 {
533 	struct sigqueue *q, *n;
534 	sigset_t m;
535 
536 	sigandsets(&m, mask, &s->signal);
537 	if (sigisemptyset(&m))
538 		return 0;
539 
540 	signandsets(&s->signal, &s->signal, mask);
541 	list_for_each_entry_safe(q, n, &s->list, list) {
542 		if (sigismember(mask, q->info.si_signo)) {
543 			list_del_init(&q->list);
544 			__sigqueue_free(q);
545 		}
546 	}
547 	return 1;
548 }
549 /*
550  * Remove signals in mask from the pending set and queue.
551  * Returns 1 if any signals were found.
552  *
553  * All callers must be holding the siglock.
554  */
rm_from_queue(unsigned long mask,struct sigpending * s)555 static int rm_from_queue(unsigned long mask, struct sigpending *s)
556 {
557 	struct sigqueue *q, *n;
558 
559 	if (!sigtestsetmask(&s->signal, mask))
560 		return 0;
561 
562 	sigdelsetmask(&s->signal, mask);
563 	list_for_each_entry_safe(q, n, &s->list, list) {
564 		if (q->info.si_signo < SIGRTMIN &&
565 		    (mask & sigmask(q->info.si_signo))) {
566 			list_del_init(&q->list);
567 			__sigqueue_free(q);
568 		}
569 	}
570 	return 1;
571 }
572 
573 /*
574  * Bad permissions for sending the signal
575  * - the caller must hold at least the RCU read lock
576  */
check_kill_permission(int sig,struct siginfo * info,struct task_struct * t)577 static int check_kill_permission(int sig, struct siginfo *info,
578 				 struct task_struct *t)
579 {
580 	const struct cred *cred = current_cred(), *tcred;
581 	struct pid *sid;
582 	int error;
583 
584 	if (!valid_signal(sig))
585 		return -EINVAL;
586 
587 	if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
588 		return 0;
589 
590 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
591 	if (error)
592 		return error;
593 
594 	tcred = __task_cred(t);
595 	if ((cred->euid ^ tcred->suid) &&
596 	    (cred->euid ^ tcred->uid) &&
597 	    (cred->uid  ^ tcred->suid) &&
598 	    (cred->uid  ^ tcred->uid) &&
599 	    !capable(CAP_KILL)) {
600 		switch (sig) {
601 		case SIGCONT:
602 			sid = task_session(t);
603 			/*
604 			 * We don't return the error if sid == NULL. The
605 			 * task was unhashed, the caller must notice this.
606 			 */
607 			if (!sid || sid == task_session(current))
608 				break;
609 		default:
610 			return -EPERM;
611 		}
612 	}
613 
614 	return security_task_kill(t, info, sig, 0);
615 }
616 
617 /*
618  * Handle magic process-wide effects of stop/continue signals. Unlike
619  * the signal actions, these happen immediately at signal-generation
620  * time regardless of blocking, ignoring, or handling.  This does the
621  * actual continuing for SIGCONT, but not the actual stopping for stop
622  * signals. The process stop is done as a signal action for SIG_DFL.
623  *
624  * Returns true if the signal should be actually delivered, otherwise
625  * it should be dropped.
626  */
prepare_signal(int sig,struct task_struct * p)627 static int prepare_signal(int sig, struct task_struct *p)
628 {
629 	struct signal_struct *signal = p->signal;
630 	struct task_struct *t;
631 
632 	if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
633 		/*
634 		 * The process is in the middle of dying, nothing to do.
635 		 */
636 	} else if (sig_kernel_stop(sig)) {
637 		/*
638 		 * This is a stop signal.  Remove SIGCONT from all queues.
639 		 */
640 		rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
641 		t = p;
642 		do {
643 			rm_from_queue(sigmask(SIGCONT), &t->pending);
644 		} while_each_thread(p, t);
645 	} else if (sig == SIGCONT) {
646 		unsigned int why;
647 		/*
648 		 * Remove all stop signals from all queues,
649 		 * and wake all threads.
650 		 */
651 		rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
652 		t = p;
653 		do {
654 			unsigned int state;
655 			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
656 			/*
657 			 * If there is a handler for SIGCONT, we must make
658 			 * sure that no thread returns to user mode before
659 			 * we post the signal, in case it was the only
660 			 * thread eligible to run the signal handler--then
661 			 * it must not do anything between resuming and
662 			 * running the handler.  With the TIF_SIGPENDING
663 			 * flag set, the thread will pause and acquire the
664 			 * siglock that we hold now and until we've queued
665 			 * the pending signal.
666 			 *
667 			 * Wake up the stopped thread _after_ setting
668 			 * TIF_SIGPENDING
669 			 */
670 			state = __TASK_STOPPED;
671 			if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
672 				set_tsk_thread_flag(t, TIF_SIGPENDING);
673 				state |= TASK_INTERRUPTIBLE;
674 			}
675 			wake_up_state(t, state);
676 		} while_each_thread(p, t);
677 
678 		/*
679 		 * Notify the parent with CLD_CONTINUED if we were stopped.
680 		 *
681 		 * If we were in the middle of a group stop, we pretend it
682 		 * was already finished, and then continued. Since SIGCHLD
683 		 * doesn't queue we report only CLD_STOPPED, as if the next
684 		 * CLD_CONTINUED was dropped.
685 		 */
686 		why = 0;
687 		if (signal->flags & SIGNAL_STOP_STOPPED)
688 			why |= SIGNAL_CLD_CONTINUED;
689 		else if (signal->group_stop_count)
690 			why |= SIGNAL_CLD_STOPPED;
691 
692 		if (why) {
693 			/*
694 			 * The first thread which returns from finish_stop()
695 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
696 			 * notify its parent. See get_signal_to_deliver().
697 			 */
698 			signal->flags = why | SIGNAL_STOP_CONTINUED;
699 			signal->group_stop_count = 0;
700 			signal->group_exit_code = 0;
701 		} else {
702 			/*
703 			 * We are not stopped, but there could be a stop
704 			 * signal in the middle of being processed after
705 			 * being removed from the queue.  Clear that too.
706 			 */
707 			signal->flags &= ~SIGNAL_STOP_DEQUEUED;
708 		}
709 	}
710 
711 	return !sig_ignored(p, sig);
712 }
713 
714 /*
715  * Test if P wants to take SIG.  After we've checked all threads with this,
716  * it's equivalent to finding no threads not blocking SIG.  Any threads not
717  * blocking SIG were ruled out because they are not running and already
718  * have pending signals.  Such threads will dequeue from the shared queue
719  * as soon as they're available, so putting the signal on the shared queue
720  * will be equivalent to sending it to one such thread.
721  */
wants_signal(int sig,struct task_struct * p)722 static inline int wants_signal(int sig, struct task_struct *p)
723 {
724 	if (sigismember(&p->blocked, sig))
725 		return 0;
726 	if (p->flags & PF_EXITING)
727 		return 0;
728 	if (sig == SIGKILL)
729 		return 1;
730 	if (task_is_stopped_or_traced(p))
731 		return 0;
732 	return task_curr(p) || !signal_pending(p);
733 }
734 
complete_signal(int sig,struct task_struct * p,int group)735 static void complete_signal(int sig, struct task_struct *p, int group)
736 {
737 	struct signal_struct *signal = p->signal;
738 	struct task_struct *t;
739 
740 	/*
741 	 * Now find a thread we can wake up to take the signal off the queue.
742 	 *
743 	 * If the main thread wants the signal, it gets first crack.
744 	 * Probably the least surprising to the average bear.
745 	 */
746 	if (wants_signal(sig, p))
747 		t = p;
748 	else if (!group || thread_group_empty(p))
749 		/*
750 		 * There is just one thread and it does not need to be woken.
751 		 * It will dequeue unblocked signals before it runs again.
752 		 */
753 		return;
754 	else {
755 		/*
756 		 * Otherwise try to find a suitable thread.
757 		 */
758 		t = signal->curr_target;
759 		while (!wants_signal(sig, t)) {
760 			t = next_thread(t);
761 			if (t == signal->curr_target)
762 				/*
763 				 * No thread needs to be woken.
764 				 * Any eligible threads will see
765 				 * the signal in the queue soon.
766 				 */
767 				return;
768 		}
769 		signal->curr_target = t;
770 	}
771 
772 	/*
773 	 * Found a killable thread.  If the signal will be fatal,
774 	 * then start taking the whole group down immediately.
775 	 */
776 	if (sig_fatal(p, sig) &&
777 	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
778 	    !sigismember(&t->real_blocked, sig) &&
779 	    (sig == SIGKILL ||
780 	     !tracehook_consider_fatal_signal(t, sig, SIG_DFL))) {
781 		/*
782 		 * This signal will be fatal to the whole group.
783 		 */
784 		if (!sig_kernel_coredump(sig)) {
785 			/*
786 			 * Start a group exit and wake everybody up.
787 			 * This way we don't have other threads
788 			 * running and doing things after a slower
789 			 * thread has the fatal signal pending.
790 			 */
791 			signal->flags = SIGNAL_GROUP_EXIT;
792 			signal->group_exit_code = sig;
793 			signal->group_stop_count = 0;
794 			t = p;
795 			do {
796 				sigaddset(&t->pending.signal, SIGKILL);
797 				signal_wake_up(t, 1);
798 			} while_each_thread(p, t);
799 			return;
800 		}
801 	}
802 
803 	/*
804 	 * The signal is already in the shared-pending queue.
805 	 * Tell the chosen thread to wake up and dequeue it.
806 	 */
807 	signal_wake_up(t, sig == SIGKILL);
808 	return;
809 }
810 
legacy_queue(struct sigpending * signals,int sig)811 static inline int legacy_queue(struct sigpending *signals, int sig)
812 {
813 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
814 }
815 
send_signal(int sig,struct siginfo * info,struct task_struct * t,int group)816 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
817 			int group)
818 {
819 	struct sigpending *pending;
820 	struct sigqueue *q;
821 
822 	trace_sched_signal_send(sig, t);
823 
824 	assert_spin_locked(&t->sighand->siglock);
825 	if (!prepare_signal(sig, t))
826 		return 0;
827 
828 	pending = group ? &t->signal->shared_pending : &t->pending;
829 	/*
830 	 * Short-circuit ignored signals and support queuing
831 	 * exactly one non-rt signal, so that we can get more
832 	 * detailed information about the cause of the signal.
833 	 */
834 	if (legacy_queue(pending, sig))
835 		return 0;
836 	/*
837 	 * fast-pathed signals for kernel-internal things like SIGSTOP
838 	 * or SIGKILL.
839 	 */
840 	if (info == SEND_SIG_FORCED)
841 		goto out_set;
842 
843 	/* Real-time signals must be queued if sent by sigqueue, or
844 	   some other real-time mechanism.  It is implementation
845 	   defined whether kill() does so.  We attempt to do so, on
846 	   the principle of least surprise, but since kill is not
847 	   allowed to fail with EAGAIN when low on memory we just
848 	   make sure at least one signal gets delivered and don't
849 	   pass on the info struct.  */
850 
851 	q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
852 					     (is_si_special(info) ||
853 					      info->si_code >= 0)));
854 	if (q) {
855 		list_add_tail(&q->list, &pending->list);
856 		switch ((unsigned long) info) {
857 		case (unsigned long) SEND_SIG_NOINFO:
858 			q->info.si_signo = sig;
859 			q->info.si_errno = 0;
860 			q->info.si_code = SI_USER;
861 			q->info.si_pid = task_tgid_nr_ns(current,
862 							task_active_pid_ns(t));
863 			q->info.si_uid = current_uid();
864 			break;
865 		case (unsigned long) SEND_SIG_PRIV:
866 			q->info.si_signo = sig;
867 			q->info.si_errno = 0;
868 			q->info.si_code = SI_KERNEL;
869 			q->info.si_pid = 0;
870 			q->info.si_uid = 0;
871 			break;
872 		default:
873 			copy_siginfo(&q->info, info);
874 			break;
875 		}
876 	} else if (!is_si_special(info)) {
877 		if (sig >= SIGRTMIN && info->si_code != SI_USER)
878 		/*
879 		 * Queue overflow, abort.  We may abort if the signal was rt
880 		 * and sent by user using something other than kill().
881 		 */
882 			return -EAGAIN;
883 	}
884 
885 out_set:
886 	signalfd_notify(t, sig);
887 	sigaddset(&pending->signal, sig);
888 	complete_signal(sig, t, group);
889 	return 0;
890 }
891 
892 int print_fatal_signals;
893 
print_fatal_signal(struct pt_regs * regs,int signr)894 static void print_fatal_signal(struct pt_regs *regs, int signr)
895 {
896 	printk("%s/%d: potentially unexpected fatal signal %d.\n",
897 		current->comm, task_pid_nr(current), signr);
898 
899 #if defined(__i386__) && !defined(__arch_um__)
900 	printk("code at %08lx: ", regs->ip);
901 	{
902 		int i;
903 		for (i = 0; i < 16; i++) {
904 			unsigned char insn;
905 
906 			__get_user(insn, (unsigned char *)(regs->ip + i));
907 			printk("%02x ", insn);
908 		}
909 	}
910 #endif
911 	printk("\n");
912 	preempt_disable();
913 	show_regs(regs);
914 	preempt_enable();
915 }
916 
setup_print_fatal_signals(char * str)917 static int __init setup_print_fatal_signals(char *str)
918 {
919 	get_option (&str, &print_fatal_signals);
920 
921 	return 1;
922 }
923 
924 __setup("print-fatal-signals=", setup_print_fatal_signals);
925 
926 int
__group_send_sig_info(int sig,struct siginfo * info,struct task_struct * p)927 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
928 {
929 	return send_signal(sig, info, p, 1);
930 }
931 
932 static int
specific_send_sig_info(int sig,struct siginfo * info,struct task_struct * t)933 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
934 {
935 	return send_signal(sig, info, t, 0);
936 }
937 
938 /*
939  * Force a signal that the process can't ignore: if necessary
940  * we unblock the signal and change any SIG_IGN to SIG_DFL.
941  *
942  * Note: If we unblock the signal, we always reset it to SIG_DFL,
943  * since we do not want to have a signal handler that was blocked
944  * be invoked when user space had explicitly blocked it.
945  *
946  * We don't want to have recursive SIGSEGV's etc, for example,
947  * that is why we also clear SIGNAL_UNKILLABLE.
948  */
949 int
force_sig_info(int sig,struct siginfo * info,struct task_struct * t)950 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
951 {
952 	unsigned long int flags;
953 	int ret, blocked, ignored;
954 	struct k_sigaction *action;
955 
956 	spin_lock_irqsave(&t->sighand->siglock, flags);
957 	action = &t->sighand->action[sig-1];
958 	ignored = action->sa.sa_handler == SIG_IGN;
959 	blocked = sigismember(&t->blocked, sig);
960 	if (blocked || ignored) {
961 		action->sa.sa_handler = SIG_DFL;
962 		if (blocked) {
963 			sigdelset(&t->blocked, sig);
964 			recalc_sigpending_and_wake(t);
965 		}
966 	}
967 	if (action->sa.sa_handler == SIG_DFL)
968 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
969 	ret = specific_send_sig_info(sig, info, t);
970 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
971 
972 	return ret;
973 }
974 
975 void
force_sig_specific(int sig,struct task_struct * t)976 force_sig_specific(int sig, struct task_struct *t)
977 {
978 	force_sig_info(sig, SEND_SIG_FORCED, t);
979 }
980 
981 /*
982  * Nuke all other threads in the group.
983  */
zap_other_threads(struct task_struct * p)984 void zap_other_threads(struct task_struct *p)
985 {
986 	struct task_struct *t;
987 
988 	p->signal->group_stop_count = 0;
989 
990 	for (t = next_thread(p); t != p; t = next_thread(t)) {
991 		/*
992 		 * Don't bother with already dead threads
993 		 */
994 		if (t->exit_state)
995 			continue;
996 
997 		/* SIGKILL will be handled before any pending SIGSTOP */
998 		sigaddset(&t->pending.signal, SIGKILL);
999 		signal_wake_up(t, 1);
1000 	}
1001 }
1002 
__fatal_signal_pending(struct task_struct * tsk)1003 int __fatal_signal_pending(struct task_struct *tsk)
1004 {
1005 	return sigismember(&tsk->pending.signal, SIGKILL);
1006 }
1007 EXPORT_SYMBOL(__fatal_signal_pending);
1008 
lock_task_sighand(struct task_struct * tsk,unsigned long * flags)1009 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1010 {
1011 	struct sighand_struct *sighand;
1012 
1013 	rcu_read_lock();
1014 	for (;;) {
1015 		sighand = rcu_dereference(tsk->sighand);
1016 		if (unlikely(sighand == NULL))
1017 			break;
1018 
1019 		spin_lock_irqsave(&sighand->siglock, *flags);
1020 		if (likely(sighand == tsk->sighand))
1021 			break;
1022 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1023 	}
1024 	rcu_read_unlock();
1025 
1026 	return sighand;
1027 }
1028 
1029 /*
1030  * send signal info to all the members of a group
1031  * - the caller must hold the RCU read lock at least
1032  */
group_send_sig_info(int sig,struct siginfo * info,struct task_struct * p)1033 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1034 {
1035 	unsigned long flags;
1036 	int ret;
1037 
1038 	ret = check_kill_permission(sig, info, p);
1039 
1040 	if (!ret && sig) {
1041 		ret = -ESRCH;
1042 		if (lock_task_sighand(p, &flags)) {
1043 			ret = __group_send_sig_info(sig, info, p);
1044 			unlock_task_sighand(p, &flags);
1045 		}
1046 	}
1047 
1048 	return ret;
1049 }
1050 
1051 /*
1052  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1053  * control characters do (^C, ^Z etc)
1054  * - the caller must hold at least a readlock on tasklist_lock
1055  */
__kill_pgrp_info(int sig,struct siginfo * info,struct pid * pgrp)1056 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1057 {
1058 	struct task_struct *p = NULL;
1059 	int retval, success;
1060 
1061 	success = 0;
1062 	retval = -ESRCH;
1063 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1064 		int err = group_send_sig_info(sig, info, p);
1065 		success |= !err;
1066 		retval = err;
1067 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1068 	return success ? 0 : retval;
1069 }
1070 
kill_pid_info(int sig,struct siginfo * info,struct pid * pid)1071 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1072 {
1073 	int error = -ESRCH;
1074 	struct task_struct *p;
1075 
1076 	rcu_read_lock();
1077 retry:
1078 	p = pid_task(pid, PIDTYPE_PID);
1079 	if (p) {
1080 		error = group_send_sig_info(sig, info, p);
1081 		if (unlikely(error == -ESRCH))
1082 			/*
1083 			 * The task was unhashed in between, try again.
1084 			 * If it is dead, pid_task() will return NULL,
1085 			 * if we race with de_thread() it will find the
1086 			 * new leader.
1087 			 */
1088 			goto retry;
1089 	}
1090 	rcu_read_unlock();
1091 
1092 	return error;
1093 }
1094 
1095 int
kill_proc_info(int sig,struct siginfo * info,pid_t pid)1096 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1097 {
1098 	int error;
1099 	rcu_read_lock();
1100 	error = kill_pid_info(sig, info, find_vpid(pid));
1101 	rcu_read_unlock();
1102 	return error;
1103 }
1104 
1105 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
kill_pid_info_as_uid(int sig,struct siginfo * info,struct pid * pid,uid_t uid,uid_t euid,u32 secid)1106 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1107 		      uid_t uid, uid_t euid, u32 secid)
1108 {
1109 	int ret = -EINVAL;
1110 	struct task_struct *p;
1111 	const struct cred *pcred;
1112 
1113 	if (!valid_signal(sig))
1114 		return ret;
1115 
1116 	read_lock(&tasklist_lock);
1117 	p = pid_task(pid, PIDTYPE_PID);
1118 	if (!p) {
1119 		ret = -ESRCH;
1120 		goto out_unlock;
1121 	}
1122 	pcred = __task_cred(p);
1123 	if ((info == SEND_SIG_NOINFO ||
1124 	     (!is_si_special(info) && SI_FROMUSER(info))) &&
1125 	    euid != pcred->suid && euid != pcred->uid &&
1126 	    uid  != pcred->suid && uid  != pcred->uid) {
1127 		ret = -EPERM;
1128 		goto out_unlock;
1129 	}
1130 	ret = security_task_kill(p, info, sig, secid);
1131 	if (ret)
1132 		goto out_unlock;
1133 	if (sig && p->sighand) {
1134 		unsigned long flags;
1135 		spin_lock_irqsave(&p->sighand->siglock, flags);
1136 		ret = __group_send_sig_info(sig, info, p);
1137 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1138 	}
1139 out_unlock:
1140 	read_unlock(&tasklist_lock);
1141 	return ret;
1142 }
1143 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1144 
1145 /*
1146  * kill_something_info() interprets pid in interesting ways just like kill(2).
1147  *
1148  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1149  * is probably wrong.  Should make it like BSD or SYSV.
1150  */
1151 
kill_something_info(int sig,struct siginfo * info,pid_t pid)1152 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1153 {
1154 	int ret;
1155 
1156 	if (pid > 0) {
1157 		rcu_read_lock();
1158 		ret = kill_pid_info(sig, info, find_vpid(pid));
1159 		rcu_read_unlock();
1160 		return ret;
1161 	}
1162 
1163 	read_lock(&tasklist_lock);
1164 	if (pid != -1) {
1165 		ret = __kill_pgrp_info(sig, info,
1166 				pid ? find_vpid(-pid) : task_pgrp(current));
1167 	} else {
1168 		int retval = 0, count = 0;
1169 		struct task_struct * p;
1170 
1171 		for_each_process(p) {
1172 			if (task_pid_vnr(p) > 1 &&
1173 					!same_thread_group(p, current)) {
1174 				int err = group_send_sig_info(sig, info, p);
1175 				++count;
1176 				if (err != -EPERM)
1177 					retval = err;
1178 			}
1179 		}
1180 		ret = count ? retval : -ESRCH;
1181 	}
1182 	read_unlock(&tasklist_lock);
1183 
1184 	return ret;
1185 }
1186 
1187 /*
1188  * These are for backward compatibility with the rest of the kernel source.
1189  */
1190 
1191 /*
1192  * The caller must ensure the task can't exit.
1193  */
1194 int
send_sig_info(int sig,struct siginfo * info,struct task_struct * p)1195 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1196 {
1197 	int ret;
1198 	unsigned long flags;
1199 
1200 	/*
1201 	 * Make sure legacy kernel users don't send in bad values
1202 	 * (normal paths check this in check_kill_permission).
1203 	 */
1204 	if (!valid_signal(sig))
1205 		return -EINVAL;
1206 
1207 	spin_lock_irqsave(&p->sighand->siglock, flags);
1208 	ret = specific_send_sig_info(sig, info, p);
1209 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
1210 	return ret;
1211 }
1212 
1213 #define __si_special(priv) \
1214 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1215 
1216 int
send_sig(int sig,struct task_struct * p,int priv)1217 send_sig(int sig, struct task_struct *p, int priv)
1218 {
1219 	return send_sig_info(sig, __si_special(priv), p);
1220 }
1221 
1222 void
force_sig(int sig,struct task_struct * p)1223 force_sig(int sig, struct task_struct *p)
1224 {
1225 	force_sig_info(sig, SEND_SIG_PRIV, p);
1226 }
1227 
1228 /*
1229  * When things go south during signal handling, we
1230  * will force a SIGSEGV. And if the signal that caused
1231  * the problem was already a SIGSEGV, we'll want to
1232  * make sure we don't even try to deliver the signal..
1233  */
1234 int
force_sigsegv(int sig,struct task_struct * p)1235 force_sigsegv(int sig, struct task_struct *p)
1236 {
1237 	if (sig == SIGSEGV) {
1238 		unsigned long flags;
1239 		spin_lock_irqsave(&p->sighand->siglock, flags);
1240 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1241 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1242 	}
1243 	force_sig(SIGSEGV, p);
1244 	return 0;
1245 }
1246 
kill_pgrp(struct pid * pid,int sig,int priv)1247 int kill_pgrp(struct pid *pid, int sig, int priv)
1248 {
1249 	int ret;
1250 
1251 	read_lock(&tasklist_lock);
1252 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1253 	read_unlock(&tasklist_lock);
1254 
1255 	return ret;
1256 }
1257 EXPORT_SYMBOL(kill_pgrp);
1258 
kill_pid(struct pid * pid,int sig,int priv)1259 int kill_pid(struct pid *pid, int sig, int priv)
1260 {
1261 	return kill_pid_info(sig, __si_special(priv), pid);
1262 }
1263 EXPORT_SYMBOL(kill_pid);
1264 
1265 /*
1266  * These functions support sending signals using preallocated sigqueue
1267  * structures.  This is needed "because realtime applications cannot
1268  * afford to lose notifications of asynchronous events, like timer
1269  * expirations or I/O completions".  In the case of Posix Timers
1270  * we allocate the sigqueue structure from the timer_create.  If this
1271  * allocation fails we are able to report the failure to the application
1272  * with an EAGAIN error.
1273  */
1274 
sigqueue_alloc(void)1275 struct sigqueue *sigqueue_alloc(void)
1276 {
1277 	struct sigqueue *q;
1278 
1279 	if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1280 		q->flags |= SIGQUEUE_PREALLOC;
1281 	return(q);
1282 }
1283 
sigqueue_free(struct sigqueue * q)1284 void sigqueue_free(struct sigqueue *q)
1285 {
1286 	unsigned long flags;
1287 	spinlock_t *lock = &current->sighand->siglock;
1288 
1289 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1290 	/*
1291 	 * We must hold ->siglock while testing q->list
1292 	 * to serialize with collect_signal() or with
1293 	 * __exit_signal()->flush_sigqueue().
1294 	 */
1295 	spin_lock_irqsave(lock, flags);
1296 	q->flags &= ~SIGQUEUE_PREALLOC;
1297 	/*
1298 	 * If it is queued it will be freed when dequeued,
1299 	 * like the "regular" sigqueue.
1300 	 */
1301 	if (!list_empty(&q->list))
1302 		q = NULL;
1303 	spin_unlock_irqrestore(lock, flags);
1304 
1305 	if (q)
1306 		__sigqueue_free(q);
1307 }
1308 
send_sigqueue(struct sigqueue * q,struct task_struct * t,int group)1309 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1310 {
1311 	int sig = q->info.si_signo;
1312 	struct sigpending *pending;
1313 	unsigned long flags;
1314 	int ret;
1315 
1316 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1317 
1318 	ret = -1;
1319 	if (!likely(lock_task_sighand(t, &flags)))
1320 		goto ret;
1321 
1322 	ret = 1; /* the signal is ignored */
1323 	if (!prepare_signal(sig, t))
1324 		goto out;
1325 
1326 	ret = 0;
1327 	if (unlikely(!list_empty(&q->list))) {
1328 		/*
1329 		 * If an SI_TIMER entry is already queue just increment
1330 		 * the overrun count.
1331 		 */
1332 		BUG_ON(q->info.si_code != SI_TIMER);
1333 		q->info.si_overrun++;
1334 		goto out;
1335 	}
1336 	q->info.si_overrun = 0;
1337 
1338 	signalfd_notify(t, sig);
1339 	pending = group ? &t->signal->shared_pending : &t->pending;
1340 	list_add_tail(&q->list, &pending->list);
1341 	sigaddset(&pending->signal, sig);
1342 	complete_signal(sig, t, group);
1343 out:
1344 	unlock_task_sighand(t, &flags);
1345 ret:
1346 	return ret;
1347 }
1348 
1349 /*
1350  * Wake up any threads in the parent blocked in wait* syscalls.
1351  */
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1352 static inline void __wake_up_parent(struct task_struct *p,
1353 				    struct task_struct *parent)
1354 {
1355 	wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1356 }
1357 
1358 /*
1359  * Let a parent know about the death of a child.
1360  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1361  *
1362  * Returns -1 if our parent ignored us and so we've switched to
1363  * self-reaping, or else @sig.
1364  */
do_notify_parent(struct task_struct * tsk,int sig)1365 int do_notify_parent(struct task_struct *tsk, int sig)
1366 {
1367 	struct siginfo info;
1368 	unsigned long flags;
1369 	struct sighand_struct *psig;
1370 	int ret = sig;
1371 
1372 	BUG_ON(sig == -1);
1373 
1374  	/* do_notify_parent_cldstop should have been called instead.  */
1375  	BUG_ON(task_is_stopped_or_traced(tsk));
1376 
1377 	BUG_ON(!tsk->ptrace &&
1378 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1379 
1380 	info.si_signo = sig;
1381 	info.si_errno = 0;
1382 	/*
1383 	 * we are under tasklist_lock here so our parent is tied to
1384 	 * us and cannot exit and release its namespace.
1385 	 *
1386 	 * the only it can is to switch its nsproxy with sys_unshare,
1387 	 * bu uncharing pid namespaces is not allowed, so we'll always
1388 	 * see relevant namespace
1389 	 *
1390 	 * write_lock() currently calls preempt_disable() which is the
1391 	 * same as rcu_read_lock(), but according to Oleg, this is not
1392 	 * correct to rely on this
1393 	 */
1394 	rcu_read_lock();
1395 	info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1396 	info.si_uid = __task_cred(tsk)->uid;
1397 	rcu_read_unlock();
1398 
1399 	info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime,
1400 				tsk->signal->utime));
1401 	info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime,
1402 				tsk->signal->stime));
1403 
1404 	info.si_status = tsk->exit_code & 0x7f;
1405 	if (tsk->exit_code & 0x80)
1406 		info.si_code = CLD_DUMPED;
1407 	else if (tsk->exit_code & 0x7f)
1408 		info.si_code = CLD_KILLED;
1409 	else {
1410 		info.si_code = CLD_EXITED;
1411 		info.si_status = tsk->exit_code >> 8;
1412 	}
1413 
1414 	psig = tsk->parent->sighand;
1415 	spin_lock_irqsave(&psig->siglock, flags);
1416 	if (!tsk->ptrace && sig == SIGCHLD &&
1417 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1418 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1419 		/*
1420 		 * We are exiting and our parent doesn't care.  POSIX.1
1421 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1422 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1423 		 * automatically and not left for our parent's wait4 call.
1424 		 * Rather than having the parent do it as a magic kind of
1425 		 * signal handler, we just set this to tell do_exit that we
1426 		 * can be cleaned up without becoming a zombie.  Note that
1427 		 * we still call __wake_up_parent in this case, because a
1428 		 * blocked sys_wait4 might now return -ECHILD.
1429 		 *
1430 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1431 		 * is implementation-defined: we do (if you don't want
1432 		 * it, just use SIG_IGN instead).
1433 		 */
1434 		ret = tsk->exit_signal = -1;
1435 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1436 			sig = -1;
1437 	}
1438 	if (valid_signal(sig) && sig > 0)
1439 		__group_send_sig_info(sig, &info, tsk->parent);
1440 	__wake_up_parent(tsk, tsk->parent);
1441 	spin_unlock_irqrestore(&psig->siglock, flags);
1442 
1443 	return ret;
1444 }
1445 
do_notify_parent_cldstop(struct task_struct * tsk,int why)1446 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1447 {
1448 	struct siginfo info;
1449 	unsigned long flags;
1450 	struct task_struct *parent;
1451 	struct sighand_struct *sighand;
1452 
1453 	if (tsk->ptrace & PT_PTRACED)
1454 		parent = tsk->parent;
1455 	else {
1456 		tsk = tsk->group_leader;
1457 		parent = tsk->real_parent;
1458 	}
1459 
1460 	info.si_signo = SIGCHLD;
1461 	info.si_errno = 0;
1462 	/*
1463 	 * see comment in do_notify_parent() abot the following 3 lines
1464 	 */
1465 	rcu_read_lock();
1466 	info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1467 	info.si_uid = __task_cred(tsk)->uid;
1468 	rcu_read_unlock();
1469 
1470 	info.si_utime = cputime_to_clock_t(tsk->utime);
1471 	info.si_stime = cputime_to_clock_t(tsk->stime);
1472 
1473  	info.si_code = why;
1474  	switch (why) {
1475  	case CLD_CONTINUED:
1476  		info.si_status = SIGCONT;
1477  		break;
1478  	case CLD_STOPPED:
1479  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1480  		break;
1481  	case CLD_TRAPPED:
1482  		info.si_status = tsk->exit_code & 0x7f;
1483  		break;
1484  	default:
1485  		BUG();
1486  	}
1487 
1488 	sighand = parent->sighand;
1489 	spin_lock_irqsave(&sighand->siglock, flags);
1490 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1491 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1492 		__group_send_sig_info(SIGCHLD, &info, parent);
1493 	/*
1494 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1495 	 */
1496 	__wake_up_parent(tsk, parent);
1497 	spin_unlock_irqrestore(&sighand->siglock, flags);
1498 }
1499 
may_ptrace_stop(void)1500 static inline int may_ptrace_stop(void)
1501 {
1502 	if (!likely(current->ptrace & PT_PTRACED))
1503 		return 0;
1504 	/*
1505 	 * Are we in the middle of do_coredump?
1506 	 * If so and our tracer is also part of the coredump stopping
1507 	 * is a deadlock situation, and pointless because our tracer
1508 	 * is dead so don't allow us to stop.
1509 	 * If SIGKILL was already sent before the caller unlocked
1510 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1511 	 * is safe to enter schedule().
1512 	 */
1513 	if (unlikely(current->mm->core_state) &&
1514 	    unlikely(current->mm == current->parent->mm))
1515 		return 0;
1516 
1517 	return 1;
1518 }
1519 
1520 /*
1521  * Return nonzero if there is a SIGKILL that should be waking us up.
1522  * Called with the siglock held.
1523  */
sigkill_pending(struct task_struct * tsk)1524 static int sigkill_pending(struct task_struct *tsk)
1525 {
1526 	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1527 		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1528 }
1529 
1530 /*
1531  * This must be called with current->sighand->siglock held.
1532  *
1533  * This should be the path for all ptrace stops.
1534  * We always set current->last_siginfo while stopped here.
1535  * That makes it a way to test a stopped process for
1536  * being ptrace-stopped vs being job-control-stopped.
1537  *
1538  * If we actually decide not to stop at all because the tracer
1539  * is gone, we keep current->exit_code unless clear_code.
1540  */
ptrace_stop(int exit_code,int clear_code,siginfo_t * info)1541 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1542 {
1543 	if (arch_ptrace_stop_needed(exit_code, info)) {
1544 		/*
1545 		 * The arch code has something special to do before a
1546 		 * ptrace stop.  This is allowed to block, e.g. for faults
1547 		 * on user stack pages.  We can't keep the siglock while
1548 		 * calling arch_ptrace_stop, so we must release it now.
1549 		 * To preserve proper semantics, we must do this before
1550 		 * any signal bookkeeping like checking group_stop_count.
1551 		 * Meanwhile, a SIGKILL could come in before we retake the
1552 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1553 		 * So after regaining the lock, we must check for SIGKILL.
1554 		 */
1555 		spin_unlock_irq(&current->sighand->siglock);
1556 		arch_ptrace_stop(exit_code, info);
1557 		spin_lock_irq(&current->sighand->siglock);
1558 		if (sigkill_pending(current))
1559 			return;
1560 	}
1561 
1562 	/*
1563 	 * If there is a group stop in progress,
1564 	 * we must participate in the bookkeeping.
1565 	 */
1566 	if (current->signal->group_stop_count > 0)
1567 		--current->signal->group_stop_count;
1568 
1569 	current->last_siginfo = info;
1570 	current->exit_code = exit_code;
1571 
1572 	/* Let the debugger run.  */
1573 	__set_current_state(TASK_TRACED);
1574 	spin_unlock_irq(&current->sighand->siglock);
1575 	read_lock(&tasklist_lock);
1576 	if (may_ptrace_stop()) {
1577 		do_notify_parent_cldstop(current, CLD_TRAPPED);
1578 		/*
1579 		 * Don't want to allow preemption here, because
1580 		 * sys_ptrace() needs this task to be inactive.
1581 		 *
1582 		 * XXX: implement read_unlock_no_resched().
1583 		 */
1584 		preempt_disable();
1585 		read_unlock(&tasklist_lock);
1586 		preempt_enable_no_resched();
1587 		schedule();
1588 	} else {
1589 		/*
1590 		 * By the time we got the lock, our tracer went away.
1591 		 * Don't drop the lock yet, another tracer may come.
1592 		 */
1593 		__set_current_state(TASK_RUNNING);
1594 		if (clear_code)
1595 			current->exit_code = 0;
1596 		read_unlock(&tasklist_lock);
1597 	}
1598 
1599 	/*
1600 	 * While in TASK_TRACED, we were considered "frozen enough".
1601 	 * Now that we woke up, it's crucial if we're supposed to be
1602 	 * frozen that we freeze now before running anything substantial.
1603 	 */
1604 	try_to_freeze();
1605 
1606 	/*
1607 	 * We are back.  Now reacquire the siglock before touching
1608 	 * last_siginfo, so that we are sure to have synchronized with
1609 	 * any signal-sending on another CPU that wants to examine it.
1610 	 */
1611 	spin_lock_irq(&current->sighand->siglock);
1612 	current->last_siginfo = NULL;
1613 
1614 	/*
1615 	 * Queued signals ignored us while we were stopped for tracing.
1616 	 * So check for any that we should take before resuming user mode.
1617 	 * This sets TIF_SIGPENDING, but never clears it.
1618 	 */
1619 	recalc_sigpending_tsk(current);
1620 }
1621 
ptrace_notify(int exit_code)1622 void ptrace_notify(int exit_code)
1623 {
1624 	siginfo_t info;
1625 
1626 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1627 
1628 	memset(&info, 0, sizeof info);
1629 	info.si_signo = SIGTRAP;
1630 	info.si_code = exit_code;
1631 	info.si_pid = task_pid_vnr(current);
1632 	info.si_uid = current_uid();
1633 
1634 	/* Let the debugger run.  */
1635 	spin_lock_irq(&current->sighand->siglock);
1636 	ptrace_stop(exit_code, 1, &info);
1637 	spin_unlock_irq(&current->sighand->siglock);
1638 }
1639 
1640 static void
finish_stop(int stop_count)1641 finish_stop(int stop_count)
1642 {
1643 	/*
1644 	 * If there are no other threads in the group, or if there is
1645 	 * a group stop in progress and we are the last to stop,
1646 	 * report to the parent.  When ptraced, every thread reports itself.
1647 	 */
1648 	if (tracehook_notify_jctl(stop_count == 0, CLD_STOPPED)) {
1649 		read_lock(&tasklist_lock);
1650 		do_notify_parent_cldstop(current, CLD_STOPPED);
1651 		read_unlock(&tasklist_lock);
1652 	}
1653 
1654 	do {
1655 		schedule();
1656 	} while (try_to_freeze());
1657 	/*
1658 	 * Now we don't run again until continued.
1659 	 */
1660 	current->exit_code = 0;
1661 }
1662 
1663 /*
1664  * This performs the stopping for SIGSTOP and other stop signals.
1665  * We have to stop all threads in the thread group.
1666  * Returns nonzero if we've actually stopped and released the siglock.
1667  * Returns zero if we didn't stop and still hold the siglock.
1668  */
do_signal_stop(int signr)1669 static int do_signal_stop(int signr)
1670 {
1671 	struct signal_struct *sig = current->signal;
1672 	int stop_count;
1673 
1674 	if (sig->group_stop_count > 0) {
1675 		/*
1676 		 * There is a group stop in progress.  We don't need to
1677 		 * start another one.
1678 		 */
1679 		stop_count = --sig->group_stop_count;
1680 	} else {
1681 		struct task_struct *t;
1682 
1683 		if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1684 		    unlikely(signal_group_exit(sig)))
1685 			return 0;
1686 		/*
1687 		 * There is no group stop already in progress.
1688 		 * We must initiate one now.
1689 		 */
1690 		sig->group_exit_code = signr;
1691 
1692 		stop_count = 0;
1693 		for (t = next_thread(current); t != current; t = next_thread(t))
1694 			/*
1695 			 * Setting state to TASK_STOPPED for a group
1696 			 * stop is always done with the siglock held,
1697 			 * so this check has no races.
1698 			 */
1699 			if (!(t->flags & PF_EXITING) &&
1700 			    !task_is_stopped_or_traced(t)) {
1701 				stop_count++;
1702 				signal_wake_up(t, 0);
1703 			}
1704 		sig->group_stop_count = stop_count;
1705 	}
1706 
1707 	if (stop_count == 0)
1708 		sig->flags = SIGNAL_STOP_STOPPED;
1709 	current->exit_code = sig->group_exit_code;
1710 	__set_current_state(TASK_STOPPED);
1711 
1712 	spin_unlock_irq(&current->sighand->siglock);
1713 	finish_stop(stop_count);
1714 	return 1;
1715 }
1716 
ptrace_signal(int signr,siginfo_t * info,struct pt_regs * regs,void * cookie)1717 static int ptrace_signal(int signr, siginfo_t *info,
1718 			 struct pt_regs *regs, void *cookie)
1719 {
1720 	if (!(current->ptrace & PT_PTRACED))
1721 		return signr;
1722 
1723 	ptrace_signal_deliver(regs, cookie);
1724 
1725 	/* Let the debugger run.  */
1726 	ptrace_stop(signr, 0, info);
1727 
1728 	/* We're back.  Did the debugger cancel the sig?  */
1729 	signr = current->exit_code;
1730 	if (signr == 0)
1731 		return signr;
1732 
1733 	current->exit_code = 0;
1734 
1735 	/* Update the siginfo structure if the signal has
1736 	   changed.  If the debugger wanted something
1737 	   specific in the siginfo structure then it should
1738 	   have updated *info via PTRACE_SETSIGINFO.  */
1739 	if (signr != info->si_signo) {
1740 		info->si_signo = signr;
1741 		info->si_errno = 0;
1742 		info->si_code = SI_USER;
1743 		info->si_pid = task_pid_vnr(current->parent);
1744 		info->si_uid = task_uid(current->parent);
1745 	}
1746 
1747 	/* If the (new) signal is now blocked, requeue it.  */
1748 	if (sigismember(&current->blocked, signr)) {
1749 		specific_send_sig_info(signr, info, current);
1750 		signr = 0;
1751 	}
1752 
1753 	return signr;
1754 }
1755 
get_signal_to_deliver(siginfo_t * info,struct k_sigaction * return_ka,struct pt_regs * regs,void * cookie)1756 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1757 			  struct pt_regs *regs, void *cookie)
1758 {
1759 	struct sighand_struct *sighand = current->sighand;
1760 	struct signal_struct *signal = current->signal;
1761 	int signr;
1762 
1763 relock:
1764 	/*
1765 	 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1766 	 * While in TASK_STOPPED, we were considered "frozen enough".
1767 	 * Now that we woke up, it's crucial if we're supposed to be
1768 	 * frozen that we freeze now before running anything substantial.
1769 	 */
1770 	try_to_freeze();
1771 
1772 	spin_lock_irq(&sighand->siglock);
1773 	/*
1774 	 * Every stopped thread goes here after wakeup. Check to see if
1775 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
1776 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
1777 	 */
1778 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
1779 		int why = (signal->flags & SIGNAL_STOP_CONTINUED)
1780 				? CLD_CONTINUED : CLD_STOPPED;
1781 		signal->flags &= ~SIGNAL_CLD_MASK;
1782 		spin_unlock_irq(&sighand->siglock);
1783 
1784 		if (unlikely(!tracehook_notify_jctl(1, why)))
1785 			goto relock;
1786 
1787 		read_lock(&tasklist_lock);
1788 		do_notify_parent_cldstop(current->group_leader, why);
1789 		read_unlock(&tasklist_lock);
1790 		goto relock;
1791 	}
1792 
1793 	for (;;) {
1794 		struct k_sigaction *ka;
1795 
1796 		if (unlikely(signal->group_stop_count > 0) &&
1797 		    do_signal_stop(0))
1798 			goto relock;
1799 
1800 		/*
1801 		 * Tracing can induce an artifical signal and choose sigaction.
1802 		 * The return value in @signr determines the default action,
1803 		 * but @info->si_signo is the signal number we will report.
1804 		 */
1805 		signr = tracehook_get_signal(current, regs, info, return_ka);
1806 		if (unlikely(signr < 0))
1807 			goto relock;
1808 		if (unlikely(signr != 0))
1809 			ka = return_ka;
1810 		else {
1811 			signr = dequeue_signal(current, &current->blocked,
1812 					       info);
1813 
1814 			if (!signr)
1815 				break; /* will return 0 */
1816 
1817 			if (signr != SIGKILL) {
1818 				signr = ptrace_signal(signr, info,
1819 						      regs, cookie);
1820 				if (!signr)
1821 					continue;
1822 			}
1823 
1824 			ka = &sighand->action[signr-1];
1825 		}
1826 
1827 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
1828 			continue;
1829 		if (ka->sa.sa_handler != SIG_DFL) {
1830 			/* Run the handler.  */
1831 			*return_ka = *ka;
1832 
1833 			if (ka->sa.sa_flags & SA_ONESHOT)
1834 				ka->sa.sa_handler = SIG_DFL;
1835 
1836 			break; /* will return non-zero "signr" value */
1837 		}
1838 
1839 		/*
1840 		 * Now we are doing the default action for this signal.
1841 		 */
1842 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
1843 			continue;
1844 
1845 		/*
1846 		 * Global init gets no signals it doesn't want.
1847 		 */
1848 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
1849 		    !signal_group_exit(signal))
1850 			continue;
1851 
1852 		if (sig_kernel_stop(signr)) {
1853 			/*
1854 			 * The default action is to stop all threads in
1855 			 * the thread group.  The job control signals
1856 			 * do nothing in an orphaned pgrp, but SIGSTOP
1857 			 * always works.  Note that siglock needs to be
1858 			 * dropped during the call to is_orphaned_pgrp()
1859 			 * because of lock ordering with tasklist_lock.
1860 			 * This allows an intervening SIGCONT to be posted.
1861 			 * We need to check for that and bail out if necessary.
1862 			 */
1863 			if (signr != SIGSTOP) {
1864 				spin_unlock_irq(&sighand->siglock);
1865 
1866 				/* signals can be posted during this window */
1867 
1868 				if (is_current_pgrp_orphaned())
1869 					goto relock;
1870 
1871 				spin_lock_irq(&sighand->siglock);
1872 			}
1873 
1874 			if (likely(do_signal_stop(info->si_signo))) {
1875 				/* It released the siglock.  */
1876 				goto relock;
1877 			}
1878 
1879 			/*
1880 			 * We didn't actually stop, due to a race
1881 			 * with SIGCONT or something like that.
1882 			 */
1883 			continue;
1884 		}
1885 
1886 		spin_unlock_irq(&sighand->siglock);
1887 
1888 		/*
1889 		 * Anything else is fatal, maybe with a core dump.
1890 		 */
1891 		current->flags |= PF_SIGNALED;
1892 
1893 		if (sig_kernel_coredump(signr)) {
1894 			if (print_fatal_signals)
1895 				print_fatal_signal(regs, info->si_signo);
1896 			/*
1897 			 * If it was able to dump core, this kills all
1898 			 * other threads in the group and synchronizes with
1899 			 * their demise.  If we lost the race with another
1900 			 * thread getting here, it set group_exit_code
1901 			 * first and our do_group_exit call below will use
1902 			 * that value and ignore the one we pass it.
1903 			 */
1904 			do_coredump(info->si_signo, info->si_signo, regs);
1905 		}
1906 
1907 		/*
1908 		 * Death signals, no core dump.
1909 		 */
1910 		do_group_exit(info->si_signo);
1911 		/* NOTREACHED */
1912 	}
1913 	spin_unlock_irq(&sighand->siglock);
1914 	return signr;
1915 }
1916 
exit_signals(struct task_struct * tsk)1917 void exit_signals(struct task_struct *tsk)
1918 {
1919 	int group_stop = 0;
1920 	struct task_struct *t;
1921 
1922 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
1923 		tsk->flags |= PF_EXITING;
1924 		return;
1925 	}
1926 
1927 	spin_lock_irq(&tsk->sighand->siglock);
1928 	/*
1929 	 * From now this task is not visible for group-wide signals,
1930 	 * see wants_signal(), do_signal_stop().
1931 	 */
1932 	tsk->flags |= PF_EXITING;
1933 	if (!signal_pending(tsk))
1934 		goto out;
1935 
1936 	/* It could be that __group_complete_signal() choose us to
1937 	 * notify about group-wide signal. Another thread should be
1938 	 * woken now to take the signal since we will not.
1939 	 */
1940 	for (t = tsk; (t = next_thread(t)) != tsk; )
1941 		if (!signal_pending(t) && !(t->flags & PF_EXITING))
1942 			recalc_sigpending_and_wake(t);
1943 
1944 	if (unlikely(tsk->signal->group_stop_count) &&
1945 			!--tsk->signal->group_stop_count) {
1946 		tsk->signal->flags = SIGNAL_STOP_STOPPED;
1947 		group_stop = 1;
1948 	}
1949 out:
1950 	spin_unlock_irq(&tsk->sighand->siglock);
1951 
1952 	if (unlikely(group_stop) && tracehook_notify_jctl(1, CLD_STOPPED)) {
1953 		read_lock(&tasklist_lock);
1954 		do_notify_parent_cldstop(tsk, CLD_STOPPED);
1955 		read_unlock(&tasklist_lock);
1956 	}
1957 }
1958 
1959 EXPORT_SYMBOL(recalc_sigpending);
1960 EXPORT_SYMBOL_GPL(dequeue_signal);
1961 EXPORT_SYMBOL(flush_signals);
1962 EXPORT_SYMBOL(force_sig);
1963 EXPORT_SYMBOL(send_sig);
1964 EXPORT_SYMBOL(send_sig_info);
1965 EXPORT_SYMBOL(sigprocmask);
1966 EXPORT_SYMBOL(block_all_signals);
1967 EXPORT_SYMBOL(unblock_all_signals);
1968 
1969 
1970 /*
1971  * System call entry points.
1972  */
1973 
SYSCALL_DEFINE0(restart_syscall)1974 SYSCALL_DEFINE0(restart_syscall)
1975 {
1976 	struct restart_block *restart = &current_thread_info()->restart_block;
1977 	return restart->fn(restart);
1978 }
1979 
do_no_restart_syscall(struct restart_block * param)1980 long do_no_restart_syscall(struct restart_block *param)
1981 {
1982 	return -EINTR;
1983 }
1984 
1985 /*
1986  * We don't need to get the kernel lock - this is all local to this
1987  * particular thread.. (and that's good, because this is _heavily_
1988  * used by various programs)
1989  */
1990 
1991 /*
1992  * This is also useful for kernel threads that want to temporarily
1993  * (or permanently) block certain signals.
1994  *
1995  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1996  * interface happily blocks "unblockable" signals like SIGKILL
1997  * and friends.
1998  */
sigprocmask(int how,sigset_t * set,sigset_t * oldset)1999 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2000 {
2001 	int error;
2002 
2003 	spin_lock_irq(&current->sighand->siglock);
2004 	if (oldset)
2005 		*oldset = current->blocked;
2006 
2007 	error = 0;
2008 	switch (how) {
2009 	case SIG_BLOCK:
2010 		sigorsets(&current->blocked, &current->blocked, set);
2011 		break;
2012 	case SIG_UNBLOCK:
2013 		signandsets(&current->blocked, &current->blocked, set);
2014 		break;
2015 	case SIG_SETMASK:
2016 		current->blocked = *set;
2017 		break;
2018 	default:
2019 		error = -EINVAL;
2020 	}
2021 	recalc_sigpending();
2022 	spin_unlock_irq(&current->sighand->siglock);
2023 
2024 	return error;
2025 }
2026 
SYSCALL_DEFINE4(rt_sigprocmask,int,how,sigset_t __user *,set,sigset_t __user *,oset,size_t,sigsetsize)2027 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, set,
2028 		sigset_t __user *, oset, size_t, sigsetsize)
2029 {
2030 	int error = -EINVAL;
2031 	sigset_t old_set, new_set;
2032 
2033 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2034 	if (sigsetsize != sizeof(sigset_t))
2035 		goto out;
2036 
2037 	if (set) {
2038 		error = -EFAULT;
2039 		if (copy_from_user(&new_set, set, sizeof(*set)))
2040 			goto out;
2041 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2042 
2043 		error = sigprocmask(how, &new_set, &old_set);
2044 		if (error)
2045 			goto out;
2046 		if (oset)
2047 			goto set_old;
2048 	} else if (oset) {
2049 		spin_lock_irq(&current->sighand->siglock);
2050 		old_set = current->blocked;
2051 		spin_unlock_irq(&current->sighand->siglock);
2052 
2053 	set_old:
2054 		error = -EFAULT;
2055 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
2056 			goto out;
2057 	}
2058 	error = 0;
2059 out:
2060 	return error;
2061 }
2062 
do_sigpending(void __user * set,unsigned long sigsetsize)2063 long do_sigpending(void __user *set, unsigned long sigsetsize)
2064 {
2065 	long error = -EINVAL;
2066 	sigset_t pending;
2067 
2068 	if (sigsetsize > sizeof(sigset_t))
2069 		goto out;
2070 
2071 	spin_lock_irq(&current->sighand->siglock);
2072 	sigorsets(&pending, &current->pending.signal,
2073 		  &current->signal->shared_pending.signal);
2074 	spin_unlock_irq(&current->sighand->siglock);
2075 
2076 	/* Outside the lock because only this thread touches it.  */
2077 	sigandsets(&pending, &current->blocked, &pending);
2078 
2079 	error = -EFAULT;
2080 	if (!copy_to_user(set, &pending, sigsetsize))
2081 		error = 0;
2082 
2083 out:
2084 	return error;
2085 }
2086 
SYSCALL_DEFINE2(rt_sigpending,sigset_t __user *,set,size_t,sigsetsize)2087 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2088 {
2089 	return do_sigpending(set, sigsetsize);
2090 }
2091 
2092 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2093 
copy_siginfo_to_user(siginfo_t __user * to,siginfo_t * from)2094 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2095 {
2096 	int err;
2097 
2098 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2099 		return -EFAULT;
2100 	if (from->si_code < 0)
2101 		return __copy_to_user(to, from, sizeof(siginfo_t))
2102 			? -EFAULT : 0;
2103 	/*
2104 	 * If you change siginfo_t structure, please be sure
2105 	 * this code is fixed accordingly.
2106 	 * Please remember to update the signalfd_copyinfo() function
2107 	 * inside fs/signalfd.c too, in case siginfo_t changes.
2108 	 * It should never copy any pad contained in the structure
2109 	 * to avoid security leaks, but must copy the generic
2110 	 * 3 ints plus the relevant union member.
2111 	 */
2112 	err = __put_user(from->si_signo, &to->si_signo);
2113 	err |= __put_user(from->si_errno, &to->si_errno);
2114 	err |= __put_user((short)from->si_code, &to->si_code);
2115 	switch (from->si_code & __SI_MASK) {
2116 	case __SI_KILL:
2117 		err |= __put_user(from->si_pid, &to->si_pid);
2118 		err |= __put_user(from->si_uid, &to->si_uid);
2119 		break;
2120 	case __SI_TIMER:
2121 		 err |= __put_user(from->si_tid, &to->si_tid);
2122 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2123 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2124 		break;
2125 	case __SI_POLL:
2126 		err |= __put_user(from->si_band, &to->si_band);
2127 		err |= __put_user(from->si_fd, &to->si_fd);
2128 		break;
2129 	case __SI_FAULT:
2130 		err |= __put_user(from->si_addr, &to->si_addr);
2131 #ifdef __ARCH_SI_TRAPNO
2132 		err |= __put_user(from->si_trapno, &to->si_trapno);
2133 #endif
2134 		break;
2135 	case __SI_CHLD:
2136 		err |= __put_user(from->si_pid, &to->si_pid);
2137 		err |= __put_user(from->si_uid, &to->si_uid);
2138 		err |= __put_user(from->si_status, &to->si_status);
2139 		err |= __put_user(from->si_utime, &to->si_utime);
2140 		err |= __put_user(from->si_stime, &to->si_stime);
2141 		break;
2142 	case __SI_RT: /* This is not generated by the kernel as of now. */
2143 	case __SI_MESGQ: /* But this is */
2144 		err |= __put_user(from->si_pid, &to->si_pid);
2145 		err |= __put_user(from->si_uid, &to->si_uid);
2146 		err |= __put_user(from->si_ptr, &to->si_ptr);
2147 		break;
2148 	default: /* this is just in case for now ... */
2149 		err |= __put_user(from->si_pid, &to->si_pid);
2150 		err |= __put_user(from->si_uid, &to->si_uid);
2151 		break;
2152 	}
2153 	return err;
2154 }
2155 
2156 #endif
2157 
SYSCALL_DEFINE4(rt_sigtimedwait,const sigset_t __user *,uthese,siginfo_t __user *,uinfo,const struct timespec __user *,uts,size_t,sigsetsize)2158 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2159 		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2160 		size_t, sigsetsize)
2161 {
2162 	int ret, sig;
2163 	sigset_t these;
2164 	struct timespec ts;
2165 	siginfo_t info;
2166 	long timeout = 0;
2167 
2168 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2169 	if (sigsetsize != sizeof(sigset_t))
2170 		return -EINVAL;
2171 
2172 	if (copy_from_user(&these, uthese, sizeof(these)))
2173 		return -EFAULT;
2174 
2175 	/*
2176 	 * Invert the set of allowed signals to get those we
2177 	 * want to block.
2178 	 */
2179 	sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2180 	signotset(&these);
2181 
2182 	if (uts) {
2183 		if (copy_from_user(&ts, uts, sizeof(ts)))
2184 			return -EFAULT;
2185 		if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2186 		    || ts.tv_sec < 0)
2187 			return -EINVAL;
2188 	}
2189 
2190 	spin_lock_irq(&current->sighand->siglock);
2191 	sig = dequeue_signal(current, &these, &info);
2192 	if (!sig) {
2193 		timeout = MAX_SCHEDULE_TIMEOUT;
2194 		if (uts)
2195 			timeout = (timespec_to_jiffies(&ts)
2196 				   + (ts.tv_sec || ts.tv_nsec));
2197 
2198 		if (timeout) {
2199 			/* None ready -- temporarily unblock those we're
2200 			 * interested while we are sleeping in so that we'll
2201 			 * be awakened when they arrive.  */
2202 			current->real_blocked = current->blocked;
2203 			sigandsets(&current->blocked, &current->blocked, &these);
2204 			recalc_sigpending();
2205 			spin_unlock_irq(&current->sighand->siglock);
2206 
2207 			timeout = schedule_timeout_interruptible(timeout);
2208 
2209 			spin_lock_irq(&current->sighand->siglock);
2210 			sig = dequeue_signal(current, &these, &info);
2211 			current->blocked = current->real_blocked;
2212 			siginitset(&current->real_blocked, 0);
2213 			recalc_sigpending();
2214 		}
2215 	}
2216 	spin_unlock_irq(&current->sighand->siglock);
2217 
2218 	if (sig) {
2219 		ret = sig;
2220 		if (uinfo) {
2221 			if (copy_siginfo_to_user(uinfo, &info))
2222 				ret = -EFAULT;
2223 		}
2224 	} else {
2225 		ret = -EAGAIN;
2226 		if (timeout)
2227 			ret = -EINTR;
2228 	}
2229 
2230 	return ret;
2231 }
2232 
SYSCALL_DEFINE2(kill,pid_t,pid,int,sig)2233 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2234 {
2235 	struct siginfo info;
2236 
2237 	info.si_signo = sig;
2238 	info.si_errno = 0;
2239 	info.si_code = SI_USER;
2240 	info.si_pid = task_tgid_vnr(current);
2241 	info.si_uid = current_uid();
2242 
2243 	return kill_something_info(sig, &info, pid);
2244 }
2245 
do_tkill(pid_t tgid,pid_t pid,int sig)2246 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2247 {
2248 	int error;
2249 	struct siginfo info;
2250 	struct task_struct *p;
2251 	unsigned long flags;
2252 
2253 	error = -ESRCH;
2254 	info.si_signo = sig;
2255 	info.si_errno = 0;
2256 	info.si_code = SI_TKILL;
2257 	info.si_pid = task_tgid_vnr(current);
2258 	info.si_uid = current_uid();
2259 
2260 	rcu_read_lock();
2261 	p = find_task_by_vpid(pid);
2262 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2263 		error = check_kill_permission(sig, &info, p);
2264 		/*
2265 		 * The null signal is a permissions and process existence
2266 		 * probe.  No signal is actually delivered.
2267 		 *
2268 		 * If lock_task_sighand() fails we pretend the task dies
2269 		 * after receiving the signal. The window is tiny, and the
2270 		 * signal is private anyway.
2271 		 */
2272 		if (!error && sig && lock_task_sighand(p, &flags)) {
2273 			error = specific_send_sig_info(sig, &info, p);
2274 			unlock_task_sighand(p, &flags);
2275 		}
2276 	}
2277 	rcu_read_unlock();
2278 
2279 	return error;
2280 }
2281 
2282 /**
2283  *  sys_tgkill - send signal to one specific thread
2284  *  @tgid: the thread group ID of the thread
2285  *  @pid: the PID of the thread
2286  *  @sig: signal to be sent
2287  *
2288  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2289  *  exists but it's not belonging to the target process anymore. This
2290  *  method solves the problem of threads exiting and PIDs getting reused.
2291  */
SYSCALL_DEFINE3(tgkill,pid_t,tgid,pid_t,pid,int,sig)2292 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2293 {
2294 	/* This is only valid for single tasks */
2295 	if (pid <= 0 || tgid <= 0)
2296 		return -EINVAL;
2297 
2298 	return do_tkill(tgid, pid, sig);
2299 }
2300 
2301 /*
2302  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2303  */
SYSCALL_DEFINE2(tkill,pid_t,pid,int,sig)2304 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2305 {
2306 	/* This is only valid for single tasks */
2307 	if (pid <= 0)
2308 		return -EINVAL;
2309 
2310 	return do_tkill(0, pid, sig);
2311 }
2312 
SYSCALL_DEFINE3(rt_sigqueueinfo,pid_t,pid,int,sig,siginfo_t __user *,uinfo)2313 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2314 		siginfo_t __user *, uinfo)
2315 {
2316 	siginfo_t info;
2317 
2318 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2319 		return -EFAULT;
2320 
2321 	/* Not even root can pretend to send signals from the kernel.
2322 	   Nor can they impersonate a kill(), which adds source info.  */
2323 	if (info.si_code >= 0)
2324 		return -EPERM;
2325 	info.si_signo = sig;
2326 
2327 	/* POSIX.1b doesn't mention process groups.  */
2328 	return kill_proc_info(sig, &info, pid);
2329 }
2330 
do_sigaction(int sig,struct k_sigaction * act,struct k_sigaction * oact)2331 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2332 {
2333 	struct task_struct *t = current;
2334 	struct k_sigaction *k;
2335 	sigset_t mask;
2336 
2337 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2338 		return -EINVAL;
2339 
2340 	k = &t->sighand->action[sig-1];
2341 
2342 	spin_lock_irq(&current->sighand->siglock);
2343 	if (oact)
2344 		*oact = *k;
2345 
2346 	if (act) {
2347 		sigdelsetmask(&act->sa.sa_mask,
2348 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
2349 		*k = *act;
2350 		/*
2351 		 * POSIX 3.3.1.3:
2352 		 *  "Setting a signal action to SIG_IGN for a signal that is
2353 		 *   pending shall cause the pending signal to be discarded,
2354 		 *   whether or not it is blocked."
2355 		 *
2356 		 *  "Setting a signal action to SIG_DFL for a signal that is
2357 		 *   pending and whose default action is to ignore the signal
2358 		 *   (for example, SIGCHLD), shall cause the pending signal to
2359 		 *   be discarded, whether or not it is blocked"
2360 		 */
2361 		if (sig_handler_ignored(sig_handler(t, sig), sig)) {
2362 			sigemptyset(&mask);
2363 			sigaddset(&mask, sig);
2364 			rm_from_queue_full(&mask, &t->signal->shared_pending);
2365 			do {
2366 				rm_from_queue_full(&mask, &t->pending);
2367 				t = next_thread(t);
2368 			} while (t != current);
2369 		}
2370 	}
2371 
2372 	spin_unlock_irq(&current->sighand->siglock);
2373 	return 0;
2374 }
2375 
2376 int
do_sigaltstack(const stack_t __user * uss,stack_t __user * uoss,unsigned long sp)2377 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2378 {
2379 	stack_t oss;
2380 	int error;
2381 
2382 	if (uoss) {
2383 		oss.ss_sp = (void __user *) current->sas_ss_sp;
2384 		oss.ss_size = current->sas_ss_size;
2385 		oss.ss_flags = sas_ss_flags(sp);
2386 	}
2387 
2388 	if (uss) {
2389 		void __user *ss_sp;
2390 		size_t ss_size;
2391 		int ss_flags;
2392 
2393 		error = -EFAULT;
2394 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2395 		    || __get_user(ss_sp, &uss->ss_sp)
2396 		    || __get_user(ss_flags, &uss->ss_flags)
2397 		    || __get_user(ss_size, &uss->ss_size))
2398 			goto out;
2399 
2400 		error = -EPERM;
2401 		if (on_sig_stack(sp))
2402 			goto out;
2403 
2404 		error = -EINVAL;
2405 		/*
2406 		 *
2407 		 * Note - this code used to test ss_flags incorrectly
2408 		 *  	  old code may have been written using ss_flags==0
2409 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
2410 		 *	  way that worked) - this fix preserves that older
2411 		 *	  mechanism
2412 		 */
2413 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2414 			goto out;
2415 
2416 		if (ss_flags == SS_DISABLE) {
2417 			ss_size = 0;
2418 			ss_sp = NULL;
2419 		} else {
2420 			error = -ENOMEM;
2421 			if (ss_size < MINSIGSTKSZ)
2422 				goto out;
2423 		}
2424 
2425 		current->sas_ss_sp = (unsigned long) ss_sp;
2426 		current->sas_ss_size = ss_size;
2427 	}
2428 
2429 	if (uoss) {
2430 		error = -EFAULT;
2431 		if (copy_to_user(uoss, &oss, sizeof(oss)))
2432 			goto out;
2433 	}
2434 
2435 	error = 0;
2436 out:
2437 	return error;
2438 }
2439 
2440 #ifdef __ARCH_WANT_SYS_SIGPENDING
2441 
SYSCALL_DEFINE1(sigpending,old_sigset_t __user *,set)2442 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
2443 {
2444 	return do_sigpending(set, sizeof(*set));
2445 }
2446 
2447 #endif
2448 
2449 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2450 /* Some platforms have their own version with special arguments others
2451    support only sys_rt_sigprocmask.  */
2452 
SYSCALL_DEFINE3(sigprocmask,int,how,old_sigset_t __user *,set,old_sigset_t __user *,oset)2453 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, set,
2454 		old_sigset_t __user *, oset)
2455 {
2456 	int error;
2457 	old_sigset_t old_set, new_set;
2458 
2459 	if (set) {
2460 		error = -EFAULT;
2461 		if (copy_from_user(&new_set, set, sizeof(*set)))
2462 			goto out;
2463 		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2464 
2465 		spin_lock_irq(&current->sighand->siglock);
2466 		old_set = current->blocked.sig[0];
2467 
2468 		error = 0;
2469 		switch (how) {
2470 		default:
2471 			error = -EINVAL;
2472 			break;
2473 		case SIG_BLOCK:
2474 			sigaddsetmask(&current->blocked, new_set);
2475 			break;
2476 		case SIG_UNBLOCK:
2477 			sigdelsetmask(&current->blocked, new_set);
2478 			break;
2479 		case SIG_SETMASK:
2480 			current->blocked.sig[0] = new_set;
2481 			break;
2482 		}
2483 
2484 		recalc_sigpending();
2485 		spin_unlock_irq(&current->sighand->siglock);
2486 		if (error)
2487 			goto out;
2488 		if (oset)
2489 			goto set_old;
2490 	} else if (oset) {
2491 		old_set = current->blocked.sig[0];
2492 	set_old:
2493 		error = -EFAULT;
2494 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
2495 			goto out;
2496 	}
2497 	error = 0;
2498 out:
2499 	return error;
2500 }
2501 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2502 
2503 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
SYSCALL_DEFINE4(rt_sigaction,int,sig,const struct sigaction __user *,act,struct sigaction __user *,oact,size_t,sigsetsize)2504 SYSCALL_DEFINE4(rt_sigaction, int, sig,
2505 		const struct sigaction __user *, act,
2506 		struct sigaction __user *, oact,
2507 		size_t, sigsetsize)
2508 {
2509 	struct k_sigaction new_sa, old_sa;
2510 	int ret = -EINVAL;
2511 
2512 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2513 	if (sigsetsize != sizeof(sigset_t))
2514 		goto out;
2515 
2516 	if (act) {
2517 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2518 			return -EFAULT;
2519 	}
2520 
2521 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2522 
2523 	if (!ret && oact) {
2524 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2525 			return -EFAULT;
2526 	}
2527 out:
2528 	return ret;
2529 }
2530 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2531 
2532 #ifdef __ARCH_WANT_SYS_SGETMASK
2533 
2534 /*
2535  * For backwards compatibility.  Functionality superseded by sigprocmask.
2536  */
SYSCALL_DEFINE0(sgetmask)2537 SYSCALL_DEFINE0(sgetmask)
2538 {
2539 	/* SMP safe */
2540 	return current->blocked.sig[0];
2541 }
2542 
SYSCALL_DEFINE1(ssetmask,int,newmask)2543 SYSCALL_DEFINE1(ssetmask, int, newmask)
2544 {
2545 	int old;
2546 
2547 	spin_lock_irq(&current->sighand->siglock);
2548 	old = current->blocked.sig[0];
2549 
2550 	siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2551 						  sigmask(SIGSTOP)));
2552 	recalc_sigpending();
2553 	spin_unlock_irq(&current->sighand->siglock);
2554 
2555 	return old;
2556 }
2557 #endif /* __ARCH_WANT_SGETMASK */
2558 
2559 #ifdef __ARCH_WANT_SYS_SIGNAL
2560 /*
2561  * For backwards compatibility.  Functionality superseded by sigaction.
2562  */
SYSCALL_DEFINE2(signal,int,sig,__sighandler_t,handler)2563 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
2564 {
2565 	struct k_sigaction new_sa, old_sa;
2566 	int ret;
2567 
2568 	new_sa.sa.sa_handler = handler;
2569 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2570 	sigemptyset(&new_sa.sa.sa_mask);
2571 
2572 	ret = do_sigaction(sig, &new_sa, &old_sa);
2573 
2574 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2575 }
2576 #endif /* __ARCH_WANT_SYS_SIGNAL */
2577 
2578 #ifdef __ARCH_WANT_SYS_PAUSE
2579 
SYSCALL_DEFINE0(pause)2580 SYSCALL_DEFINE0(pause)
2581 {
2582 	current->state = TASK_INTERRUPTIBLE;
2583 	schedule();
2584 	return -ERESTARTNOHAND;
2585 }
2586 
2587 #endif
2588 
2589 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
SYSCALL_DEFINE2(rt_sigsuspend,sigset_t __user *,unewset,size_t,sigsetsize)2590 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
2591 {
2592 	sigset_t newset;
2593 
2594 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2595 	if (sigsetsize != sizeof(sigset_t))
2596 		return -EINVAL;
2597 
2598 	if (copy_from_user(&newset, unewset, sizeof(newset)))
2599 		return -EFAULT;
2600 	sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2601 
2602 	spin_lock_irq(&current->sighand->siglock);
2603 	current->saved_sigmask = current->blocked;
2604 	current->blocked = newset;
2605 	recalc_sigpending();
2606 	spin_unlock_irq(&current->sighand->siglock);
2607 
2608 	current->state = TASK_INTERRUPTIBLE;
2609 	schedule();
2610 	set_restore_sigmask();
2611 	return -ERESTARTNOHAND;
2612 }
2613 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2614 
arch_vma_name(struct vm_area_struct * vma)2615 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2616 {
2617 	return NULL;
2618 }
2619 
signals_init(void)2620 void __init signals_init(void)
2621 {
2622 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2623 }
2624